1
|
Lopez-Schenk R, Collins NL, Schenk NA, Beard DA. Integrated Functions of Cardiac Energetics, Mechanics, and Purine Nucleotide Metabolism. Compr Physiol 2023; 14:5345-5369. [PMID: 38158366 PMCID: PMC10956446 DOI: 10.1002/cphy.c230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Purine nucleotides play central roles in energy metabolism in the heart. Most fundamentally, the free energy of hydrolysis of the adenine nucleotide adenosine triphosphate (ATP) provides the thermodynamic driving force for numerous cellular processes including the actin-myosin crossbridge cycle. Perturbations to ATP supply and/or demand in the myocardium lead to changes in the homeostatic balance between purine nucleotide synthesis, degradation, and salvage, potentially affecting myocardial energetics and, consequently, myocardial mechanics. Indeed, both acute myocardial ischemia and decompensatory remodeling of the myocardium in heart failure are associated with depletion of myocardial adenine nucleotides and with impaired myocardial mechanical function. Yet there remain gaps in the understanding of mechanistic links between adenine nucleotide degradation and contractile dysfunction in heart disease. The scope of this article is to: (i) review current knowledge of the pathways of purine nucleotide depletion and salvage in acute ischemia and in chronic heart disease; (ii) review hypothesized mechanisms linking myocardial mechanics and energetics with myocardial adenine nucleotide regulation; and (iii) highlight potential targets for treating myocardial metabolic and mechanical dysfunction associated with these pathways. It is hypothesized that an imbalance in the degradation, salvage, and synthesis of adenine nucleotides leads to a net loss of adenine nucleotides in both acute ischemia and under chronic high-demand conditions associated with the development of heart failure. This reduction in adenine nucleotide levels results in reduced myocardial ATP and increased myocardial inorganic phosphate. Both of these changes have the potential to directly impact tension development and mechanical work at the cellular level. © 2024 American Physiological Society. Compr Physiol 14:5345-5369, 2024.
Collapse
Affiliation(s)
- Rachel Lopez-Schenk
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Collins
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah A Schenk
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel A Beard
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
3
|
Malki Y, Martinez J, Masurier N. 1,3-Diazepine: A privileged scaffold in medicinal chemistry. Med Res Rev 2021; 41:2247-2315. [PMID: 33645848 DOI: 10.1002/med.21795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Privileged structures have been widely used as effective templates for drug discovery. While benzo-1,4-diazepine constitutes the first historical example of such a structure, the 1,3 analogue is just as rich in terms of applications in medicinal chemistry. The 1,3-diazepine moiety is present in numerous biological active compounds including natural products, and is used to design compounds displaying a large range of biological activities. It is present in the clinically used anticancer compound pentostatin, in several recent FDA approved β-lactamase inhibitors (e.g., avibactam) and also in coformycin, a natural product known as a ring-expanded purine analogue displaying antiviral and anticancer activities. Several other 1,3-diazepine containing compounds have entered into clinical trials. This heterocyclic structure has been and is still widely used in medicinal chemistry to design enzyme inhibitors, GPCR ligands, and so forth. This review endeavours to highlight the main use of the 1,3-diazepine scaffold and its derivatives, and their applications in medicinal chemistry, drug design, and therapy. We will focus more particularly on the development of enzyme inhibitors incorporating this scaffold, with a strong emphasis on the molecular interactions involved in the inhibition mechanism.
Collapse
Affiliation(s)
- Yohan Malki
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
4
|
Simard T, Jung RG, Di Santo P, Ramirez FD, Labinaz A, Gaudet C, Motazedian P, Parlow S, Joseph J, Moreland R, Marbach J, Boland P, Promislow S, Russo JJ, Chong AY, So D, Froeschl M, Le May M, Hibbert B. Performance of Plasma Adenosine as a Biomarker for Predicting Cardiovascular Risk. Clin Transl Sci 2020; 14:354-361. [PMID: 33264483 PMCID: PMC7877863 DOI: 10.1111/cts.12886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022] Open
Abstract
Adenosine boasts promising preclinical and clinical data supporting a vital role in modulating vascular homeostasis. Its widespread use as a diagnostic and therapeutic agent have been limited by its short half-life and complex biology, though adenosine-modulators have shown promise in improving vascular healing. Moreover, circulating adenosine has shown promise in predicting cardiovascular (CV) events. We sought to delineate whether circulating plasma adenosine levels predict CV events in patients undergoing invasive assessment for coronary artery disease. Patients undergoing invasive angiography had clinical data prospectively recorded in the Cardiovascular and Percutaneous ClInical TriALs (CAPITAL) revascularization registry and blood samples collected in the CAPITAL Biobank from which adenosine levels were quantified. Tertile-based analysis was used to assess prediction of major adverse cardiovascular events (MACE; composite of death, myocardial infarction, unplanned revascularization, and cerebrovascular accident). Secondary analyses included MACE subgroups, clinical subgroups and adenosine levels. There were 1,815 patients undergoing angiography who had blood collected with adenosine quantified in 1,323. Of those quantified, 51.0% were revascularized and 7.3% experienced MACE in 12 months of follow-up. Tertile-based analysis failed to demonstrate any stratification of MACE rates (log rank, P = 0.83), when comparing low-to-middle (hazard ratio (HR) 1.10, 95% confidence interval (CI) 0.68-1.78, P = 0.70) or low-to-high adenosine tertiles (HR 0.95, 95% CI 0.56-1.57, P = 0.84). In adjusted analysis, adenosine similarly failed to predict MACE. Finally, adenosine did not predict outcomes in patients with acute coronary syndrome nor in those revascularized or treated medically. Plasma adenosine levels do not predict subsequent CV outcomes or aid in patient risk stratification.
Collapse
Affiliation(s)
- Trevor Simard
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Division of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard G Jung
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Pietro Di Santo
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - F Daniel Ramirez
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Hôpital Cardiologique du Haut-Lévêque, CHU Bordeaux, Bordeaux-Pessac, France.,L'Institut de Rythmologie et Modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux-Pessac, France
| | - Alisha Labinaz
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Chantal Gaudet
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Pouya Motazedian
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Simon Parlow
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Joanne Joseph
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert Moreland
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Jeffrey Marbach
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Paul Boland
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Steven Promislow
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Juan J Russo
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Aun-Yeong Chong
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Derek So
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Michael Froeschl
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Michel Le May
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Benjamin Hibbert
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Cowley AW, Dash RK. Computational/Experimental Interrogation of the Failing Heart-A Perspective on "Impaired Myocardial Energetics Causes Mechanical Dysfunction in Decompensated Failing Hearts". FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa022. [PMID: 35330639 PMCID: PMC8788834 DOI: 10.1093/function/zqaa022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Address correspondence to A.W.C. (e-mail: )
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Gaudry M, Vairo D, Marlinge M, Gaubert M, Guiol C, Mottola G, Gariboldi V, Deharo P, Sadrin S, Maixent JM, Fenouillet E, Ruf J, Guieu R, Paganelli F. Adenosine and Its Receptors: An Expected Tool for the Diagnosis and Treatment of Coronary Artery and Ischemic Heart Diseases. Int J Mol Sci 2020; 21:ijms21155321. [PMID: 32727116 PMCID: PMC7432452 DOI: 10.3390/ijms21155321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an endogenous nucleoside which strongly impacts the cardiovascular system. Adenosine is released mostly by endothelial cells and myocytes during ischemia or hypoxia and greatly regulates the cardiovascular system via four specific G-protein-coupled receptors named A1R, A2AR, A2BR, and A3R. Among them, A2 subtypes are strongly expressed in coronary tissues, and their activation increases coronary blood flow via the production of cAMP in smooth muscle cells. A2A receptor modulators are an opportunity for intense research by the pharmaceutical industry to develop new cardiovascular therapies. Most innovative therapies are mediated by the modulation of adenosine release and/or the activation of the A2A receptor subtypes. This review aims to focus on the specific exploration of the adenosine plasma level and its relationship with the A2A receptor, which seems a promising biomarker for a diagnostic and/or a therapeutic tool for the screening and management of coronary artery disease. Finally, a recent class of selective adenosine receptor ligands has emerged, and A2A receptor agonists/antagonists are useful tools to improve the management of patients suffering from coronary artery disease.
