1
|
Ahmed B, Rahman AA, Lee S, Malhotra R. The Implications of Aging on Vascular Health. Int J Mol Sci 2024; 25:11188. [PMID: 39456971 PMCID: PMC11508873 DOI: 10.3390/ijms252011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Vascular aging encompasses structural and functional changes in the vasculature, significantly contributing to cardiovascular diseases, which are the leading cause of death globally. The incidence and prevalence of these diseases increase with age, with most morbidity and mortality attributed to myocardial infarction and stroke. Diagnosing and intervening in vascular aging while understanding the mechanisms behind age-induced vascular phenotypic and pathophysiological alterations offers the potential for delaying and preventing cardiovascular mortality in an aging population. This review delves into various aspects of vascular aging by examining age-related changes in arterial health at the cellular level, including endothelial dysfunction, cellular senescence, and vascular smooth muscle cell transdifferentiation, as well as at the structural level, including arterial stiffness and changes in wall thickness and diameter. We also explore aging-related changes in perivascular adipose tissue deposition, arterial collateralization, and calcification, providing insights into the physiological and pathological implications. Overall, aging induces phenotypic changes that augment the vascular system's susceptibility to disease, even in the absence of traditional risk factors, such as hypertension, diabetes, obesity, and smoking. Overall, age-related modifications in cellular phenotype and molecular homeostasis increase the vulnerability of the arterial vasculature to structural and functional alterations, thereby accelerating cardiovascular risk. Increasing our understanding of these modifications is crucial for success in delaying or preventing cardiovascular diseases. Non-invasive techniques, such as measuring carotid intima-media thickness, pulse wave velocity, and flow-mediated dilation, as well as detecting vascular calcifications, can be used for the early detection of vascular aging. Targeting specific pathological mechanisms, such as cellular senescence and enhancing angiogenesis, holds promise for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Ahmed A. Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sujin Lee
- Division of Vascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Shurrab AM, Shatarat AT, Al-Muhtaseb MH, Badran DH, Salameh MA, Al-Lahham HM, Altaweel RK, Altarawneh I, Al-Qattan D. The effect of irisin on the ultrastructure of the thoracic aorta in rat: A morphometric study. Morphologie 2024; 108:100779. [PMID: 38608628 DOI: 10.1016/j.morpho.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND One of the most recent hormones to be identified and isolated is irisin, extracted from mouse skeletal muscle in 2012. Irisin has been proven to alter blood pressure, which has an impact on blood vessels, enhance endothelial functions, and prevent injury to endothelial cells. The current study aimed to study the effect of irisin on the ultrastructure of the rat thoracic aorta using the transmission electron microscope (TEM). MATERIALS AND METHODS Twenty female rats were recruited for this study and divided into a control group (non-injected), and four experimental groups (injected groups) each consisting of 4 rats. The experimental groups were injected intraperitoneally with different doses of irisin (250ng/mL, 500ng/mL, 1000ng/mL, and 2000ng/mL) twice a week for 4weeks. Then, the descending thoracic aorta of all experimental rats were resected and proceeded with imaging. RESULTS The results of this study showed a change in the thickness of the tunica intima, internal elastic lamina, elastic lamellae, and external elastic lamina concerning increasing injected irisin concentration. While there was a significant increase in the thickness of tunica media (P<0.0001) and smooth muscle cells (P<0.05). Also, the results showed a significant increase in the number of elastic lamellae in the tunica media (P<0.0001). CONCLUSION Irisin had a major impact on the elasticity of the rat thoracic aorta wall, suggesting that it influences the growth factors of the wall and activates smooth muscle cells in addition to endothelial cells.
Collapse
Affiliation(s)
- A M Shurrab
- Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan.
| | - A T Shatarat
- Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, Jordan
| | - M H Al-Muhtaseb
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - D H Badran
- Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman, Jordan
| | - M A Salameh
- Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - H M Al-Lahham
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - R K Altaweel
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - I Altarawneh
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - D Al-Qattan
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Wang M, McGraw KR, Monticone RE, Giordo R, Eid AH, Pintus G. Enhanced vasorin signaling mitigates adverse cardiovascular remodeling. Aging Med (Milton) 2024; 7:414-423. [PMID: 38975316 PMCID: PMC11222745 DOI: 10.1002/agm2.12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Arterial stiffening is a critical risk factor contributing to the exponential rise in age-associated cardiovascular disease incidence. This process involves age-induced arterial proinflammation, collagen deposition, and calcification, which collectively contribute to arterial stiffening. The primary driver of proinflammatory processes leading to collagen deposition in the arterial wall is the transforming growth factor-beta1 (TGF-β1) signaling. Activation of this signaling is pivotal in driving vascular extracellular remodeling, eventually leading to arterial fibrosis and calcification. Interestingly, the glycosylated protein vasorin (VASN) physically interacts with TGF-β1, and functionally restraining its proinflammatory fibrotic signaling in arterial walls and vascular smooth muscle cells (VSMCs). Notably, as age advances, matrix metalloproteinase type II (MMP-2) is activated, which effectively cleaves VASN protein in both arterial walls and VSMCs. This age-associated/MMP-2-mediated decrease in VASN levels exacerbates TGF-β1 activation, amplifying arterial fibrosis and calcification in the arterial wall. Importantly, TGF-β1 is a downstream molecule of the angiotensin II (Ang II) signaling pathway in the arterial wall and VSMCs, which is modulated by VASN. Indeed, chronic administration of Ang II to young rats significantly activates MMP-2 and diminishes the VASN expression to levels comparable to untreated older control rats. This review highlights and discusses the role played by VASN in mitigating fibrosis and calcification by alleviating TGF-β1 activation and signaling in arterial walls and VSMCs. Understanding these molecular physical and functional interactions may pave the way for establishing VASN-based therapeutic strategies to counteract adverse age-associated cardiovascular remodeling, eventually reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Kimberly Raginski McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Roberta Giordo
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| | | |
Collapse
|
4
|
Nieradko-Iwanicka B, Piasecki J, Borzęcki A. Treatment with bestatin (the exogenous synthetic inhibitor of metalloproteinases) reduces the activity of metalloproteinase 2 and 12 in the spleen and lung tissues of rats in a model of lipopolysaccharide-induced sepsis. Biomed Pharmacother 2024; 174:116480. [PMID: 38547765 DOI: 10.1016/j.biopha.2024.116480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Sepsis is caused by an inadequate or dysregulated host response to infection. Enzymes causing cellular degradation are matrix metalloproteinases (MMPs). Lipopolysaccharide (LPS) is used in models of sepsis in laboratory settings The aim of the study was to measure MMP 2 and 12 concentrations in spleen and lungs in rats in which septic shock was induced by LPS. The experiment was carried out on 40 male Wistar rats (5 groups of 8): 0. controls 1. administered LPS 2. administered bestatin 3. LPS and bestatin 4.bestatin and after 6 hours LPS Animals were decapitated. Lungs and spleens were collected. Concentrations of MMP-2 and MMP-12 were determined using immunoenzymatic methods. Mean (±SD) MMP-2 in the controls was 43.57 ± 20.53 ng/ml in the lungs and 1.7 ± 0.72 ng/ml in the spleen; Group 1: 31.28 ± 13.13 ng/ml, 0.83 ± 0.8 ng/ml; Group 2: 44.24 ± 22.75 ng /ml, 1.01 ± 0.32 ng/ml; Group 3: 35.94 ± 15.13 ng/ml, 0.41 ± 0.03 ng/ml; Group 4:79.42 ± 44.70 ng/ml, 0.45 ± 0.15, respectively. Mean MMP-12 in controls was 19.79 ± 10.01 ng/ml in lungs and 41.13 ± 15.99 ng/ml in the spleen; Group 1:27.97 ± 15.1 ng/ml; 40.44 ± 11.2 ng/ml; Group 2: 37.93 ± 25.38 ng/ml 41.05 ± 18.08 ng/ml; Group 3: 40.59 ± 11.46 ng/ml, 35.16 ± 12.89 ng/ml; Group 4: 39.4 ± 17.83 ng/ml, 42.04 ± 12.35 ng/ml, respectively. CONCLUSIONS: 1. Bestatin reduces MMP 2 and 12 levels in spleen and lungs. 2. Treatment with bestatin minimizes the effect of LPS.
Collapse
Affiliation(s)
- Barbara Nieradko-Iwanicka
- Hygiene and Epidemiology Department, Medical University of Lublin, Poland Medical University of Lublin, Hygiene and Epidemiology Department, Chodzki 7 Street, Lublin 20-093, Poland.
| | - Jarosław Piasecki
- Doctoral School, Medical University of Lublin, Chodzki 7 Street, Lublin 20-093, Poland
| | - Andrzej Borzęcki
- Hygiene and Epidemiology Department, Medical University of Lublin, Poland Medical University of Lublin, Hygiene and Epidemiology Department, Chodzki 7 Street, Lublin 20-093, Poland
| |
Collapse
|
5
|
Vijayakumar A, Wang M, Kailasam S. The Senescent Heart-"Age Doth Wither Its Infinite Variety". Int J Mol Sci 2024; 25:3581. [PMID: 38612393 PMCID: PMC11011282 DOI: 10.3390/ijms25073581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality world-wide. While many factors like smoking, hypertension, diabetes, dyslipidaemia, a sedentary lifestyle, and genetic factors can predispose to cardiovascular diseases, the natural process of aging is by itself a major determinant of the risk. Cardiac aging is marked by a conglomerate of cellular and molecular changes, exacerbated by age-driven decline in cardiac regeneration capacity. Although the phenotypes of cardiac aging are well characterised, the underlying molecular mechanisms are far less explored. Recent advances unequivocally link cardiovascular aging to the dysregulation of critical signalling pathways in cardiac fibroblasts, which compromises the critical role of these cells in maintaining the structural and functional integrity of the myocardium. Clearly, the identification of cardiac fibroblast-specific factors and mechanisms that regulate cardiac fibroblast function in the senescent myocardium is of immense importance. In this regard, recent studies show that Discoidin domain receptor 2 (DDR2), a collagen-activated receptor tyrosine kinase predominantly located in cardiac fibroblasts, has an obligate role in cardiac fibroblast function and cardiovascular fibrosis. Incisive studies on the molecular basis of cardiovascular aging and dysregulated fibroblast function in the senescent heart would pave the way for effective strategies to mitigate cardiovascular diseases in a rapidly growing elderly population.
