1
|
Burke SL, Barzel B, Jackson KL, Gueguen C, Young MJ, Head GA. Role of Mineralocorticoid and Angiotensin Type 1 Receptors in the Paraventricular Nucleus in Angiotensin-Induced Hypertension. Front Physiol 2021; 12:640373. [PMID: 33762970 PMCID: PMC7982587 DOI: 10.3389/fphys.2021.640373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is an important site where an interaction between circulating angiotensin (Ang) and mineralocorticoid receptor (MR) activity may modify sympathetic nerve activity (SNA) to influence long-term elevation of blood pressure. We examined in conscious Ang II-treated rabbits, the effects on blood pressure and tonic and reflex renal SNA (RSNA) of microinjecting into the PVN either RU28318 to block MR, losartan to block Ang (AT1) receptors or muscimol to inhibit GABA A receptor agonist actions. Male rabbits received a moderate dose of Ang II (24 ng/kg/min subcutaneously) for 3 months (n = 13) or sham treatment (n = 13). At 3 months, blood pressure increased by +19% in the Ang II group compared to 10% in the sham (P = 0.022) but RSNA was similar. RU28318 lowered blood pressure in both Ang II and shams but had a greater effect on RSNA and heart rate in the Ang II-treated group (P < 0.05). Losartan also lowered RSNA, while muscimol produced sympatho-excitation in both groups. In Ang II-treated rabbits, RU28318 attenuated the blood pressure increase following chemoreceptor stimulation but did not affect responses to air jet stress. In contrast losartan and muscimol reduced blood pressure and RSNA responses to both hypoxia and air jet. While neither RU28318 nor losartan changed the RSNA baroreflex, RU28318 augmented the range of the heart rate baroreflex by 10% in Ang II-treated rabbits. Muscimol, however, augmented the RSNA baroreflex by 11% in sham animals and none of the treatments altered baroreflex sensitivity. In conclusion, 3 months of moderate Ang II treatment promotes activation of reflex RSNA principally via MR activation in the PVN, rather than via activation of AT1 receptors. However, the onset of hypertension is independent of both. Interestingly, the sympatho-excitatory effects of muscimol in both groups suggest that overall, the PVN regulates a tonic sympatho-inhibitory influence on blood pressure control.
Collapse
Affiliation(s)
- Sandra L. Burke
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Benjamin Barzel
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kristy L. Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Morag J. Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A. Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Brothers RM, Stephens BY, Akins JD, Fadel PJ. Influence of sex on heightened vasoconstrictor mechanisms in the non-Hispanic black population. FASEB J 2020; 34:14073-14082. [PMID: 32949436 DOI: 10.1096/fj.202001405r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Abstract
Cardiovascular disease (CVD) affects individuals of all races and ethnicities; however, its prevalence is highest in non-Hispanic black individuals (BL) relative to other populations. While previous research has provided valuable insight into elevated CVD risk in the BL population, this work has been almost exclusively conducted in men. This is alarming given that BL women suffer from CVD at an equivalent rate to BL men and each has a greater prevalence when compared to all other ethnicities, regardless of sex. The importance of investigating sex differences in mechanisms of cardiovascular function is highlighted by the National Institute of Health requiring sex to be considered as a biological variable in research studies to better our "understanding of key sex influences on health processes and outcomes." The mechanism(s) responsible for the elevated CVD risk in BL women remains unclear and is likely multifactorial. Limited studies in BL women suggest that, while impaired vasodilator capacity is involved, heightened vasoconstrictor tone and/or responsiveness may also contribute. Within this mini-review, we will discuss potential mechanisms of elevated rates of hypertension and other CVDs in BL individuals with a particular focus on young, otherwise healthy, college-aged women. To stimulate academic thought and future research, we will also discuss potential mechanisms for impaired vascular function in BL women, as well as possible divergent mechanisms between BL men and women based on either preliminary data or plausible speculation extending from findings in the existing literature. Last, we will conclude with potential future research directions aimed at better understanding the elevated risk for hypertension and CVD in BL women.
Collapse
Affiliation(s)
| | | | - John D Akins
- Department of Kinesiology, University of Texas, Arlington, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas, Arlington, TX, USA
| |
Collapse
|
3
|
Brouillard C, Carrive P, Camus F, Bénoliel JJ, Sévoz-Couche C. Vulnerability to stress consequences induced by repeated social defeat in rats: Contribution of the angiotensin II type 1 receptor in cardiovascular alterations associated to low brain derived neurotrophic factor. Eur J Pharmacol 2019; 861:172595. [DOI: 10.1016/j.ejphar.2019.172595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023]
|
4
|
Jeong JH, Hanevold C, Harris RA, Kapuku G, Pollock J, Pollock D, Harshfield G. Angiotensin II receptor blocker attenuates stress pressor response in young adult African Americans. J Clin Hypertens (Greenwich) 2019; 21:1191-1199. [PMID: 31328876 DOI: 10.1111/jch.13625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
African Americans (AAs) are susceptible to hypertension (HTN) and its associated organ damage leading to adverse cardiovascular (CV) outcomes. Psychological stress is proposed to contribute to the development of HTN; however, the potential role of the renin-angiotensin system (RAS) in stress-related HTN in AAs is largely unknown. In this study, we tested the hypothesis that activation of RAS is a potential contributing factor for altered CV responses to stress, and suppression of angiotensin II (Ang II) activity will improve hemodynamic responses to a prolonged mental stressor in healthy young AAs. Utilizing a double-blind, randomized, crossover study design, 132 normotensive AAs (25 ± 7 years) were treated with either a placebo (PLC) or 150 mg/d irbesartan (an Ang II type 1 receptor blocker; ARB) for 1 week. On the final day of each treatment, hemodynamic measures and urinary sodium excretion (UNaV) were collected before, during and after a 45 minute-mental stress. The magnitude of stress-induced increase in blood pressure with ARB was blunted and delayed compared to PLC. Systolic blood pressure at the end of recovery on ARB was significantly lower compared to either PLC (110 ± 13 vs 117 ± 12 mm Hg respectively; P < 0.001) or the prestress level on ARB (P = 0.02). ARB treatment reduced overall vasoconstriction and improved poststress UNaV. ARB attenuated blood pressure responses to mental stress and improved the poststress BP recovery process which were partly linked to reduced overall vasoconstriction and improved stress-induced UNaV in young adult AAs prior to the development of disease conditions. These results suggest that treatment approaches that inhibit RAS action could have significant relevance to potentially lower susceptibility to stress responses and eventually the premature development of HTN in AAs.
Collapse
Affiliation(s)
- Jin Hee Jeong
- Department of Population Health Sciences, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Coral Hanevold
- Department of Pediatrics, Division of Nephrology, University of Washington, Seattle, Washington
| | - Ryan A Harris
- Department of Population Health Sciences, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Gaston Kapuku
- Department of Population Health Sciences, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Jennifer Pollock
- Department of Medicine, University of Alabama, Birmingham, Alabama
| | - David Pollock
- Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Gregory Harshfield
- Department of Population Health Sciences, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| |
Collapse
|
5
|
Griffiths PR, Lolait SJ, Harris LE, Paton JFR, O'Carroll AM. Vasopressin V1a receptors mediate the hypertensive effects of [Pyr 1 ]apelin-13 in the rat rostral ventrolateral medulla. J Physiol 2017; 595:3303-3318. [PMID: 28255983 PMCID: PMC5451710 DOI: 10.1113/jp274178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Abstract
Key points Dysfunctions in CNS regulation of arterial blood pressure lead to an increase in sympathetic nerve activity that participates in the pathogenesis of hypertension. The apelin‐apelin receptor system affects arterial blood pressure homeostasis; however, the central mechanisms underlying apelin‐mediated changes in sympathetic nerve activity and blood pressure have not been clarified. We explored the mechanisms involved in the regulation of [Pyr1]apelin‐13‐mediated cardiovascular control within the rostral ventrolateral medulla (RVLM) using selective receptor antagonists. We show that [Pyr1]apelin‐13 acts as a modulating neurotransmitter in the normotensive RVLM to affect vascular tone through interaction with the vasopressin V1a receptor but that [Pyr1]apelin‐13‐induced sympathoexcitation is independent of angiotensin II receptor type 1, oxytocin, ionotropic glutamate and GABAA receptors. Our data confirm a role for the apelin peptide system in cardiovascular regulation at the level of the RVLM and highlight that this system is a possible potential therapeutic target for the treatment of hypertension.
