1
|
Chakraborty P, Nattel S, Nanthakumar K, Connelly KA, Husain M, Po SS, Ha ACT. Sudden cardiac death due to ventricular arrhythmia in diabetes mellitus: A bench to bedside review. Heart Rhythm 2024; 21:1827-1837. [PMID: 38848857 DOI: 10.1016/j.hrthm.2024.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Diabetes mellitus (DM) confers an increased risk of sudden cardiac death (SCD) independent of its associated cardiovascular comorbidities. DM induces adverse structural, electrophysiologic, and autonomic cardiac remodeling that can increase one's risk of ventricular arrhythmias and SCD. Although glycemic control and prevention of microvascular and macrovascular complications are cornerstones in the management of DM, they are not adequate for the prevention of SCD. In this narrative review, we describe the contribution of DM to the pathophysiologic mechanism of SCD beyond its role in atherosclerotic cardiovascular disease and heart failure. On the basis of this pathophysiologic framework, we outline potential preventive and therapeutic strategies to mitigate the risk of SCD in this population of high-risk patients.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Kumaraswamy Nanthakumar
- Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mansoor Husain
- Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Sunny S Po
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew C T Ha
- Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Vandenberk B, Haemers P, Morillo C. The autonomic nervous system in atrial fibrillation-pathophysiology and non-invasive assessment. Front Cardiovasc Med 2024; 10:1327387. [PMID: 38239878 PMCID: PMC10794613 DOI: 10.3389/fcvm.2023.1327387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
The autonomic nervous system plays a crucial role in atrial fibrillation pathophysiology. Parasympathetic hyperactivity result in a shortening of the action potential duration, a reduction of the conduction wavelength, and as such facilitates reentry in the presence of triggers. Further, autonomic remodeling of atrial myocytes in AF includes progressive sympathetic hyperinnervation by increased atrial sympathetic nerve density and sympathetic atrial nerve sprouting. Knowledge on the pathophysiological process in AF, including the contribution of the autonomic nervous system, may in the near future guide personalized AF management. This review focuses on the role of the autonomic nervous system in atrial fibrillation pathophysiology and non-invasive assessment of the autonomic nervous system.
Collapse
Affiliation(s)
- Bert Vandenberk
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Peter Haemers
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Carlos Morillo
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Mehri S, Chaaba R, Finsterer J, Khamlaoui W, Hammami S, Hammami M. Relevance of oxidative stress biomarkers, hemoglobin A1c, troponin-I, and angiotensin-converting enzyme metabolism to blood pressure in acute myocardial infarction: a case-control study. Redox Rep 2023; 28:2209360. [PMID: 37191198 DOI: 10.1080/13510002.2023.2209360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The aim was to investigate this relationship by calculating 1) the correlation between peak troponin-C (peak-cTnI), levels of oxidative stress biomarkers, including lipid peroxidation products (malondialdehyde (MDA), conjugated dienes (CD)), and antioxidant enzyme activity (glutathione peroxidase (GPx)), and HbA1c and 2) the correlation between HbA1c and serum angiotensin-converting enzyme (ACE) activity, and its impact on the rate pressure product (RPP) in acute myocardial infarction (AMI). A case-control study was performed in 306 AMI patients having undergone coronary angiography and on 410 controls. GPx activity was reduced in association with increased MDA and CD in patients. Peak-cTnI was positively correlated with HbA1c, MDA, and CD levels. Serum ACE activity was negatively correlated with GPx. HbA1c was positively correlated with ACE activity and RPP. Linear regression analysis showed that peak-cTnI, ACE activity and HbA1c are significant predictors of AMI. Elevated HbA1c and peak-cTnI levels are associated with RPP elevation causing AMI. In conclusions, patients with elevated HbA1c, elevated ACE activity and cTnI are at increased risk of AMI with increasing RPP. Patients at risk of AMI can be identified at an early stage if the biomarkers HbA1c, ACE activity, and cTnI are measured and preventive measures are taken in a targeted manner.
Collapse
Affiliation(s)
- Sounira Mehri
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods, and Vascular Health", Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Raja Chaaba
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods, and Vascular Health", Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | | | - Wided Khamlaoui
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods, and Vascular Health", Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Sonia Hammami
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods, and Vascular Health", Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Department of Internal Medicine, CHU F. Bourguiba, Monastir, Tunisia
| | - Mohamed Hammami
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods, and Vascular Health", Faculty of Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
4
|
Filipović N, Marinović Guić M, Košta V, Vukojević K. Cardiac innervations in diabetes mellitus-Anatomical evidence of neuropathy. Anat Rec (Hoboken) 2023; 306:2345-2365. [PMID: 36251628 DOI: 10.1002/ar.25090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
The extensive innervations of the heart include a complex network of sympathetic, parasympathetic, and sensory nerves connected in loops that serve to regulate cardiac output. Metabolic dysfunction in diabetes affects many different organ systems, including the cardiovascular system; it causes cardiac arrhythmias, silent myocardial ischemia, and sudden cardiac death, among others. These conditions are associated with damage to the nerves that innervate the heart, cardiac autonomic neuropathy (CAN), which is caused by various pathophysiological mechanisms. In this review, the main facts about the anatomy of cardiac innervations and the current knowledge of CAN, its pathophysiological mechanisms, and its diagnostic approach are discussed. In addition, anatomical evidence for CAN from human and animal studies has been summarized.
Collapse
Affiliation(s)
- Natalija Filipović
- Department of Anatomy, Histology and Embryology, Laboratory for Experimental Neurocardiology, University of Split School of Medicine, Split, Croatia
| | - Maja Marinović Guić
- Department of Diagnostic and Interventional Radiology, University Hospital of Split, Split, Croatia
- University Department of Health Studies, University of Split, Split, Croatia
| | - Vana Košta
- Department of Neurology, University Hospital of Split, Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, Laboratory for Experimental Neurocardiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
5
|
Hrabalova P, Bohuslavova R, Matejkova K, Papousek F, Sedmera D, Abaffy P, Kolar F, Pavlinkova G. Dysregulation of hypoxia-inducible factor 1α in the sympathetic nervous system accelerates diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:88. [PMID: 37072781 PMCID: PMC10114478 DOI: 10.1186/s12933-023-01824-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND An altered sympathetic nervous system is implicated in many cardiac pathologies, ranging from sudden infant death syndrome to common diseases of adulthood such as hypertension, myocardial ischemia, cardiac arrhythmias, myocardial infarction, and heart failure. Although the mechanisms responsible for disruption of this well-organized system are the subject of intensive investigations, the exact processes controlling the cardiac sympathetic nervous system are still not fully understood. A conditional knockout of the Hif1a gene was reported to affect the development of sympathetic ganglia and sympathetic innervation of the heart. This study characterized how the combination of HIF-1α deficiency and streptozotocin (STZ)-induced diabetes affects the cardiac sympathetic nervous system and heart function of adult animals. METHODS Molecular characteristics of Hif1a deficient sympathetic neurons were identified by RNA sequencing. Diabetes was induced in Hif1a knockout and control mice by low doses of STZ treatment. Heart function was assessed by echocardiography. Mechanisms involved in adverse structural remodeling of the myocardium, i.e. advanced glycation end products, fibrosis, cell death, and inflammation, was assessed by immunohistological analyses. RESULTS We demonstrated that the deletion of Hif1a alters the transcriptome of sympathetic neurons, and that diabetic mice with the Hif1a-deficient sympathetic system have significant systolic dysfunction, worsened cardiac sympathetic innervation, and structural remodeling of the myocardium. CONCLUSIONS We provide evidence that the combination of diabetes and the Hif1a deficient sympathetic nervous system results in compromised cardiac performance and accelerated adverse myocardial remodeling, associated with the progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
- Charles University, Prague, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Katerina Matejkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | | | - David Sedmera
- Institute of Physiology CAS, Prague, Czechia
- Institute of Anatomy, Charles University, Prague, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | | | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia.
| |
Collapse
|
6
|
Kaze AD, Yuyun MF, Erqou S, Fonarow GC, Echouffo‐Tcheugui JB. Cardiac Autonomic Neuropathy and Risk of Incident Heart Failure Among Adults with Type 2 Diabetes. Eur J Heart Fail 2022; 24:634-641. [PMID: 35064959 PMCID: PMC10106110 DOI: 10.1002/ejhf.2432] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 11/07/2022] Open
Abstract
AIMS Community-based data on the association between cardiac autonomic neuropathy (CAN) and incident heart failure (HF) in type 2 diabetes are limited. We evaluated the association of CAN with incident HF in adults with type 2 diabetes. METHODS AND RESULTS This analysis included participants from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study without HF at baseline. CAN was assessed by electrocardiogram-based measures of heart rate variability (HRV) and QT interval index (QTI). HRV was measured using standard deviation of all normal-to-normal intervals (SDNN) and root mean square of successive differences between normal-to-normal intervals (rMSSD). CAN was defined using composite measures of the lowest quartile of SDNN and highest quartiles of QTI and heart rate. Multivariable Cox regression models were used to generate adjusted hazard ratios (aHR) for HF in relation to various CAN measures. A total of 7160 participants (mean age 62.3 [standard deviation 6.4] years, 40.8% women, 61.9% white) were included. Over a median follow-up of 4.9 years (interquartile range 4.0-5.7), 222 participants developed incident HF. After multivariable adjustment for relevant confounders, lower HRV as assessed by SDNN was associated with a higher risk of HF (aHR for the lowest vs highest quartile of SDNN: 1.70, 95% confidence interval [CI] 1.14-2.54). Participants with CAN (defined as lowest quartile of SDNN and highest quartiles of QTI and heart rate) had a 2.7-fold greater risk of HF (aHR 2.65, 95% CI 1.57-4.48). CONCLUSIONS In a large cohort of adults with type 2 diabetes, CAN was independently associated with higher risk of incident HF.