Collapse
Affiliation(s)
- Anupama Vijayakumar
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA;
| | - Shivakumar Kailasam
- Department of Biotechnology, University of Kerala, Kariavattom, Trivandrum 695581, India
| |
Collapse
|
6
|
Dwevedi D, Srivastava A. Molecular Mechanisms of Polyphenols in Management of Skin Aging. Curr Aging Sci 2024; 17:180-188. [PMID: 39248031 DOI: 10.2174/0118746098287130240212085507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 09/10/2024]
Abstract
The natural process of skin aging is influenced by a variety of factors, including oxidative stress, inflammation, collagen degradation, and UV radiation exposure. The potential of polyphenols in controlling skin aging has been the subject of much investigation throughout the years. Due to their complex molecular pathways, polyphenols, a broad class of bioactive substances present in large quantities in plants, have emerged as attractive candidates for skin anti-aging therapies. This review aims to provide a comprehensive overview of the molecular mechanisms through which polyphenols exert their anti-aging effects on the skin. Various chemical mechanisms contribute to reducing skin aging signs and maintaining a vibrant appearance. These mechanisms include UV protection, moisturization, hydration, stimulation of collagen synthesis, antioxidant activity, and anti-inflammatory actions. These mechanisms work together to reduce signs of aging and keep the skin looking youthful. Polyphenols, with their antioxidant properties, are particularly noteworthy. They can neutralize free radicals, lessening oxidative stress that might otherwise cause collagen breakdown and DNA damage. The anti-inflammatory effects of polyphenols are explored, focusing on their ability to suppress pro-inflammatory cytokines and enzymes, thereby alleviating inflammation and its detrimental effects on the skin. Understanding these mechanisms can guide future research and development, leading to the development of innovative polyphenol-based strategies for maintaining healthy skin.
Collapse
Affiliation(s)
- Deepti Dwevedi
- Department of Pharmacy, Dr. Ram Manohar Lohia Avadh University, Faizabad, Ayodhya District, Uttar Pardesh, India
| | - Ankur Srivastava
- Department of Pharmacy, Dr. Ram Manohar Lohia Avadh University, Faizabad, Ayodhya District, Uttar Pardesh, India
| |
Collapse
|
7
|
Belhoul-Fakir H, Brown ML, Thompson PL, Hamzah J, Jansen S. Connecting the Dots: How Injury in the Arterial Wall Contributes to Atherosclerotic Disease. Clin Ther 2023; 45:1092-1098. [PMID: 37891144 DOI: 10.1016/j.clinthera.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE The occurrence and development of atherosclerotic cardiovascular disease, which can result in severe outcomes, such as myocardial infarction, stroke, loss of limb, renal failure, and infarction of the gut, are strongly associated with injury to the intimal component of the arterial wall whether via the inside-out or outside-in pathways. The role of injury to the tunica media as a pathway of atherosclerosis initiation is an underresearched area. This review focuses on potential pathways to vessel wall injury as well as current experimental and clinical research in the middle-aged and elderly populations, including the role of exercise, as it relates to injury to the tunica media. METHODS A database search using PubMed and Google Scholar was conducted for research articles published between 1909 and 2023 that focused on pathways of atherogenesis and the impact of mechanical forces on wall injury. The following key words were searched: wall injury, tunica media, atherogenesis, vascular aging, and wall strain. Studies were analyzed, and the relevant information was extracted from each study. FINDINGS A link between high mechanical stress in the arterial wall and reduced vascular compliance was found. The stiffening and calcification of the arterial wall with aging induce high blood pressure and pulse pressure, thereby causing incident hypertension and cardiovascular disease. In turn, prolonged high mechanical stress, particularly wall strain, applied to the arterial wall during vigorous exercise, results in stiffening and calcification of tunica media, accelerated arterial aging, and cardiovascular disease events. In both scenarios, the tunica media is the primary target of mechanical stress and the first to respond to hemodynamic changes. The cyclical nature of these impacts confounds the results of each because they are not mutually exclusive. IMPLICATIONS The role of stress in the tunica media appears to be overlooked despite its relevance, and further research into new primary preventive therapies is needed aside from cautioning the role of vigorous exercise in the elderly population.
Collapse
Affiliation(s)
- Hanane Belhoul-Fakir
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
| | - Michael Lawrence Brown
- School of Population Health, Curtin University, Bently, Perth, Western Australia, Australia
| | - Peter L Thompson
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Juliana Hamzah
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia, Australia.
| |
Collapse
|
8
|
Lin B, Shen Y, Zhang P, Shen Y, Gu Y, He X, Li J, Yang K, Shen W, Zhang Q, Xin Y, Liu Y. Prognostic role of tissue plasminogen activator in coronary artery disease with or without aortic valve sclerosis. ESC Heart Fail 2023. [PMID: 37308095 PMCID: PMC10375160 DOI: 10.1002/ehf2.14420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS We sought to investigate the relationship between circulating tissue plasminogen activator (t-PA) level and long-term outcomes in stable coronary artery disease patients with or without aortic valve sclerosis (AVSc). METHODS AND RESULTS Serum levels of t-PA were determined in 347 consecutive stable angina patients with (n = 183) or without (n = 164) AVSc. Outcomes were prospectively recorded as planned clinic evaluations every 6 months up to 7 years. The primary endpoint was a composite of cardiovascular death and rehospitalization due to heart failure. The secondary endpoint included all-cause mortality, cardiovascular death, and rehospitalization due to heart failure. Serum t-PA was significantly higher in AVSc than in non-AVSc patients (2131.22 pg/mL vs. 1495.85 pg/mL, P < 0.001). For patients with AVSc, those with t-PA level above the median (>1840.68 pg/mL) were more likely to meet the primary and secondary endpoints (all P < 0.001). After adjusting for potential confounding factors, serum t-PA level remained significantly predictive for each endpoint in the Cox proportional hazard models. The prognostic value of t-PA was good, with an AUC-ROC of 0.753 (P < 0.001). The combination of t-PA with traditional risk factors improved the risk reclassification of AVSc patients, with a net reclassification index of 0.857 and an integrated discrimination improvement of 0.217 (all P < 0.001). However, for patients without AVSc, both primary and secondary endpoints were similar, irrespective of t-PA levels. CONCLUSIONS Elevated circulating t-PA confers an increased risk for poor long-term clinical outcomes in stable coronary artery disease patients with AVSc.
Collapse
Affiliation(s)
- Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Ying Shen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pengfei Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Yuying Gu
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan He
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Jimin Li
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Ke Yang
- Institute of Cardiovascular Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weifeng Shen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Zhang
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Yuanfeng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Yehong Liu
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
The Biology and Function of Tissue Inhibitor of Metalloproteinase 2 in the Lungs. Pulm Med 2022; 2022:3632764. [PMID: 36624735 PMCID: PMC9825218 DOI: 10.1155/2022/3632764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/02/2023] Open
Abstract
Tissue inhibitors of matrix metalloproteinases (TIMP) are a family of four endogenous proteins that primarily function to inhibit the activities of proteases such as the matrix metalloproteinases (MMP). Altered MMP/TIMP ratios are frequently observed in several human diseases. During aging and disease progression, the extracellular matrix (ECM) undergoes structural changes in which elastin and collagens serve an essential role. MMPs and TIMPs significantly influence the ECM. Classically, elevated levels of TIMPs are suggested to result in ECM accumulation leading to fibrosis, whereas loss of TIMP responses leads to enhanced matrix proteolysis. Here, we outline the known roles of the most abundant TIMP, TIMP2, in pulmonary diseases but also discuss future perspectives in TIMP2 research that could impact the lungs. TIMP2 directly inhibits MMPs, in particular MMP2, but TIMP2 is also required for the activation of MMP2 through its interaction with MMP14. The protease and antiprotease imbalance of MMPs and TIMPs are extensively studied in diseases but recent discoveries suggest that TIMPs, specifically, TIMP2 could play other roles in aging and inflammation processes.
Collapse
|
10
|
Odeh H, Al-Hyasat TG, Habash A, Assaf FJN, Sallam RA, Abdellatif AJ, Bani Hani A, Badran DH, Mahafza WS, Salameh MA, Shatarat AT. Morphometric analysis of the inferior vena cava and its clinical correlations using abdomino-pelvic computed tomography: Series from a Jordanian population. Int J Surg Case Rep 2022; 98:107514. [PMID: 35985110 PMCID: PMC9411680 DOI: 10.1016/j.ijscr.2022.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction and importance This study aimed to determine the impact of DM, HTN and age on IVC dimensions as measured by CT scan relevant to guide interventions in a Jordanian population. Presentation of cases Two hundred patients were selected from those referred to the Radiology Department, Jordan University Hospital, Amman, Jordan for clinical evaluation. Patients were divided into three age subgroups. Age, sex, and comorbidities such as DM and HTN were identified and saved for later use. All dimensions of the IVC were measured using an abdomino-pelvic CT scanner. Clinical discussion A full morphometric analysis of the IVC would provide a better understanding of the dynamicity of the IVC in relation to its blood flow. Our results revealed that the length of the IVC was significantly shorter with age (P = 0.003). DM significantly affected the length of the IVC (P = 0.044). Hypertension also significantly affected the length of the IVC (P = 0.031), but it did not significantly affect the anterio-posterior or the transverse diameters of the IVC. Conclusion The length of the IVC was significantly shorter with age, DM and hypertension. Morphometric measures of the IVC are of great clinical importance as they may assist in medical or surgical intervention and follow-up. Determining the main dimensions of IVC is clinically important. This study revealed significant variability in IVC dimensions in relation to age. Diabetes and hypertension are important in changing the dimensions of IVC.
Collapse
Affiliation(s)
- Hadeel Odeh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt 19117, Jordan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ambardekar AV, Weiser-Evans MCM, McKinsey TA. Arterial wall rejuvenation: the potential of targeting MMP2 to treat vascular aging. Cardiovasc Res 2022; 118:2229-2230. [PMID: 35512358 DOI: 10.1093/cvr/cvac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Amrut V Ambardekar
- Department of Medicine, Divisions of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045-0508.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045-0508
| | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045-0508.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045-0508
| | - Timothy A McKinsey
- Department of Medicine, Divisions of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045-0508.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045-0508
| |
Collapse
|
12
|
Finger CE, Moreno-Gonzalez I, Gutierrez A, Moruno-Manchon JF, McCullough LD. Age-related immune alterations and cerebrovascular inflammation. Mol Psychiatry 2022; 27:803-818. [PMID: 34711943 PMCID: PMC9046462 DOI: 10.1038/s41380-021-01361-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Aging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world's population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.
Collapse
Affiliation(s)
- Carson E. Finger
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Ines Moreno-Gonzalez
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA ,grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Antonia Gutierrez
- grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Jose Felix Moruno-Manchon
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| |
Collapse
|
13
|
Kozakova M, Palombo C. Vascular Ageing and Aerobic Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10666. [PMID: 34682413 PMCID: PMC8535583 DOI: 10.3390/ijerph182010666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Impairment of vascular function, in particular endothelial dysfunction and large elastic artery stiffening, represents a major link between ageing and cardiovascular risk. Clinical and experimental studies identified numerous mechanisms responsible for age-related decline of endothelial function and arterial compliance. Since most of these mechanisms are related to oxidative stress or low-grade inflammation, strategies that suppress oxidative stress and inflammation could be effective for preventing age-related changes in arterial function. Indeed, aerobic physical activity, which has been shown to improve intracellular redox balance and mitochondrial health and reduce levels of systemic inflammatory markers, also improves endothelial function and arterial distensibility and reduces risk of cardiovascular diseases. The present paper provides a brief overview of processes underlying age-related changes in arterial function, as well as the mechanisms through which aerobic exercise might prevent or interrupt these processes, and thus attenuate vascular ageing.