Abstract Apelin is a ubiquitous peptide that can elevate arterial blood pressure (ABP) yet understanding of the mechanisms involved remain incomplete. Bilateral microinjection of [Pyr1]apelin‐13 into the rostral ventrolateral medulla (RVLM), a major source of sympathoexcitatory neurones, increases ABP and sympathetic nerve activity. We aimed to investigate the potential involvement of neurotransmitter systems through which the apelin pressor response may occur within the RVLM. Adult male Wistar rats were anaesthetized and ABP was monitored via a femoral arterial catheter. Bilateral RVLM microinjection of [Pyr1]apelin‐13 significantly increased ABP (9 ± 1 mmHg) compared to saline (−1 ± 2mmHg; P < 0.001), which was blocked by pretreatment with the apelin receptor antagonist, F13A (0 ± 1 mmHg; P < 0.01). The rise in ABP was associated with an increase in the low frequency spectra of systolic BP (13.9 ± 4.3% total power; P < 0.001), indicative of sympathetic vasomotor activation. The [Pyr1]apelin‐13‐mediated pressor response and the increased low frequency spectra of systolic BP response were fully maintained despite RVLM pretreatment with the angiotensin II type 1 receptor antagonist losartan, the oxytocin receptor antagonist desGly‐NH2, d(CH2)5[D‐Tyr2,Thr4]OVT, the ionotropic glutamate receptor antagonist kynurenate or the GABAA antagonist bicuculline (P > 0.05). By contrast, the [Pyr1]apelin‐13 induced pressor and sympathoexcitatory effects were abolished by pretreatment of the RVLM with the vasopressin V1a receptor antagonist, SR 49059 (−1 ± 1 mmHg; 1.1 ± 1.1% total power, respectively; P < 0.001). These findings suggest that the pressor action of [Pyr1]apelin‐13 in the RVLM of normotensive rats is not mediated via angiotensin II type 1 receptor, oxytocin, ionotropic glutamate or GABAA receptors but instead involves a close relationship with the neuropeptide modulator vasopressin. Dysfunctions in CNS regulation of arterial blood pressure lead to an increase in sympathetic nerve activity that participates in the pathogenesis of hypertension. The apelin‐apelin receptor system affects arterial blood pressure homeostasis; however, the central mechanisms underlying apelin‐mediated changes in sympathetic nerve activity and blood pressure have not been clarified. We explored the mechanisms involved in the regulation of [Pyr1]apelin‐13‐mediated cardiovascular control within the rostral ventrolateral medulla (RVLM) using selective receptor antagonists. We show that [Pyr1]apelin‐13 acts as a modulating neurotransmitter in the normotensive RVLM to affect vascular tone through interaction with the vasopressin V1a receptor but that [Pyr1]apelin‐13‐induced sympathoexcitation is independent of angiotensin II receptor type 1, oxytocin, ionotropic glutamate and GABAA receptors. Our data confirm a role for the apelin peptide system in cardiovascular regulation at the level of the RVLM and highlight that this system is a possible potential therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
| | | | - Louise E Harris
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
6
|
Effect of p22phox depletion on sympathetic regulation of blood pressure in SHRSP: evaluation in a new congenic strain. Sci Rep 2016; 6:36739. [PMID: 27824157 PMCID: PMC5099856 DOI: 10.1038/srep36739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/19/2016] [Indexed: 01/25/2023] Open
Abstract
Oxidative stress in the rostral ventrolateral medulla (RVLM), a sympathetic center in the brainstem, was implicated in the regulation of sympathetic activity in various hypertensive models including stroke-prone spontaneously hypertensive rats (SHRSP). In this study, we evaluated the role of the NADPH oxidases (NOX) in the blood pressure (BP) regulation in RVLM in SHRSP. The P22PHOX-depleted congenic SHRSP (called SP.MES) was constructed by introducing the mutated p22phox gene of Matsumoto Eosinophilic Shinshu rat. BP response to glutamate (Glu) microinjection into RVLM was compared among SHRSP, SP.MES, SHR and Wistar Kyoto (WKY); the response to Glu microinjection was significantly greater in SHRSP than in SP.MES, SHR and WKY. In addition, tempol, losartan and apocynin microinjection reduced the response to Glu significantly only in SHRSP. The level of oxidative stress, measured in the brainstem using lucigenin and dihydroethidium, was reduced in SP.MES than in SHRSP. BP response to cold stress measured by telemetry system was also blunted in SP.MES when compared with SHRSP. The results suggested that oxidative stress due to the NOX activation in RVLM potentiated BP response to Glu in SHRSP, which might contribute to the exaggerated response to stress in this strain.
Collapse
|
7
|
Tazumi S, Yokota N, Kawakami M, Omoto S, Takamata A, Morimoto K. Effects of estrogen replacement on stress-induced cardiovascular responses via renin-angiotensin system in ovariectomized rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R898-R905. [DOI: 10.1152/ajpregu.00415.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 08/07/2016] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine whether chronic estrogen replacement in ovariectomized rats inhibits the pressor response to psychological stress by attenuating the activation of the renin-angiotensin system. Female Wistar rats aged 9 wk were ovariectomized. After 4 wk, the rats were randomly assigned to be implanted subcutaneously with pellets containing either 17β-estradiol (E2) or placebo (Pla). After 4 wk of treatment, the rats underwent cage-switch stress and, in a separate experiment, a subset received an infusion of angiotensin II. The cage-switch stress rapidly elevated blood pressure (BP) and heart rate (HR) as measured by radiotelemetry in both groups. However, the BP and HR responses to the stress were significantly attenuated in the E2 group compared with the Pla group. An angiotensin II type 1 receptor blocker, losartan, given in drinking water, abolished the difference in the pressor response to stress between the two groups. Moreover, the stress-induced elevation in plasma renin activity and angiotensin II concentration was significant in the Pla group, but not in the E2 group. In addition, the expression of renin mRNA in the kidney was lower in the E2 group relative to the Pla group. Finally, we found that intravenous angiotensin II infusion increased BP and decreased HR to a similar degree in both groups. These results suggest that the inhibitory effects of estrogen on psychological stress-induced activation of the renin-angiotensin system could be at least partially responsible for the suppression of the pressor responses to psychological stress seen in estrogen-replaced ovariectomized rats.
Collapse
Affiliation(s)
- Shoko Tazumi
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Naoko Yokota
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Mizuho Kawakami
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Sayo Omoto
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Akira Takamata
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Keiko Morimoto
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| |
Collapse
|
8
|
Abstract
OBJECTIVE The purpose of the study was to determine whether exposure to chronic mild stress (CMS) affects expression of angiotensin II Type 1a receptor (AT1aR) messenger RNA (mRNA) in the brain and kidney. METHODS Male Sprague-Dawley rats were divided into an unchallenged control group, which remained at rest, and an experimental group, exposed to CMS produced by a series of unexpected, disturbing stimuli applied at random over a period of 4 weeks. After sacrificing the animals, samples of the septal/accumbal and hypothalamic/thalamic diencephalon, brain medulla, cerebellum, and the renal medulla were harvested for determination of AT1aR mRNA. RESULTS Expression of AT1a receptor mRNA was significantly greater in the rats in the CMS condition than in the controls (septal/accumbal diencephalon: 1.689 [0.205] versus 0.027 [0.004], hypothalamic/thalamic diencephalon: 1.239 [0.101] versus 0.003 [0.001], brain medulla: 2.694 [0.295] versus 0.028 [0.003], cerebellum: 0.013 [0.002] versus 0.005 [0.001; p < .001 for all comparisons], and renal medulla: 409.92 [46.92] versus 208.06 [30.56; p < .01]). There was a significant positive correlation between AT1a mRNA expression in the septal/accumbal diencephalon and brain medulla (p < .025). CONCLUSIONS The results provide evidence that CMS significantly enhances expression of the AT1aR gene in the brain and kidney and indicate that changes in expression of AT1aR mRNA in different brain regions during CMS may be causally related. It is suggested that the up-regulation of AT1a receptors by chronic stress may potentiate negative effects of angiotensin II in pathologies associated with activation of the renin-angiotensin system.