Collapse
Affiliation(s)
- Marine Gaudry
- Department of Vascular Surgery, Timone Hospital, F-13008 Marseille, France;
| | - Donato Vairo
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
| | - Marion Marlinge
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13008 Marseille, France
| | - Melanie Gaubert
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
| | - Claire Guiol
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
| | - Giovanna Mottola
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13008 Marseille, France
| | - Vlad Gariboldi
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
- Department of Cardiac Surgery, Timone Hospital, F-13008 Marseille, France
| | - Pierre Deharo
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
- Department of Cardiology, Timone Hospital, F-13008 Marseille, France
| | | | - Jean Michel Maixent
- Unité de Recherche Clinique Pierre Deniker (URC C.S. 10587) Centre Hospitalier Henri Laborit, 86000 Poitiers, France
- I.A.P.S. Equipe Emergeante, Université de Toulon, 83957 Toulon-La Garde, UFR S.F.A., F-86073 Poitiers, France
- Correspondence: (J.M.M.); (F.P.)
| | - Emmanuel Fenouillet
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
| | - Jean Ruf
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
| | - Regis Guieu
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13008 Marseille, France
| | - Franck Paganelli
- C2VN, INSERM, INRA, Aix-Marseille University, F-13015 Marseille, France; (D.V.); (M.M.); (M.G.); (C.G.); (G.M.); (V.G.); (P.D.); (E.F.); (J.R.); (R.G.)
- Department of Cardiology, Nord Hospital, ARCHANTEC, F-13015 Marseille, France
- Correspondence: (J.M.M.); (F.P.)
| |
Collapse
|
7
|
AMPD1 C34T Polymorphism (rs17602729) Is Not Associated with Post-Exercise Changes of Body Weight, Body Composition, and Biochemical Parameters in Caucasian Females. Genes (Basel) 2020; 11:genes11050558. [PMID: 32429460 PMCID: PMC7288308 DOI: 10.3390/genes11050558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022] Open
Abstract
Background: The C34T polymorphism (rs 17602729) in adenosine monophosphate deaminase 1 gene (AMPD1) is associated with muscular energy metabolism in exercise. However, the role of its potential modifying impact on exercise-induced changes in obesity related parameters is unknown. The aim of the study was to determine if the C34T polymorphism influences the effects of an exercise training. Methods: This study examines a group of one hundred and sixty-eight, young, non-obese Caucasian women in Poland who took part in a 12-week aerobic training program to determine the impact of allele and genotype distribution on training outcomes. Results: A two-way analysis of variance ANOVA was conducted assuming a dominant model by pooling rare homozygotes and heterozygotes (TT + CT, n = 79) and comparing against common homozygotes (CC, n = 89). Our results showed that the AMPD1 C34T polymorphism was not related with selected parameters in study group. After completing the 12-week training program, a wide array of parameters (body mass, body mass index, fat mass, free fat mass, total body water) were significantly changed in the study participants with the exception of AMPD1 genotypes, among whom no significant changes were observed. Conclusions: The results did not confirm that harboring the rs 17602729 T allele influences the effects of the training program.
Collapse
|
8
|
Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, Perry-Nguyen D, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Promislow S, Beanlands RS, Hibbert B. Evaluation of Plasma Adenosine as a Marker of Cardiovascular Risk: Analytical and Biological Considerations. J Am Heart Assoc 2019; 8:e012228. [PMID: 31379241 PMCID: PMC6761640 DOI: 10.1161/jaha.119.012228] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Adenosine is a ubiquitous regulatory molecule known to modulate signaling in many cells and processes vital to vascular homeostasis. While studies of adenosine receptors have dominated research in the field, quantification of adenosine systemically and locally remains limited owing largely to technical restrictions. Given the potential clinical implications of adenosine biology, there is a need for adequately powered studies examining the role of plasma adenosine in vascular health. We sought to describe the analytical and biological factors that affect quantification of adenosine in humans in a large, real‐world cohort of patients undergoing evaluation for coronary artery disease. Methods and Results Between November 2016 and April 2018, we assessed 1141 patients undergoing angiography for evaluation of coronary artery disease. High‐performance liquid chromatography was used for quantification of plasma adenosine concentration, yielding an analytical coefficient of variance (CVa) of 3.2%, intra‐subject variance (CVi) 35.8% and inter‐subject variance (CVg) 56.7%. Traditional cardiovascular risk factors, medications, and clinical presentation had no significant impact on adenosine levels. Conversely, increasing age (P=0.027) and the presence of obstructive coronary artery disease (P=0.026) were associated with lower adenosine levels. Adjusted multivariable analysis supported only age being inversely associated with adenosine levels (P=0.039). Conclusions Plasma adenosine is not significantly impacted by traditional cardiovascular risk factors; however, advancing age and presence of obstructive coronary artery disease may be associated with lower adenosine levels. The degree of intra‐ and inter‐subject variance of adenosine has important implications for biomarker use as a prognosticator of cardiovascular outcomes and as an end point in clinical studies.
Collapse
Affiliation(s)
- Trevor Simard
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada.,Department of Cellular and Molecular Medicine University of Ottawa Canada
| | - Richard Jung
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada.,Department of Cellular and Molecular Medicine University of Ottawa Canada
| | - Alisha Labinaz
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | | | - F Daniel Ramirez
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | - Pietro Di Santo
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | | | - Ian Pitcher
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | | | - Chantal Gaudet
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada.,Department of Cellular and Molecular Medicine University of Ottawa Canada
| | - Rebecca Rochman
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | - Jeffrey Marbach
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | - Paul Boland
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | - Kiran Sarathy
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | - Saleh Alghofaili
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | - Juan J Russo
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | - Etienne Couture
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | - Steven Promislow
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada
| | - Rob S Beanlands
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada.,Department of Cellular and Molecular Medicine University of Ottawa Canada
| | - Benjamin Hibbert
- CAPITAL Research Group Division of Cardiology University of Ottawa Heart Institute Ottawa Canada.,Department of Cellular and Molecular Medicine University of Ottawa Canada
| |
Collapse
|
9
|
Johnson TA, Jinnah HA, Kamatani N. Shortage of Cellular ATP as a Cause of Diseases and Strategies to Enhance ATP. Front Pharmacol 2019; 10:98. [PMID: 30837873 PMCID: PMC6390775 DOI: 10.3389/fphar.2019.00098] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
Germline mutations in cellular-energy associated genes have been shown to lead to various monogenic disorders. Notably, mitochondrial disorders often impact skeletal muscle, brain, liver, heart, and kidneys, which are the body’s top energy-consuming organs. However, energy-related dysfunctions have not been widely seen as causes of common diseases, although evidence points to such a link for certain disorders. During acute energy consumption, like extreme exercise, cells increase the favorability of the adenylate kinase reaction 2-ADP -> ATP+AMP by AMP deaminase degrading AMP to IMP, which further degrades to inosine and then to purines hypoxanthine -> xanthine -> urate. Thus, increased blood urate levels may act as a barometer of extreme energy consumption. AMP deaminase deficient subjects experience some negative effects like decreased muscle power output, but also positive effects such as decreased diabetes and improved prognosis for chronic heart failure patients. That may reflect decreased energy consumption from maintaining the pool of IMP for salvage to AMP and then ATP, since de novo IMP synthesis requires burning seven ATPs. Similarly, beneficial effects have been seen in heart, skeletal muscle, or brain after treatment with allopurinol or febuxostat to inhibit xanthine oxidoreductase, which catalyzes hypoxanthine -> xanthine and xanthine -> urate reactions. Some disorders of those organs may reflect dysfunction in energy-consumption/production, and the observed beneficial effects related to reinforcement of ATP re-synthesis due to increased hypoxanthine levels in the blood and tissues. Recent clinical studies indicated that treatment with xanthine oxidoreductase inhibitors plus inosine had the strongest impact for increasing the pool of salvageable purines and leading to increased ATP levels in humans, thereby suggesting that this combination is more beneficial than a xanthine oxidoreductase inhibitor alone to treat disorders with ATP deficiency.
Collapse
Affiliation(s)
| | - H A Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
10
|
Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Beanlands RS, Hibbert B. Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective. Cardiovasc Hematol Disord Drug Targets 2019; 19:109-131. [PMID: 30318008 DOI: 10.2174/1871529x18666181011103719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Adenosine, a purine nucleoside, is produced broadly and implicated in the homeostasis of many cells and tissues. It signals predominantly via 4 purinergic adenosine receptors (ADORs) - ADORA1, ADORA2A, ADORA2B and ADOosine signaling, both through design as specific ADOR agonists and antagonists and as offtarget effects of existing anti-platelet medications. Despite this, adenosine has yet to be firmly established as either a therapeutic or a prognostic tool in clinical medicine to date. Herein, we provide a bench-to-bedside review of adenosine biology, highlighting the key considerations for further translational development of this proRA3 in addition to non-ADOR mediated effects. Through these signaling mechanisms, adenosine exerts effects on numerous cell types crucial to maintaining vascular homeostasis, especially following vascular injury. Both in vitro and in vivo models have provided considerable insights into adenosine signaling and identified targets for therapeutic intervention. Numerous pharmacologic agents have been developed that modulate adenmising molecule.