Collapse
Affiliation(s)
- Arnaud D. Kaze
- Department of Medicine University of Maryland Medical Center Baltimore MD USA
| | - Matthew F. Yuyun
- Department of Medicine, Division of Cardiology Harvard Medical School & Veteran Affairs Boston Healthcare System Boston Massachusetts USA
| | - Sebhat Erqou
- Department of Medicine, Division of Cardiology Providence VA Medical Center and Alpert Medical School of Brown University Providence RI USA
| | - Gregg C Fonarow
- Ahmanson‐UCLA Cardiomyopathy Center, Ronald Reagan UCLA Medical Center Los Angeles CA USA
| | | |
Collapse
|
7
|
Singleton JR, Foster-Palmer S, Marcus RL. Exercise as Treatment for Neuropathy in the Setting of Diabetes and Prediabetic Metabolic Syndrome: A Review of Animal Models and Human Trials. Curr Diabetes Rev 2022; 18:e230921196752. [PMID: 34561989 DOI: 10.2174/1573399817666210923125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Peripheral neuropathy is among the most common complications of diabetes, but a phenotypically identical distal sensory predominant, painful axonopathy afflicts patients with prediabetic metabolic syndrome, exemplifying a spectrum of risk and continuity of pathogenesis. No pharmacological treatment convincingly improves neuropathy in the setting of metabolic syndrome, but evolving data suggest that exercise may be a promising alternative. OBJECTIVE The aim of the study was to review in depth the current literature regarding exercise treatment of metabolic syndrome neuropathy in humans and animal models, highlight the diverse mechanisms by which exercise exerts beneficial effects, and examine adherence limitations, safety aspects, modes and dose of exercise. RESULTS Rodent models that recapitulate the organismal milieu of prediabetic metabolic syndrome and the phenotype of its neuropathy provide a strong platform to dissect exercise effects on neuropathy pathogenesis. In these models, exercise reverses hyperglycemia and consequent oxidative and nitrosative stress, improves microvascular vasoreactivity, enhances axonal transport, ameliorates the lipotoxicity and inflammatory effects of hyperlipidemia and obesity, supports neuronal survival and regeneration following injury, and enhances mitochondrial bioenergetics at the distal axon. Prospective human studies are limited in scale but suggest exercise to improve cutaneous nerve regenerative capacity, neuropathic pain, and task-specific functional performance measures of gait and balance. Like other heath behavioral interventions, the benefits of exercise are limited by patient adherence. CONCLUSION Exercise is an integrative therapy that potently reduces cellular inflammatory state and improves distal axonal oxidative metabolism to ameliorate features of neuropathy in metabolic syndrome. The intensity of exercise need not improve cardinal features of metabolic syndrome, including weight, glucose control, to exert beneficial effects.
Collapse
Affiliation(s)
| | | | - Robin L Marcus
- Department Physical Therapy and Athletic Training, University of Utah, UT, United States
| |
Collapse
|
8
|
Hu W, Zhang D, Tu H, Li YL. Reduced Cell Excitability of Cardiac Postganglionic Parasympathetic Neurons Correlates With Myocardial Infarction-Induced Fatal Ventricular Arrhythmias in Type 2 Diabetes Mellitus. Front Neurosci 2021; 15:721364. [PMID: 34483832 PMCID: PMC8416412 DOI: 10.3389/fnins.2021.721364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023] Open
Abstract
Objective Withdrawal of cardiac vagal activity is considered as one of the important triggers for acute myocardial infarction (MI)-induced ventricular arrhythmias in type 2 diabetes mellitus (T2DM). Our previous study demonstrated that cell excitability of cardiac parasympathetic postganglionic (CPP) neurons was reduced in T2DM rats. This study investigated whether cell excitability of CPP neurons is associated with cardiac vagal activity and MI-induced ventricular arrhythmias in T2DM rats. Methods Rat T2DM was induced by a high-fat diet plus streptozotocin injection. MI-evoked ventricular arrhythmia was achieved by surgical ligation of the left anterior descending coronary artery. Twenty-four-hour, continuous ECG recording was used to quantify ventricular arrhythmic events and heart rate variability (HRV) in conscious rats. The power spectral analysis of HRV was used to evaluate autonomic function. Cell excitability of CPP neurons was measured by the whole-cell patch-clamp technique. Results Twenty-four-hour ECG data demonstrated that MI-evoked fatal ventricular arrhythmias are more severe in T2DM rats than that in sham rats. In addition, the Kaplan-Meier analysis demonstrated that the survival rate over 2 weeks after MI is significantly lower in T2DM rats (15% in T2DM+MI) compared to sham rats (75% in sham+MI). The susceptibility to ventricular tachyarrhythmia elicited by programmed electrical stimulation was higher in anesthetized T2DM+MI rats than that in rats with MI or T2DM alone (7.0 ± 0.58 in T2DM+MI group vs. 3.5 ± 0.76 in sham+MI). Moreover, as an index for vagal control of ventricular function, changes of left ventricular systolic pressure (LVSP) and the maximum rate of increase of left ventricular pressure (LV dP/dtmax) in response to vagal efferent nerve stimulation were blunted in T2DM rats. Furthermore, T2DM increased heterogeneity of ventricular electrical activities and reduced cardiac parasympathetic activity and cell excitability of CPP neurons (current threshold-inducing action potentials being 62 ± 3.3 pA in T2DM rats without MI vs. 27 ± 1.9 pA in sham rats without MI). However, MI did not alter vagal control of the ventricular function and CPP neuronal excitability, although it also induced cardiac autonomic dysfunction and enhanced heterogeneity of ventricular electrical activities. Conclusion The reduction of CPP neuron excitability is involved in decreased cardiac vagal function, including cardiac parasympathetic activity and vagal control of ventricular function, which is associated with MI-induced high mortality and malignant ventricular arrhythmias in T2DM.
Collapse
Affiliation(s)
- Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
9
|
Trevisan CSC, Garcia-Araújo AS, Duarte ACGO, Furino VO, Russo TL, Fujimoto A, Souza HCD, Jaenisch RB, Arena R, Borghi-Silva A. Effects of respiratory muscle training on parasympathetic activity in diabetes mellitus. ACTA ACUST UNITED AC 2021; 54:e10865. [PMID: 34008758 PMCID: PMC8130104 DOI: 10.1590/1414-431x2020e10865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 11/21/2022]
Abstract
This study verified the effects of respiratory muscle training (RMT) on hemodynamics, heart rate (HR) variability, and muscle morphology in rats with streptozotocin-induced diabetes mellitus (DM). Thirty-six male Wistar rats were randomized into 4 groups and 34 completed the study: i) sham-sedentary (Sham-ST; n=9); ii) sham-RMT (Sham-RMT; n=9); iii) DM-sedentary (DM-ST; n=8); and iv) DM-RMT (DM-RMT; n=8). Hemodynamics were assessed by central cannulation, and R-R intervals were measured by electrocardiogram. In addition, the effects of RMT on the cross-sectional area of the diaphragm, anterior tibial, and soleus muscles were analyzed. The induction of DM by streptozotocin resulted in weight loss, hyperglycemia, reduced blood pressure, and attenuated left ventricular contraction and relaxation (P<0.05). We also observed a decrease in root mean square of successive differences between adjacent RR intervals (RMSSD) index and in the cross-sectional area of the muscles assessed, specifically the diaphragm, soleus, and anterior tibial muscles in diabetic rats (P<0.05). Interestingly, RMT led to an increase in RMSSD in rats with DM (P<0.05). The induction of DM produced profound deleterious changes in the diaphragmatic and peripheral muscles, as well as impairments in cardiovascular hemodynamics and autonomic control. Nevertheless, RMT may beneficially attenuate autonomic changes and improve parasympathetic modulation.
Collapse
Affiliation(s)
- C S C Trevisan
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A S Garcia-Araújo
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A C G O Duarte
- Departamento de Educação Física e Motricidade Humana, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - V O Furino
- Departamento de Educação Física e Motricidade Humana, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - T L Russo
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A Fujimoto
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - H C D Souza
- Departamento de Ciências da Saúde, Curso de Fisioterapia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - R B Jaenisch
- Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - R Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - A Borghi-Silva
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| |
Collapse
|
10
|
Eren H, Kaya Ü, Öcal L, Öcal AG, Genç Ö, Genç S, Evlice M. Presence of fragmented QRS may be associated with complex ventricular arrhythmias in patients with type-2 diabetes mellitus. Acta Cardiol 2021; 76:67-75. [PMID: 31775006 DOI: 10.1080/00015385.2019.1693117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ventricular arrhythmias (VAs) are frequent in diabetes mellitus (DM) patients. Myocardial fibrosis is one of the components of diabetic cardiomyopathy secondary to DM. Fragmented QRS (fQRS) on electrocardiography (ECG) has been shown to be a marker of myocardial fibrosis. In this study, we aimed to investigate the association between fQRS and complex VAs in patients with DM. METHODS Three hundred and thirty-six consecutive patients who were diagnosed with DM were included in the study. The control group consisted of 275 age- and sex-matched healthy individuals. ECG and transthoracic echocardiography were performed in all the patients. fQRS was defined as additional R' wave or notching/splitting of S wave in two contiguous ECG leads. All the patients underwent 24-h Holter monitoring and VAs were classified using Lown's scoring system. Lown class ≥ 3 VAs were considered as complex VAs. RESULTS As compared to the healthy individuals, prevalence of fQRS (37.5% vs. 6.9%, p < .001) and complex VAs (14% vs. 0%, p < .001) were significantly higher in patients with DM. Furthermore, complex VAs (28.4% vs. 6.4%, p < .001) were significantly higher in DM patients with fQRS. In multiple logistic regression analysis, DM duration (OR: 1.510, 95% CI:1.343 to 1.698; p < .001) and presence of fQRS (OR: 3.262, 95% CI: 1.443 to 7.376; p = .004) were independent predictors for complex VAs. CONCLUSIONS The presence of fQRS may be associated with complex VAs in patients with DM. Therefore, fQRS may be used as a predictor of complex VAs and the risk of sudden death in patients with DM.