Collapse
|
9
|
Angiotensin converting enzyme inhibition reduces cardiovascular responses to acute stress in myocardially infarcted and chronically stressed rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:385082. [PMID: 25045668 PMCID: PMC4087298 DOI: 10.1155/2014/385082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 11/17/2022]
Abstract
Previous studies showed that chronically stressed and myocardially infarcted rats respond with exaggerated cardiovascular responses to acute stress. The present experiments were designed to elucidate whether this effect can be abolished by treatment with the angiotensin converting enzyme (ACE) inhibitor captopril. Sprague Dawley rats were subjected either to sham surgery (Groups 1 and 2) or to myocardial infarction (Groups 3 and 4). The rats of Groups 2 and 4 were also exposed to mild chronic stressing. Four weeks after the operation, mean arterial blood pressure (MABP) and heart rate (HR) were measured under resting conditions and after application of acute stress. The cardiovascular responses to the acute stress were determined again 24 h after administration of captopril orally. Captopril significantly reduced resting MABP in each group. Before administration of captopril, the maximum increases in MABP evoked by the acute stressor in all (infarcted and sham-operated) chronically stressed rats and also in the infarcted nonchronically stressed rats were significantly greater than in the sham-operated rats not exposed to chronic stressing. These differences were abolished by captopril. The results suggest that ACE may improve tolerance of acute stress in heart failure and during chronic stressing.
Collapse
|
10
|
Daubert DL, Looney BM, Clifton RR, Cho JN, Scheuer DA. Elevated corticosterone in the dorsal hindbrain increases plasma norepinephrine and neuropeptide Y, and recruits a vasopressin response to stress. Am J Physiol Regul Integr Comp Physiol 2014; 307:R212-24. [PMID: 24829502 DOI: 10.1152/ajpregu.00326.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Repeated stress and chronically elevated glucocorticoids cause exaggerated cardiovascular responses to novel stress, elevations in baseline blood pressure, and increased risk for cardiovascular disease. We hypothesized that elevated corticosterone (Cort) within the dorsal hindbrain (DHB) would: 1) enhance arterial pressure and neuroendocrine responses to novel and repeated restraint stress, 2) increase c-Fos expression in regions of the brain involved in sympathetic stimulation during stress, and 3) recruit a vasopressin-mediated blood pressure response to acute stress. Small pellets made of 10% Cort were implanted on the surface of the DHB in male Sprague-Dawley rats. Blood pressure was measured by radiotelemetry. Cort concentration was increased in the DHB in Cort-treated compared with Sham-treated rats (60 ± 15 vs. 14 ± 2 ng Cort/g of tissue, P < 0.05). DHB Cort significantly increased the integrated arterial pressure response to 60 min of restraint stress on days 6, 13, and 14 following pellet implantation (e.g., 731 ± 170 vs. 1,204 ± 68 mmHg/60 min in Sham- vs. Cort-treated rats, day 6, P < 0.05). Cort also increased baseline blood pressure by day 15 (99 ± 2 vs. 108 ± 3 mmHg for Sham- vs. Cort-treated rats, P < 0.05) and elevated baseline plasma norepinephrine and neuropeptide Y concentrations. Cort significantly enhanced stress-induced c-Fos expression in vasopressin-expressing neurons in the paraventricular nucleus of the hypothalamus, and blockade of peripheral vasopressin V1 receptors attenuated the effect of DHB Cort to enhance the blood pressure response to restraint. These data indicate that glucocorticoids act within the DHB to produce some of the adverse cardiovascular consequences of chronic stress, in part, by a peripheral vasopressin-dependent mechanism.
Collapse
Affiliation(s)
- Daisy L Daubert
- University of Florida, Department of Physiology and Functional Genomics, Gainesville, Florida
| | - Benjamin M Looney
- University of Florida, Department of Physiology and Functional Genomics, Gainesville, Florida
| | - Rebekah R Clifton
- University of Florida, Department of Physiology and Functional Genomics, Gainesville, Florida
| | - Jake N Cho
- University of Florida, Department of Physiology and Functional Genomics, Gainesville, Florida
| | - Deborah A Scheuer
- University of Florida, Department of Physiology and Functional Genomics, Gainesville, Florida
| |
Collapse
|
11
|
Sabharwal R. The link between stress disorders and autonomic dysfunction in muscular dystrophy. Front Physiol 2014; 5:25. [PMID: 24523698 PMCID: PMC3905207 DOI: 10.3389/fphys.2014.00025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/12/2014] [Indexed: 01/16/2023] Open
Abstract
Muscular dystrophy is a progressive disease of muscle weakness, muscle atrophy and cardiac dysfunction. Patients afflicted with muscular dystrophy exhibit autonomic dysfunction along with cognitive impairment, severe depression, sadness, and anxiety. Although the psychological aspects of cardiovascular disorders and stress disorders are well known, the physiological mechanism underlying this relationship is not well understood, particularly in muscular dystrophy. Therefore, the goal of this perspective is to highlight the importance of autonomic dysfunction and psychological stress disorders in the pathogenesis of muscular dystrophy. This article will for the first time—(i) outline autonomic mechanisms that are common to both psychological stress and cardiovascular disorders in muscular dystrophy; (ii) propose therapies that would improve behavioral and autonomic functions in muscular dystrophy.
Collapse
Affiliation(s)
- Rasna Sabharwal
- Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
12
|
Du D, Chen J, Liu M, Zhu M, Jing H, Fang J, Shen L, Zhu D, Yu J, Wang J. The effects of angiotensin II and angiotensin-(1-7) in the rostral ventrolateral medulla of rats on stress-induced hypertension. PLoS One 2013; 8:e70976. [PMID: 23967142 PMCID: PMC3743893 DOI: 10.1371/journal.pone.0070976] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/26/2013] [Indexed: 12/03/2022] Open
Abstract
We have shown that angiotensin II (Ang II) and angiotensin-(1–7) [Ang-(1–7)] increased arterial blood pressure (BP) via glutamate release when microinjected into the rostral ventrolateral medulla (RVLM) in normotensive rats (control). In the present study, we tested the hypothesis that Ang II and Ang-(1–7) in the RVLM are differentially activated in stress-induced hypertension (SIH) by comparing the effects of microinjection of Ang II, Ang-(1–7), and their receptor antagonists on BP and amino acid release in SIH and control rats. We found that Ang II had greater pressor effect, and more excitatory (glutamate) and less inhibitory (taurine and γ-aminobutyric acid) amino acid release in SIH than in control animals. Losartan, a selective AT1 receptor (AT1R) antagonist, decreased mean BP in SIH but not in control rats. PD123319, a selective AT2 receptor (AT2R) antagonist, increased mean BP in control but not in SIH rats. However, Ang-(1–7) and its selective Mas receptor antagonist Ang779 evoked similar effects on BP and amino acid release in both SIH and control rats. Furthermore, we found that in the RVLM, AT1R, ACE protein expression (western blot) and ACE mRNA (real-time PCR) were significantly higher, whereas AT2R protein, ACE2 mRNA and protein expression were significantly lower in SIH than in control rats. Mas receptor expression was similar in the two groups. The results support our hypothesis and demonstrate that upregulation of Ang II by AT1R, not Ang-(1–7), system in the RVLM causes hypertension in SIH rats by increasing excitatory and suppressing inhibitory amino acid release.