Collapse
Affiliation(s)
- Trevor Simard
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Richard Jung
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Alisha Labinaz
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | | | - F Daniel Ramirez
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pietro Di Santo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Ian Pitcher
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pouya Motazedian
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, ON, Canada
| | - Chantal Gaudet
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rebecca Rochman
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Jeffrey Marbach
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Paul Boland
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Kiran Sarathy
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Saleh Alghofaili
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Juan J Russo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Etienne Couture
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rob S Beanlands
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Benjamin Hibbert
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| |
Collapse
|
11
|
Tatekoshi Y, Tanno M, Kouzu H, Abe K, Miki T, Kuno A, Yano T, Ishikawa S, Ohwada W, Sato T, Niinuma T, Suzuki H, Miura T. Translational regulation by miR-301b upregulates AMP deaminase in diabetic hearts. J Mol Cell Cardiol 2018; 119:138-146. [PMID: 29733818 DOI: 10.1016/j.yjmcc.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
AMP deaminase (AMPD) plays a crucial role in adenine nucleotide metabolism. Recently we found that upregulated AMPD activity is associated with ATP depletion and contractile dysfunction under the condition of pressure overloading in the heart of a rat model of type 2 diabetes mellitus (T2DM), OLETF. Here we examined the mechanism of AMPD upregulation by T2DM. The protein level of 90-kDa full-length AMPD3 was increased in whole myocardial lysates by 55% in OLETF compared to those in LETO, a non-diabetic control. In contrast, the mRNA levels of AMPD3 in the myocardium were similar in OLETF and LETO. AMPD3 was comparably ubiquitinated in OLETF and LETO, and its degradation ex vivo was more sensitive to MG-132, a proteasome inhibitor, in OLETF than in LETO. MicroRNA array analysis revealed downregulation (>50%) of 57 microRNAs in OLETF compared to those in LETO, among which miR-301b was predicted to interact with the 3'UTR of AMPD3 mRNA. AMPD3 protein level was significantly increased by a miR-301b inhibitor and was decreased by a miR-301b mimetic in H9c2 cells. A luciferase reporter assay confirmed binding of miR-301b to the 3'UTR of AMPD3 mRNA. Transfection of neonatal rat cardiomyocytes with a miR-301b inhibitor increased 90-kDa AMPD3 and reduced ATP level. The results indicate that translational regulation by miR-301b mediates upregulated expression of cardiac AMPD3 protein in OLETF, which potentially reduces the adenine nucleotide pool at the time of increased work load. The miR-301b-AMPD3 axis may be a novel therapeutic target for intervening enegy metabolism in diabetic hearts.
Collapse
Affiliation(s)
- Yuki Tatekoshi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koki Abe
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoko Ishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
12
|
Zha T, Wu H. Expression of serum AMPD1 in thyroid carcinoma and its clinical significance. Exp Ther Med 2018; 15:3357-3361. [PMID: 29545855 PMCID: PMC5840934 DOI: 10.3892/etm.2018.5859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/05/2018] [Indexed: 02/04/2023] Open
Abstract
This study investigated the expression of adenosine monophosphate deaminase 1 (AMPD1) in serum of patients with papillary thyroid carcinoma (PTC) and its clinical significance. The expression levels of AMPD1 mRNA in serum of 157 patients with PTC and 100 normal controls were detected by real-time fluorescent quantitative polymerase chain reaction (PCR), and the relationships between expression level of AMPD1 in serum of PTC patients and clinicopathological factors as well as prognosis were analyzed. The results of real-time fluorescent quantitative PCR showed that the expression of AMPD1 mRNA in serum of PTC patients was lower than that in normal human serum (P<0.01). The expression of AMPD1 in serum of PTC patients was not significantly different from the clinicopathological features such as sex, age, lymph node metastasis and the number of lesions (P>0.05); there were distinct differences between its expression and tumor-node-metastasis (TNM) staging and tumor diameter (P<0.05). The single factor Cox analysis revealed that sex, age, number of lesions, TNM staging and the occurrence of lymph node metastasis were significantly correlated with the prognosis of patients (P<0.05). Multivariate Cox analysis showed that TNM staging hazard ratio (HR)=2.93, 95% confidence interval (CI): 1.52-7.04, P=0.015 was an independent prognostic factor in PTC patients. Survival analysis indicated that there was a statistically significant difference in the 5-year overall survival rate between patients with high expression of AMPD1 and those with low expression (P=0.007). In conclusion, the expression of AMPD1 in serum of patients with PTC is closely related to the malignant evolution of PTC and clinical prognosis of patients. AMPD1 is expected to become an important molecule in judging the clinical prognosis of PTC patients, and may become a new target for molecular targeted therapy of PTC.
Collapse
Affiliation(s)
- Tianzhou Zha
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Haorong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
13
|
Rannou F, Scotet V, Marcorelles P, Monnoyer R, Le Maréchal C. Effects of AMPD1 common mutation on the metabolic-chronotropic relationship: Insights from patients with myoadenylate deaminase deficiency. PLoS One 2017; 12:e0187266. [PMID: 29095874 PMCID: PMC5667816 DOI: 10.1371/journal.pone.0187266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Current evidence indicates that the common AMPD1 gene variant is associated with improved survival in patients with advanced heart failure. Whilst adenosine has been recognized to mediate the cardioprotective effect of C34T AMPD1, the precise pathophysiologic mechanism involved remains undefined to date. To address this issue, we used cardio-pulmonary exercise testing data (CPX) from subjects with myoadenylate deaminase (MAD) defects. METHODS From 2009 to 2013, all the patients referred in our laboratory to perform a metabolic exercise testing, i.e. a CPX with measurements of muscle metabolites in plasma during and after exercise testing, were prospectively enrolled. Subjects that also underwent an open muscle biopsy for diagnosis purpose were finally included. The metabolic-chronotropic response was assessed by calculating the slope of the linear relationship between the percent heart rate reserve and the percent metabolic reserve throughout exercise. MAD activity was measured using the Fishbein's technique in muscle biopsy sample. The common AMPD1 mutation was genotyped and the AMPD1 gene was sequenced to screen rare variants from blood DNA. RESULTS Sixty-seven patients were included in the study; 5 had complete MAD deficiency, 11 had partial MAD deficiency, and 51 had normal MAD activity. Compared with normal MAD activity subjects, MAD deficient subjects appeared to have a lower-than-expected metabolic-chronotopic response during exercise. The metabolic-chronotropic relationship is more closely correlated with MAD activity in skeletal muscle (Rs = 0.57, p = 5.93E-7, Spearman correlation) than the presence of the common AMPD1 gene variant (Rs = 0.34, p = 0.005). Age-predicted O2 pulse ratio is significantly increased in MAD deficient subjects, indicating a greater efficiency of the cardiovascular system to deliver O2 (p < 0.01, Scheffé's post hoc test). CONCLUSION The metabolic-chronotropic response is decreased in skeletal muscle MAD deficiency, suggesting a biological mechanism by which AMPD1 gene exerts cardiac effect.
Collapse
Affiliation(s)
- Fabrice Rannou
- Physiology Department-EA 4324, CHRU Cavale Blanche, Brest, France
- * E-mail:
| | - Virginie Scotet
- Institut National de la Santé et de la Recherche Médicale - UMR 1078, Brest, France
| | | | - Roxane Monnoyer
- Institut National de la Santé et de la Recherche Médicale - UMR 1078, Brest, France
| | - Cédric Le Maréchal
- Institut National de la Santé et de la Recherche Médicale - UMR 1078, Brest, France
| |
Collapse
|
14
|
Feng AF, Liu ZH, Zhou SL, Zhao SY, Zhu YX, Wang HX. Effects of AMPD1 gene C34T polymorphism on cardiac index, blood pressure and prognosis in patients with cardiovascular diseases: a meta-analysis. BMC Cardiovasc Disord 2017; 17:174. [PMID: 28673246 PMCID: PMC5496365 DOI: 10.1186/s12872-017-0608-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/22/2017] [Indexed: 04/21/2023] Open
Abstract
Background The meta-analysis was aimed to evaluate the effects of AMPD1 gene C34T polymorphism on cardiac function indexes, blood pressure and prognosis in patients with cardiovascular diseases (CVD). Methods Eligible studies were retrieved through a comprehensive search of electronic databases and manual search. Then the high-quality studies met the rigorous inclusion and exclusion criteria, as well as related to the subject was selected for the study. Comprehensive data analyses were conducted using STATA software 12.0. Results The study results revealed that CVD patients with CT + TT genotype of AMPD1 C34T polymorphism presented elevated left ventricular ejection fraction (LVEF) (%) and reduced left ventricular end diastolic dimension (LVEDD) (mm) as compared with CC genotype, moreover, the subgroup analysis found that the LVEF (%) was markedly higher in heart failure (HF) patients carrying CT + TT genotype than CC genotype. Besides, the systolic blood pressure (SBP) (mmHg) in CVD patients with CT + TT genotype was obviously decreased in contrast with the CC genotype. Patients suffered from HF with different genotypes (CT + TT and CC) of AMPD1 C34T polymorphism exhibited no significant differences in total survival rate and cardiac survival rate. Conclusions Our current meta-analysis indicated that the T allele of AMPD1 gene C34T polymorphism may be correlated with LVEF, LVEDD and SBP, which plays a protective role in the cardiac functions and blood pressure in CVD patients, but had no effects on total survival rate and cardiac survival rate for HF.