Collapse
Affiliation(s)
- Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Carlo Palombo
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
14
|
Diaz-Canestro C, Puspitasari YM, Liberale L, Guzik TJ, Flammer AJ, Bonetti NR, Wüst P, Costantino S, Paneni F, Akhmedov A, Varga Z, Ministrini S, Beer JH, Ruschitzka F, Hermann M, Lüscher TF, Sudano I, Camici GG. MMP-2 knockdown blunts age-dependent carotid stiffness by decreasing elastin degradation and augmenting eNOS activation. Cardiovasc Res 2021; 118:2385-2396. [PMID: 34586381 DOI: 10.1093/cvr/cvab300] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Arterial stiffness is a hallmark of vascular aging that precedes and strongly predicts the development of cardiovascular diseases. Age-dependent stiffening of large elastic arteries is primarily attributed to increased levels of matrix metalloproteinase-2 (MMP-2). However, the mechanistic link between age-dependent arterial stiffness and MMP-2 remains unclear. Thus, we aimed to investigate the efficacy of MMP-2 knockdown using small interfering RNA (siRNA) on age-dependent arterial stiffness. METHODS AND RESULTS Pulse wave velocity (PWV) was assessed in right carotid artery of wild type (WT) mice from different age groups. MMP-2 levels in the carotid artery and plasma of young (3 months) and old (20-25 months) WT mice were determined. Carotid PWV as well as vascular and circulating MMP-2 were elevated with increasing age in mice. Old WT mice (18-21-month-old) were treated for 4 weeks with either MMP-2 or scrambled (Scr) siRNA via tail vein injection. Carotid PWV was assessed at baseline, 2 and 4 weeks after start of the treatment. MMP-2 knockdown reduced vascular MMP-2 levels and attenuated age-dependent carotid stiffness. siMMP-2 treated mice showed increased elastin to collagen ratio, lower plasma desmosine (DES), enhanced phosphorylation of endothelial nitric oxide synthase (eNOS) and higher levels of vascular cyclic guanosine monophosphate (cGMP). An age-dependent increase in direct protein-protein interaction between MMP-2 and eNOS was also observed. Lastly, DES, an elastin breakdown product, was measured in a patient cohort (n = 64, 23-86 years old), where carotid-femoral PWV was also assessed; here, plasma levels of DES directly correlated with age and arterial stiffness. CONCLUSION MMP-2 knockdown attenuates age-dependent carotid stiffness by blunting elastin degradation and augmenting eNOS bioavailability. Given the increasing clinical use of siRNA technology, MMP2 knockdown should be investigated further as a possible strategy to mitigate age-dependent arterial stiffness and related CV diseases. TRANSLATIONAL PERSPECTIVE Arterial stiffness is a hallmark of vascular aging that precedes and strongly predicts the development of cardiovascular diseases. This study provides translational evidence to support a key role for MMP-2 on the development of age-associated arterial stiffness. Silencing of MMP-2 using siRNA technology shows an effect on aged mice where it attenuates age-dependent carotid stiffness by reducing elastin degradation and increasing eNOS bioavailability. Additionally, in humans we show that elastin breakdown increases with age and increased PWV. These findings indicate MMP-2 knockdown as a promising novel strategy to attenuate age-dependent arterial stiffness and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Science, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.,Department of Medicine, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Andreas J Flammer
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Nicole R Bonetti
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Patricia Wüst
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Baden, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Hermann
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Royal Brompton & Harefield Hospitals and Imperial College London, United Kingdom
| | - Isabella Sudano
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Dynamic Crosstalk between Vascular Smooth Muscle Cells and the Aged Extracellular Matrix. Int J Mol Sci 2021; 22:ijms221810175. [PMID: 34576337 PMCID: PMC8468233 DOI: 10.3390/ijms221810175] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023] Open
Abstract
Vascular aging is accompanied by the fragmentation of elastic fibers and collagen deposition, leading to reduced distensibility and increased vascular stiffness. A rigid artery facilitates elastin to degradation by MMPs, exposing vascular cells to greater mechanical stress and triggering signaling mechanisms that only exacerbate aging, creating a self-sustaining inflammatory environment that also promotes vascular calcification. In this review, we highlight the role of crosstalk between smooth muscle cells and the vascular extracellular matrix (ECM) and how aging promotes smooth muscle cell phenotypes that ultimately lead to mechanical impairment of aging arteries. Understanding the underlying mechanisms and the role of associated changes in ECM during aging may contribute to new approaches to prevent or delay arterial aging and the onset of cardiovascular diseases.
Collapse
|
16
|
Effect of genetic depletion of MMP-9 on neurological manifestations of hypertension-induced intracerebral hemorrhages in aged mice. GeroScience 2021; 43:2611-2619. [PMID: 34415518 PMCID: PMC8599521 DOI: 10.1007/s11357-021-00402-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022] Open
Abstract
Clinical and experimental studies show that hypertension induces intracerebral hemorrhages (ICH), including cerebral microhemorrhages in the aged brain, which contribute to the pathogenesis of vascular cognitive impairment (VCI). Previous studies showed that aging increased oxidative stress-mediated activation of matrix metalloproteinases (MMPs) that importantly contributes to the pathogenesis of ICHs. In particular, oxidative stress has been implicated in activation of MMP-9, which is known to be involved in the degradation of the extracellular matrix and cleavage of collagen IV, a key constituent of the basal membrane of cerebral vessels. To determine the role of MMP-9 activation in the genesis of ICHs, we induced hypertension in 20-month-old MMP-9 null and age-matched control mice by angiotensin II and L-NAME treatment. Contrary to our hypothesis, MMP-9 deficiency did not delay the onset or incidence of neurological consequences of hypertension-induced ICHs. Our results indicate that MMP-9 activation does not play a role in the age-related exacerbation of hypertension-induced ICH.
Collapse
|
17
|
Pasha M, Wooldridge AL, Kirschenman R, Spaans F, Davidge ST, Cooke CLM. Altered Vascular Adaptations to Pregnancy in a Rat Model of Advanced Maternal Age. Front Physiol 2021; 12:718568. [PMID: 34393831 PMCID: PMC8356803 DOI: 10.3389/fphys.2021.718568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Advanced maternal age (≥35 years old) increases the risk of pregnancy complications such as preeclampsia and fetal growth restriction. We previously demonstrated vascular dysfunction and abnormal pregnancy outcomes in a rat model of advanced maternal age. However, vascular adaptations to pregnancy in aging were not studied. We hypothesize that advanced maternal age is associated with a more vasoconstrictive phenotype due to reduced nitric oxide (NO) and increased activity of matrix metalloproteinases (MMPs), contributing to impaired vascular adaptations to pregnancy. A rat model of advanced maternal age was used: young (4 months) and aged (9.5 months; ∼35 years in humans) non-pregnant and pregnant rats. On gestational day 20 (term = 22 days; non-pregnant rats were aged-matched), blood pressure and heart rate were measured (tail cuff plethysmography) and vascular function was assessed in mesenteric arteries (wire myography). Endothelium-dependent relaxation to methylcholine (MCh) was assessed in the presence/absence of nitric oxide synthase inhibitor (L-NAME), or inhibitors of endothelium-dependent hyperpolarization (EDH; apamin and TRAM-34). Vasoconstriction responses to big endothelin-1 (bigET-1), in the presence/absence of MMPs-inhibitor (GM6001) or endothelin converting enzyme (ECE-1) inhibitor (CGS35066), in addition, ET-1 responsiveness, were measured. Blood pressure was elevated only in aged non-pregnant rats (p < 0.001) compared to all other groups. MCh responses were not different, however, L-NAME decreased maximum vasodilation in young (p < 0.01) and aged pregnant rats (p < 0.001), and decreased MCh sensitivity in young non-pregnant rats (p < 0.01), without effects in aged non-pregnant rats. EDH contribution to relaxation was similar in young non-pregnant, and aged non-pregnant and pregnant rats, while EDH-mediated relaxation was absent in young pregnant rats (p < 0.001). BigET-1 responses were enhanced in aged non-pregnant (p < 0.01) and pregnant rats (p < 0.05). No significant changes in bigET-1 conversion occurred in the presence of MMP-inhibitor, whereas ECE-1 inhibition reduced bigET-1 constriction in aged rats (p < 0.01). No differences in ET-1 sensitivity were observed. In conclusion, contrary to our hypothesis, reduced blood pressure, and an increased EDH-dependent contribution to vasodilation suggest a compensatory mechanism that may reflect beneficial adaptations in these aged rats that were able to maintain pregnancy. These data increase our understanding of how the vascular adaptive pathways in pregnancy compensate for advanced maternal age.
Collapse
Affiliation(s)
- Mazhar Pasha
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Amy L. Wooldridge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sandra T. Davidge
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christy-Lynn M. Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Kim SH, Monticone RE, McGraw KR, Wang M. Age-associated proinflammatory elastic fiber remodeling in large arteries. Mech Ageing Dev 2021; 196:111490. [PMID: 33839189 PMCID: PMC8154723 DOI: 10.1016/j.mad.2021.111490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Elastic fibers are the main components of the extracellular matrix of the large arterial wall. Elastic fiber remodeling is an intricate process of synthesis and degradation of the core elastin protein and microfibrils accompanied by the assembly and disassembly of accessory proteins. Age-related morphological, structural, and functional proinflammatory remodeling within the elastic fiber has a profound effect upon the integrity, elasticity, calcification, amyloidosis, and stiffness of the large arterial wall. An age-associated increase in arterial stiffness is a major risk factor for the pathogenesis of diseases of the large arteries such as hypertensive and atherosclerotic vasculopathy. This mini review is an update on the key molecular, cellular, functional, and structural mechanisms of elastic fiber proinflammatory remodeling in large arteries with aging. Targeting structural and functional integrity of the elastic fiber may be an effective approach to impede proinflammatory arterial remodeling with advancing age.