Collapse
Affiliation(s)
- Dongshu Du
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurobiology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jun Chen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Min Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minxia Zhu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haojia Jing
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Fang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jerry Yu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pulmonary Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jin Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Littlejohn NK, Siel RB, Ketsawatsomkron P, Pelham CJ, Pearson NA, Hilzendeger AM, Buehrer BA, Weidemann BJ, Li H, Davis DR, Thompson AP, Liu X, Cassell MD, Sigmund CD, Grobe JL. Hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent. Am J Physiol Regul Integr Comp Physiol 2013; 304:R818-28. [PMID: 23535460 DOI: 10.1152/ajpregu.00082.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An indispensable role for the brain renin-angiotensin system (RAS) has been documented in most experimental animal models of hypertension. To identify the specific efferent pathway activated by the brain RAS that mediates hypertension, we examined the hypothesis that elevated arginine vasopressin (AVP) release is necessary for hypertension in a double-transgenic model of brain-specific RAS hyperactivity (the "sRA" mouse model). sRA mice experience elevated brain RAS activity due to human angiotensinogen expression plus neuron-specific human renin expression. Total daily loss of the 4-kDa AVP prosegment (copeptin) into urine was grossly elevated (≥8-fold). Immunohistochemical staining for AVP was increased in the supraoptic nucleus of sRA mice (~2-fold), but no quantitative difference in the paraventricular nucleus was observed. Chronic subcutaneous infusion of a nonselective AVP receptor antagonist conivaptan (YM-087, Vaprisol, 22 ng/h) or the V(2)-selective antagonist tolvaptan (OPC-41061, 22 ng/h) resulted in normalization of the baseline (~15 mmHg) hypertension in sRA mice. Abdominal aortas and second-order mesenteric arteries displayed AVP-specific desensitization, with minor or no changes in responses to phenylephrine and endothelin-1. Mesenteric arteries exhibited substantial reductions in V(1A) receptor mRNA, but no significant changes in V(2) receptor expression in kidney were observed. Chronic tolvaptan infusion also normalized the (5 mmol/l) hyponatremia of sRA mice. Together, these data support a major role for vasopressin in the hypertension of mice with brain-specific hyperactivity of the RAS and suggest a primary role of V(2) receptors.
Collapse
Affiliation(s)
- Nicole K Littlejohn
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Arnold AC, Sakima A, Kasper SO, Vinsant S, Garcia-Espinosa MA, Diz DI. The brain renin-angiotensin system and cardiovascular responses to stress: insights from transgenic rats with low brain angiotensinogen. J Appl Physiol (1985) 2012; 113:1929-36. [PMID: 22984245 DOI: 10.1152/japplphysiol.00569.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin system (RAS) has been identified as an attractive target for the treatment of stress-induced cardiovascular disorders. The effects of angiotensin (ANG) peptides during stress responses likely result from an integration of actions by circulating peptides and brain peptides derived from neuronal and glial sources. The present review focuses on the contribution of endogenous brain ANG peptides to pathways involved in cardiovascular responses to stressors. During a variety of forms of stress, neuronal pathways in forebrain areas containing ANG II or ANG-(1-7) are activated to stimulate descending angiotensinergic pathways that increase sympathetic outflow to increase blood pressure. We provide evidence that glia-derived ANG peptides influence brain AT(1) receptors. This appears to result in modulation of the responsiveness of the neuronal pathways activated during stressors that elevate circulating ANG peptides to activate brain pathways involving descending hypothalamic projections. It is well established that increased cardiovascular reactivity to stress is a significant predictor of hypertension and other cardiovascular diseases. This review highlights the importance of understanding the impact of RAS components from the circulation, neurons, and glia on the integration of cardiovascular responses to stressors.
Collapse
Affiliation(s)
- Amy C Arnold
- The Hypertension & Vascular Research Center and the Departments of General Surgery and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | |
Collapse
|
15
|
Tanaka K, Shimizu T, Lu L, Nakamura K, Yokotani K. Centrally administered bombesin activates COX-containing spinally projecting neurons of the PVN in anesthetized rats. Auton Neurosci 2012; 169:63-9. [PMID: 22537831 DOI: 10.1016/j.autneu.2012.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus has a heterogenous structure containing different types of output neurons that project to the median eminence, posterior pituitary, brain stem autonomic centers and sympathetic preganglionic neurons in the spinal cord. Presympathetic neurons in the PVN send mono- and poly-synaptic projections to the spinal cord. In the present study using urethane-anesthetized rats, we examined the effects of centrally administered bombesin (a homologue of the mammalian gastrin-releasing peptide) on the mono-synaptic spinally projecting PVN neurons pre-labeled with a retrograde tracer Fluoro-Gold (FG) injected into T8 level of the spinal cord, with regard to the immunoreactivity for cyclooxygenase (COX) isozymes (COX-1/COX-2) and Fos (a marker of neuronal activation). FG-labeled spinally projecting neurons were abundantly observed in the dorsal cap, ventral part and posterior part of the PVN. The immunoreactivity of each COX-1 and COX-2 was detected in FG-labeled spinally projecting PVN neurons in the vehicle (10 μl of saline/animal, i.c.v.)-treated group, while bombesin (1 nmol/animal, i.c.v.) had no effect on the number of these immunoreactive neurons for each COX isozyme with labeling of FG. On the other hand, the peptide significantly increased the number of double-immunoreactive neurons for Fos and COX-1/COX-2 with FG-labeling in the PVN (except triple-labeled neurons for FG, COX-2 and Fos in the dorsal cap of the PVN), as compared to those of vehicle-treated group. These results suggest that centrally administered bombesin activates spinally projecting PVN neurons containing COX-1 and COX-2 in rats.
Collapse
Affiliation(s)
- Kenjiro Tanaka
- Department of Pharmacology, School of Medicine, Kochi University, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | |
Collapse
|
16
|
Palma-Rigo K, Bassi JK, Nguyen-Huu TP, Jackson KL, Davern PJ, Chen D, Elghozi JL, Thomas WG, Allen AM, Head GA. Angiotensin 1A receptors transfected into caudal ventrolateral medulla inhibit baroreflex gain and stress responses. Cardiovasc Res 2012; 96:330-9. [PMID: 22869618 DOI: 10.1093/cvr/cvs252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS The caudal ventrolateral medulla (CVLM) is important for autonomic regulation and is rich in angiotensin II type 1A receptors (AT(1A)R). To determine their function, we examined whether the expression of AT(1A)R in the CVLM of mice lacking AT(1A)R (AT(1A)(-/-)) alters baroreflex sensitivity and cardiovascular responses to stress. METHODS AND RESULTS Bilateral microinjections into the CVLM of AT(1A)(-/-) mice of lentivirus with the phox-2 selective promoter (PRSx8) were made to express either AT(1A)R (Lv-PRSx8-AT(1A)) or green fluorescent protein (Lv-PRSx8-GFP) as a control. Radiotelemetry was used to record mean arterial pressure (MAP), heart rate (HR), and locomotor activity. Following injection of Lv-PRSx8-GFP, robust neuronal expression of GFP was observed with ∼60% of the GFP-positive cells also expressing the catecholamine-synthetic enzyme tyrosine hydroxylase. After 5 weeks, there were no differences in MAP or HR between groups, but the Lv-PRSx8-AT(1A)- injected mice showed reduced baroreflex sensitivity (-25%, P = 0.003) and attenuated pressor responses to cage-switch and restraint stress compared with the Lv-PRSx8-GFP-injected mice. Reduced MAP mid-frequency power during cage-switch stress reflected attenuated sympathetic activation (Pgroup × stress = 0.04). Fos-immunohistochemistry indicated greater activation of forebrain and hypothalamic neurons in the Lv-PRSx8-AT(1A) mice compared with the control. CONCLUSION The expression of AT(1A)R in CVLM neurons, including A1 neurons, while having little influence on the basal blood pressure or HR, may play a tonic role in inhibiting cardiac vagal baroreflex sensitivity. However, they strongly facilitate the forebrain response to aversive stress, yet reduce the pressor response presumably through greater sympatho-inhibition. These findings outline novel and specific roles for angiotensin II in the CVLM in autonomic regulation.