Collapse
Affiliation(s)
- Ai-Fang Feng
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Zhong-Hui Liu
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Shu-Long Zhou
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Shi-Yuan Zhao
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Yan-Xin Zhu
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Huai-Xin Wang
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China.
| |
Collapse
|
15
|
Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology. Pharmacol Rep 2015; 67:682-8. [PMID: 26321268 DOI: 10.1016/j.pharep.2015.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022]
Abstract
AMP deaminase (AMPD; EC 3.5.4.6) catalyzes hydrolysis of the amino group from the adenine ring of AMP resulting in production of inosine 5'-monophosphate (IMP) and ammonia. This reaction helps to maintain healthy cellular energetics by removing excess AMP that accumulates in energy depleted cells. Furthermore, AMPD permits the synthesis of guanine nucleotides from the larger adenylate pool. This enzyme competes with cytosolic 5'-nucleotidases (c5NT) for AMP. Adenosine, a product of c5NT is a vasodilator, antagonizes inotropic effects of catecholamines and exerts anti-platelet, anti-inflammatory and immunosuppressive activities. The ratio of AMPD/c5NT defines the amount of adenosine produced in adenine nucleotide catabolic pathway. Inhibition of AMPD could alter this ratio resulting in increased adenosine production. Besides the potential effect on adenosine production, elevation of AMP due to inhibition of AMPD could also lead to activation of AMP regulated protein kinase (AMPK) with myriad of downstream events including enhanced energetic metabolism, mitochondrial biogenesis and cytoprotection. While the benefits of these processes are well appreciated in cells such as skeletal or cardiac myocytes its role in protection of endothelium could be even more important. Therapeutic use of AMPD inhibition has been limited due to difficulties with obtaining compounds with adequate characteristics. However, endothelium seems to be the easiest target as effective inhibition of AMPD could be achieved at much lower concentration than in the other types of cells. New generation of AMPD inhibitors has recently been established and its testing in context of endothelial and organ protection could provide important basic knowledge and potential therapeutic tools.
Collapse
|
16
|
Rybakowska I, Romaszko P, Zabielska M, Turyn J, Kaletha K, Barton PJ, Slominska EM, Smolenski RT. Effect of AMP-deaminase 3 knock-out in mice on enzyme activity in heart and other organs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:319-22. [PMID: 24940686 DOI: 10.1080/15257770.2014.880481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent findings suggest that inhibition of AMP-deaminase (AMPD) could be effective therapeutic strategy in heart disease associated with cardiac ischemia. To establish experimental model to study protective mechanisms of AMPD inhibition we developed conditional, cardiac specific knock-outs in Cre recombinase system. AMPD3 floxed mice were crossed with Mer-Cre-Mer mice. Tamoxifen was injected to induce Cre recombinase. After two weeks, hearts, skeletal muscle, liver, kidney, and blood were collected and activities of AMPD and related enzymes were analyzed using HPLC-based procedure. We demonstrate loss of more than 90% of cardiac AMPD activity in the heart of AMPD3-/-mice while other enzymes of nucleotide metabolism such as adenosine deaminase, purine nucleoside phosphorylase were not affected. Surprisingly, activity of AMPD was also reduced in the erythrocytes and in the kidney by 20%-30%. No change of AMPD activity was observed in the skeletal muscle and the liver.
Collapse
Affiliation(s)
- Iwona Rybakowska
- a Department of Biochemistry and Clinical Physiology , Medical University of Gdansk , Gdansk , Poland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Feldman AM, She L, McNamara DM, Mann DL, Bristow MR, Maisel AS, Wagner DR, Andersson B, Chiariello L, Hayward CS, Hendry P, Parker JD, Racine N, Selzman CH, Senni M, Stepinska J, Zembala M, Rouleau J, Velazquez EJ, Lee KL. Genetic variants are not associated with outcome in patients with coronary artery disease and left ventricular dysfunction: results of the Genetic Substudy of the Surgical Treatment for Ischemic Heart Failure (STICH) trials. Cardiology 2015; 130:69-81. [PMID: 25592552 DOI: 10.1159/000368221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES AND BACKGROUND We evaluated the ability of 23 genetic variants to provide prognostic information in patients enrolled in the Genetic Substudy of the Surgical Treatment for Ischemic Heart Failure (STICH) trials. METHODS Patients assigned to STICH Hypothesis 1 were randomized to medical therapy with or without coronary artery bypass grafting (CABG). Those assigned to STICH Hypothesis 2 were randomized to CABG or CABG with left ventricular reconstruction. RESULTS In patients assigned to STICH Hypothesis 2 (n = 714), no genetic variant met the prespecified Bonferroni-adjusted threshold for statistical significance (p < 0.002); however, several variants met nominal prognostic significance: variants in the β2-adrenergic receptor gene (β2-AR Gln27Glu) and in the A1-adenosine receptor gene (A1-717 T/G) were associated with an increased risk of a subject dying or being hospitalized for a cardiac problem (p = 0.027 and 0.031, respectively). These relationships remained nominally significant even after multivariable adjustment for prognostic clinical variables. However, none of the 23 genetic variants influenced all-cause mortality or the combination of death or cardiovascular hospitalization in the STICH Hypothesis 1 population (n = 532) by either univariate or multivariable analysis. CONCLUSION We were unable to identify the predictive genotypes in optimally treated patients in these two ischemic heart failure populations.
Collapse
Affiliation(s)
- Arthur M Feldman
- Department of Medicine, Temple University School of Medicine, Philadelphia, Pa., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Smolenski RT, Rybakowska I, Turyn J, Romaszko P, Zabielska M, Taegtmeyer A, Słomińska EM, Kaletha KK, Barton PJR. AMP deaminase 1 gene polymorphism and heart disease-a genetic association that highlights new treatment. Cardiovasc Drugs Ther 2014; 28:183-9. [PMID: 24431031 PMCID: PMC3955129 DOI: 10.1007/s10557-013-6506-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Nucleotide metabolism and signalling is directly linked to myocardial function. Therefore analysis how diversity of genes coding nucleotide metabolism related proteins affects clinical progress of heart disease could provide valuable information for development of new treatments. Several studies identified that polymorphism of AMP deaminase 1 gene (AMPD1), in particular the common C34T variant of this gene was found to benefit patients with heart failure and ischemic heart disease. However, these findings were inconsistent in subsequent studies. This prompted our detailed analysis of heart transplant recipients that revealed diverse effect: improved early postoperative cardiac function associated with C34T mutation in donors, but worse 1-year survival. Our other studies on the metabolic impact of AMPD1 C34T mutation revealed decrease in AMPD activity, increased production of adenosine and de-inhibition of AMP regulated protein kinase. Thus, genetic, clinical and biochemical studies revealed that while long term attenuation of AMPD activity could be deleterious, transient inhibition of AMPD activity before acute cardiac injury is protective. We suggest therefore that pharmacological inhibition of AMP deaminase before transient ischemic event such as during ischemic heart disease or cardiac surgery could provide therapeutic benefit.