Collapse
Affiliation(s)
- Hayati Eren
- Department of Cardiology, Elbistan State Hospital, Kahramanmaraş, Turkey
| | - Ülker Kaya
- Department of Cardiology, Elbistan State Hospital, Kahramanmaraş, Turkey
| | - Lütfi Öcal
- Department of Cardiology, Kosuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| | - Aslı Gözek Öcal
- Department of Internal Medicine, Kartal Dr Lütfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Ömer Genç
- Department of Internal Medicine, Kahramanmaraş Necip Fazıl City Hospital, Kahramanmaraş, Turkey
| | - Selin Genç
- Department of Internal Medicine, Türkoğlu Kemal Beyazıt State Hospital, Kahramanmaraş, Turkey
| | - Mert Evlice
- Department of Cardiology, Universtiy of Health Sciences Adana Health Practices and Research Center, Adana, Turkey
| |
Collapse
|
11
|
Role of peripheral 5-HT5A receptors in 5-HT-induced cardiac sympatho-inhibition in type 1 diabetic rats. Sci Rep 2020. [DOI: 10.1155/2013/313917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract5-HT inhibits cardiac sympathetic neurotransmission in normoglycaemic rats, via 5-HT1B, 5-HT1Dand 5-HT5Areceptor activation. Since type 1 diabetes impairs the cardiac sympathetic innervation leading to cardiopathies, this study aimed to investigate whether the serotonergic influence on cardiac noradrenergic control is altered in type 1 diabetic rats. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/kg, i.p.). Four weeks later, the rats were anaesthetized, pithed and prepared for producing tachycardic responses by electrical preganglionic stimulation (C7-T1) of the cardioaccelerator sympathetic outflow or i.v. noradrenaline bolus injections. Immunohistochemistry was performed to study 5-HT1B, 5-HT1Dand 5-HT5Areceptor expression in the stellate ganglion from normoglycaemic and diabetic rats. In the diabetic group, i) i.v. continuous infusions of 5-HT induced a cardiac sympatho-inhibition that was mimicked by the 5-HT1/5Aagonist 5-carboxamidotryptamine (without modifying noradrenaline-induced tachycardia), but not by the agonists indorenate (5-HT1A), CP 93,129 (5-HT1B), PNU 142633 (5-HT1D), or LY344864 (5-HT1F); ii) SB 699551 (5-HT5Aantagonist; i.v.) completely reversed 5-CT-induced cardiac sympatho-inhibition; and iii) 5-HT5Areceptors were more expressed in the stellate ganglion compared to normoglycaemic rats. These results show the prominent role of the peripheral 5-HT5Areceptors prejunctionally inhibiting the cardiac sympathetic drive in type 1 diabetic rats.
Collapse
|
12
|
Bencsik P, Gömöri K, Szabados T, Sántha P, Helyes Z, Jancsó G, Ferdinandy P, Görbe A. Myocardial ischaemia reperfusion injury and cardioprotection in the presence of sensory neuropathy: Therapeutic options. Br J Pharmacol 2020; 177:5336-5356. [PMID: 32059259 PMCID: PMC7680004 DOI: 10.1111/bph.15021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
During the last decades, mortality from acute myocardial infarction has been dramatically reduced. However, the incidence of post-infarction heart failure is still increasing. Cardioprotection by ischaemic conditioning had been discovered more than three decades ago. Its clinical translation, however, is still an unmet need. This is mainly due to the disrupted cardioprotective signalling pathways in the presence of different cardiovascular risk factors, co-morbidities and the medication being taken. Sensory neuropathy is one of the co-morbidities that has been shown to interfere with cardioprotection. In the present review, we summarize the diverse aetiology of sensory neuropathies and the mechanisms by which these neuropathies may interfere with ischaemic heart disease and cardioprotective signalling. Finally, we suggest future therapeutic options targeting both ischaemic heart and sensory neuropathy simultaneously. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Péter Sántha
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research CentreUniversity of PécsPécsHungary
| | - Gábor Jancsó
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Péter Ferdinandy
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| |
Collapse
|
13
|
García-Pedraza JÁ, Hernández-Abreu O, Morán A, Carretero J, García-Domingo M, Villalón CM. Role of peripheral 5-HT 5A receptors in 5-HT-induced cardiac sympatho-inhibition in type 1 diabetic rats. Sci Rep 2020; 10:19358. [PMID: 33168874 PMCID: PMC7652863 DOI: 10.1038/s41598-020-76298-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/16/2020] [Indexed: 01/15/2023] Open
Abstract
5-HT inhibits cardiac sympathetic neurotransmission in normoglycaemic rats, via 5-HT1B, 5-HT1D and 5-HT5A receptor activation. Since type 1 diabetes impairs the cardiac sympathetic innervation leading to cardiopathies, this study aimed to investigate whether the serotonergic influence on cardiac noradrenergic control is altered in type 1 diabetic rats. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/kg, i.p.). Four weeks later, the rats were anaesthetized, pithed and prepared for producing tachycardic responses by electrical preganglionic stimulation (C7-T1) of the cardioaccelerator sympathetic outflow or i.v. noradrenaline bolus injections. Immunohistochemistry was performed to study 5-HT1B, 5-HT1D and 5-HT5A receptor expression in the stellate ganglion from normoglycaemic and diabetic rats. In the diabetic group, i) i.v. continuous infusions of 5-HT induced a cardiac sympatho-inhibition that was mimicked by the 5-HT1/5A agonist 5-carboxamidotryptamine (without modifying noradrenaline-induced tachycardia), but not by the agonists indorenate (5-HT1A), CP 93,129 (5-HT1B), PNU 142633 (5-HT1D), or LY344864 (5-HT1F); ii) SB 699551 (5-HT5A antagonist; i.v.) completely reversed 5-CT-induced cardiac sympatho-inhibition; and iii) 5-HT5A receptors were more expressed in the stellate ganglion compared to normoglycaemic rats. These results show the prominent role of the peripheral 5-HT5A receptors prejunctionally inhibiting the cardiac sympathetic drive in type 1 diabetic rats.
Collapse
Affiliation(s)
- José Ángel García-Pedraza
- Laboratory of Pharmacology, Department of Physiology and Pharmacology, Faculty of Pharmacy, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Oswaldo Hernández-Abreu
- Department of Pharmacobiology, Cinvestav-Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330, Mexico City, Mexico
| | - Asunción Morán
- Laboratory of Pharmacology, Department of Physiology and Pharmacology, Faculty of Pharmacy, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - José Carretero
- Laboratory of Neuroendocrinology, Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Neurosciences Institute of Castilla y León (INCyL), Salamanca, Spain.,Laboratory of Neuroendocrinology and Obesity, IBSAL, Salamanca, Spain
| | - Mónica García-Domingo
- Laboratory of Pharmacology, Department of Physiology and Pharmacology, Faculty of Pharmacy, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Carlos M Villalón
- Department of Pharmacobiology, Cinvestav-Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330, Mexico City, Mexico.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This article provides an up-to-date review of the manifestations of neuropathy seen in the setting of diabetes and other metabolic disorders. RECENT FINDINGS Although a number of metabolic disorders cause or are associated with peripheral neuropathy, the neuropathies associated with glucose dysregulation make up the vast majority of cases. Recent investigations have determined major differences in the neuropathies associated with type 1 and type 2 diabetes. Neuropathy in type 1 diabetes is closely linked to glycemic control, whereas neuropathy in type 2 diabetes is linked to dyslipidemia, central obesity, hypertension, insulin resistance, and glucose control. Although length-dependent axonal distal symmetric polyneuropathy is the most common clinical presentation, diabetes is also associated with acute, asymmetric, painless, and autonomic neuropathies. SUMMARY The prevalence of diabetes and metabolic syndrome is increasing across the globe. The need to recognize and treat the wide array of clinical manifestations of neuropathy detected in individuals with metabolic disorders will continue to grow. As a consequence, an increasing number of well-trained physicians who can manage these patients is needed. At present, treatment is largely focused on prevention and symptomatic management. Investments into funding for both basic and clinical science are necessary to bring novel therapeutic interventions into clinical practice.
Collapse
|
15
|
Sasaki H, Kawamura N, Dyck PJ, Dyck PJB, Kihara M, Low PA. Spectrum of diabetic neuropathies. Diabetol Int 2020; 11:87-96. [PMID: 32206478 PMCID: PMC7082443 DOI: 10.1007/s13340-019-00424-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
Abstract
The diabetic state results in neuropathy. The main causative mechanism is hyperglycemia, although microvascular involvement, hypertriglyceridemia, as well as genetic and immune mechanisms may be contributory. There is a growing spectrum of types of diabetic neuropathies that differ based on the type of fibers involved (e.g. myelinated, unmyelinated, autonomic, somatic), distribution of nerves involved, and mechanisms of neuropathy. The most common type is distal sensory neuropathy (DSN), which affects the distal ends of large myelinated fibers, more often sensory than motor, and is often asymptomatic. The next-most common is distal small fiber neuropathy (DSFN), which largely affects the unmyelinated fibers and carries the phenotype of burning feet syndrome. Diabetic autonomic neuropathy (DAN) occurs when widespread involvement of autonomic unmyelinated fibers occurs, and patients can be incapacitated with orthostatic hypotension as well as neurogenic bladder and bowel involvement. Radiculoplexus diabetic neuropathy causes proximal weakness and pain, usually in the lower extremity, and has a combination of immune, inflammatory, and vascular mechanisms. The nerve roots and plexus are involved. These patients present with proximal weakness of a subacute onset, often with severe pain and some autonomic failure. Finally, rapid and sustained reduction of blood glucose can result in treatment-induced diabetic neuropathy (TIND), which largely affects the sensory and autonomic fibers. This occurs if HbA1c is rapidly reduced within 3 months, and the likelihood is proportional to the original A1c and the size of the reduction.