Collapse
Affiliation(s)
- Kesia Palma-Rigo
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, 75 Commercial Road, PO Box 6492 St Kilda Road Central, Melbourne, VIC 8008, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Angiotensin type 1A receptors in C1 neurons of the rostral ventrolateral medulla modulate the pressor response to aversive stress. J Neurosci 2012; 32:2051-61. [PMID: 22323719 DOI: 10.1523/jneurosci.5360-11.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rise in blood pressure during an acute aversive stress has been suggested to involve activation of angiotensin type 1A receptors (AT(1A)Rs) at various sites within the brain, including the rostral ventrolateral medulla. In this study we examine the involvement of AT(1A)Rs associated with a subclass of sympathetic premotor neurons of the rostral ventrolateral medulla, the C1 neurons. The distribution of putative AT(1A)R-expressing cells was mapped throughout the brains of three transgenic mice with a bacterial artificial chromosome-expressing green fluorescent protein under the control of the AT(1A)R promoter. The overall distribution correlated with that of the AT(1A)Rs mapped by other methods and demonstrated that the majority of C1 neurons express the AT(1A)R. Cre-recombinase expression in C1 neurons of AT(1A)R-floxed mice enabled demonstration that the pressor response to microinjection of angiotensin II into the rostral ventrolateral medulla is dependent upon expression of the AT(1A)R in these neurons. Lentiviral-induced expression of wild-type AT(1A)Rs in C1 neurons of global AT(1A)R knock-out mice, implanted with radiotelemeter devices for recording blood pressure, modulated the pressor response to aversive stress. During prolonged cage-switch stress, expression of AT(1A)Rs in C1 neurons induced a greater sustained pressor response when compared to the control viral-injected group (22 ± 4 mmHg for AT(1A)R vs 10 ± 1 mmHg for GFP; p < 0.001), which was restored toward that of the wild-type group (28 ± 2 mmHg). This study demonstrates that AT(1A)R expression by C1 neurons is essential for the pressor response to angiotensin II and that this pathway plays an important role in the pressor response to aversive stress.
Collapse
|
18
|
Ufnal M, Drapala A, Sikora M, Szczepanska-Sadowska E. Oral simvastatin reduces the hypertensive response to air-jet stress. Clin Exp Pharmacol Physiol 2012; 39:350-6. [DOI: 10.1111/j.1440-1681.2012.05675.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Marcin Ufnal
- Department of Experimental and Clinical Physiology; Medical University of Warsaw; Warsaw; Poland
| | - Adrian Drapala
- Department of Experimental and Clinical Physiology; Medical University of Warsaw; Warsaw; Poland
| | - Mariusz Sikora
- Department of Experimental and Clinical Physiology; Medical University of Warsaw; Warsaw; Poland
| | - Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology; Medical University of Warsaw; Warsaw; Poland
| |
Collapse
|
19
|
Renin-angiotensin and sympathetic nervous system contribution to high blood pressure in Schlager mice. J Hypertens 2012; 29:2156-66. [PMID: 21941207 DOI: 10.1097/hjh.0b013e32834bbb6b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Schlager hypertensive (BPH/2J) mice have been suggested to have high blood pressure (BP) due to an overactive sympathetic nervous system (SNS), but the contribution of the renin-angiotensin system (RAS) is unclear. In the present study, we examined the cardiovascular effects of chronically blocking the RAS in BPH/2J mice. METHODS Schlager normotensive (BPN/3J, n = 6) and BPH/2J mice (n = 8) received the angiotensin AT 1A-receptor antagonist losartan (150 mg/kg per day) in drinking water for 2 weeks. Pre-implanted telemetry devices were used to record mean arterial pressure (MAP), heart rate (HR) and locomotor activity. RESULTS MAP was reduced by losartan treatment in BPN/3J (-23 mmHg, P < 0.01) and in BPH/2J mice (-25 mmHg, P < 0.001), whereas HR was increased. Losartan had little effect on initial pressor responses to feeding or to stress, but did attenuate the sustained pressor response to cage-switch stress. During the active period, the hypotension to sympathetic blockade with pentolinium was greater in BPH/2J than BPN/3J (suggesting neurogenic hypertension), but was not affected by losartan. During the inactive period, a greater depressor response to pentolinium was observed in losartan-treated animals. CONCLUSION The hypotensive actions of losartan suggest that although the RAS provides an important contribution to BP, it contributes little, if at all, to the hypertension-induced or the greater stress-induced pressor responses in Schlager mice. The effects of pentolinium suggest that the SNS is mainly responsible for hypertension in BPH/2J mice. However, the RAS inhibits sympathetic vasomotor tone during inactivity and prolongs sympathetic activation during periods of adverse stress, indicating an important sympatho-modulatory role.
Collapse
|
20
|
Mayorov DN. Brain angiotensin AT1 receptors as specific regulators of cardiovascular reactivity to acute psychoemotional stress. Clin Exp Pharmacol Physiol 2011; 38:126-35. [PMID: 21143493 DOI: 10.1111/j.1440-1681.2010.05469.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Cardiovascular reactivity, an abrupt rise in blood pressure (BP) and heart rate in response to psychoemotional stress, is a risk factor for heart disease. Pharmacological and molecular genetic studies suggest that brain angiotensin (Ang) II and AT(1) receptors are required for the normal expression of sympathetic cardiovascular responses to various psychological stressors. Moreover, overactivity of the brain AngII system may contribute to enhanced cardiovascular reactivity in hypertension. 2. Conversely, brain AT(1) receptors appear to be less important for the regulation of sympathetic cardiovascular responses to a range of stressors involving an immediate physiological threat (physical stressors) in animal models. 3. Apart from threatening events, appetitive stimuli can induce a distinct, central nervous system-mediated rise in BP. However, evidence indicates that brain AT(1) receptors are not essential for the regulation of cardiovascular arousal associated with positively motivated behaviour, such as anticipation and the consumption of palatable food. The role of central AT(1) receptors in regulating cardiovascular activation elicited by other types of appetitive stimuli remains to be determined. 4. Emerging evidence also indicates that brain AT(1) receptors play a limited role in the regulation of cardiovascular responses to non-emotional natural daily activities, sleep and exercise. 5. Collectively, these findings suggest that, with respect to cardiovascular arousal, central AT(1) receptors may be involved primarily in the regulation of the defence response. Therefore, these receptors could be a potential therapeutic target for selective attenuation of BP hyperreactivity to aversive stressors, without altering physiologically important cardiovascular adjustments to normal daily activities, sleep and exercise.
Collapse
Affiliation(s)
- Dmitry N Mayorov
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Granjeiro EM, Gomes FV, Guimarães FS, Corrêa FMA, Resstel LBM. Effects of intracisternal administration of cannabidiol on the cardiovascular and behavioral responses to acute restraint stress. Pharmacol Biochem Behav 2011; 99:743-8. [PMID: 21771609 DOI: 10.1016/j.pbb.2011.06.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Systemic administration of cannabidiol (CBD), a non-psychotomimetic compound from Cannabis sativa, attenuates the cardiovascular and behavioral responses to restraint stress. Although the brain structures related to CBD effects are not entirely known, they could involve brainstem structures responsible for cardiovascular control. Therefore, to investigate this possibility the present study verified the effects of CBD (15, 30 and 60 nmol) injected into the cisterna magna on the autonomic and behavioral changes induced by acute restraint stress. During exposure to restraint stress (1h) there was a significant increase in mean arterial pressure (MAP) and heart rate (HR). Also, 24h later the animals showed a decreased percentage of entries onto the open arms of the elevated plus-maze. These effects were attenuated by CBD (30 nmol). The drug had no effect on MAP and HR baseline values. These results indicate that intracisternal administration of CBD can attenuate autonomic responses to stress. However, since CBD decreased the anxiogenic consequences of restraint stress, it is possible that the drug is also acting on forebrain structures.
Collapse
Affiliation(s)
- Erica M Granjeiro
- Department of Physiology, School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | | | | | |
Collapse
|
22
|
Shaltout HA, Chappell MC, Rose JC, Diz DI. Exaggerated sympathetic mediated responses to behavioral or pharmacological challenges following antenatal betamethasone exposure. Am J Physiol Endocrinol Metab 2011; 300:E979-85. [PMID: 21386063 PMCID: PMC3118588 DOI: 10.1152/ajpendo.00636.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glucocorticoid administration to women at risk for preterm delivery is standard practice to enhance neonatal survival. However, antenatal betamethasone exposure (β-exposure) increases mean arterial pressure (MAP) in adult sheep (1.8 yr old) and results in impaired baroreflex sensitivity (BRS) for control of heart rate (HR). In the current studies we tested the hypothesis that enhanced sympathetic nervous system and hypothalamo-pituitary-adrenal (HPA) axis-mediated responses are evident at an early age in β-exposed sheep. Pregnant ewes were administered betamethasone (0.17 mg/kg twice over 24 h) or vehicle (Veh-control) on the 80th day of gestation, and offspring were delivered at full term. Female β-exposed and control offspring instrumented at age 42 ± 3 days for conscious continuous recording of MAP and HR had similar resting values at baseline. However, BRS was ~45% lower in β-exposed offspring. β-Exposed lambs allowed to suckle for 10 min had a greater elevation in MAP than Veh-control lambs (19 ± 1 vs 12 ± 2 mmHg; n = 4-5, P < 0.05). MAP was reduced by 20% from baseline via sodium nitroprusside infusion (SNP) over 10 min, which triggered a rebound increase in MAP only in β-exposed lambs. HR increased with the reduction in MAP during SNP infusion in Veh-control lambs, whereas there was no change in HR with the reduction in MAP in β-exposed lambs. Combined vasopressin-CRF injection caused greater increases in MAP in the β-exposed lambs. Cortisol and ACTH responses were higher in response to SNP hypotension in the β-exposed lambs. The data reveal enhanced sympathetic and HPA axis responses associated with impaired BRS preceding differences in resting MAP in preweanling female lambs exposed in utero to glucocorticoids. The consequences of these alterations at an early age include eventual development of higher blood pressure in this ovine model of fetal programming.