Collapse
Affiliation(s)
- Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The impact of AMPD1 gene polymorphism on vascular function and inflammation in patients with coronary artery disease. Int J Cardiol 2014; 172:e516-8. [PMID: 24508110 DOI: 10.1016/j.ijcard.2014.01.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/18/2014] [Indexed: 11/24/2022]
|
20
|
Liu Y, Yan X, Mao G, Fang L, Zhao B, Liu Y, Tang H, Wang N. Metabonomic profiling revealed an alteration in purine nucleotide metabolism associated with cardiac hypertrophy in rats treated with thiazolidinediones. J Proteome Res 2013; 12:5634-41. [PMID: 24164426 DOI: 10.1021/pr400587y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thiazolidinediones (TZDs) including rosiglitazone (RSG) and pioglitazone (PIO) are synthetic agonists selective for peroxisome proliferator-activated receptor-γ (PPARγ) and have been clinically used to treat type-II diabetes as insulin sensitizers. Recent meta-analyses have shown that TZDs are associated with an increased risk for the development of heart failure. To elucidate the mechanism underlying such a cardiac adverse effect, we used a (1)H NMR-based approach to examine the metabonomic profiles in the cardiac tissues treated with RSG (15 mg/kg body weight/day) or PIO (45 mg/kg/day) for 4 weeks and found that the TZD treatments resulted in a significantly altered metabolic profile in hearts, which was associated with cardiac hypertrophy. Multivariate analysis demonstrated that TZDs led to an accumulation in adenosine monophosphate (AMP) and a depletion of inosine. Consistently, AMP kinase, a signal pathway sensitive to the change in the intracellular concentrations of AMP, was activated in the cardiac tissues from the TZDs-treated rats. Quantitative real-time reverse-transcriptase polymerase chain reaction showed a significant induction of the genes involved in the de novo synthesis of purine nucleotide but a reduction of those for the catabolism. Furthermore, the putative PPAR-responsive elements were identified in the 5'-flanking regions of the TZD-up-regulated genes such as adenylosuccinate synthase gene (Adss) and phosphoribosl pyrophosphate synthetase 1 (Prps1), and the binding of PPARγ to these motifs was confirmed by using chromatin immunoprecipitation assay. In conclusion, these results demonstrated that TZDs induced alterations in purine nucleotide metabolism in rat hearts via transcriptional regulation of the PPARγ-target genes, which may play an important role in the development of cardiac hypertrophy associated with TZDs.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Cardiovascular Science, Peking University Health Science Center , 38 Xueyuan Road, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Toyama K, Morisaki H, Cheng J, Kawachi H, Shimizu F, Ikawa M, Okabe M, Morisaki T. Proteinuria in AMPD2-deficient mice. Genes Cells 2013; 17:28-38. [PMID: 22212473 DOI: 10.1111/j.1365-2443.2011.01568.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The AMPD2 gene, a member of the AMPD gene family encoding AMP deaminase, is widely expressed in nonmuscle tissues including kidney, although its functions have not been fully elucidated. In this study, we studied the function of the AMPD2 gene by establishing AMPD2-deficient model animal. We established AMPD2 knockout mice by using gene transfer and homologous recombination in murine ES cells and studied phenotypes and functions in the kidneys of these animals. AMPD activity was decreased from 22.9 mIU/mg protein to 2.5 mIU/mg protein in the kidneys of AMPD knockout mice. In addition to changes in nucleotide metabolism in the kidneys, proteinuria was found in 3-week-old AMPD2 knockout mice, followed by a further increment up to a peak level at 6 weeks old (up to 0.6 g/dL). The major protein component in the urine of AMPD2 knockout mice was found to be albumin, indicating that AMPD2 may have a key role in glomerular filtration. Indeed, an ultrastructure study of glomerulus specimens from these mice showed effacement of the podocyte foot processes, resembling minimal-change nephropathy in humans. Based on our results, we concluded that AMPD2 deficiency induces imbalanced nucleotide metabolism and proteinuria, probably due to podocyte dysfunction.
Collapse
Affiliation(s)
- Keiko Toyama
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Ramakers BP, Riksen NP, van den Broek P, Franke B, Peters WHM, van der Hoeven JG, Smits P, Pickkers P. Circulating adenosine increases during human experimental endotoxemia but blockade of its receptor does not influence the immune response and subsequent organ injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R3. [PMID: 21211004 PMCID: PMC3222030 DOI: 10.1186/cc9400] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/01/2010] [Accepted: 01/06/2011] [Indexed: 02/01/2023]
Abstract
Introduction Preclinical studies have shown that the endogenous nucleoside adenosine prevents excessive tissue injury during systemic inflammation. We aimed to study whether endogenous adenosine also limits tissue injury in a human in vivo model of systemic inflammation. In addition, we studied whether subjects with the common 34C > T nonsense variant (rs17602729) of adenosine monophosphate deaminase (AMPD1), which predicts increased adenosine formation, have less inflammation-induced injury. Methods In a randomized double-blinded design, healthy male volunteers received 2 ng/kg E. Coli LPS intravenously with (n = 10) or without (n = 10) pretreatment with the adenosine receptor antagonist caffeine (4 mg/kg body weight). In addition, lipopolysaccharide (LPS) was administered to 10 subjects heterozygous for the AMPD1 34C > T variant. Results The increase in adenosine levels tended to be more pronounced in the subjects heterozygous for the AMPD1 34C > T variant (71 ± 22%, P=0.04), compared to placebo- (59 ± 29%, P=0.012) and caffeine-treated (53 ± 47%, P=0.29) subjects, but this difference between groups did not reach statistical significance. Also the LPS-induced increase in circulating cytokines was similar in the LPS-placebo, LPS-caffeine and LPS-AMPD1-groups. Endotoxemia resulted in an increase in circulating plasma markers of endothelial activation [intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM)], and in subclinical renal injury, measured by increased urinary excretion of tubular injury markers. The LPS-induced increase of these markers did not differ between the three groups. Conclusions Human experimental endotoxemia induces an increase in circulating cytokine levels and subclinical endothelial and renal injury. Although the plasma adenosine concentration is elevated during systemic inflammation, co-administration of caffeine or the presence of the 34C > T variant of AMPD1 does not affect the observed subclinical organ damage, suggesting that adenosine does not affect the inflammatory response and subclinical endothelial and renal injury during human experimental endotoxemia. Trial Registration ClinicalTrials (NCT): NCT00513110.
Collapse
Affiliation(s)
- Bart P Ramakers
- Department of Intensive Care Medicine, Radboud University Nijmegen Medical Center, Geert Grooteplein 10, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
AMPD1 gene mutations are associated with obesity and diabetes in Polish patients with cardiovascular diseases. J Appl Genet 2010; 52:67-76. [PMID: 21108053 PMCID: PMC3026686 DOI: 10.1007/s13353-010-0009-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 07/02/2010] [Accepted: 07/27/2010] [Indexed: 11/24/2022]
Abstract
Previous studies showed an association of the common functional polymorphism (C34T, Gln12Stop) in the adenosine monophosphate deaminase-1 (AMPD1) gene with survival in heart failure (HF) and/or coronary artery disease (CAD). The aim of the study was to search for other mutations in selected regions of the AMPD1 gene in Polish CAD and HF patients, and to analyze their associations with obesity and diabetes. Exons 2, 3, 5, and 7 of AMPD1 were scanned for mutations in 97 patients with CAD without HF (CAD+ HF−), 104 patients with HF (HF+), and 200 newborns from North-Western Poland using denaturing high-performance liquid chromatography (DHPLC), polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), and direct sequencing. Frequencies of AMPD1 C34T mutation, as well as novel A99G, G512A, IVS4-6delT, and C784T sequence alterations, were similar in the three groups, but 860T mutated allele was less frequent in the combined CAD+ HF− and HF+ groups than in the controls (1.7% vs. 4.3%, p = 0.040). Heterozygous 34CT genotype was associated with lower (odds ratio [OR] = 0.32, 95% confidence interval [CI] = 0.13–0.81) and 860AT with higher (OR = 13.7, 95%CI = 1.6–118) prevalence of diabetes or hyperglycemia in relation to wild-type homozygotes. Abdominal obesity was more frequent in 860AT patients than in wild-type homozygotes and 34CT heterozygotes (86% vs. 40% vs. 29%, p < 0.05). Nine genes containing polymorphisms linked with AMPD1 C34T mutation were found in the HapMap database. AMPD1 C34T nonsense mutation is associated with reduced prevalence of diabetes and obesity in patients with CAD or HF, but A860T substitution seems to exert opposite metabolic effects and should always be accounted for in the studies of the AMPD1 genotype.