Collapse
Affiliation(s)
- Soo Hyuk Kim
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Robert E Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Kimberly R McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
19
|
Chen T, Liang Q, Xu J, Zhang Y, Zhang Y, Mo L, Zhang L. MiR-665 Regulates Vascular Smooth Muscle Cell Senescence by Interacting With LncRNA GAS5/SDC1. Front Cell Dev Biol 2021; 9:700006. [PMID: 34386495 PMCID: PMC8353444 DOI: 10.3389/fcell.2021.700006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Vascular aging is considered a special risk factor for cardiovascular diseases, and vascular smooth muscle cells (VSMCs) play a major role in aging-related vascular remodeling and in the pathological process of atherosclerosis. Recent research has reported that long non-coding RNA/microRNA (lncRNA/miRNA) is a critical regulator of cellular senescence. However, the role and mechanism of lncRNA GAS5/miR-665 axis in VSMC senescence remain incompletely understood. Methods: Cellular senescence was evaluated using senescence-associated β-gal activity, the NAD+/NADH ratio, and by immunofluorescence staining of γH2AX immunofluorescence. Differentially expressed miRNAs (DEMs) were identified by miRNA microarray assays and subsequently validated by quantitative real-time PCR (qRT-PCR). A dual luciferase reporter assay was conducted to confirm the binding of lncRNA GAS5 and miR-665 as well as miR-665 and syndecan 1 (SDC1). Serum levels of miR-665, lncRNA GAS5, and SDC1 in 93 subjects were detected by qRT-PCR. The participants were subdivided into control, aging, and early vascular aging (EVA) groups, and their brachial-ankle pulse wave velocity (baPWV) was measured. Results: A total of 20 overlapping DEMs were identified in young and old VSMCs via microarray analysis. MiR-665 showed a significant alteration and, therefore, was selected for further analysis. Upregulation of miR-665 was found in aging VSMCs, and downregulation of miR-665 caused an inhibition of VSMCs senescence. Subsequently, the dual luciferase reporter assay determined the binding site of miR-665 with the 3'-UTR of lncRNA GAS5 and SDC1. Increased expression of lncRNA GAS5 expression inhibited the miR-665 level and VSMC senescence. However, as shown in rescue experiment results, either miR-665 overexpression or SDC1 knockdown significantly reversed the effects of lncRNA GAS5 on VSMC senescence. Finally, compared with that of the control group, miR-665 was highly expressed in serum samples in the aging and EVA groups, especially in the EVA groups. On the contrary, serum levels of lncRNA GAS5 and SDC1 were lower in these two groups. Collectively, in the aging and EVA groups, miR-665 expression was negatively correlated with lncRNA GAS5 and SDC1 expression. Conclusion: miR-665 inhibition functions as a vital modulator of VSMC senescence by negatively regulating SDC1, which is achieved by lncRNA GAS5 that sponges miR-665. Our findings may provide a new treatment strategy for aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Tianbin Chen
- Functional Experiment Center, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jialin Xu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanan Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Mo
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Li Zhang
| |
Collapse
|
20
|
Chen Z, Shen Y, Xue Q, Lin BW, He XY, Zhang YB, Yang Y, Shen WF, Liu YH, Yang K. Clinical Relevance of Plasma Endogenous Tissue-Plasminogen Activator and Aortic Valve Sclerosis: Performance as a Diagnostic Biomarker. Front Cardiovasc Med 2020; 7:584998. [PMID: 33173789 PMCID: PMC7591748 DOI: 10.3389/fcvm.2020.584998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/04/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Aortic valve sclerosis (AVSc), a common precursor to calcific aortic valve disease, may progress into advanced aortic stenosis with hemodynamic instability. However, plasma biomarkers of such a subclinical condition remain lacking. Since impaired fibrinolysis featuring dysregulated tissue plasminogen activator (t-PA) is involved in several cardiovascular diseases, we investigated whether endogenous t-PA was also associated with AVSc. Methods: Plasma t-PA levels were measured in 295 consecutive patients undergoing standard echocardiography and Doppler flow imaging. Multiple logistic regression analyses were used to assess the association between t-PA and AVSc. Receiver operating characteristic curve analysis was performed for determining the diagnostic value of t-PA for AVSc. The performance of adding t-PA to clinical signatures of AVSc was evaluated. Concentration of t-PA was assessed in human sclerotic and non-sclerotic aortic valves by histology and immunohistochemistry analysis. Results: Plasma t-PA was higher in patients with AVSc than in non-AVSc counterparts (median, 2063.10 vs. 1403.17 pg/mL, p < 0.01). C-statistics of plasma t-PA for discriminating AVSc was 0.698 (95%CI: 0.639–0.758). The performance of t-PA for identifying AVSc was better among male and non-hypertensive patients [C-statistics (95%CI): 0.712 (0.634–0.790) and 0.805 (0.693–0.916), respectively]. Combination of t-PA and clinical factors improved classification of the patients (category-free NRI: 0.452, p < 0.001; IDI: 0.020, p = 0.012). The concentration of t-PA was three times higher in sclerotic compared to non-sclerotic aortic valves. Conclusion: Elevated circulating t-PA level confers an increased risk for AVSc. Further prospective studies with larger sample size are needed to examine if t-PA could serve as a diagnostic clinical marker for AVSc.
Collapse
Affiliation(s)
- Zhongli Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiqi Xue
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Wen Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao Yan He
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Bo Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Yang
- Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Wei Feng Shen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Hong Liu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Ke Yang
| | - Ke Yang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ye Hong Liu
| |
Collapse
|
21
|
Sertedaki E, Veroutis D, Zagouri F, Galyfos G, Filis K, Papalambros A, Aggeli K, Tsioli P, Charalambous G, Zografos G, Sigala F. Carotid Disease and Ageing: A Literature Review on the Pathogenesis of Vascular Senescence in Older Subjects. Curr Gerontol Geriatr Res 2020; 2020:8601762. [PMID: 32582337 PMCID: PMC7306882 DOI: 10.1155/2020/8601762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is a natural process that affects all systems of the human organism, leading to its inability to adapt to environmental changes. Advancing age has been correlated with various pathological conditions, especially cardiovascular and cerebrovascular diseases. Carotid artery (CA) is mainly affected by age-induced functional and morphological alterations causing atheromatous disease. The evolvement of biomedical sciences has allowed the elucidation of many aspects of this condition. Symptomatic carotid disease (CD) derives from critical luminar stenosis or eruption of an atheromatous plaque due to structural modifications of the vessels, such as carotid intima-media thickening. At a histologic level, the aforementioned changes are mediated by elastin fragmentation, collagen deposition, immune cell infiltration, and accumulation of cytokines and vasoconstrictors. Underlying mechanisms include chronic inflammation and oxidative stress, dysregulation of cellular homeostatic systems, and senescence. Thus, there is an imbalance in components of the vessel wall, which fails to counteract exterior stress stimuli. Consequently, arterial relaxation is impaired and atherosclerotic lesions progress. This is a review of current evidence regarding the relationship of aging with vascular senescence and CD. A deeper understanding of these mechanisms can contribute to the production of efficient prevention methods and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Eleni Sertedaki
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Clinical Therapeutics Department, Alexandra General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - George Galyfos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Konstadinos Filis
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Papalambros
- First Department of Surgery, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Aggeli
- First Department of Cardiology, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Panagiota Tsioli
- First Department of Pathology, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - George Charalambous
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - George Zografos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Fragiska Sigala
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Wang M, Monticone RE, McGraw KR. Proinflammation, profibrosis, and arterial aging. Aging Med (Milton) 2020; 3:159-168. [PMID: 33103036 PMCID: PMC7574637 DOI: 10.1002/agm2.12099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Aging is a major risk factor for quintessential cardiovascular diseases, which are closely related to arterial proinflammation. The age-related alterations of the amount, distribution, and properties of the collagen fibers, such as cross-links and degradation in the arterial wall, are the major sequelae of proinflammation. In the aging arterial wall, collagen types I, II, and III are predominant, and are mainly produced by stiffened vascular smooth muscle cells (VSMCs) governed by proinflammatory signaling, leading to profibrosis. Profibrosis is regulated by an increase in the proinflammatory molecules angiotensin II, milk fat globule-EGF-VIII, and transforming growth factor-beta 1 (TGF-β1) signaling and a decrease in the vasorin signaling cascade. The release of these proinflammatory factors triggers the activation of matrix metalloproteinase type II (MMP-2) and activates profibrogenic TGF-β1 signaling, contributing to profibrosis. The age-associated increase in activated MMP-2 cleaves latent TGF-β and subsequently increases TGF-β1 activity leading to collagen deposition in the arterial wall. Furthermore, a blockade of the proinflammatory signaling pathway alleviates the fibrogenic signaling, reduces profibrosis, and prevents arterial stiffening with aging. Thus, age-associated proinflammatory-profibrosis coupling is the underlying molecular mechanism of arterial stiffening with advancing age.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Baltimore Maryland
| | - Robert E Monticone
- Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Baltimore Maryland
| | - Kimberly R McGraw
- Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Baltimore Maryland
| |
Collapse
|
23
|
Wang M, Zhang L, Zhu W, Zhang J, Kim SH, Wang Y, Ni L, Telljohann R, Monticone RE, McGraw K, Liu L, de Cabo R, Lakatta EG. Calorie Restriction Curbs Proinflammation That Accompanies Arterial Aging, Preserving a Youthful Phenotype. J Am Heart Assoc 2019; 7:e009112. [PMID: 30371211 PMCID: PMC6222931 DOI: 10.1161/jaha.118.009112] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Aging exponentially increases the incidence of morbidity and mortality of quintessential cardiovascular disease mainly due to arterial proinflammatory shifts at the molecular, cellular, and tissue levels within the arterial wall. Calorie restriction (CR) in rats improves arterial function and extends both health span and life span. How CR affects the proinflammatory landscape of molecular, cellular, and tissue phenotypic shifts within the arterial wall in rats, however, remains to be elucidated. Methods and Results Aortae were harvested from young (6‐month‐old) and old (24‐month‐old) Fischer 344 rats, fed ad libitum and a second group maintained on a 40% CR beginning at 1 month of age. Histopathologic and morphometric analysis of the arterial wall demonstrated that CR markedly reduced age‐associated intimal medial thickening, collagen deposition, and elastin fractionation/degradation within the arterial walls. Immunostaining/blotting showed that CR effectively prevented an age‐associated increase in the density of platelet‐derived growth factor, matrix metalloproteinase type II activity, and transforming growth factor beta 1 and its downstream signaling molecules, phospho‐mothers against decapentaplegic homolog‐2/3 (p‐SMAD‐2/3) in the arterial wall. In early passage cultured vascular smooth muscle cells isolated from AL and CR rat aortae, CR alleviated the age‐associated vascular smooth muscle cell phenotypic shifts, profibrogenic signaling, and migration/proliferation in response to platelet‐derived growth factor. Conclusions CR reduces matrix and cellular proinflammation associated with aging that occurs within the aortic wall and that are attributable to platelet‐derived growth factor signaling. Thus, CR reduces the platelet‐derived growth factor–associated signaling cascade, contributing to the postponement of biological aging and preservation of a more youthful aortic wall phenotype.
Collapse
Affiliation(s)
- Mingyi Wang
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Li Zhang
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD.,3 Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou China
| | - Wanqu Zhu
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Jing Zhang
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Soo Hyuk Kim
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Yushi Wang
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD.,4 Department of Cardiology The First Hospital of Jilin University Changchun China
| | - Leng Ni
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD.,5 Department of Vascular Surgery Peking Union Medical College Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Richard Telljohann
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Robert E Monticone
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Kimberly McGraw
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Lijuan Liu
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Rafael de Cabo
- 2 Experimental Gerontology Section, Translational Gerontology Branch National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Edward G Lakatta
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| |
Collapse
|
24
|
Fhayli W, Boëté Q, Harki O, Briançon-Marjollet A, Jacob MP, Faury G. Rise and fall of elastic fibers from development to aging. Consequences on arterial structure-function and therapeutical perspectives. Matrix Biol 2019; 84:41-56. [PMID: 31493460 DOI: 10.1016/j.matbio.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/03/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
In the arteries of vertebrates, evolution has given rise to resilient macromolecular structures, elastin and elastic fibers, capable of sustaining an elevated blood pressure and smoothening the discontinuous blood flow and pressure generated by the heart. Elastic fibers are produced only during development and childhood, before being progressively degraded by mechanical stress and enzymatic activities during adulthood and aging. During this period, arterial elastic fiber calcification and loading of lipids also occur, all of these events conducting to arteriosclerosis. This leads to a progressive dysfunction of the large elastic arteries inducing elevated blood pressure as well as altered hemodynamics and organ perfusion, which induce more global malfunctions of the body during normal aging. Additionally, some arterial conditions occur more frequently with advancing age, such as atherosclerosis or aneurysms, which are called age-related diseases or pathological aging. The physiological or pathological degradation of elastic fibers and function of elastic arteries seemed to be rather inevitable over time. However, during the recent years, different molecules - including several ATP-dependent potassium channel openers, such as minoxidil - have been shown to re-induce elastin production and elastic fiber assembly, leading to improvements in the arterial structure and function or in organ perfusion. This review summarizes the changes in the arterial elastic fibers and structure from development until aging, and presents some of the potential pharmacotherapies leading to elastic fiber neosynthesis and arterial function improvement.