Collapse
Affiliation(s)
- Hossam A Shaltout
- Hypertension and Vascular Research Center, Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA.
| | | | | | | |
Collapse
|
23
|
Erdos B, Kirichenko N, Whidden M, Basgut B, Woods M, Cudykier I, Tawil R, Scarpace PJ, Tumer N. Effect of age on high-fat diet-induced hypertension. Am J Physiol Heart Circ Physiol 2011; 301:H164-72. [PMID: 21551274 DOI: 10.1152/ajpheart.01289.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aging and obesity both have a significant impact on central blood pressure (BP) regulation, and previous studies indicated that changes in central redox signaling with age may affect high-fat (HF) diet-induced cardiovascular responses. Therefore, we investigated the effects of 60% HF feeding on BP regulation in young adult (5 mo) and old (26 mo) Fischer-344 × Brown-Norway rats. Radiotelemetric transmitters were implanted to measure BP, heart rate (HR), locomotor activity, and spontaneous baroreflex sensitivity. Expression and activity of NADPH oxidase and ANG II type 1 receptor were assessed in the hypothalamus and in the nucleus tractus solitarii. Old animals gained more weight on HF diet compared with young, whereas central NADPH oxidase expression and activity elevated similarly in the two age groups. After an initial hypotensive and tachycardic response during the first week of HF feeding, BP in young animals increased and became significantly elevated after 6 wk of HF feeding. In contrast, BP in old animals remained depressed. Nighttime HR and locomotor activity decreased in both young and old rats fed with HF diet, but these changes were more significant in young rats. As a result, amplitudes of circadian variation of BP, HR, and activity that were originally higher in young rats declined significantly and became similar in the two age groups. In conclusion, our experiments led to the surprising finding that HF diet has a more serious impact on cardiovascular regulation in young animals compared with old.
Collapse
Affiliation(s)
- Benedek Erdos
- Dept. of Pharmacology & Therapeutics, Univ. of Florida, College of Medicine, P.O. Box 100267, Gainesville, FL 32610-0267, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
A 1.8-Mbp fragment on chromosome 1 affects sympathetic response to stress: evaluation in reciprocal congenic strains between stroke-prone spontaneously hypertensive rat and Wistar–Kyoto rat. J Hypertens 2011; 29:257-65. [DOI: 10.1097/hjh.0b013e32834137cd] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Davern PJ, Head GA. Role of the medial amygdala in mediating responses to aversive stimuli leading to hypertension. Clin Exp Pharmacol Physiol 2011; 38:136-43. [DOI: 10.1111/j.1440-1681.2010.05413.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Allen AM. Role of angiotensin in the rostral ventrolateral medulla in the development and maintenance of hypertension. Curr Opin Pharmacol 2011; 11:117-23. [PMID: 21269877 DOI: 10.1016/j.coph.2010.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 02/07/2023]
Abstract
Whilst crucial for behavioural and homeostatic responses to environmental challenges, chronic elevation of sympathetic nervous system activity to specific vascular beds is associated with hypertension. Indeed such elevated activity may drive the increase in blood pressure seen in some people and in some experimental models of hypertension. This review discusses the neural circuitry involved in generating and modulating sympathetic efferent nerve activity, focusing on the premotor neurons of the rostral ventrolateral medulla. Neurons in the rostral ventrolateral medulla show altered responses to angiotensin II in experimental models of hypertension, suggesting that this might be an important node for interaction between these two systems that are crucial for regulation of blood pressure.
Collapse
Affiliation(s)
- Andrew M Allen
- Department of Physiology and Florey Neurosciences Institutes, University of Melbourne, Vic., 3010, Australia.
| |
Collapse
|
27
|
Davern PJ, Jackson KL, Nguyen-Huu TP, La Greca L, Head GA. Cardiovascular responses to aversive and nonaversive stressors in Schlager genetically hypertensive mice. Am J Hypertens 2010; 23:838-44. [PMID: 20379140 DOI: 10.1038/ajh.2010.69] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Schlager inbred hypertensive mice (BPH/2J) have been suggested to have high blood pressure (BP) due to an overactive sympathetic nervous system (SNS). The brain nuclei associated with the hypertension are also those involved in the integration of the cardiovascular responses to stress. Therefore, in the present study, we hypothesize that an increased contribution of the SNS in BPH/2J mice may culminate in a greater pressor response to stressful stimuli in these hypertensive mice than normotensive (BPN/3J) mice. METHODS Male hypertensive BPH/2J and normotensive BPN/3J mice were implanted with telemetry devices and exposed to a series of behavioral "stress" tests including aversive stress (shaker, clean cage switch, and restraint) and nonaversive stress (feeding). RESULTS Aversive stress caused a 67-88% greater pressor response in BPH/2J compared with BPN/3J mice. By contrast, the feeding-induced pressor response was not different between groups. All stressors induced tachycardia that was less in BPH/2J mice (feeding and restraint) and others were not different between groups (clean cage switch and shaker). CONCLUSIONS These findings indicate that hypertension in BPH/2J mice is associated with greater pressor responsiveness to aversive stress but not to appetitive arousal. Thus, BPH/2J hypertensive mice may be a particularly relevant model for human hypertensive patients that overrespond to daily stressors.
Collapse
|
28
|
Bourassa EA, Speth RC. Water deprivation increases angiotensin-converting enzyme but not AT(1) receptor expression in brainstem and paraventricular nucleus of the hypothalamus of the rat. Brain Res 2010; 1319:83-91. [PMID: 20051229 DOI: 10.1016/j.brainres.2009.12.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/17/2009] [Accepted: 12/24/2009] [Indexed: 02/07/2023]
Abstract
The rostral ventrolateral medulla (RVLM) is critical to the maintenance of blood pressure. It has been proposed that blood-borne Ang II can influence the RVLM via a neural connection between the circumventricular organs and paraventricular nucleus of the hypothalamus (PVH) and that a component of this pathway is angiotensinergic. A period of water deprivation leads to increased ability of angiotensin type 1 (AT(1)) receptor antagonists to reduce blood pressure when administered into the RVLM and PVH. We studied the differences in AT(1) receptor and angiotensin-converting enzyme (ACE) expression in these and other brain regions involved in blood pressure regulation and water intake following dehydration. AT(1) receptor and ACE expression in brains of rats deprived of water for 48 h were compared to that of water-replete rats by quantitative receptor autoradiography. AT(1) receptor expression was increased in the subfornical organ and periventricular nucleus of the hypothalamus, but not in other brain regions measured. ACE expression was increased in the RVLM, PVH, choroid plexus, median preoptic nucleus, and organosum vasculosum of the lamina terminalis. These findings suggest that increased Ang II production but not increased receptor expression in the PVH and RVLM is the mechanism by which Ang II in the brain helps to sustain systemic blood pressure during periods of water deprivation.