Collapse
|
25
|
Borkowski T, Slominska EM, Orlewska C, Chlopicki S, Siondalski P, Yacoub MH, Smolenski RT. Protection of mouse heart against hypoxic damage by AMP deaminase inhibition. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:449-52. [PMID: 20544535 DOI: 10.1080/15257771003741364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Clinical observation in patients with heart disease indicates that reduced activity of AMP deaminase could be protective in heart failure and ischemic heart disease. This study evaluated the effect of 3-[2-(3-carboxy-4-bromo-5,6,7,8-tetrahydronaphthyl)ethyl]-3,6,7,8-tetrahydroimidazo [4,5-d][1,3]diazepin-8-ol, an AMP deaminase inhibitor (AMPDI) in the mouse heart subjected to hypoxia. ApoE/LDLR knock-out mice were subjected to reduced oxygen tension in breathing air. AMPDI was infused before hypoxia in the treated group. We observed amelioration of elcetrocardiographic changes during hypoxia in the treated group that are consistent with a protective effect.
Collapse
Affiliation(s)
- T Borkowski
- Department of Biochemistry, Medical University of Gdansk, Poland
| | | | | | | | | | | | | |
Collapse
|
26
|
Borkowski T, Slominska EM, Orlewska C, Yuen AHY, Al-Ayoubi S, Siondalski P, Yacoub MH, Smolenski RT. Biological efficiency of AMP deaminase inhibitor: 3-[2-(3-carboxy-4-bromo-5,6,7,8-tetrahydronaphthyl)ethyl]-3,6,7,8-tetrahydroimidazo[4,5]-[1,3]diazepin-8-OL. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:457-60. [PMID: 20544537 DOI: 10.1080/15257771003741299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AMP deaminase could be a potential target for treatment of heart disease but experimental evaluation of this concept is difficult due to limited availability of inhibitors with proven efficiency in biological systems. This study evaluated the effect of 3-[2-(3-carboxy-4-bromo-5,6,7,8-tetrahydronaphthyl)ethyl]-3,6,7,8-tetrahydroimidazo [4,5-d][1,3]diazepin-8-ol, an AMP deaminase inhibitor (AMPDI) on the pathways of nucleotide metabolism in perfused rat heart. We show that AMPDI at 0.3 mM concentration effectively inhibits AMP deaminase in this experimental model.
Collapse
Affiliation(s)
- T Borkowski
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rybakowska I, Bakuła S, Klimek J, Milczarek R, Smolenski RT, Kaletha K. Cardiac muscle AMP-deaminase from a 10-year-old male heterozygous for the AMPD1 C34T mutation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:453-6. [PMID: 20544536 DOI: 10.1080/15257771003741380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A C34T mutation in the AMPD1 gene is proposed to cause local or systemic augmentations in blood adenosine level and improvement of prognoses in heart diseases like congestive heart failure or heart ischemic disease. This study examines some physico-chemical properties of AMP-deaminase isolated from cardiac muscle of a 10-year-old boy heterozygote for this mutation.
Collapse
Affiliation(s)
- I Rybakowska
- Department of Clinical Biochemistry and Physiology, Medical University of Gdansk, Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Daniel R Wagner
- Laboratory of Cardiovascular Research, CRP-Santé, Luxembourg
| | | |
Collapse
|
29
|
Rescue of familial cardiomyopathies by modifications at the level of sarcomere and Ca2+ fluxes. J Mol Cell Cardiol 2010; 48:834-42. [PMID: 20079744 DOI: 10.1016/j.yjmcc.2010.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/30/2009] [Accepted: 01/06/2010] [Indexed: 12/21/2022]
Abstract
Cardiomyopathies are a heterogeneous group of diseases of the myocardium associated with mechanical and/or electrical dysfunction that frequently show inappropriate ventricular hypertrophy or dilation. Current data suggest that numerous mutations in several genes can cause cardiomyopathies, and the severity of their phenotypes is also influenced by modifier genes. Two major types of inherited cardiomyopathies include familial hypertrophic cardiomyopathy (FHC) and dilated cardiomyopathy (DCM). FHC typically involves increased myofilament Ca(2+) sensitivity associated with diastolic dysfunction, whereas DCM often results in decreased myofilament Ca(2+) sensitivity and systolic dysfunction. Besides alterations in myofilament Ca(2+) sensitivity, alterations in the levels of Ca(2+)-handling proteins have also been described in both diseases. Recent work in animal models has attempted to rescue FHC and DCM via modifications at the myofilament level, altering Ca(2+) homeostasis by targeting Ca(2+)-handling proteins, such as the sarcoplasmic reticulum ATPase and phospholamban, or by interfering with the products of different modifiers genes. Although attempts to rescue cardiomyopathies in animal models have shown great promise, further studies are needed to validate these strategies in order to provide more effective and specific treatments.
Collapse
|
30
|
|
31
|
Safranow K, Czyzycka E, Binczak‐Kuleta A, Rzeuski R, Skowronek J, Wojtarowicz A, Jakubowska K, Olszewska M, Loniewska B, Kaliszczak R, Kornacewicz‐Jach Z, Ciechanowicz A, Chlubek D. Association of C34TAMPD1gene polymorphism with features of metabolic syndrome in patients with coronary artery disease or heart failure. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:102-12. [DOI: 10.1080/00365510802430964] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Taegtmeyer AB, Breen JB, Rogers P, Johnson PH, Smith J, Smolenski RT, Banner NR, Yacoub MH, Barton PJ. Effect of adenosine monophosphate deaminase-1 C34T allele on the requirement for donor inotropic support and on the incidence of early graft dysfunction after cardiac transplantation. Am J Cardiol 2009; 103:1457-62. [PMID: 19427446 DOI: 10.1016/j.amjcard.2009.01.360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 11/26/2022]
Abstract
The C34T T allele of the adenosine monophosphate deaminase-1 (AMPD1) gene has been associated with improved outcome in patients with cardiac dysfunction. We hypothesized that possession of this allele by donor hearts plays a role in the outcome of cardiac transplantation; 262 cardiac donors and 190 of their recipients were studied. AMPD1 C34T genotype was determined using 5' exonuclease chemistry. Requirement for inotropic agents before organ donation, 1-year post-transplantation survival, cause of death, and factors known to affect survival after transplantation were also studied. Multiple regression models for factors affecting survival were constructed. A significant yearly increase in frequency of the T allele in donors was noted (0.06 to 0.18 from 1994 to 1999). Donors with the CT or TT genotype required less inotropic support than those with the CC genotype (mean number of inotropes per donor with CT or TT genotype 0.27 compared with 0.47 per donor with CC genotype, n = 206, p = 0.03). Recipients of T-allele-carrying organs showed worse 1-year survival after transplantation (59% vs 79%, p <0.001). Excess deaths in these patients was due to early graft dysfunction (odds ratio for early graft dysfunction 6.6, 95% confidence interval 2 to 21.6, p = 0.0001). Multivariate analysis showed donor AMPD1 genotype, recipient age, and pretransplantation anemia to independently affect 1-year post-transplantation survival (adjusted hazard ratios 3.7, 1.06, and 2.6, respectively). In conclusion, possession of the AMPD1 T allele is associated with decreased inotropic requirements before heart donation. The incidence of early graft dysfunction, however, was significantly higher in recipients who received AMPD1 T-allele-possessing organs resulting in worse 1-year survival.
Collapse
|
33
|
Agewall S, Norman B. Association between AMPD1 Gene Polymorphism and Coagulation Factors in Patients with Coronary Heart Disease. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2009; 35:440-4. [PMID: 17565237 DOI: 10.1159/000102051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 02/27/2007] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate whether the C34T and G468T variations in the adenosine monophosphate deaminase-1 (AMPD1) gene were associated with intima-media thickness of the carotid and brachial artery, endothelial function of the brachial artery, glucose metabolism, haemostatic variables and cardiac hypertrophy in patients (n = 109) with coronary heart disease. The plasminogen activator inhibitor-1 activity and the von Willebrand factor were higher in the CC homozygote group compared to the CT/TT group (p < 0.05). There were no differences between the groups regarding intima-media complex of the carotid and brachial artery, presence of plaque in the carotid region, flow-mediated dilatation, ejection fraction or dimensions of the heart. In conclusion, there were no differences between the mutant AMPD1 allele carriers and CC homozygotes regarding surrogate values for atherosclerosis, endothelial function, dimensions and ejection fraction of the heart, glucose tolerance and other well-known cardiovascular risk factors, whereas plasminogen activator inhibitor-1 activity and von Willebrand levels were lower in the mutant AMPD1 allele carriers.