Collapse
Affiliation(s)
| | | | - Peter J. Dyck
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - P. James B. Dyck
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | | | - Phillip A. Low
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
16
|
Wan N, Travin MI. Cardiac Imaging With 123I-meta-iodobenzylguanidine and Analogous PET Tracers: Current Status and Future Perspectives. Semin Nucl Med 2020; 50:331-348. [PMID: 32540030 DOI: 10.1053/j.semnuclmed.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autonomic innervation plays an important role in proper functioning of the cardiovascular system. Altered cardiac sympathetic function is present in a variety of diseases, and can be assessed with radionuclide imaging using sympathetic neurotransmitter analogues. The most studied adrenergic radiotracer is cardiac 123I-meta-iodobenzylguanidine (123I-mIBG). Cardiac 123I-mIBG uptake can be evaluated using both planar and tomographic imaging, thereby providing insight into global and regional sympathetic innervation. Standardly assessed imaging parameters are the heart-to-mediastinum ratio and washout rate, customarily derived from planar images. Focal tracer deficits on tomographic imaging also show prognostic utility, with some data suggesting that the best approach to tomographic image interpretation may differ from conventional methods. Cardiac 123I-mIBG image findings strongly correlate with the severity and prognosis of many cardiovascular diseases, especially heart failure and ventricular arrhythmias. Cardiac 123I-mIBG imaging in heart failure is FDA approved for prognostic purposes. With the robustly demonstrated ability to predict occurrence of potentially fatal arrhythmias, cardiac 123I-mIBG imaging shows promise for better selecting patients who will benefit from an implantable cardioverter defibrillator, but clinical use has been hampered by lack of the randomized trial needed for incorporation into societal guidelines. In patients with ischemic heart disease, cardiac 123I-mIBG imaging aids in assessing the extent of damage and in identifying arrhythmogenic regions. There have also been studies using cardiac 123I-mIBG for other conditions, including patients following heart transplantation, diabetic related cardiac abnormalities and chemotherapy induced cardiotoxicity. Positron emission tomographic adrenergic radiotracers, that improve image quality, have been investigated, especially 11C-meta-hydroxyephedrine, and most recently 18F-fluorbenguan. Cadmium-zinc-telluride cameras also improve image quality. With better spatial resolution and quantification, PET tracers and advanced camera technologies promise to expand the clinical utility of cardiac sympathetic imaging.
Collapse
Affiliation(s)
- Ningxin Wan
- Division of Nuclear Medicine, Department of Radiology, and Division of Cardiology, Department of Medicine, Montefiore Medical Center and The Albert Einstein College of Medicine, Bronx, NY
| | - Mark I Travin
- Division of Nuclear Medicine, Department of Radiology, and Division of Cardiology, Department of Medicine, Montefiore Medical Center and The Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
17
|
ŞİMŞEK E. Tip 2 diabetes mellitus hastalarında hipergliseminin kardiyak repolarizasyon parametrelerine akut etkileri. EGE TIP DERGISI 2020. [DOI: 10.19161/etd.698693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Mastrocola LE, Amorim BJ, Vitola JV, Brandão SCS, Grossman GB, Lima RDSL, Lopes RW, Chalela WA, Carreira LCTF, Araújo JRND, Mesquita CT, Meneghetti JC. Update of the Brazilian Guideline on Nuclear Cardiology - 2020. Arq Bras Cardiol 2020; 114:325-429. [PMID: 32215507 PMCID: PMC7077582 DOI: 10.36660/abc.20200087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Barbara Juarez Amorim
- Universidade Estadual de Campinas (Unicamp), Campinas, SP - Brazil
- Sociedade Brasileira de Medicina Nuclear (SBMN), São Paulo, SP - Brazil
| | | | | | - Gabriel Blacher Grossman
- Hospital Moinhos de Vento, Porto Alegre, RS - Brazil
- Clínica Cardionuclear, Porto Alegre, RS - Brazil
| | - Ronaldo de Souza Leão Lima
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brazil
- Fonte Imagem Medicina Diagnóstica, Rio de Janeiro, RJ - Brazil
- Clínica de Diagnóstico por Imagem (CDPI), Grupo DASA, Rio de Janeiro, RJ - Brazil
| | | | - William Azem Chalela
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brazil
| | | | | | | | - José Claudio Meneghetti
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brazil
| |
Collapse
|
19
|
Chen C, Wang W, Zhou W, Jin J, Chen W, Zhu D, Bi Y. Nocturnal ventricular arrhythmias are associated with the severity of cardiovascular autonomic neuropathy in type 2 diabetes. J Diabetes 2019; 11:794-801. [PMID: 30767398 DOI: 10.1111/1753-0407.12908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cardiovascular autonomic neuropathy (CAN) is a risk factor for arrhythmias and adverse cardiovascular events, but the relationship between CAN severity and nocturnal arrhythmias needs to be clarified. This study evaluated the association between nocturnal arrhythmias and CAN severity in patients with type 2 diabetes (T2D). METHODS In all, 219 T2D patients were recruited from January 2017 to May 2018. Subjects were classified into no CAN (NCAN), early CAN (ECAN), definite CAN (DCAN), or advanced CAN (ACAN) based on cardiovascular autonomic reflex tests (CARTs). A 24-hour electrocardiogram was recorded and daytime (0700-2300 hours) and night-time (2300-0700 hours) heartbeats were analyzed separately. RESULTS After adjusting for age, the incidence of ventricular arrhythmias increased with CAN severity at night-time (18.6%, 29.9%, 36.2%, and 60.0% in the NCAN, ECAN, DCAN, and ACAN groups, respectively; Ptrend = 0.034). Patients with nocturnal ventricular arrhythmias (NVAs) had higher CART scores (2.0 ± 1.0 vs 1.5 ± 0.9; P < 0.001) and lower heart rate variability (HRV) during deep breathing (9.5 ± 5.7 vs 11.6 ± 6.6 b. p. m; P = 0.021), HRV during the Valsalva maneuver (1.2 ± 0.1 vs 1.2 ± 0.2; P = 0.006), and postural blood pressure change (-8.8 ± 15.5 vs -4.1 ± 11.2 mmHg; P = 0.023). Multivariate regression analysis revealed that CAN stage (odds ratio 1.765; 95% confidence interval 1.184-2.632; P = 0.005) was independently associated with NVAs. CONCLUSIONS In T2D, CAN stage was independently associated with the presence of NVAs. Early detection, diagnosis, and treatment of CAN may help predict and prevent adverse cardiovascular events and cardiovascular mortality in diabetes.
Collapse
Affiliation(s)
- Chuhui Chen
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
- Department of Endocrinology, Drum Tower Clinical Medical College, Nanjing Medical University, Jiangsu, China
| | - Weimin Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Wen Zhou
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Jiewen Jin
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Wei Chen
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| |
Collapse
|
20
|
Kim HY, Jung HW, Lee YA, Shin CH, Yang SW. Cardiac autonomic neuropathy in nonobese young adults with type 1 diabetes. Ann Pediatr Endocrinol Metab 2019; 24:180-186. [PMID: 31607111 PMCID: PMC6790876 DOI: 10.6065/apem.2019.24.3.180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the prevalence and risk factors for cardiac autonomic neuropathy (CAN) in nonobese nonobese young type 1 diabetes mellitus (T1DM) patients without micro- or macrovascular complications. METHODS CAN was assessed in 95 patients with T1DM, aged 18-29 years, using standard cardiovascular reflex tests - heart rate response to deep breathing, standing, and the Valsalva maneuver and blood pressure response to standing. Furthermore, power spectral analyses of overall heart rate variability (HRV), standard deviation of NN intervals (SDNN), and total power (TP) were tested with DiCAN. CAN was defined as abnormal results for at least 1 of the 4 cardiovascular reflex tests. RESULTS The prevalence of CAN was 12.6%. The frequency of one and 2 abnormal reflex tests was 10.5% and 2.1%, respectively. No significant differences were observed in age, sex, mean hemoglobin A1c (HbA1c) level, and duration of diabetes with respect to presence of CAN. Patients with CAN exhibited lower overall HRV parameters (SDNN and TP) compared with those without CAN even though there was no statistical significance. In multivariable analyses, higher mean HbA1c level was significantly associated with lower overall HRV (β=-44.42, P=0.002 for SDNN and β=-2.82, P<0.001 for TP). CONCLUSION CAN can be detected in 12.6% of young adult T1DM patients even without other micro- or macrovascular complications. Glycemic control is the main determinant to maintain overall HRV and prevent CAN.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hae Woon Jung
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea,Address for correspondence: Young Ah Lee, MD, PhD Division of Endocrinology and Metabolism, Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-2308 Fax: +82-2-743-3455 E-mail:
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Sei Won Yang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Liu L, Li X, Dong L, Li Y, Yu H, Chen Q. A novel strategy for the preparation of the injectable PET/CT radiopharmaceutical (-)-[11C]-(1R,2S)-meta-hydroxyephedrine ((-)-[11C]HED. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06534-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Yang J, Zhang LJ, Wang F, Hong T, Liu Z. Molecular imaging of diabetes and diabetic complications: Beyond pancreatic β-cell targeting. Adv Drug Deliv Rev 2019; 139:32-50. [PMID: 30529307 DOI: 10.1016/j.addr.2018.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic non-communicable disease affecting over 400 million people worldwide. Diabetic patients are at a high risk of various complications, such as cardiovascular, renal, and other diseases. The pathogenesis of diabetes (both type 1 and type 2 diabetes) is associated with a functional impairment of pancreatic β-cells. Consequently, most efforts to manage and prevent diabetes have focused on preserving β-cells and their function. Advances in imaging techniques, such as magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, and single-photon-emission computed tomography, have enabled noninvasive and quantitative detection and characterization of the population and function of β-cells in vivo. These advantages aid in defining and monitoring the progress of diabetes and determining the efficacy of anti-diabetic therapies. Beyond β-cell targeting, molecular imaging of biomarkers associated with the development of diabetes, e.g., lymphocyte infiltration, insulitis, and metabolic changes, may also be a promising strategy for early detection of diabetes, monitoring its progression, and occurrence of complications, as well as facilitating exploration of new therapeutic interventions. Moreover, molecular imaging of glucose uptake, production and excretion in specified tissues is critical for understanding the pathogenesis of diabetes. In the current review, we summarize and discuss recent advances in noninvasive imaging technologies for imaging of biomarkers beyond β-cells for early diagnosis of diabetes, investigation of glucose metabolism, and precise diagnosis and monitoring of diabetic complications for better management of diabetic patients.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China.