Collapse
Affiliation(s)
- Erick A Bourassa
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
29
|
Davern PJ, Chen D, Head GA, Chavez CA, Walther T, Mayorov DN. Role of Angiotensin II Type 1A Receptors in Cardiovascular Reactivity and Neuronal Activation After Aversive Stress in Mice. Hypertension 2009; 54:1262-8. [DOI: 10.1161/hypertensionaha.109.139741] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We determined whether genetic deficiency of angiotensin II Type 1A (AT
1A
) receptors in mice results in altered neuronal responsiveness and reduced cardiovascular reactivity to stress. Telemetry devices were used to measure mean arterial pressure, heart rate, and activity. Before stress, lower resting mean arterial pressure was recorded in AT
1A
−/−
(85±2 mm Hg) than in AT
1A
+/+
(112±2 mm Hg) mice; heart rate was not different between groups. Cage-switch stress for 90 minutes elevated blood pressure by +24±2 mm Hg in AT
1A
+/+
and +17±2 mm Hg in AT
1A
−/−
mice (
P
<0.01), and heart rate increased by +203±9 bpm in AT
1A
+/+
and +121±9 bpm in AT
1A
−/−
mice (
P
<0.001). Locomotor activation was less in AT
1A
−/−
(3.0±0.4 U) than in AT
1A
+/+
animals (6.0±0.4 U), but differences in blood pressure and heart rate persisted during nonactive periods. In contrast to wild-type mice, spontaneous baroreflex sensitivity was not inhibited by stress in AT
1A
−/−
mice. After cage-switch stress, c-Fos immunoreactivity was less in the paraventricular (
P
<0.001) and dorsomedial (
P
=0.001) nuclei of the hypothalamus and rostral ventrolateral medulla (
P
<0.001) in AT
1A
−/−
compared with AT
1A
+/+
mice. Conversely, greater c-Fos immunoreactivity was observed in the medial nucleus of the amygdala, caudal ventrolateral medulla, and nucleus of the solitary tract (
P
<0.001) of AT
1A
−/−
compared with AT
1A
+/+
mice. Greater activation of the amygdala suggests that AT
1A
receptors normally inhibit the degree of stress-induced anxiety, whereas the lesser activation of the hypothalamus and rostral ventrolateral medulla suggests that AT
1A
receptors play a key role in autonomic cardiovascular reactions to acute aversive stress, as well as for stress-induced inhibition of the baroreflex.
Collapse
Affiliation(s)
- Pamela J. Davern
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Daian Chen
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Geoffrey A. Head
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Carolina A. Chavez
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Thomas Walther
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Dmitry N. Mayorov
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
30
|
Wsół A, Cudnoch-Je drzejewska A, Szczepanska-Sadowska E, Kowalewski S, Dobruch J. Central oxytocin modulation of acute stress-induced cardiovascular responses after myocardial infarction in the rat. Stress 2009; 12:517-25. [PMID: 20102320 DOI: 10.3109/10253890802687688] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study was aimed at determining the role of centrally released oxytocin in regulation of blood pressure and heart rate (HR) under resting conditions and during an acute air-jet stress in rats with a myocardial infarction and controls infarcted. Four weeks after ligation of a coronary artery or sham surgery, conscious Sprague Dawley rats were subjected to one of the following intracerebroventricular (ICV) infusions: (1) 0.9% NaCl (control), (2) oxytocin, (3) oxytocin receptor antagonist {desGly-NH(2)-d(CH(2))(5)[D-Tyr(2)Thr(4)]OVT}(OXYANT). Resting arterial blood pressure and HR were not affected by any of the ICV infusions either in the infarcted or sham-operated rats. In the control experiments, the pressor and tachycardic responses to the air jet of infarcted rats were significantly greater than in the sham-operated rats. OXYANT significantly enhanced the cardiovascular responses to stress only in the sham-operated rats whereas oxytocin significantly attenuated both responses in the infarcted but not in the sham-operated rats. The results suggest that centrally released endogenous oxytocin significantly reduces the cardiovascular responses to the acute stressor in control rats. This buffering function of the brain-oxytocin system is not efficient during the post-myocardial infarction state, however it may be restored by central administration of exogenous oxytocin.
Collapse
Affiliation(s)
- Agnieszka Wsół
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
31
|
Chen D, La Greca L, Head GA, Walther T, Mayorov DN. Blood pressure reactivity to emotional stress is reduced in AT1A-receptor knockout mice on normal, but not high salt intake. Hypertens Res 2009; 32:559-64. [PMID: 19407821 DOI: 10.1038/hr.2009.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacological evidence suggests that angiotensin II type 1 (AT(1)) receptors are involved in the regulation of cardiovascular response to emotional stress and reinforcing effect of dietary salt on this response. In this study, we examined the effect of genetic deletion of AT(1A) receptors on the cardiovascular effects of stress and salt in mice. AT(1A) receptor knockout (AT(1A)(-/-)) and wild-type (AT(1A)(+/+)) mice were implanted with telemetry devices and placed on a normal (0.4%) or high (3.1%) salt diet (HSD). Resting blood pressure (BP) in AT(1A)(-/-) mice (84+/-3 mm Hg) was lower than in AT(1A)(+/+) mice (107+/-2 mm Hg). Negative emotional (restraint) stress increased BP by 33+/-3 mm Hg in AT(1A)(+/+) mice. This response was attenuated by 40% in AT(1A)(-/-) mice (18+/-3 mm Hg). Conversely, the BP increase caused by food presentation and feeding was similar in AT(1A)(-/-) (25+/-3 mm Hg) and AT(1A)(+/+) mice (26+/-3 mm Hg). HSD increased resting BP by 14+/-4 mm Hg in AT(1A)(-/-) mice without affecting it significantly in AT(1A)(+/+) mice. Under these conditions, the pressor response to restraint stress in AT(1A)(-/-) mice (30+/-3 mm Hg) was no longer different from that in wild-type animals (28+/-3 mm Hg). The BP response to feeding was not altered by HSD in either AT(1A)(-/-) or AT(1A)(+/+) mice (25+/-2 and 27+/-3 mm Hg, respectively). These results indicate that AT(1A) receptor deficiency leads to a reduction in BP reactivity to negative emotional stress, but not feeding. HSD can selectively reinforce the cardiovascular response to negative stress in AT(1A)(-/-) mice. However, there is little interaction between AT(1A) receptors, excess dietary sodium and feeding-induced cardiovascular arousal.
Collapse
Affiliation(s)
- Daian Chen
- Baker Heart Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
32
|
Iigaya K, Kumagai H, Nabika T, Harada Y, Onimaru H, Oshima N, Takimoto C, Kamayachi T, Saruta T, Itoh H. Relation of blood pressure quantitative trait locus on rat chromosome 1 to hyperactivity of rostral ventrolateral medulla. Hypertension 2008; 53:42-8. [PMID: 19047583 DOI: 10.1161/hypertensionaha.108.117804] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetic factors that induce essential hypertension have been examined using genome-wide linkage analyses. A quantitative trait locus (QTL) region that is closely linked to hypertension has been found on chromosome 1 in stroke-prone spontaneously hypertensive rats (SHRSPs). We used 2 congenic rats in which the blood pressure QTL on rat chromosome 1 was introgressed from SHRSP/Izm to Wistar-Kyoto (WKY)/Izm (WKYpch1.0) and from WKY/Izm to SHRSP/Izm (SHRSPwch1.0) rats by repeated backcrossing. Previous studies reported that the intermediate phenotype of this QTL for hypertension is characterized by the hyperactivity of the sympathetic nervous system in response to physiological and psychological stress. We performed intracellular patch-clamp recordings of rostral ventrolateral medulla (RVLM) neurons from WKY, WKYpch1.0, SHRSPwch1.0, and SHRSPs and compared the basal electrophysiological activities of RVLM neurons and the responses of these neurons to angiotensin II. The basal membrane potential of RVLM neurons from WKYpch1.0 was significantly "shallower" than that of the neurons from WKY. The depolarization of RVLM neurons from WKYpch1.0 in response to angiotensin II was significantly larger than that in neurons from WKY rats, whereas the depolarization of RVLM neurons from SHRSPwch1.0 was significantly smaller than that in neurons from SHRSPs. The response to angiotensin II of RVLM neurons from WKYpch1.0 and SHRSPs was sustained even after the blockade of all of the synaptic transmissions using tetrodotoxin. The QTL on rat chromosome 1 was primarily related to the postsynaptic response of RVLM bulbospinal neurons to brain angiotensin II, whereas both the QTL and other genomic regions influenced the basal activity of RVLM neurons.