Collapse
Affiliation(s)
- S Agewall
- Department of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
34
|
Borkowski T, Lipinski M, Kaminski R, Krzyminska-Stasiuk E, Langowska M, Raczak G, Slominska EM, Smolenski RT. Modulation of AMP deaminase in rat hearts subjected to ischemia and reperfusion by purine riboside. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:876-80. [PMID: 18600556 DOI: 10.1080/15257770802146551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Changes in AMP deaminase (AMPD) activity influence heart function and progression of heart disease, but the underlying mechanism is unknown. We evaluated the effect of purine riboside (Purr) on the activity of AMPD in perfused rat hearts and in isolated rat cardiomyocytes. Brief perfusion of the pre-ischemic heart with 200 micro M Purr resulted in activation of AMPD, more pronounced degradation of the adenine nucleotides, and reduced recovery of the adenine nucleotide pool during reperfusion. Brief incubation of rat cardiomyocytes with 200 micro M Purr also activated AMPD, while prolonged exposure resulted in enzyme inhibition. We conclude that Purr activates AMPD, whereas metabolites of this compound may inhibit the enzyme.
Collapse
Affiliation(s)
- T Borkowski
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Borkowski T, Orlewska C, Slominska EM, Yuen A, Lipinski M, Rybakowska I, Foks H, Kaletha KK, Yacoub MH, Smolenski RT. Pharmacological inhibition of AMP-deaminase in rat cardiac myocytes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:867-71. [PMID: 18600554 DOI: 10.1080/15257770802146536] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Because mutation of AMP deaminase 1 gene leading to reduced AMP deaminase activity may result in protection of cardiac function in patients with heart disease, inhibitors of AMP deaminase (AMPD) may have therapeutic applications. This study evaluated the effect of a specific inhibitor of AMP deaminase 3-[2-(3-carboxy-4-bromo-5,6,7,8-tetrahydronaphthyl)ethyl]-3,6,7,8-tetrahydroimidazo [4,5-d][1,3]diazepin-8-ol (AMPDI) on the isolated human enzyme and on nucleotide catabolism in rat cardiomyocytes. AMPDI effectively inhibited isolated human AMPD with an IC(50) = 0.5 micro M. AMPDI was much less effective with isolated cardiomyocytes (IC(50) = 0.5 mM). AMPDI is a very effective inhibitor of AMPD that despite lower efficiency in the cell system examined could be useful for in vivo studies.
Collapse
Affiliation(s)
- T Borkowski
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Activation of Ecto-5′-Nucleotidase in the Blood and Hearts of Patients With Chronic Heart Failure. J Card Fail 2008; 14:426-30. [DOI: 10.1016/j.cardfail.2008.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 01/23/2008] [Accepted: 01/28/2008] [Indexed: 11/15/2022]
|
37
|
Human in vivo research on the vascular effects of adenosine. Eur J Pharmacol 2008; 585:220-7. [DOI: 10.1016/j.ejphar.2008.01.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/21/2007] [Accepted: 01/22/2008] [Indexed: 11/19/2022]
|
38
|
Xu X, Fassett J, Hu X, Zhu G, Lu Z, Li Y, Schnermann J, Bache RJ, Chen Y. Ecto-5'-nucleotidase deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction. Hypertension 2008; 51:1557-64. [PMID: 18391093 DOI: 10.1161/hypertensionaha.108.110833] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study examined whether endogenous extracellular adenosine acts to facilitate the adaptive response of the heart to chronic systolic overload. To examine whether endogenous extracellular adenosine can protect the heart against pressure-overload-induced heart failure, transverse aortic constriction was performed on mice deficient in extracellular adenosine production as the result of genetic deletion of CD73. Although there was no difference in left ventricular size or function between CD73-deficient mice (knockout [KO] mice) and wild-type mice under unstressed conditions, aortic constriction for 2 or 4 weeks induced significantly more myocardial hypertrophy, left ventricular dilation, and left ventricular dysfunction in KO mice compared with wild-type mice. Thus, after 2 weeks of transverse aortic constriction, left ventricular fractional shortening decreased to 27.4+/-2.5% and 21.9+/-1.7% in wild-type and KO mice, respectively (P<0.05). Consistent with a role of adenosine in reducing tissue remodeling, KO mice displayed increased myocardial fibrosis and myocyte hypertrophy compared with wild-type mice. Furthermore, adenosine treatment reduced phenylephrine-induced cardiac myocyte hypertrophy and collagen production in cultured neonatal rat cardiac myocytes and cardiac fibroblasts, respectively. Consistent with a role for adenosine in modulating cardiomyocyte hypertrophy, KO mice demonstrated increased activation of mammalian target of rapamycin signaling, accompanied by higher expression of the hypertrophy marker atrial natriuretic peptide. Conversely, the adenosine analogue 2-chloro-adenosine significantly reduced cell size, mammalian target of rapamycin/p70 ribosomal S6 kinase activation, and atrial natriuretic peptide expression in cultured neonatal cardiomyocytes. These data demonstrate that CD73 helps to preserve cardiac function during chronic systolic overload by preventing maladaptive tissue remodeling.
Collapse
Affiliation(s)
- Xin Xu
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Norman B, Nygren AT, Nowak J, Sabina RL. The effect of AMPD1 genotype on blood flow response to sprint exercise. Eur J Appl Physiol 2008; 103:173-80. [PMID: 18224333 DOI: 10.1007/s00421-008-0683-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
Inherited deficiency of skeletal muscle myoadenylate deaminase (mAMPD) is a genetic disorder characterized primarily by a 34C>T transition in exon 2 of the AMPD1 gene. mAMPD deficient individuals exhibit alterations in ATP catabolic flow, resulting in greater adenosine accumulation during high intensity exercise that may possibly enhance exercise-induced hyperaemia. This study tested the hypothesis that individuals with diminished mAMPD activity due to mutations in the AMPD1 gene develop a greater and faster blood flow response to high intensity exercise than individuals with two AMPD1 normal alleles (NN). Four 34C>T homozygotes, two compound heterozygotes (34C>T in one allele and a recently identified 404delT mutation in the other AMPD1 allele), collectively termed MM, one 34C>T heterozygote (NM) and eight NN males were studied. They performed a 30 s Wingate cycling test with monitoring of power output and other parameters of exercise performance. Common femoral artery blood flow was measured before and after (up to 25 min) exercise, using ultrasonography. Mean power during Wingate cycling was approximately 10% lower in MM/NM than in NN; p<0.01. Blood flow response to exercise also differed between MM/NM and NN individuals (ANOVA; p<0.001). There was also a difference in peak post-exercise blood flow (p<0.05), and the subsequent fall in blood flow during the recovery phase (T1/2) occurred more than twice as fast in MM/NM compared to NN subjects (7.8+/-1.1 min vs. 16.1+/-1.4 min, p<0.001). These results suggest a better circulatory adaptation to exercise in individuals with diminished mAMPD activity, probably due to an AMPD1 genotype-dependent increase in adenosine formation.
Collapse
Affiliation(s)
- Barbara Norman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institute, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden.
| | | | | | | |
Collapse
|
40
|
Palmer BR, Frampton CM, Richards AM, Cameron VA. AMPD1 gene polymorphism and survival in patients with stable congestive heart failure. Am Heart J 2007; 153:e13. [PMID: 17452134 DOI: 10.1016/j.ahj.2007.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Ashrafian H, Watkins H. Reviews of Translational Medicine and Genomics in Cardiovascular Disease: New Disease Taxonomy and Therapeutic Implications. J Am Coll Cardiol 2007; 49:1251-64. [PMID: 17394955 DOI: 10.1016/j.jacc.2006.10.073] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/24/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
The enduring subdivision of cardiomyopathies into hypertrophic (HCM), dilated (DCM), and restrictive (RCM) categories reflects the emphasis of traditional classifications on morphology. Rapid advances in the genetic interrogation of these disorders have redefined their taxonomy and revealed potential conflicts between the old and new classifications. Hypertrophic cardiomyopathy has been redefined as a disease of perturbed sarcomere function. Dilated cardiomyopathy is a disease that results from more varied perturbations, including, but not limited to, defects of the cytoskeleton. Positional cloning and candidate gene approaches have been successful in identifying >40 disease loci, many of which have led to disease genes in HCM, DCM, RCM, and arrhythmogenic right ventricular cardiomyopathy. These findings provide mechanistic insights, permit genetic screening, and to a limited extent, facilitate prognostication. Although single gene analyses rapidly focus down to the underlying mechanistic pathways, they do not take account of all relevant variation in the human genome. Correspondingly, advances in genomics, through microarrays, have facilitated characterization of these broader downstream elements. As well as refining the taxonomic reclassification of cardiomyopathies, these genomic approaches, coupled with functional studies, have identified novel potential therapeutic targets, such as cardiac energetics, calcium handling, and apoptosis. We review the successes and pitfalls of genetic and genomic approaches to cardiomyopathy and their impact on current and future clinical care.