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
23
|
Hu B, Zhang J, Wang J, He B, Wang D, Zhang W, Zhou X, Li H. Responses of PKCε to cardiac overloads on myocardial sympathetic innervation and NET expression. Auton Neurosci 2017; 210:24-33. [PMID: 29195789 DOI: 10.1016/j.autneu.2017.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023]
Abstract
Protein kinase C (PKC) is a key mediator of many diverse physiological and pathological responses. PKC activation play an important regulatory role of cardiac function. The present study was performed to investigate whether there were differential activations of the PKCε and how the activation coupled with norepinephrine transporter (NET) surface expression, sympathetic innervation pattern and extracellular matrix remodeling in different cardiac hemodynamic overloads induced by abdominal aortic constriction or aortocaval fistula. At 8weeks after the operations, heart failure were induced, accompanied with myocardial hypertrophy, which was more pronounced in pressure overload (POL) than that of volume overload (VOL) rats, left ventricular dysfunction and increased plasma norepinephrine (NE). In POL rats there was an increase in myocardial collagen deposition, in contrast, the amount decreased in VOL as compared with the sham rats. POL remarkably upregulated PKCε membrane-cytosol ratio and downregulated NET membrane fraction, whereas, in VOL induced opposite changes. Accompanied with the PKCε activation, nerve sprouting, evidenced by myocardial GAP43 protein increased, and different nerve phenotypes were found, in POL tyrosine hydroxylase (TH) positive nerve density increased with NET and choline acetyltransferase (ChAT) immunoreactivity density decreased, in contrast, in VOL NET and ChAT increased, TH did not change. The overloads did not induce alteration of NET mRNA expression, but resulted in different myocardial β1-AR mRNA expression, in POL β1-AR mRNAwas significantly downregulated, while in VOL rats unaltered. Conclusion, the present results suggested that the different cardiac hemodynamic overload could differentially activate a common signaling, PKCε intermediate and thereby generate biological diversity.
Collapse
Affiliation(s)
- Bing Hu
- Xiqing Hospital, Tianjin, China
| | - Jing Zhang
- Pingjin Hospital, Logistics University of CAPF, China
| | - Jing Wang
- Pingjin Hospital, Logistics University of CAPF, China
| | - Bing He
- Tianjin Key Laboratory for Biomarkers of Occupation and Environmental Hazard, China
| | - Deshun Wang
- Pingjin Hospital, Logistics University of CAPF, China
| | | | - Xin Zhou
- Pingjin Hospital, Logistics University of CAPF, China; Institute of Cardiovascular disease of CAPF, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, China
| | - He Li
- Pingjin Hospital, Logistics University of CAPF, China; Institute of Cardiovascular disease of CAPF, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, China.
| |
Collapse
|
24
|
Sarapultsev P, Yushkov B, Sarapultsev A. Prevalence of arrhythmias in patients with type 2 diabetes and the role of structural changes in myocardium in their development. Diabetes Metab Syndr 2017; 11 Suppl 2:S567-S576. [PMID: 28412149 DOI: 10.1016/j.dsx.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of the study was to evaluate the prevalence of arrhythmias in patients with type 2 diabetes and their relationships with the structural parameters of the heart. METHODS A retrospective case-control study was conducted using clinical and biochemical profiles of patients with diabetes at the Endocrinology Centre and City Clinical Hospital No. 40, Ekaterinburg, Russia. RESULTS The total study sample included 75 subjects. The average age (SD) was 48.2 (5.6) years, and the mean duration of diabetes (SD) was 6.2 (2.4) years. The most common type of extrasystoles were the single supraventricular extrasystoles, observed in 72.29% of cases (vs 38.89% in the control group) and paired supraventricular extrasystoles, which were identified in 30% of cases (vs 19.44% in the control group). Ventricular cardiac arrhythmias in the form of ventricular extrasystoles (VE) were identified in 25.71% of cases (13.89% in the control group). CONCLUSIONS This study revealed the signs of the morphological restructuring of the right chambers of the heart and a relatively high prevalence of supraventricular arrhythmias in the early stages of type 2 diabetes. Moreover, according to the results, the incidence of some types of supraventricular arrhythmias and the occurrence of tachycardia episodes in patients with type 2 diabetes mostly depends on the restructuring of the right chambers of the heart, which may be caused by the peculiarities of the cardiac innervation, with the higher density of choline and adrenergic plexuses in the right chambers.
Collapse
Affiliation(s)
- Petr Sarapultsev
- Ural Fed. Univ. named after the First Pres. of Russ. B.N. Yeltsin, 19 Mira street, Ekaterinburg, 620002, Russian Federation; Institute of Immunology and Physiology (IIP), Ural Division of Russian Academy of Sciences, 106 Pervomayskaya street, Ekaterinburg, 620049, Russian Federation
| | - Boris Yushkov
- Ural Fed. Univ. named after the First Pres. of Russ. B.N. Yeltsin, 19 Mira street, Ekaterinburg, 620002, Russian Federation; Institute of Immunology and Physiology (IIP), Ural Division of Russian Academy of Sciences, 106 Pervomayskaya street, Ekaterinburg, 620049, Russian Federation; Ural State Medical University, 3 Repina street, Ekaterinburg, 620014, Russian Federation
| | - Alexey Sarapultsev
- Ural Fed. Univ. named after the First Pres. of Russ. B.N. Yeltsin, 19 Mira street, Ekaterinburg, 620002, Russian Federation; Institute of Immunology and Physiology (IIP), Ural Division of Russian Academy of Sciences, 106 Pervomayskaya street, Ekaterinburg, 620049, Russian Federation.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Autonomic innervation is crucial for regulating cardiac function. Sympathetic innervation imaging with 123I-mIBG and analogous PET tracers assesses disease in ways that differ from customary methods. This review describes practical use in various clinical scenarios, discusses recent guidelines, presents new data confirming risk stratification power, describes an ongoing prospective study, and looks forward to wider use in patient management. RECENT FINDINGS ASNC 123I-mIBG guidelines are available, expanding on European guidelines. ADMIRE-HF patient follow-up increased to 2 years in ADMIRE HFX, demonstrating independent mortality risk reclassification. ADMIRE-HF findings were substantiated in a Japanese consortium study and in the PAREPET 11C-HED PET study. Exciting potential uses of adrenergic imaging are management of LVADs and VT ablation. CZT cameras provide advantages, but derived parameters differ from Anger camera values. Independent risk stratification utility of adrenergic imaging with 123I-mIBG and PET tracers is continuously being confirmed. An ongoing prospective randomized study promises to establish patient management utility. There is potential for wider use and improved images with newer cameras and PET.
Collapse
Affiliation(s)
- Mark I Travin
- Department of Radiology/Division of Nuclear Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East-210th Street, Bronx, NY, 10467-2490, USA.
| |
Collapse
|
26
|
Assessment of diabetic neuropathy with emission tomography and magnetic resonance spectroscopy. Nucl Med Commun 2017; 38:275-284. [DOI: 10.1097/mnm.0000000000000653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Iodine-123 metaiodobenzylguanidine scintigraphy for the assessment of cardiac sympathetic innervation and the relationship with cardiac autonomic function in healthy adults using standardized methods. Nucl Med Commun 2017; 38:44-50. [PMID: 27898646 DOI: 10.1097/mnm.0000000000000608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Global iodine-123 metaiodobenzylguanidine (I-MIBG) uptake is predictive of cardiovascular events and mortality in patients with heart failure. Normal variations in global and regional uptake, however, are not well defined and few studies have addressed the functional relevance of I-MIBG uptake and distribution in healthy individuals. MATERIALS AND METHODS We performed I-MIBG scintigraphy and cardiac autonomic function testing using the standardized methodology in 15 healthy individuals (mean age 54.6±5.3 years, male : female 10 : 5) with no evidence of previous myocardial infarction or ischaemic heart disease. RESULTS Early heart to mediastinum ratio (HMR) was 1.67±0.13, late HMR was 1.73±0.16 and washout rate was 19.09±7.63% (4.20-31.30). Regional analysis showed reduced tracer uptake at the apex, base and inferior wall in all individuals. Early and late HMR correlated negatively with RFa (r=-0.603; P=0.05 and r=-0.644; P=0.033) and expiration and inspiration ratio (r=-0.616; P=0.043 and r=-0.676; P=0.022) and positively with LFa/RFa (r=0.711; P=0.014 and r=0.784; P=0.004). Washout rate correlated only with RFa (r=0.642; P=0.033). CONCLUSION Healthy adults show a heterogeneous pattern of cardiac innervation with reduced regional uptake of I-MIBG. Furthermore, HMR correlates with indices of cardiac sympathetic function, suggesting that it might not only be a useful prognostic marker but may also provide insight into the functional integrity of the cardiac autonomic nervous system.
Collapse
|
28
|
Tahrani AA, Altaf QA, Piya MK, Barnett AH. Peripheral and Autonomic Neuropathy in South Asians and White Caucasians with Type 2 Diabetes Mellitus: Possible Explanations for Epidemiological Differences. J Diabetes Res 2017; 2017:1273789. [PMID: 28409160 PMCID: PMC5376938 DOI: 10.1155/2017/1273789] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/01/2017] [Accepted: 02/19/2017] [Indexed: 02/06/2023] Open
Abstract
Objectives. To compare the prevalence of diabetic peripheral neuropathy (DPN) and that of cardiac autonomic neuropathy (CAN) between South Asians and White Caucasians with type 2 diabetes and to explore reasons for observed differences. Methods. A cross-sectional study of casually selected South Asian and White Caucasian adults attending a hospital-based diabetes clinic in the UK. DPN and CAN were assessed using the Michigan Neuropathy Screening Instrument (MNSI) and heart rate variability testing, respectively. Results. Patients (n = 266) were recruited (47.4% South Asians). DPN was more common in White Caucasians compared to South Asians (54.3% versus 38.1%, p = 0.008). Foot insensitivity as assessed by 10 g monofilament perception was more common in White Caucasians (43.9% versus 23.8%, p = 0.001). After adjustment for confounders, White Caucasians remained twice as likely to have DPN as South Asians, but the impact of ethnicity became nonsignificant after adjusting for adiposity measures or height. No difference in prevalence of standardized CAN test abnormalities was detected between ethnicities. Skin microvascular assessment demonstrated that South Asians had reduced heating flux but preserved acetylcholine response. Conclusions. South Asians with type 2 diabetes have fewer clinical signs of DPN compared to White Caucasians. Differences in adiposity (and its distribution) and height appear to explain these differences.