Collapse
Affiliation(s)
- Wassim Fhayli
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Quentin Boëté
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Olfa Harki
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | | | - Marie-Paule Jacob
- INSERM, U1148, and Hopital Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris, France
| | - Gilles Faury
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France.
| |
Collapse
|
25
|
Bonaventura A, Montecucco F, Dallegri F, Carbone F, Lüscher TF, Camici GG, Liberale L. Novel findings in neutrophil biology and their impact on cardiovascular disease. Cardiovasc Res 2019; 115:1266-1285. [PMID: 30918936 DOI: 10.1093/cvr/cvz084] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa – Italian Cardiovascular Network, 10 Largo Benzi, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa – Italian Cardiovascular Network, 10 Largo Benzi, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
- Heart Division, Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
- University Heart Center, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland
- Department of Research and Education, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| |
Collapse
|
26
|
Sultana S, Dey R, Bishayi B. Role of plasminogen activator inhibitor – 1 (PAI-1) in regulating the pathogenesis of S. aureus arthritis via plasminogen pathway. Immunol Lett 2019; 209:53-66. [DOI: 10.1016/j.imlet.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/13/2019] [Accepted: 03/23/2019] [Indexed: 01/31/2023]
|
27
|
Rachev A, Shazly T. A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen. J Mech Behav Biomed Mater 2019; 90:61-72. [DOI: 10.1016/j.jmbbm.2018.09.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/13/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
|
28
|
Cocciolone AJ, Johnson E, Shao JY, Wagenseil JE. Elastic fiber fragmentation increases transmural hydraulic conductance and solute transport in mouse arteries. J Biomech Eng 2018; 141:2718211. [PMID: 30516242 DOI: 10.1115/1.4042173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 01/15/2023]
Abstract
Transmural advective transport of solute and fluid was investigated in mouse carotid arteries with either a genetic knockout of Fibulin-5 (Fbln5-/-) or treatment with elastase to determine the influence of a disrupted elastic fiber matrix on wall transport properties. Fibulin-5 is an important director of elastic fiber assembly. Arteries from Fbln5-/- mice have a loose, non-continuous elastic fiber network and were hypothesized to have reduced resistance to advective transport. Experiments were carried out ex vivo at physiological pressure and axial stretch. Hydraulic conductance (Lp ) was measured to be 4.99·10-6 ± 8.94·10-7, 3.18·-5 ± 1.13·10-5 (P < 0.01), and 3.57·10-5 ± 1.77·10-5 (P < 0.01) mm·s-1·mmHg-1 for wild-type, Fbln5-/-, and elastase-treated carotids, respectively. Solute fluxes of 4, 70, and 150 kDa FITC-dextran were statistically increased in Fbln5-/- compared to wild-type by a factor of 4, 22, and 3 respectively. 70 kDa FITC-dextran solute flux was similarly increased in elastase-treated carotids by a factor of 27. Solute uptake by Fbln5-/- carotids was decreased compared to wild-type for all investigated dextran sizes after 60 minutes of transmural transport. These changes in transport properties of elastic fiber compromised arteries have important implications for the kinetics of biomolecules and pharmaceuticals in arterial tissue following elastic fiber degradation due to aging or vascular disease.
Collapse
Affiliation(s)
| | - Elizabeth Johnson
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Jin-Yu Shao
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO 63130
| |
Collapse
|
29
|
Wang M, Monticone RE, McGraw KR. Proinflammatory Arterial Stiffness Syndrome: A Signature of Large Arterial Aging. J Vasc Res 2018; 55:210-223. [PMID: 30071538 PMCID: PMC6174095 DOI: 10.1159/000490244] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Age-associated structural and functional remodeling of the arterial wall produces a productive environment for the initiation and progression of hypertension and atherosclerosis. Chronic aging stress induces low-grade proinflammatory signaling and causes cellular proinflammation in arterial walls, which triggers the structural phenotypic shifts characterized by endothelial dysfunction, diffuse intimal-medial thickening, and arterial stiffening. Microscopically, aged arteries exhibit an increase in arterial cell senescence, proliferation, invasion, matrix deposition, elastin fragmentation, calcification, and amyloidosis. These characteristic cellular and matrix alterations not only develop with aging but can also be induced in young animals under experimental proinflammatory stimulation. Interestingly, these changes can also be attenuated in old animals by reducing low-grade inflammatory signaling. Thus, mitigating age-associated proinflammation and arterial phenotype shifts is a potential approach to retard arterial aging and prevent the epidemic of hypertension and atherosclerosis in the elderly.
Collapse
|
30
|
Reduced vasorin enhances angiotensin II signaling within the aging arterial wall. Oncotarget 2018; 9:27117-27132. [PMID: 29930755 PMCID: PMC6007470 DOI: 10.18632/oncotarget.25499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/10/2018] [Indexed: 12/03/2022] Open
Abstract
The glycosylated protein vasorin physically interacts with the transforming growth factor-beta1 (TGF-β1) and functionally attenuates its fibrogenic signaling in the vascular smooth muscle cells (VSMCs) of the arterial wall. Angiotensin II (Ang II) amplifies TGF-β1 activation in the VSMCs of the arterial wall with aging. In this study, we hypothesized that a reduced expression of the protein vasorin plays a contributory role in magnifying Ang II-associated fibrogenic signaling in the VSMCs of the arterial wall with aging. The current study shows that vasorin mRNA and protein expression were significantly decreased both in aortic wall and VSMCs from old (30 mo) vs. young (8 mo) FXBN rats. Exposing young VSMCs to Ang II reduced vasorin protein expression to the levels of old untreated cells while treating old VSMCs with the Ang II type AT1 receptor antagonist Losartan upregulated vasorin protein expression up to the levels of young. The physical interaction between vasorin and TGF-β1 was significantly decreased in old vs. young VSMCs. Further, exposing young VSMCs to Ang II increased the levels of matrix metalloproteinase type II (MMP-2) activation and TGF-β1 downstream molecules p-SMAD-2/3 and collagen type I production up to the levels of old untreated VSMCs, and these effects were substantially inhibited by overexpressing vasorin. Administration of Ang II to young rats (8 mo) for 28 days via an osmotic minipump markedly reduced the expression of vasorin. Importantly, vasorin protein was effectively cleaved by activated MMP-2 both in vitro and in vivo. Administration of the MMP inhibitor, PD 166793, for 6 mo to young adult (18 mo) via a daily gavage markedly increased levels of vasorin in the aortic wall. Thus, reduced vasorin amplifies Ang II profibrotic signaling via an activation of MMP-2 in VSMCs within the aging arterial wall.
Collapse
|
31
|
Gioscia-Ryan RA, Battson ML, Cuevas LM, Eng JS, Murphy MP, Seals DR. Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. J Appl Physiol (1985) 2018; 124:1194-1202. [PMID: 29074712 PMCID: PMC6008077 DOI: 10.1152/japplphysiol.00670.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
Aortic stiffening is a major independent risk factor for cardiovascular diseases, cognitive dysfunction, and other chronic disorders of aging. Mitochondria-derived reactive oxygen species are a key source of arterial oxidative stress, which may contribute to arterial stiffening by promoting adverse structural changes-including collagen overabundance and elastin degradation-and enhancing inflammation, but the potential for mitochondria-targeted therapeutic strategies to ameliorate aortic stiffening with primary aging is unknown. We assessed aortic stiffness [pulse-wave velocity (aPWV)], ex vivo aortic intrinsic mechanical properties [elastic modulus (EM) of collagen and elastin regions], and aortic protein expression in young (~6 mo) and old (~27 mo) male C57BL/6 mice consuming normal drinking water (YC and OC) or water containing mitochondria-targeted antioxidant MitoQ (250 µM; YMQ and OMQ) for 4 wk. Both baseline and postintervention aPWV values were higher in OC vs. YC (post: 482 ± 21 vs. 420 ± 5 cm/s, P < 0.05). MitoQ had no effect in young mice but decreased aPWV in old mice (OMQ, 426 ± 20, P < 0.05 vs. OC). MitoQ did not affect age-associated increases in aortic collagen-region EM, collagen expression, or proinflammatory cytokine expression, but partially attenuated age-associated decreases in elastin region EM and elastin expression. Our results demonstrate that MitoQ reverses in vivo aortic stiffness in old mice and suggest that mitochondria-targeted antioxidants may represent a novel, promising therapeutic strategy for decreasing aortic stiffness with primary aging and, possibly, age-related clinical disorders in humans. The destiffening effects of MitoQ treatment may be at least partially mediated by attenuation/reversal of age-related aortic elastin degradation. NEW & NOTEWORTHY We show that 4 wk of treatment with the mitochondria-specific antioxidant MitoQ in mice completely reverses the age-associated elevation in aortic stiffness, assessed as aortic pulse-wave velocity. The destiffening effects of MitoQ treatment may be at least partially mediated by attenuation of age-related aortic elastin degradation. Our results suggest that mitochondria-targeted therapeutic strategies may hold promise for decreasing arterial stiffening with aging in humans, possibly decreasing the risk of many chronic age-related clinical disorders.