Collapse
Affiliation(s)
- Houman Ashrafian
- Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | |
Collapse
|
42
|
Binkley PF, Auseon A, Cooke G. A Polymorphism of the Gene Encoding AMPD1: Clinical Impact and Proposed Mechanisms in Congestive Heart Failure. ACTA ACUST UNITED AC 2007; 10:274-78; quiz 279-80. [PMID: 15591841 DOI: 10.1111/j.1527-5299.2004.02017.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A vast array of gene polymorphisms have been described, and further discovery of these gene variants will continue as the human genome is defined. Therefore, selection of a single polymorphism to investigate in relation to disease evolution or outcome must be motivated by specific physiologic, pathophysiologic, or epidemiologic associations. A significant gene polymorphism may result in an alteration of protein function, or be associated with disease incidence or outcome. Prevalence of the polymorphism in the general population is of extreme importance, as it must be common enough to warrant interest in its clinical impact. The polymorphism of the gene encoding for the enzyme adenosine monophosphate deaminase 1 results in an abnormal protein necessary in skeletal muscle metabolism. While its physiologic effects are not completely understood, it has been associated with improved morbidity and mortality in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Philip F Binkley
- Dorothy M. Davis Heart and Lung Research Institute and the Division of Cardiovascular Diseases, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
43
|
Safranow K, Rzeuski R, Binczak-Kuleta A, Czyzycka E, Skowronek J, Jakubowska K, Wojtarowicz A, Loniewska B, Ciechanowicz A, Kornacewicz-Jach Z, Chlubek D. ADA*2 Allele of the Adenosine Deaminase Gene May Protect against Coronary Artery Disease. Cardiology 2007; 108:275-81. [PMID: 17287605 DOI: 10.1159/000099096] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 09/25/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The common G22A polymorphism in the adenosine deaminase (ADA) gene leads to substitution Asp8Asn. The lower activity of the enzyme encoded by A22 (ADA*2) allele may increase tissue concentrations of adenosine, a potent cardioprotective agent. In a case-control study, we investigated the association between ADA polymorphism and coronary artery disease (CAD). METHODS A hundred and seventy-one CAD patients from the north-western part of Poland and 200 consecutive newborns from the same population were genotyped by PCR-RFLP. RESULTS Twenty-five ADA*1/*2 heterozygotes (12.5%) and 2 ADA*2/*2 homozygotes (1%) were found in the control group, while only 10 *1/*2 heterozygotes (5.9%) and no *2/*2 homozygotes were found in the CAD group. Frequencies of ADA*2 carriers (5.9% vs. 13.5%, p = 0.015) and ADA*2 allele (2.9% vs. 7.3%, p = 0.0083) were lower in CAD patients than in controls. Among CAD patients, a significantly lower proportion of *2 allele carriers was treated with diuretics and ACE inhibitors when compared to *1/*1 wild-type homozygotes. CONCLUSION ADA*2 allele may decrease genetic susceptibility to CAD. ADA should be added to the list of candidate genes modifying the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kinugawa T, Fujita M, Ogino K, Kato M, Osaki S, Igawa O, Shigemasa C, Hisatome I, Kitakaze M. Catabolism of adenine nucleotides favors adenosine production following exercise in patients with chronic heart failure. J Card Fail 2007; 12:720-5. [PMID: 17174234 DOI: 10.1016/j.cardfail.2006.08.215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 08/15/2006] [Accepted: 08/29/2006] [Indexed: 01/09/2023]
Abstract
BACKGROUND Adenosine 5'-triphosphate is catabolized to adenosine 5'-monophosphate (AMP), which is further degraded by 2 pathways: deamination to inosine 5'-monophosphate and ammonia by AMP deaminase, or dephosphorylation to adenosine and inorganic phosphate by 5'-nucleotidase. Because adenosine is believed to be cardioprotective and we have reported that ammonia production decreased after exercise in patients with chronic heart failure (CHF), we determined if plasma adenosine levels after exercise increases in patients with CHF. METHODS AND RESULTS Maximal ergometer exercise tests with expired gas analysis were performed in 51 patients with CHF (age = 61 +/- 2 years, New York Heart Association [NYHA] class I/II/III = 19/18/14) and 20 age-matched normal controls. Serial changes in both plasma ammonia and adenosine levels were determined. The ratio for delta ammonia to peak work rate became smaller (control, NYHA I/II/III: 0.59 +/- 0.13/0.41 +/- 0.06/0.37 +/- 0.10/0.22 +/- 0.11 microg/dL x watts, respectively) and the ratio for delta adenosine to peak work rate was significantly higher in class III CHF (control, NYHA I/II/III: 0.93 +/- 0.21/0.86 +/- 0.14/1.11 +/- 0.27/2.92 +/- 0.67 nmol/L x watts, respectively). CONCLUSION In patients with CHF after exercise, the plasma levels of adenosine increased along with the decrease in the plasma levels of ammonia. Considering the physiologic cardioprotective actions of adenosine, the enhanced adenosine production after exercise may be an important adaptive response in patients with CHF.
Collapse
Affiliation(s)
- Toru Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
HISATOME I. Adenosine and Cardioprotection in Chronic Heart Failure: Genes and Protein Expression. Hypertens Res 2007; 30:757-8. [DOI: 10.1291/hypres.30.757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
SANADA S, ASANUMA H, KORETSUNE Y, WATANABE K, NANTO S, AWATA N, HOKI N, FUKUNAMI M, KITAKAZE M, HORI M. Long-Term Oral Administration of Dipyridamole Improves Both Cardiac and Physical Status in Patients with Mild to Moderate Chronic Heart Failure: A Prospective Open-Randomized Study. Hypertens Res 2007; 30:913-9. [DOI: 10.1291/hypres.30.913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Marian AJ, Willerson JT. Cardiac Involvement in Skeletal Myopathies and Neuromuscular Disorders. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Keebaugh AC, Sullivan RT, Thomas JW. Gene duplication and inactivation in the HPRT gene family. Genomics 2007; 89:134-42. [PMID: 16928426 DOI: 10.1016/j.ygeno.2006.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 07/07/2006] [Indexed: 01/05/2023]
Abstract
Hypoxanthine phosphoribosyltransferase (HPRT1) is a key enzyme in the purine salvage pathway, and mutations in HPRT1 cause Lesch-Nyhan disease. The studies described here utilized targeted comparative mapping and sequencing, in conjunction with database searches, to assemble a collection of 53 HPRT1 homologs from 28 vertebrates. Phylogenetic analysis of these homologs revealed that the HPRT gene family expanded as the result of ancient vertebrate-specific duplications and is composed of three groups consisting of HPRT1, phosphoribosyl transferase domain containing protein 1 (PRTFDC1), and HPRT1L genes. All members of the vertebrate HPRT gene family share a common intron-exon structure; however, we have found that the three gene groups have distinct rates of evolution and potentially divergent functions. Finally, we report our finding that PRTFDC1 was recently inactivated in the mouse lineage and propose the loss of function of this gene as a candidate genetic basis for the phenotypic disparity between HPRT-deficient humans and mice.
Collapse
Affiliation(s)
- Alaine C Keebaugh
- Department of Human Genetics, School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
49
|
Feldman AM, McNamara DM. Reevaluating the role of phosphodiesterase inhibitors in the treatment of cardiovascular disease. Clin Cardiol 2006; 25:256-62. [PMID: 12058787 PMCID: PMC6654250 DOI: 10.1002/clc.4960250603] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
First developed for clinical use in the late 1980s, the phosphodiesterase inhibitors were found to increase the levels of the ubiquitous second messenger cyclic adenosine monophosphate and could effect changes in vascular tone, cardiac function, and other cellular events. After several early studies using high doses of phosphodiesterase inhibitors in patients with severe heart failure suggested adverse consequences, they fell out of favor. However, recent investigations of phosphodiesterase inhibitors in patients with intermittent claudication have demonstrated profound benefits. Furthermore, these agents have proven useful in prevention of cerebral infarction and coronary restenosis, and their use in the treatment of heart failure is being reevaluated. The reemergence of phosphodiesterase inhibitors can be attributed to a better understanding of dosing and drug-specific pharmacology, the use of concomitant medications, and a recognition of unique ancillary properties; however, their use still requires caution.
Collapse
Affiliation(s)
- Arthur M Feldman
- The Cardiovascular Institute, University of Pittsburgh Health System, University of Pittsburgh Medical Center, Pennsylvania 15213, USA,.
| | | |
Collapse
|
50
|
|