Collapse
Affiliation(s)
- Abd A. Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Diabetes and Endocrinology, Heart of England NHS Foundation Trust, Birmingham, UK
- Centre of Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- *Abd A. Tahrani:
| | - Q. A. Altaf
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Diabetes and Endocrinology, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Milan K. Piya
- Centre of Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of Diabetes and Endocrinology, Derby Teaching Hospitals NHS Foundation Trust, Derby, UK
| | - Anthony H. Barnett
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Diabetes and Endocrinology, Heart of England NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
29
|
Patel RB, Moorthy MV, Chiuve SE, Pradhan AD, Cook NR, Albert CM. Hemoglobin A 1c levels and risk of sudden cardiac death: A nested case-control study. Heart Rhythm 2017; 14:72-78. [PMID: 27591826 PMCID: PMC5754013 DOI: 10.1016/j.hrthm.2016.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Sudden cardiac death (SCD) is often the first manifestation of cardiovascular disease (CVD), and preventive strategies within this broad population are lacking. Patients with diabetes represent a high-risk subgroup, but few data exist regarding whether measures of glycemia mediate risk and/or add to SCD risk stratification. OBJECTIVE The purpose of this study was to examine the association between hemoglobin A1c (HbA1c) and SCD. METHODS We performed a case-control analysis among individuals enrolled in 6 prospective cohort studies. HbA1c levels were determined for 482 cases of SCD and 914 matched controls. Conditional logistic regression with fixed effects meta-analysis was used for analysis. RESULTS In multivariable models, HbA1c levels were linearly associated with SCD risk over follow-up of 11.3 years (P <.001). Each 1% increment in HbA1c was associated with a hazard ratio (HR) of 1.32 (95% confidence interval [CI] 1.16-1.50). The magnitude of the association was greater in subjects without vs those with known CVD [HR per 1% increment 1.64 (95% CI 1.31-2.06) vs 1.15 (95% CI 0.99-1.33), P interaction = .009]. In models simultaneously controlling for diabetes status and HbA1c, the association between HbA1c and SCD remained significant (HR 1.29, 95% CI 1.07-1.55, P = .01), whereas the association between diabetes and SCD was attenuated (relative risk 1.21, 95% CI 0.64-2.27, P = .56). CONCLUSION In these prospective cohorts, HbA1c levels associated with SCD risk, particularly among those without known CVD, even after controlling for diabetes status. These data support the hypothesis that hyperglycemia mediates SCD risk among patients with diabetes.
Collapse
Affiliation(s)
- Ravi B Patel
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - M V Moorthy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Center for Arrhythmia Prevention, Brigham and Women's Hospital, Boston, Massachusetts; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Stephanie E Chiuve
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Aruna D Pradhan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Nancy R Cook
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Christine M Albert
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Center for Arrhythmia Prevention, Brigham and Women's Hospital, Boston, Massachusetts; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
30
|
Duvernoy CS, Raffel DM, Swanson SD, Jaiswal M, Mueller G, Ibrahim ES, Pennathur S, Plunkett C, Stojanovska J, Brown MB, Pop-Busui R. Left ventricular metabolism, function, and sympathetic innervation in men and women with type 1 diabetes. J Nucl Cardiol 2016; 23:960-969. [PMID: 27146882 PMCID: PMC5103640 DOI: 10.1007/s12350-016-0434-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/29/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND In type I diabetes (T1DM), alterations in LV function may occur due to changes in innervation, metabolism, and efficiency. OBJECTIVES We evaluated the association between sympathetic nerve function, oxidative metabolism, resting blood flow, LV efficiency and function in healthy diabetics, and assessed gender differences. METHODS Cross-sectional study of 45 subjects with T1DM, 60% females, age 34 ± 13 years, and 10 age-matched controls. Positron emission tomography (PET) imaging with [(11)C]acetate and [(11)C]meta-hydroxyephedrine was performed, in addition to cardiac magnetic resonance imaging. RESULTS There were no significant differences in LV function, innervation, or oxidative metabolism between T1DM and controls. Cardiac oxidative metabolism was positively associated with higher levels of sympathetic activation, particularly in women. Diabetic women had significantly lower efficiency compared with diabetic men. Resting flow was significantly higher in diabetic women compared with diabetic men, and tended to be higher in female controls as well. CONCLUSIONS Measures of myocardial function, metabolism, blood flow, and sympathetic activation were preserved in young, otherwise healthy, T1DM patients. However, T1DM women presented with greater myocardial oxidative metabolism requirements than men. Ongoing studies are evaluating changes over time.
Collapse
Affiliation(s)
- Claire S Duvernoy
- Cardiology Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - David M Raffel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott D Swanson
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Mamta Jaiswal
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 5329 Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Gisela Mueller
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - El-Sayed Ibrahim
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cynthia Plunkett
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 5329 Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | | | - Morton B Brown
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Rodica Pop-Busui
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 5329 Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
31
|
Abstract
Diabetes mellitus is the commonest cause of an autonomic neuropathy in the developed world. Diabetic autonomic neuropathy causes a constellation of symptoms and signs affecting cardiovascular, urogenital, gastrointestinal, pupillomotor, thermoregulatory, and sudomotor systems. Several discrete syndromes associated with diabetes cause autonomic dysfunction. The most prevalent of these are: generalized diabetic autonomic neuropathy, autonomic neuropathy associated with the prediabetic state, treatment-induced painful and autonomic neuropathy, and transient hypoglycemia-associated autonomic neuropathy. These autonomic manifestations of diabetes are responsible for the most troublesome and disabling features of diabetic peripheral neuropathy and result in a significant proportion of the mortality and morbidity associated with the disease.
Collapse
Affiliation(s)
- Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Abstract
Cardiovascular PET provides exquisite measurements of key aspects of the cardiovascular system and as a consequence it plays central role in cardiovascular investigation. Moreover, PET is now playing an ever increasing role in the management of the cardiac patient. Central to the success of PET is the development and use of novel radiotracers that permit measurements of key aspects of cardiovascular health such as myocardial perfusion, metabolism, and neuronal function. Moreover, the development of molecular imaging radiotracers is now permitting the interrogation of cellular and sub cellular processes. This article highlights these various radiotracers and their role in both cardiovascular research and potential clinical applications.
Collapse
Affiliation(s)
- Robert J Gropler
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO 63110, USA
| |
Collapse
|
33
|
Asghar O, Arumugam P, Armstrong IS, Ray SG, Schmitt M, Malik RA. Individuals with impaired glucose tolerance demonstrate normal cardiac sympathetic innervation using I-123 mIBG scintigraphy. J Nucl Cardiol 2015; 22:1262-8. [PMID: 25698476 DOI: 10.1007/s12350-015-0070-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Impaired glucose tolerance (IGT) is associated with an increased risk of type 2 diabetes (T2DM) and cardiovascular disease. Some but not all studies have reported cardiac autonomic dysfunction in subjects with IGT and there is only one direct study of cardiac innervation in subjects with IGT. The purpose of this study was to assess global and regional cardiac sympathetic innervation and cardiac autonomic function in individuals with IGT. METHODS AND RESULTS We undertook (123)I-mIBG scintigraphy and cardiac autonomic function in 15 subjects with IGT and 15 age and sex-matched healthy controls. Early heart to mediastinum ratio (HMR) (1.71 ± 0.17 vs 1.67 ± 0.13, P = .49), late HMR (1.73 ± 0.18 vs 1.73 ± 0.16, P = .97) and washout rate (WR) (18.6 ± 4.2 vs 19.1 ± 7.6%, P = .84), did not differ between subjects with IGT and control subjects. More detailed regional analysis revealed reduced tracer uptake at the apex, base and inferior wall in all subjects and the anterior wall in a minority of subjects. There were no differences in total score (56.6 ± 4.0 vs 53.3 ± 8.4, P = .193), modified score (48.5 ± 3.3 vs 46.2 ± 6.0, P = .215), anterior wall score (10.2 ± 1.3 vs 10.1 ± 1.6, P = .898), inferior wall score (8.9 ± 1.9 vs 7.7 ± 2.6, P = .163), basal score (18.7 ± 1.9 vs 18.2 ± 3.3, P = .636) and tests of cardiac autonomic function between the groups. CONCLUSION Global and regional measures of MIBG uptake and washout as well as cardiac autonomic function did not differ between subjects with IGT and healthy controls.
Collapse
Affiliation(s)
- O Asghar
- Institute of Cardiovascular Sciences, University of Manchester & Manchester Heart Centre, Central Manchester Foundation Trust, Manchester, United Kingdom.
| | - P Arumugam
- Department of Nuclear Medicine, Central Manchester Foundation Trust, Manchester, United Kingdom
| | - I S Armstrong
- Department of Nuclear Medicine, Central Manchester Foundation Trust, Manchester, United Kingdom
| | - S G Ray
- North West Heart and Transplant Centre, University Hospital of South Manchester, Manchester, United Kingdom
| | - M Schmitt
- North West Heart and Transplant Centre, University Hospital of South Manchester, Manchester, United Kingdom
| | - R A Malik
- Centre for Endocrinology & Diabetes, Institute of Human Development, University of Manchester, Manchester, United Kingdom.