Collapse
Affiliation(s)
- Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, Colorado
| | - Micah L Battson
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, Colorado
| | - Lauren M Cuevas
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, Colorado
| | - Jason S Eng
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, Colorado
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge , Cambridge , United Kingdom
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, Colorado
| |
Collapse
|
32
|
Alehagen U, Aaseth J, Alexander J, Svensson E, Johansson P, Larsson A. Less fibrosis in elderly subjects supplemented with selenium and coenzyme Q10-A mechanism behind reduced cardiovascular mortality? Biofactors 2018; 44:137-147. [PMID: 29220105 DOI: 10.1002/biof.1404] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND In an intervention study where 221 healthy elderly persons received selenium and coenzyme Q10 as a dietary supplement, and 222 received placebo for 4 years we observed improved cardiac function and reduced cardiovascular mortality. As fibrosis is central in the aging process, we investigated the effect of the intervention on biomarkers of fibrogenic activity in a subanalysis of this intervention study. MATERIAL AND METHODS In the present subanalysis 122 actively treated individuals and 101 controls, the effect of the treatment on eight biomarkers of fibrogenic activity were assessed. These biomarkers were: Cathepsin S, Endostatin, Galectin 3, Growth Differentiation Factor-15 (GDF-15), Matrix Metalloproteinases 1 and 9, Tissue Inhibitor of Metalloproteinases 1 (TIMP 1) and Suppression of Tumorigenicity 2 (ST-2). Blood concentrations of these biomarkers after 6 and 42 months were analyzed by the use of T-tests, repeated measures of variance, and factor analyses. RESULTS Compared with placebo, in those receiving supplementation with selenium and coenzyme Q10, all biomarkers except ST2 showed significant decreased concentrations in blood. The changes in concentrations, that is, effects sizes as given by partial eta2 caused by the intervention were considered small to medium. CONCLUSION The significantly decreased biomarker concentrations in those on active treatment with selenium and coenzyme Q10 compared with those on placebo after 36 months of intervention presumably reflect less fibrogenic activity as a result of the intervention. These observations might indicate that reduced fibrosis precedes the reported improvement in cardiac function, thereby explaining some of the positive clinical effects caused by the intervention. © 2017 BioFactors, 44(2):137-147, 2018.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jan Aaseth
- Research Department, Innlandet Hospital, and Hedmark University College, Elverum, Norway
| | | | - Erland Svensson
- Retired, former Swedish Defence Research Agency, Linköping, Sweden
| | - Peter Johansson
- Department of Social and Welfare studies. Department of Medical and Health Sciences, Linköping University, Norrköping, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Zhu W, Kim BC, Wang M, Huang J, Isak A, Bexiga NM, Monticone R, Ha T, Lakatta EG, An SS. TGFβ1 reinforces arterial aging in the vascular smooth muscle cell through a long-range regulation of the cytoskeletal stiffness. Sci Rep 2018; 8:2668. [PMID: 29422510 PMCID: PMC5805716 DOI: 10.1038/s41598-018-20763-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Here we report exquisitely distinct material properties of primary vascular smooth muscle (VSM) cells isolated from the thoracic aorta of adult (8 months) vs. aged (30 months) F344XBN rats. Individual VSM cells derived from the aged animals showed a tense internal network of the actin cytoskeleton (CSK), exhibiting increased stiffness (elastic) and frictional (loss) moduli than those derived from the adult animals over a wide frequency range of the imposed oscillatory deformation. This discrete mechanical response was long-lived in culture and persistent across a physiological range of matrix rigidity. Strikingly, the pro-fibrotic transforming growth factor β1 (TGFβ1) emerged as a specific modifier of age-associated VSM stiffening in vitro. TGFβ1 reinforced the mechanical phenotype of arterial aging in VSM cells on multiple time and length scales through clustering of mechanosensitive α5β1 and αvβ3 integrins. Taken together, these studies identify a novel nodal point for the long-range regulation of VSM stiffness and serve as a proof-of-concept that the broad-based inhibition of TGFβ1 expression, or TGFβ1 signal transduction in VSM, may be a useful therapeutic approach to mitigate the pathologic progression of central arterial wall stiffening associated with aging.
Collapse
Affiliation(s)
- Wanqu Zhu
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Byoung Choul Kim
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, 21218, USA.,Division of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jessie Huang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Abraham Isak
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Natalia M Bexiga
- Immunobiological and Biopharmaceutical Laboratory, Department of Pharmaceutical Biochemistry Technology, University of Sao Paulo, Sao Paulo, Brazil
| | - Robert Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, 21218, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
34
|
Strazhesko ID, Tkacheva ON, Akasheva DU, Dudinskaya EN, Plokhova EV, Pykhtina VS, Kruglikova AS, Brailova NV, Sharashkina NV, Kashtanova DA, Isaykina OY, Pokrovskaya MS, Vygodin VA, Ozerova IN, Skvortsov DA, Boytsov SA. Growth Hormone, Insulin-Like Growth Factor-1, Insulin Resistance, and Leukocyte Telomere Length as Determinants of Arterial Aging in Subjects Free of Cardiovascular Diseases. Front Genet 2017; 8:198. [PMID: 29375617 PMCID: PMC5770739 DOI: 10.3389/fgene.2017.00198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Increased arterial stiffness (AS), intima-media thickness (IMT), and the presence of atherosclerotic plaques (PP) have been considered as important aspects of vascular aging. It is well documented that the cardiovascular system is an important target organ for growth hormone (GH) and insulin-like growth factor (IGF)-1 in humans, and GH /IGF-1 deficiency significantly increases the risk for cardiovascular diseases (CVD). The telomere length of peripheral blood leukocytes (LTL) is a biomarker of cellular senescence and that has been proposed as an independent predictor of (CVD). The aim of this study is to determine the role of GH/IGF-1, LTL and their interaction cardiovascular risk factors (CVRF) in the vascular aging. Methods: The study group included 303 ambulatory participants free of known CVD (104 males and 199 females) with a mean age of 51.8 ± 13.3 years. All subjects had one or more CVRF [age, smoking, arterial hypertension, obesity, dyslipidemia, fasting hyperglycemia, insulin resistance-HOMA (homeostatic model assessment) >2.5, or high glycated hemoglobin]. The study sample was divided into the two groups according to age as "younger" (m ≤ 45 years, f ≤ 55 years) and "older" (m > 45 years, f > 55 years). IMT and PP were determined by ultrasonography, AS was determined by measuring the carotid-femoral pulse wave velocity (c-f PWV) using the SphygmoCor system (AtCor Medical). LTL was determined by PCR. Serum IGF-1 and GH concentrations we measured by immunochemiluminescence analysis. Results: Multiple linear regression analysis with adjustment for CVRF indicated that HOMA, GH, IGF-1, and LTL had an independent relationship with all the arterial wall parameters investigated in the younger group. In the model with c-f PWV as a dependent variable, p < 0.001 for HOMA, p = 0.03 for GH, and p = 0.004 for LTL. In the model with IMT as a dependent variable, p = 0.0001 for HOMA, p = 0.044 for GH, and p = 0.004 for IGF-1. In the model with the number of plaques as a dependent variable, p = 0.0001 for HOMA, and p = 0.045 for IGF-1. In the older group, there were no independent significant associations between GH/IGF-1, LTL, HOMA, and arterial wall characteristics. Conclusions: GH/IGF-1, IR, HOMA, and LTL were the important parameters of arterial aging in younger healthy participants.
Collapse
Affiliation(s)
- Irina D Strazhesko
- Department of Clinical Cardiology and Molecular Genetics, Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia.,Department of Age-associated Diseases, Medical Scientific and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | - Olga N Tkacheva
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dariga U Akasheva
- Department of Fundamental and Applied Aspects of Obesity, Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Ekaterina N Dudinskaya
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina V Plokhova
- Department of Cardiology, Federal Scientific and Clinical Center of the Federal Medico-Biological Agency, Moscow, Russia
| | - Valentina S Pykhtina
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna S Kruglikova
- Department of Aging and Age-associated Diseases Prevention, Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Natalia V Brailova
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia V Sharashkina
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Daria A Kashtanova
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olesya Y Isaykina
- Department of Primary Prevention of Chronic Non-Communicable Diseases in the Healthcare System, Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Mariya S Pokrovskaya
- Biobank, Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vladimir A Vygodin
- Department of Epidemiology of Chronic Non-Communicable Diseases Laboratory of Biostatistics, Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Irina N Ozerova
- Department of Biochemical Markers of Chronic Non-Communicable Diseases Research, Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Dmitry A Skvortsov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey A Boytsov
- National Medical Research Center for Cardiology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
35
|
Peeters SA, Engelen L, Buijs J, Chaturvedi N, Fuller JH, Jorsal A, Parving HH, Tarnow L, Theilade S, Rossing P, Schalkwijk CG, Stehouwer CDA. Circulating matrix metalloproteinases are associated with arterial stiffness in patients with type 1 diabetes: pooled analysis of three cohort studies. Cardiovasc Diabetol 2017; 16:139. [PMID: 29070037 PMCID: PMC5657128 DOI: 10.1186/s12933-017-0620-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/15/2017] [Indexed: 02/07/2023] Open
Abstract
Background Altered regulation of extracellular matrix (ECM) composition by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) may contribute to arterial stiffening. We investigated associations between circulating MMP-1, -2, -3, -9, -10 and TIMP-1, and carotid-femoral pulse wave velocity (cfPWV) and pulse pressure (PP), as markers of arterial stiffness in type 1 diabetic patients. Methods Individuals with type 1 diabetes from three different cohorts were included in this study: EURODIAB Prospective Complications study (n = 509), LEACE (n = 370) and PROFIL (n = 638). Linear regression analyses were used to investigate cross-sectional associations between circulating levels of MMP-1, -2, -3, -9, -10, and TIMP-1 and cfPWV (n = 614) as well as office PP (n = 1517). Data on 24-h brachial and 24-h central PP were available in 638 individuals from PROFIL. Analyses were adjusted for age, sex, duration of diabetes, HbA1c, mean arterial pressure (MAP), and eGFR, and additionally for other cardiovascular risk factors and presence of vascular complications. Results After adjustment for potential confounders and presence of vascular complications, circulating MMP-3 was associated with cfPWV [β per 1 SD higher lnMMP3 0.29 m/s (0.02; 0.55)]. In addition, brachial and central 24-h PP measurements in PROFIL were significantly associated with MMP-2 [(1.40 (0.47:2.33) and 1.43 (0.63:2.23)]. Pooled data analysis showed significant associations of circulating levels of MMP-1 and MMP-2 with office PP [β per 1 SD higher lnMMP-1 and lnMMP-2 = − 0.83 mmHg (95% CI − 1.50; − 0.16) and = 1.33 mmHg (0.55; 2.10), respectively]. Conclusions MMPs-1, -2, and -3 are independently associated with markers of arterial stiffening in patients with type 1 diabetes and may become therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0620-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stijn A Peeters
- Department of Internal Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.,Department of Internal Medicine, Zuyderland hospital, Heerlen, The Netherlands
| | - Lian Engelen
- Department of Internal Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.,Centraal Bureau voor de Statistiek, Heerlen, The Netherlands
| | - Jacqueline Buijs
- Department of Internal Medicine, Zuyderland hospital, Heerlen, The Netherlands
| | - Nish Chaturvedi
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - John H Fuller
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Anders Jorsal
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hans-Henrik Parving
- Department of Medical Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lise Tarnow
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands. .,CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
36
|
Xu X, Wang B, Ren C, Hu J, Greenberg DA, Chen T, Xie L, Jin K. Age-related Impairment of Vascular Structure and Functions. Aging Dis 2017; 8:590-610. [PMID: 28966804 PMCID: PMC5614324 DOI: 10.14336/ad.2017.0430] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/30/2017] [Indexed: 12/12/2022] Open
Abstract
Among age-related diseases, cardiovascular and cerebrovascular diseases are major causes of death. Vascular dysfunction is a key characteristic of these diseases wherein age is an independent and essential risk factor. The present work will review morphological alterations of aging vessels in-depth, which includes the discussion of age-related microvessel loss and changes to vasculature involving the capillary basement membrane, intima, media, and adventitia as well as the accompanying vascular dysfunctions arising from these alterations.