- Weill Cornell Medical College, Doha, Qatar.
| |
Collapse
|
34
|
Siniscalchi M, Sardu C, Sasso A, Marfella R, Paolisso G, Mauro C. Author's reply. J Cardiol 2015; 67:573. [PMID: 26611935 DOI: 10.1016/j.jjcc.2015.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Affiliation(s)
| | - Celestino Sardu
- Medical, Surgical, Neurological, Metabolic and Aging Sciences Department, Second University of Naples, Naples, Italy.
| | - Angelo Sasso
- Cardiovascular Department, Cardarelli Hospital, Naples, Italy
| | - Raffaele Marfella
- Medical, Surgical, Neurological, Metabolic and Aging Sciences Department, Second University of Naples, Naples, Italy
| | - Giuseppe Paolisso
- Medical, Surgical, Neurological, Metabolic and Aging Sciences Department, Second University of Naples, Naples, Italy
| | - Ciro Mauro
- Cardiovascular Department, Cardarelli Hospital, Naples, Italy
| |
Collapse
|
35
|
Application of Cardiac Neurohormonal Imaging to Heart Failure, Transplantation, and Diabetes. CURRENT CARDIOVASCULAR IMAGING REPORTS 2015. [DOI: 10.1007/s12410-015-9323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Balcıoğlu AS, Müderrisoğlu H. Diabetes and cardiac autonomic neuropathy: Clinical manifestations, cardiovascular consequences, diagnosis and treatment. World J Diabetes 2015; 6:80-91. [PMID: 25685280 PMCID: PMC4317320 DOI: 10.4239/wjd.v6.i1.80] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/24/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Cardiac autonomic neuropathy (CAN) is a frequent chronic complication of diabetes mellitus with potentially life-threatening outcomes. CAN is caused by the impairment of the autonomic nerve fibers regulating heart rate, cardiac output, myocardial contractility, cardiac electrophysiology and blood vessel constriction and dilatation. It causes a wide range of cardiac disorders, including resting tachycardia, arrhythmias, intraoperative cardiovascular instability, asymptomatic myocardial ischemia and infarction and increased rate of mortality after myocardial infarction. Etiological factors associated with autonomic neuropathy include insufficient glycemic control, a longer period since the onset of diabetes, increased age, female sex and greater body mass index. The most commonly used methods for the diagnosis of CAN are based upon the assessment of heart rate variability (the physiological variation in the time interval between heartbeats), as it is one of the first findings in both clinically asymptomatic and symptomatic patients. Clinical symptoms associated with CAN generally occur late in the disease process and include early fatigue and exhaustion during exercise, orthostatic hypotension, dizziness, presyncope and syncope. Treatment is based on early diagnosis, life style changes, optimization of glycemic control and management of cardiovascular risk factors. Medical therapies, including aldose reductase inhibitors, angiotensin-converting enzyme inhibitors, prostoglandin analogs and alpha-lipoic acid, have been found to be effective in randomized controlled trials. The following article includes the epidemiology, clinical findings and cardiovascular consequences, diagnosis, and approaches to prevention and treatment of CAN.
Collapse
|
37
|
Affiliation(s)
- Bo Kyung Koo
- Department of Internal Medicine, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Harms HJ, de Haan S, Knaapen P, Allaart CP, Rijnierse MT, Schuit RC, Windhorst AD, Lammertsma AA, Huisman MC, Lubberink M. Quantification of [(11)C]-meta-hydroxyephedrine uptake in human myocardium. EJNMMI Res 2014; 4:52. [PMID: 26116116 PMCID: PMC4452641 DOI: 10.1186/s13550-014-0052-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/08/2014] [Indexed: 12/02/2022] Open
Abstract
Background The aims of this study were to determine the optimal tracer kinetic model for [11C]-meta-hydroxyephedrine ([11C]HED) and to evaluate the performance of several simplified methods. Methods Thirty patients underwent dynamic 60-min [11C]HED scans with online arterial blood sampling. Single-tissue and both reversible and irreversible two-tissue models were fitted to the data using the metabolite-corrected arterial input function. For each model, reliable fits were defined as those yielding outcome parameters with a coefficient of variation (CoV) <25%. The optimal model was determined using Akaike and Schwarz criteria and the F-test, together with the number of reliable fits. Simulations were performed to study accuracy and precision of each model. Finally, quantitative results obtained using a population-averaged metabolite correction were evaluated, and simplified retention index (RI) and standardized uptake value (SUV) results were compared with quantitative volume of distribution (VT) data. Results The reversible two-tissue model was preferred in 75.8% of all segments, based on the Akaike information criterion. However, VT derived using the single-tissue model correlated highly with that of the two-tissue model (r2 = 0.94, intraclass correlation coefficient (ICC) = 0.96) and showed higher precision (CoV of 24.6% and 89.2% for single- and two-tissue models, respectively, at 20% noise). In addition, the single-tissue model yielded reliable fits in 94.6% of all segments as compared with 77.1% for the reversible two-tissue model. A population-averaged metabolite correction could not be used in approximately 20% of the patients because of large biases in VT. RI and SUV can provide misleading results because of non-linear relationships with VT. Conclusions Although the reversible two-tissue model provided the best fits, the single-tissue model was more robust and results obtained were similar. Therefore, the single-tissue model was preferred. RI showed a non-linear correlation with VT, and therefore, care has to be taken when using RI as a quantitative measure. Electronic supplementary material The online version of this article (doi:10.1186/s13550-014-0052-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hendrik J Harms
- Department of Radiology and Nuclear Medicine, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, the Netherlands,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Differential Effects of Adrenergic Antagonists (Carvedilol vs Metoprolol) on Parasympathetic and Sympathetic Activity: A Comparison of Measures. Heart Int 2014. [DOI: 10.5301/heart.2014.12495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Differential Effects of Adrenergic Antagonists (Carvedilol vs Metoprolol) on Parasympathetic and Sympathetic Activity: A Comparison of Clinical Results. Heart Int 2014. [DOI: 10.5301/heart.2014.12496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Emanueli C, Meloni M, Hasan W, Habecker BA. The biology of neurotrophins: cardiovascular function. Handb Exp Pharmacol 2014; 220:309-28. [PMID: 24668478 DOI: 10.1007/978-3-642-45106-5_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This chapter addresses the role of neurotrophins in the development of the heart, blood vessels, and neural circuits that control cardiovascular function, as well as the role of neurotrophins in the mature cardiovascular system. The cardiovascular system includes the heart and vasculature whose functions are tightly controlled by the nervous system. Neurons, cardiomyocytes, endothelial cells, vascular smooth muscle cells, and pericytes are all targets for neurotrophin action during development. Neurotrophin expression continues throughout life, and several common pathologies that impact cardiovascular function involve changes in the expression or activity of neurotrophins. These include atherosclerosis, hypertension, diabetes, acute myocardial infarction, and heart failure. In many of these conditions, altered expression of neurotrophins and/or neurotrophin receptors has direct effects on vascular endothelial and smooth muscle cells in addition to effects on nerves that modulate vascular resistance and cardiac function. This chapter summarizes the effects of neurotrophins in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Costanza Emanueli
- Regenerative Medicine Section, School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK,
| | | | | | | |
Collapse
|
42
|
Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes 2014; 5:17-39. [PMID: 24567799 PMCID: PMC3932425 DOI: 10.4239/wjd.v5.i1.17] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 02/05/2023] Open
Abstract
Cardiac autonomic neuropathy (CAN) is an often overlooked and common complication of diabetes mellitus. CAN is associated with increased cardiovascular morbidity and mortality. The pathogenesis of CAN is complex and involves a cascade of pathways activated by hyperglycaemia resulting in neuronal ischaemia and cellular death. In addition, autoimmune and genetic factors are involved in the development of CAN. CAN might be subclinical for several years until the patient develops resting tachycardia, exercise intolerance, postural hypotension, cardiac dysfunction and diabetic cardiomyopathy. During its sub-clinical phase, heart rate variability that is influenced by the balance between parasympathetic and sympathetic tones can help in detecting CAN before the disease is symptomatic. Newer imaging techniques (such as scintigraphy) have allowed earlier detection of CAN in the pre-clinical phase and allowed better assessment of the sympathetic nervous system. One of the main difficulties in CAN research is the lack of a universally accepted definition of CAN; however, the Toronto Consensus Panel on Diabetic Neuropathy has recently issued guidance for the diagnosis and staging of CAN, and also proposed screening for CAN in patients with diabetes mellitus. A major challenge, however, is the lack of specific treatment to slow the progression or prevent the development of CAN. Lifestyle changes, improved metabolic control might prevent or slow the progression of CAN. Reversal will require combination of these treatments with new targeted therapeutic approaches. The aim of this article is to review the latest evidence regarding the epidemiology, pathogenesis, manifestations, diagnosis and treatment for CAN.
Collapse
|
43
|
Imaging of Cardiac Autonomic Innervation with SPECT and PET. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-013-9242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Xue M, Xuan YL, Wang Y, Hu HS, Li XL, Suo F, Li XR, Cheng WJ, Yan SH. Exogenous nerve growth factor promotes the repair of cardiac sympathetic heterogeneity and electrophysiological instability in diabetic rats. Cardiology 2013; 127:155-63. [PMID: 24356397 DOI: 10.1159/000355535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/07/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Diabetic cardiac autonomic neuropathy can lead to an increased incidence of ventricular arrhythmias (VAs). However, few data are available regarding the pathogenesis and therapy of the VAs accompanying diabetic cardiac autonomic neuropathy. We aimed to explore whether or not exogenous nerve growth factor (NGF) can reduce the sympathetic heterogeneity and the incidence of VAs in diabetes mellitus (DM). METHODS Male Wistar rats were randomly divided into 3 groups: controls, rats with DM with saline infused into the left stellate ganglion (LSG), i.e. the DS group and rats with DM with NGF infused into the LSG, i.e. the DN group. After 28 weeks, all rats were subjected to electrophysiological experiments. Sympathetic innervations and NGF were studied by immunostaining, RT-PCR or Western blot analysis. RESULTS The incidence of inducible VAs was significantly higher in the DS group than in the control group, but was markedly decreased in the DN group. In the DS group, the tyrosine hydroxylase (TH) and NGF expression were significantly lower than in the other groups, and significant proximal-distal heterogeneities existed regarding the TH and NGF expression in the left ventricle, but were markedly repaired in the DN group. CONCLUSIONS NGF intervention in the LSG can reduce the heterogeneity of cardiac sympathetic innervations and the incidence of VAs in diabetic rats.
Collapse
Affiliation(s)
- Mei Xue
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Magota K, Hattori N, Manabe O, Naya M, Oyama-Manabe N, Shiga T, Kuge Y, Yamada S, Sakakibara M, Yoshinaga K, Tamaki N. Electrocardiographically gated 11C-hydroxyephedrine PET for the simultaneous assessment of cardiac sympathetic and contractile functions. Ann Nucl Med 2013; 28:187-95. [DOI: 10.1007/s12149-013-0795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/26/2013] [Indexed: 11/28/2022]
|
46
|
Schnell O, Cappuccio F, Genovese S, Standl E, Valensi P, Ceriello A. Type 1 diabetes and cardiovascular disease. Cardiovasc Diabetol 2013; 12:156. [PMID: 24165454 PMCID: PMC3816572 DOI: 10.1186/1475-2840-12-156] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022] Open
Abstract
The presence of cardiovascular disease (CVD) in Type 1 diabetes largely impairs life expectancy. Hyperglycemia leading to an increase in oxidative stress is considered to be the key pathophysiological factor of both micro- and macrovascular complications. In Type 1 diabetes, the presence of coronary calcifications is also related to coronary artery disease. Cardiac autonomic neuropathy, which significantly impairs myocardial function and blood flow, also enhances cardiac abnormalities. Also hypoglycemic episodes are considered to adversely influence cardiac performance. Intensive insulin therapy has been demonstrated to reduce the occurrence and progression of both micro- and macrovascular complications. This has been evidenced by the Diabetes Control and Complications Trial (DCCT) / Epidemiology of Diabetes Interventions and Complications (EDIC) study. The concept of a metabolic memory emerged based on the results of the study, which established that intensified insulin therapy is the standard of treatment of Type 1 diabetes. Future therapies may also include glucagon-like peptide (GLP)-based treatment therapies. Pilot studies with GLP-1-analogues have been shown to reduce insulin requirements.
Collapse
Affiliation(s)
- Oliver Schnell
- Forschergruppe Diabetes e.V., Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Munich-Neuherberg, Germany
| | | | - Stefano Genovese
- Department of Cardiovascular and Metabolic Diseases, Gruppo Multimedica, Sesto San Giovanni, Milan, Italy
| | - Eberhard Standl
- Forschergruppe Diabetes e.V., Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Munich-Neuherberg, Germany
| | - Paul Valensi
- Service d’Endocrinologie-Diabétologie-Nutrition, Hôpital Jean Verdier, Bondy Cedex, France
| | - Antonio Ceriello
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Clínic Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Abstract
This review focuses on molecular imaging using various radioligands for the tissue characterization of patients with heart failure. 123I-labeled metaiodobenzylguanidine (MIBG), as a marker of adrenergic neuron function, plays an important role in risk stratification in heart failure and may be useful for predicting fatal arrhythmias that may require implantable cardioverter-defibrillator treatment. MIBG has also been used for monitoring treatment effects under various medications. Various positron emission tomography (PET) radioligands have been introduced for the quantitative assessment of presynaptic and postsynaptic neuronal function in vivo. 11C-hydroxyephedrine, like MIBG, has potential for assessing the severity of heart failure. Our PET study using the β-receptor antagonist 11C-CGP 12177 in patients with heart failure showed a reduction of β-receptor density, indicating downregulation, in most of the patients. More studies are needed to confirm the clinical utility of these molecular imaging modalities for the management of heart failure patients.
Collapse
|
48
|
Thackeray JT, deKemp RA, Beanlands RS, DaSilva JN. Insulin restores myocardial presynaptic sympathetic neuronal integrity in insulin-resistant diabetic rats. J Nucl Cardiol 2013; 20:845-56. [PMID: 23842711 DOI: 10.1007/s12350-013-9759-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Diabetes is associated with increased sympathetic activity, elevated norepinephrine, impaired heart rate variability, and the added risk of cardiovascular mortality. The temporal development of sympathetic neuronal dysfunction, response to therapy, and relation to ventricular function is not well characterized. METHODS AND RESULTS Sympathetic neuronal integrity was serially investigated in high fat diet-fed streptozotocin diabetic rats using [(11)C]meta-hydroxyephedrine (HED) positron emission tomography at baseline, 8 weeks of diabetes, and after a further 8 weeks of insulin or insulin-sensitizing metformin therapy. Myocardial HED retention was reduced in diabetic rats (n = 16) compared to non-diabetics (n = 6) at 8 weeks by 52-57% (P = .01) with elevated plasma and myocardial norepinephrine levels. Echocardiography pulse-wave Doppler measurements demonstrated prolonged mitral valve deceleration and increased early-to-atrial filling velocity, consistent with diastolic dysfunction. Insulin but not metformin evoked recovery of HED retention and plasma norepinephrine (P < .05), whereas echocardiography measurements of diastolic function were not improved by either treatment. Relative expressions of norepinephrine reuptake transporter and β-adrenoceptors were lower in metformin-treated as compared to insulin-treated diabetic and non-diabetic rats. Diabetic rats exhibited depressed heart rate variability and impaired diastolic function which persisted despite insulin treatment. CONCLUSIONS HED imaging provides sound estimation of sympathetic function. Effective glycemic control can recover sympathetic function in diabetic rats without the corresponding recovery of echocardiography indicators of diastolic dysfunction. HED positron emission tomography imaging may be useful in stratifying cardiovascular risk among diabetic patients and in evaluating the effect of glycemic therapy on the heart.
Collapse
Affiliation(s)
- James T Thackeray
- Molecular Function & Imaging Program, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada,
| | | | | | | |
Collapse
|
49
|
Asghar O, Alam U, Hayat SA, Aghamohammadzadeh R, Heagerty AM, Malik RA. Diabetes, Obesity and Atrial Fibrillation: Epidemiology, Mechanisms and Interventions. J Atr Fibrillation 2013; 6:869. [PMID: 28496876 DOI: 10.4022/jafib.869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/21/2013] [Accepted: 05/26/2013] [Indexed: 01/19/2023]
Abstract
Body mass index (BMI) is a powerful predictor of death, type 2 diabetes (T2DM) and cardiovascular (CV) morbidity and mortality. Over the last few decades, we have witnessed a global rise in adult obesity of epidemic proportions. Similarly, there has been a parallel increase in the incidence of atrial fibrillation (AF), itself a significant cause of cardiovascular morbidity and mortality. This may be partly attributable to advances in the treatment of coronary heart disease (CHD) and heart failure (HF) improving life expectancy, however, epidemiological studies have demonstrated an independent association between obesity, diabetes and AF, suggesting possible common pathophysiological mechanisms and risk factors. Indeed, cardiac remodeling, haemodynamic alterations, autonomic dysfunction, and diastolic dysfunction have been reported in obese and diabetic cohorts. Moreover, diabetic cardiomyopathy is characterized by an adverse structural and functional cardiac phenotype, which may predispose to the development of AF. In this review, we discuss the pathophysiological and mechanistic relationships between obesity, diabetes and AF, and some of the challenges posed in the management of this high-risk group of individuals.
Collapse
Affiliation(s)
- O Asghar
- Division of Cardiovascular Sciences, The University of Manchester, UK
| | - U Alam
- Division of Cardiovascular Sciences, The University of Manchester, UK
| | - S A Hayat
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | | | - A M Heagerty
- Division of Cardiovascular Sciences, The University of Manchester, UK
| | - R A Malik
- Division of Cardiovascular Sciences, The University of Manchester, UK
| |
Collapse
|
50
|
Pop-Busui R, Stevens MJ, Raffel DM, White EA, Mehta M, Plunkett CD, Brown MB, Feldman EL. Effects of triple antioxidant therapy on measures of cardiovascular autonomic neuropathy and on myocardial blood flow in type 1 diabetes: a randomised controlled trial. Diabetologia 2013; 56:1835-44. [PMID: 23740194 PMCID: PMC3730828 DOI: 10.1007/s00125-013-2942-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/02/2013] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS We evaluated the effects of a combination triple antioxidant therapy on measures of cardiovascular autonomic neuropathy (CAN) and myocardial blood flow (MBF) in patients with type 1 diabetes. METHODS This was a randomised, parallel, placebo-controlled trial. Participants were allocated to interventions by sequentially numbered, opaque, sealed envelopes provided to the research pharmacist. All participants and examiners were masked to treatment allocation. Participants were evaluated by cardiovascular autonomic reflex testing, positron emission tomography with [(11)C]meta-hydroxyephedrine ([(11)C]HED) and [(13)N]ammonia, and adenosine stress testing. Markers of oxidative stress included 24 h urinary F2-isoprostanes. Diabetic peripheral neuropathy (DPN) was evaluated by symptoms, signs, electrophysiology and intra-epidermal nerve fibre density. Randomised participants included 44 eligible adults with type 1 diabetes and mild-to-moderate CAN, who were aged 46 ± 11 years and had HbA1c 58 ± 5 mmol/mol (7.5 ± 1.0%), with no evidence of ischaemic heart disease. Participants underwent a 24-month intervention, consisting of antioxidant treatment with allopurinol, α-lipoic acid and nicotinamide, or placebo. The main outcome was change in the global [(11)C]HED retention index (RI) at 24 months in participants on the active drug compared with those on placebo. RESULTS We analysed data from 44 participants (22 per group). After adjusting for age, sex and in-trial HbA1c, the antioxidant regimen was associated with a slight, but significant worsening of the global [(11)C]HED left ventricle RI (-0.010 [95% CI -0.020, -0.001] p = 0.045) compared with placebo. There were no significant differences at follow-up between antioxidant treatment and placebo in the global MBF, coronary flow reserve, or in measures of DPN and markers of oxidative stress. The majority of adverse events were of mild-to-moderate severity and did not differ between groups CONCLUSIONS/INTERPRETATION In this cohort of type 1 diabetes patients with mild-to-moderate CAN, a combination antioxidant treatment regimen did not prevent progression of CAN, had no beneficial effects on myocardial perfusion or DPN, and may have been detrimental. However, a larger study is necessary to assess the underlying causes of these findings.
Collapse
Affiliation(s)
- R Pop-Busui
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|