Collapse
Affiliation(s)
- Xianglai Xu
- 1Zhongshan Hospital, Fudan University, Shanghai 200032, China.,2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Brian Wang
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Changhong Ren
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.,4Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China
| | - Jiangnan Hu
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | | | - Tianxiang Chen
- 6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Xie
- 3Department of Urology, the First Affiliated Hospital, Zhejiang University, Zhejiang Province, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| |
Collapse
|
37
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
38
|
Balistreri CR, Ruvolo G, Lio D, Madonna R. Toll-like receptor-4 signaling pathway in aorta aging and diseases: "its double nature". J Mol Cell Cardiol 2017; 110:38-53. [PMID: 28668304 DOI: 10.1016/j.yjmcc.2017.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Abstract
Recent advances in the field of innate immunity have revealed a complex role of innate immune signaling pathways in both tissue homeostasis and disease. Among them, the Toll-like receptor 4 (TLR-4) pathways has been linked to various pathophysiological conditions, such as cardiovascular diseases (CVDs). This has been interrogated by developing multiple laboratory tools that have shown in animal models and clinical conditions, the involvement of the TLR-4 signaling pathway in the pathophysiology of different CVDs, such as atherosclerosis, ischemic heart disease, heart failure, ischemia-reperfusion injury and aorta aneurysm. Among these, aorta aneurysm, a very complex pathological condition with uncertain etiology and fatal complications (i.e. dissection and rupture), has been associated with the occurrence of high risk cardiovascular conditions, including thrombosis and embolism. In this review, we discuss the possible role of TLR-4 signaling pathway in the development of aorta aneurysm, considering the emerging evidence from ongoing investigations. Our message is that emphasizing the role of TLR-4 signaling pathway in aorta aneurysm may serve as a starting point for future studies, leading to a better understanding of the pathophysiological basis and perhaps the effective treatment of this difficult human disease.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giovanni Ruvolo
- Department of Cardiac Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Domenico Lio
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Rosalinda Madonna
- Heart Failure Research, Texas Heart Institute, St. Luke's Episcopal Hospital, Houston, TX, United States; Department of Internal Medicine, Cardiology, The University of Texas Health Science Center at Houston, Houston, TX, United States; Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences "G. D'Annunzio" University, 66100 Chieti, Italy
| |
Collapse
|
39
|
Al-Gburi S, Deussen AJ, Galli R, Muders MH, Zatschler B, Neisser A, Müller B, Kopaliani I. Sex-specific differences in age-dependent progression of aortic dysfunction and related cardiac remodeling in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2017; 312:R835-R849. [PMID: 28274938 DOI: 10.1152/ajpregu.00231.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/25/2023]
Abstract
Evidence of sex-specific differences in renin-angiotensin-system (RAS) and arterial pressure has been shown in many mammals, including spontaneously hypertensive rats (SHRs). Although SHRs have been used extensively as a leading experimental model of hypertension, the effects of sex-specific differences in RAS on aortic function and related cardiac remodeling during aging and hypertension have not been documented in detail. We examined structural and functional changes in aorta and heart of female and male SHRs at the ages of 5, 14, 29, and 36 wk. SHRs of both sexes were hypertensive from 14 wk. Aortic endothelial dysfunction and fibrosis, left ventricular (LV) hypertrophy, and cardiac fibrosis were evident at the age of 29 wk in male SHRs but first appeared only at the age of 36 wk in female SHRs. There was a pronounced delay of matrix metalloproteinase-2 activity in the aorta and heart of female SHRs, which was associated with preservation of 40% more elastin and less extensive cardiac fibrosis than in males. At 5, 29, and 36 wk of age, female SHRs showed higher levels of aortic and myocardial AT2R and MasR mRNA and decreased ANG II-mediated aortic constriction. Although female SHRs had increased relaxation to AT2R stimulation at 5 and 29 wk compared with males, this difference disappeared at 36 wk of age. This study documents sex-specific differences in the temporal progression of aortic dysfunction and LV hypertrophy in SHRs, which are independent of arterial pressure and are apparently mediated by higher AT2R expression in the heart and aorta of female SHRs.
Collapse
Affiliation(s)
- Suzan Al-Gburi
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andreas J Deussen
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany;
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; and
| | - Birgit Zatschler
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anja Neisser
- Department of Anatomy, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Bianca Müller
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Irakli Kopaliani
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
40
|
Santos-Parker JR, Strahler TR, Bassett CJ, Bispham NZ, Chonchol MB, Seals DR. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging (Albany NY) 2017; 9:187-208. [PMID: 28070018 PMCID: PMC5310664 DOI: 10.18632/aging.101149] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/20/2016] [Indexed: 05/15/2023]
Abstract
We hypothesized that curcumin would improve resistance and conduit artery endothelial function and large elastic artery stiffness in healthy middle-aged and older adults. Thirty-nine healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of curcumin (2000 mg/day Longvida®; n=20) or placebo (n=19) supplementation. Forearm blood flow response to acetylcholine infusions (FBFACh; resistance artery endothelial function) increased 37% following curcumin supplementation (107±13 vs. 84±11 AUC at baseline, P=0.03), but not placebo (P=0.2). Curcumin treatment augmented the acute reduction in FBFACh induced by the nitric oxide synthase inhibitor NG monomethyl-L-arginine (L-NMMA; P=0.03), and reduced the acute increase in FBFACh to the antioxidant vitamin C (P=0.02), whereas placebo had no effect (both P>0.6). Similarly, brachial artery flow-mediated dilation (conduit artery endothelial function) increased 36% in the curcumin group (5.7±0.4 vs. 4.4±0.4% at baseline, P=0.001), with no change in placebo (P=0.1). Neither curcumin nor placebo influenced large elastic artery stiffness (aortic pulse wave velocity or carotid artery compliance) or circulating biomarkers of oxidative stress and inflammation (all P>0.1). In healthy middle-aged and older adults, 12 weeks of curcumin supplementation improves resistance artery endothelial function by increasing vascular nitric oxide bioavailability and reducing oxidative stress, while also improving conduit artery endothelial function.
Collapse
Affiliation(s)
| | - Talia R. Strahler
- Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Candace J. Bassett
- Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Nina Z. Bispham
- Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Michel B. Chonchol
- Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA
| | - Douglas R. Seals
- Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
41
|
Abstract
Significant hemodynamic changes ensue with aging, leading to an ever-growing epidemic of hypertension. Alterations in central arterial properties play a major role in these hemodynamic changes. These alterations are characterized by an initial decline in aortic distensibility and an increase of diastolic blood pressure, followed by a sharp increase in pulse wave velocity (PWV), and an increase in pulse pressure (PP) beyond the sixth decade. However, the trajectories of PWV and PP diverge with advancing age. There is an increased prevalence of salt-sensitive hypertension with advancing age that is, in part, mediated by marinobufagenin, an endogenous sodium pump ligand.
Collapse
Affiliation(s)
- Majd AlGhatrif
- Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, MD, USA; Department of Medicine, Johns Hopkins Bayview Medical Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, MD, USA
| | - Olga V Fedorova
- Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, MD, USA
| | - Alexei Y Bagrov
- Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, MD, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, MD, USA.
| |
Collapse
|
42
|
Kopaliani I, Martin M, Zatschler B, Müller B, Deussen A. Whey peptide Isoleucine-Tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta. Peptides 2016; 82:52-59. [PMID: 27239047 DOI: 10.1016/j.peptides.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/28/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
Abstract
Aortic stiffness is an independent risk factor for development of cardiovascular diseases. Activation of renin-angiotensin-aldosterone system (RAAS) including angiotensin converting enzyme (ACE) activity leads to overproduction of angiotensin II (ANGII) from its precursor angiotensin I (ANGI). ANGII leads to overexpression and activation of matrix metalloproteinase-2 (MMP2), which is critically associated with pathophysiology of aortic stiffness. We previously reported that the whey peptide Isoleucine-Tryptophan (IW) acts as a potent ACE inhibitor. Herein, we critically elucidate the mechanism of action by which IW causes inhibition of expression and activity of MMP2 in aortic tissue. Effects of IW on expression and activity of MMP2 were assessed on endothelial and smooth muscle cells (ECs and SMCs) in vitro and ex vivo (isolated rat aorta). As controls we used the pharmaceutical ACE inhibitor - captopril and the ANGII type 1 receptor blocker - losartan. In vitro, both ANGII and ANGI stimulation significantly (P<0.01) increased expression of MMP2 assessed with western blot. Similarly, to captopril IW significantly (P<0.05) inhibited ANGI, but not ANGII mediated increase in expression of MMP2, while losartan also blocked effects of ANGII. Signaling pathways regulating MMP2 expression in ECs and SMCs were similarly inhibited after treatment with IW or captopril. In ECs IW significantly (P<0.05) inhibited JNK pathway, whereas in SMCs JAK2/STAT3 pathway, assessed with western blot. In vitro findings were fully consistent with results in isolated rat aorta ex vivo. Moreover, IW not only inhibited the MMP2 expression, but also its activation assessed with gelatin zymography. Our findings demonstrate that IW effectively inhibits expression and activation of MMP2 in rat aorta by decreasing local conversion of ANGI to ANGII. Thus, similar to pharmaceutical ACE inhibitor captopril the dipeptide IW may effectively inhibit ACE activity and prevent the age and hypertension associated rise of aortic stiffness.
Collapse
Affiliation(s)
- Irakli Kopaliani
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Melanie Martin
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Birgit Zatschler
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Bianca Müller
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Germany.
| |
Collapse
|
43
|
The inhibition of calpains ameliorates vascular restenosis through MMP2/TGF-β1 pathway. Sci Rep 2016; 6:29975. [PMID: 27453531 PMCID: PMC4958998 DOI: 10.1038/srep29975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/28/2016] [Indexed: 01/16/2023] Open
Abstract
Restenosis limits the efficacy of vascular percutaneous intervention, in which vascular smooth muscle cell (VSMC) proliferation and activation of inflammation are two primary causal factors. Calpains influence VSMC proliferation and collagen synthesis. However, the roles of calpastatin and calpains in vascular restenosis remain unclear. Here, restenosis was induced by ligating the left carotid artery, and VSMCs were pretreated with platelet-derived growth factor (PDGF)-BB. Adenovirus vector carrying MMP2 sequence and specific small interfering RNA against calpain-1/2 were introduced. Finally, restenosis enhanced the expression of calpain-1/2, but reduced calpastatin content. In calpastatin transgenic mice, lumen narrowing was attenuated gradually and peaked on days 14-21. Cell proliferation and migration as well as collagen synthesis were inhibited in transgenic mice, and expression of calpain-1/2 and MMP2/transforming growth factor-β1 (TGF-β1). Consistently, in VSMCs pretreated with PDGF-BB, calpastatin induction and calpains inhibition suppressed the proliferation and migration of VSMCs and collagen synthesis, and reduced expression of calpain-1/2 and MMP2/TGF-β1. Moreover, simvastatin improved restenosis indicators by suppressing the HIF-1α/calpains/MMP2/TGF-β1 pathway. However, MMP2 supplementation eliminated the vascular protection of calpastatin induction and simvastatin. Collectively, calpains inhibition plays crucial roles in vascular restenosis by preventing neointimal hyperplasia at the early stage via suppression of the MMP2/TGF-β1 pathway.
Collapse
|
44
|
Achard V, Sanchez C, Tassistro V, Verdier M, Alessi MC, Grino M. Immediate Postnatal Overfeeding in Rats Programs Aortic Wall Structure Alterations and Metalloproteinases Dysregulation in Adulthood. Am J Hypertens 2016; 29:719-26. [PMID: 26547079 DOI: 10.1093/ajh/hpv183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alterations in the nutritional perinatal environment, such as intrauterine growth retardation with subsequent postnatal catch-up growth, program cardiovascular disease in adulthood, possibly through alterations in matrix metalloproteinase (MMP)-2 and -9. However, experimental evidences demonstrating that changes in the nutritional perinatal environment can program MMP-2 and -9 with subsequent alterations of vessel wall are lacking. AIM The current study evaluated whether immediate postnatal overfeeding is able to alter vascular morphological indexes and circulating and/or vascular MMP2-2 and -9 status. METHODS Aortic morphology (wall thickness and percentage of incomplete elastin lamellae) and circulating and aortic MMP-2 and -9 activity (measured by gelatin zymography) and aortic MMP-2 and -9 mRNA (measured by reverse transcription polymerase chain reaction (RT-PCR)) were studied in adult male rats overfed (OF) or normofed (NF) during the immediate postnatal period. RESULTS Postnatal overfeeding induced early onset obesity. Adult OF rats presented with increased blood pressure and circulating MMP-2 and -9 activity. In the thoracic aorta, postnatal overfeeding increased wall thickness and decreased elastin integrity (as demonstrated by an increased percentage of incomplete elastin lamellae). OF rats showed enhanced aortic MMP-2 activity and MMP-9 mRNA levels. Circulating and aortic MMP-2 activity correlated positively with the percentage of incomplete elastin lamellae and aortic wall thickness, respectively. CONCLUSION Our data demonstrate for the first time that immediate postnatal nutritional programming induces increases in circulating and aortic MMP-2 activity with parallel aortic wall alterations, such as decreased elastin integrity and enhanced thickening, showing that this experimental model is suitable for the study of perinatal nutritional programming of vascular functions.
Collapse
Affiliation(s)
- Vincent Achard
- Inserm, UMR1062, Marseille, France; INRA, UMR 1260, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Caroline Sanchez
- Inserm, UMR1062, Marseille, France; INRA, UMR 1260, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Virginie Tassistro
- Inserm, UMR1062, Marseille, France; INRA, UMR 1260, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Monique Verdier
- Inserm, UMR1062, Marseille, France; INRA, UMR 1260, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Marie-Christine Alessi
- Inserm, UMR1062, Marseille, France; INRA, UMR 1260, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Michel Grino
- Inserm, UMR1062, Marseille, France; INRA, UMR 1260, Marseille, France; Aix-Marseille Université, Marseille, France.
| |
Collapse
|
45
|
Sahlén A, Hamid N, Amanullah MR, Fam JM, Yeo KK, Lau YH, Lam CSP, Ding ZP. Impact of aortic root size on left ventricular afterload and stroke volume. Eur J Appl Physiol 2016; 116:1355-65. [PMID: 27179797 DOI: 10.1007/s00421-016-3392-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE The left ventricle (LV) ejects blood into the proximal aorta. Age and hypertension are associated with stiffening and dilation of the aortic root, typically viewed as indicative of adverse remodeling. Based on analytical considerations, we hypothesized that a larger aortic root should be associated with lower global afterload (effective arterial elastance, EA) and larger stroke volume (SV). Moreover, as antihypertensive drugs differ in their effect on central blood pressure, we examined the role of antihypertensive drugs for the relation between aortic root size and afterload. METHODS We studied a large group of patients (n = 1250; 61 ± 12 years; 78 % males; 64 % hypertensives) from a single-center registry with known or suspected coronary artery disease. Aortic root size was measured by echocardiography as the diameter of the tubular portion of the ascending aorta. LV outflow tract Doppler was used to record SV. RESULTS In the population as a whole, after adjusting for key covariates in separate regression models, aortic root size was an independent determinant of both SV and EA. This association was found to be heterogeneous and stronger in patients taking a calcium channel blocker (CCB; 10.6 % of entire population; aortic root size accounted for 8 % of the explained variance of EA). CONCLUSION Larger aortic root size is an independent determinant of EA and SV. This association was heterogeneous and stronger in patients on CCB therapy.
Collapse
Affiliation(s)
- Anders Sahlén
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore. .,Karolinska Institutet, Department of Cardiology, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| | - Nadira Hamid
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | | | - Jiang Ming Fam
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Khung Keong Yeo
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Yee How Lau
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Carolyn S P Lam
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Zee Pin Ding
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| |
Collapse
|
46
|
Diaz-Otero JM, Garver H, Fink GD, Jackson WF, Dorrance AM. Aging is associated with changes to the biomechanical properties of the posterior cerebral artery and parenchymal arterioles. Am J Physiol Heart Circ Physiol 2016; 310:H365-75. [PMID: 26637558 PMCID: PMC4796626 DOI: 10.1152/ajpheart.00562.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022]
Abstract
Artery remodeling, described as a change in artery structure, may be responsible for the increased risk of cardiovascular disease with aging. Although the risk for stroke is known to increase with age, relatively young animals have been used in most stroke studies. Therefore, more information is needed on how aging alters the biomechanical properties of cerebral arteries. Posterior cerebral arteries (PCAs) and parenchymal arterioles (PAs) are important in controlling brain perfusion. We hypothesized that aged (22-24 mo old) C57bl/6 mice would have stiffer PCAs and PAs than young (3-5 mo old) mice. The biomechanical properties of the PCAs and PAs were assessed by pressure myography. Data are presented as means ± SE of young vs. old. In the PCA, older mice had increased outer (155.6 ± 3.2 vs. 169.9 ± 3.2 μm) and lumen (116.4 ± 3.6 vs. 137.1 ± 4.7 μm) diameters. Wall stress (375.6 ± 35.4 vs. 504.7 ± 60.0 dyn/cm(2)) and artery stiffness (β-coefficient: 5.2 ± 0.3 vs. 7.6 ± 0.9) were also increased. However, wall strain (0.8 ± 0.1 vs. 0.6 ± 0.1) was reduced with age. In the PAs from old mice, wall thickness (3.9 ± 0.3 vs. 5.1 ± 0.2 μm) and area (591.1 ± 95.4 vs. 852.8 ± 100 μm(2)) were increased while stress (758.1 ± 100.0 vs. 587.2 ± 35.1 dyn/cm(2)) was reduced. Aging also increased mean arterial and pulse pressures. We conclude that age-associated remodeling occurs in large cerebral arteries and arterioles and may increase the risk of cerebrovascular disease.
Collapse
Affiliation(s)
- Janice M Diaz-Otero
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
47
|
Otto S, Deussen A, Zatschler B, Müller B, Neisser A, Barth K, Morawietz H, Kopaliani I. A novel role of endothelium in activation of latent pro-membrane type 1 MMP and pro-MMP-2 in rat aorta. Cardiovasc Res 2015; 109:409-18. [PMID: 26598508 DOI: 10.1093/cvr/cvv256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/14/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Aortic stiffness is an independent risk factor for progression of cardiovascular diseases. Degradation of elastic fibres in aorta due to angiotensin II (ANGII)-stimulated overactivation of latent membrane type 1 matrix metalloproteinase (MT1MMP) and matrix metalloproteinase-2 (MMP2) is regarded to represent an important cause of aortic stiffness. Therefore, clarification of the causal mechanisms triggering the overactivation of these MMPs is of utmost importance. This study addresses the endothelium as a novel key activator of latent pro-MT1MMP and pro-MMP2 in rat aorta. METHODS AND RESULTS Using a co-culture model of rat aortic endothelial cells (ECs) and smooth muscle cells (SMCs), we found that ANGII stimulation resulted in activation of latent pro-MT1MMP and pro-MMP2 in SMCs exclusively when co-cultured with ECs (assessed with western blot and gelatin zymography, respectively). EC-specific AT1 receptor stimulation triggered endothelin-1 release and paracrine action on SMCs. Endothelin-1 increased expression and activity of pro-protein convertase furin in SMCs via endothelin receptor type A (assessed with qPCR and furin activity assay, respectively). Consequently, furin acted in two ways. First, it increased the activation of latent pro-MT1MMP and, second, it activated pro-αvβ3 integrin. Both pathways led to overactivation of latent pro-MMP2. In vitro findings in the co-culture model were fully consistent with the ex vivo findings obtained in isolated rat aorta. CONCLUSIONS We propose that the endothelium under ANGII stimulation acts as a novel and key activator of latent pro-MT1MMP and pro-MMP2 in SMCs of rat aorta. Therefore, endothelium may critically contribute to pathophysiology of aortic stiffness.
Collapse
Affiliation(s)
- Sören Otto
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Birgit Zatschler
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Bianca Müller
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Anja Neisser
- Department of Anatomy, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Kathrin Barth
- Department of Anatomy, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University, Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Germany
| | - Irakli Kopaliani
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Germany
| |
Collapse
|
48
|
Abstract
More is known about the epidemiology of drug-resistant hypertension than particular pathogenic factors and pathways. Several recurring themes, however, seem evident on using insight from epidemiology and general knowledge of the pathophysiology of hypertension. Specifically, 4 main pathways converge on drug resistance including sodium handling, sympathetic nervous system activation, endothelial dysfunction, and arterial stiffness. These factors, and the various pathways and elements contributing to them, are reviewed. In addition to describing how these factors exert their individual influences on resistant hypertension, several examples of how interactions between these factors, particularly in the case of chronic kidney disease, are included. At the conclusion of this review some thoughts are offered on additional mechanisms and areas for potential research.
Collapse
|
49
|
Wang M, Shah AM. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries. J Mol Cell Cardiol 2015; 83:101-11. [PMID: 25665458 PMCID: PMC4459900 DOI: 10.1016/j.yjmcc.2015.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 01/12/2023]
Abstract
The aging population is increasing dramatically. Aging–associated stress simultaneously drives proinflammatory remodeling, involving angiotensin II and other factors, in both the heart and large arteries. The structural remodeling and functional changes that occur with aging include cardiac and vascular wall stiffening, systolic hypertension and suboptimal ventricular-arterial coupling, features that are often clinically silent and thus termed a silent syndrome. These age-related effects are the result of responses initiated by cardiovascular proinflammatory cells. Local proinflammatory signals are coupled between the heart and arteries due to common mechanical and humoral messengers within a closed circulating system. Thus, targeting proinflammatory signaling molecules would be a promising approach to improve age-associated suboptimal ventricular-arterial coupling, a major predisposing factor for the pathogenesis of clinical cardiovascular events such as heart failure.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Blvd, Baltimore, MD 21224, USA.
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
| |
Collapse
|
50
|
Wang M, Monticone RE, Lakatta EG. Proinflammation of aging central arteries: a mini-review. Gerontology 2014; 60:519-29. [PMID: 25171100 DOI: 10.1159/000362548] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/31/2014] [Indexed: 12/16/2022] Open
Abstract
Arterial aging is a cornerstone of organismal aging. The central arterial wall structurally and functionally remodels under chronic proinflammatory stress over a lifetime. The low-grade proinflammation that accompanies advancing age causes arterial wall thickening and stiffening. These structural and functional alterations are consequences of adverse molecular and cellular events, e.g. an increase in local angiotensin II signaling that induces an inflammatory phenotypic shift of endothelial and smooth muscle cells. Thus, interventions to restrict proinflammatory signaling are a rational approach to delay or prevent age-associated adverse arterial remodeling.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, Md., USA
| | | | | |
Collapse
|