Collapse
Affiliation(s)
- Kamon Iigaya
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Adams JM, McCarthy JJ, Stocker SD. Excess dietary salt alters angiotensinergic regulation of neurons in the rostral ventrolateral medulla. Hypertension 2008; 52:932-7. [PMID: 18779436 PMCID: PMC2635570 DOI: 10.1161/hypertensionaha.108.118935] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess dietary salt intake contributes to or exacerbates some forms of hypertension by increasing sympathetic nerve activity (SNA) and arterial blood pressure (ABP) through angiotensin II (Ang II) type 1 receptor activation in the rostral ventrolateral medulla (RVLM). Despite this interaction among dietary salt, Ang II, and the RVLM, no studies have directly examined whether dietary salt by itself alters Ang II-dependent responses and regulation of RVLM neurons, SNA, and ABP. Therefore, the present study directly tested this hypothesis. Male Sprague-Dawley rats were fed normal chow and given access to water or 0.9% NaCl solution for 14 days. Unilateral injection of Ang II (0.6, 6, and 60 pmol) into the RVLM produced a significantly greater increase in renal SNA and mean ABP of rats drinking 0.9% NaCl versus water. However, dietary salt did not alter mRNA levels of RVLM Ang II type 1a receptors or the SNA and ABP responses to stimulation of the dorsolateral funinculus. Additional experiments demonstrate that blockade of RVLM Ang II type 1 receptors significantly reduced renal SNA, splanchnic SNA, and mean ABP of rats drinking 0.9% NaCl but not water. Blockade of iontotropic glutamate receptors had no effect. Altogether, these findings suggest that elevated dietary salt enhances the sympathoexcitatory actions of Ang II in the RVLM via changes in the intrinsic properties of RVLM neurons. Moreover, elevated dietary salt intake differentially affects the tonic activity of the peripheral versus brain RVLM Ang II type 1 receptors to regulate baseline SNA and ABP.
Collapse
Affiliation(s)
- Julye M Adams
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
34
|
Teschemacher AG, Wang S, Raizada MK, Paton JFR, Kasparov S. Area-specific differences in transmitter release in central catecholaminergic neurons of spontaneously hypertensive rats. Hypertension 2008; 52:351-8. [PMID: 18606900 DOI: 10.1161/hypertensionaha.108.114371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The link among blood pressure, sympathetic output, and brain neurons producing catecholamines is well documented. Nevertheless, their intrinsic properties and any alterations in signaling characteristics between normotensive and hypertensive phenotypes remain unknown. Here, we directly compared neurophysiological properties of catecholamine release of C1 and A2 neurons of the spontaneously hypertensive rat and Wistar rat in organotypic slices. C1 and A2 areas were studied because both are widely implicated in the pathophysiology of hypertension. Catecholaminergic neurons were visualized using viral vectors to express green fluorescent protein. Microamperometry revealed that C1 axonal varicosities of spontaneously hypertensive but not normotensive Wistar rats release a transmitter predominantly (approximately 86%) in very large quanta, comparable in catecholamine load to adrenal chromaffin granules. Because quantal size affects the spread of transmitter in the extracellular space, this may enhance the impact of C1 varicosities on their downstream targets and increase sympathetic drive in the hypertensive rat. Electrophysiological properties and Ca2+ handling were studied using patch clamp and confocal imaging. Although overall electrophysiological characteristics of C1 and A2 neurons were comparable between strains, the characteristic angiotensin-II-induced Ca2+ mobilization was reduced in A2 neurons of the spontaneously hypertensive rat. Because A2 neurons are a part of a homeostatic antihypertensive circuit, this could reduce their restraining influence on blood pressure. Thus, we have revealed an increased quantal size in C1 varicosities and a reduced responsiveness of A2 neurons of the spontaneously hypertensive rat to angiotensin II. Both effects could contribute to elevated sympathetic activity and blood pressure in the spontaneously hypertensive rat.
Collapse
Affiliation(s)
- Anja G Teschemacher
- Department of Physiology and Pharmacology, University of Bristol, School of Medical Sciences, University Walk, Bristol BS81TD, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Dobruch J, Puchalska L, Ufnal M, Kowalewski S, Wsół A. Differential sensitisation to central cardiovascular effects of angiotensin II in rats with a myocardial infarct: relevance to stress and interaction with vasopressin. Stress 2008; 11:290-301. [PMID: 18574789 DOI: 10.1080/10253890701794445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The purpose of the present study was to elucidate if rats with myocardial infarction manifest altered responsiveness to central cardiovascular effects of low doses of angiotensin II (ANG II), and if ANG II and vasopressin (VP) cooperate in the central regulation of cardiovascular functions at rest and during stress. Conscious Sprague-Dawley rats with myocardial infarction induced by left coronary artery ligation, or sham-ligated (SL) controls were infused intracerebroventricularly with artificial cerebrospinal fluid (aCSF), ANG II, ANG II + VP or ANG II + V1a receptor antagonist (V1ANT) 4 weeks after cardiac surgery. In the infarcted but not in the SL rats, the resting mean arterial blood pressure (MABP) was significantly elevated by infusions of ANG II and ANG II + VP, while infusion of ANG II + V1ANT was not effective. During administration of aCSF, the pressor, and tachycardic responses to an air-jet stressor were significantly greater in the infarcted than in the SL rats. In the SL rats, the pressor responses to the stressor were significantly greater during infusions of ANG II, ANG II + VP and ANG II + V1ANT than during infusion of aCSF. The tachycardic response in the SL rats was enhanced only by the combined infusion of ANG II + VP. In the infarcted rats, the pressor and the tachycardic responses to the stressor were similar in all groups. It is concluded that: (1) under resting conditions the infarcted rats manifest sensitisation to the central pressor effect of ANG II and that this effect depends on concomitant stimulation of V1a VP receptors, (2) central ANG II may enhance the pressor response to an alarming stressor in the SL rats through an action which does not depend on the concomitant stimulation of V1a receptors, (3) the cooperative action of ANG II and VP is required for intensification of the tachycardic response to the alarming stressor in the SL rats and (4) exaggeration of the cardiovascular responses to the alarming stressor in the infarcted rats cannot be further augmented by an additional stimulation of central ANG II receptors or combined stimulation of ANG II and VP receptors.
Collapse
|
36
|
Pilowsky PM, Abbott SB, Burke PGR, Farnham MMJ, Hildreth CM, Kumar NN, Li Q, Lonergan T, McMullan S, Spirovski D, Goodchild AK. METABOTROPIC NEUROTRANSMISSION AND INTEGRATION OF SYMPATHETIC NERVE ACTIVITY BY THE ROSTRAL VENTROLATERAL MEDULLA IN THE RAT. Clin Exp Pharmacol Physiol 2008; 35:508-11. [DOI: 10.1111/j.1440-1681.2008.04906.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Diz DI, Garcia-Espinosa MA, Gegick S, Tommasi EN, Ferrario CM, Ann Tallant E, Chappell MC, Gallagher PE. Injections of angiotensin-converting enzyme 2 inhibitor MLN4760 into nucleus tractus solitarii reduce baroreceptor reflex sensitivity for heart rate control in rats. Exp Physiol 2008; 93:694-700. [PMID: 18356558 DOI: 10.1113/expphysiol.2007.040261] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Injections of the angiotensin(1-7) [Ang(1-7)] antagonist [d-Ala7]-Ang(1-7) into the nucleus of the solitary tract (NTS) of Sprague-Dawley rats reduce baroreceptor reflex sensitivity (BRS) for control of heart rate by approximately 40%, whereas injections of the angiotensin II (Ang II) type 1 receptor antagonist candesartan increase BRS by 40% when reflex bradycardia is assessed. The enzyme angiotensin-converting enzyme 2 (ACE2) is known to convert Ang II to Ang(1-7). We report that ACE2 activity, as well as ACE and neprilysin activities, are present in plasma membrane fractions of the dorsomedial medulla of Sprague-Dawley rats. Moreover, we show that BRS for reflex bradycardia is attenuated (1.16 +/- 0.29 ms mmHg-1 before versus 0.33 +/- 0.11 ms mmHg-1 after; P < 0.05; n = 8) 30-60 min following injection of the selective ACE2 inhibitor MLN4760 (12 pmol in 120 nl) into the NTS. These findings support the concept that within the NTS, local synthesis of Ang(1-7) from Ang II is required for normal sensitivity for the baroreflex control of heart rate in response to increases in arterial pressure.
Collapse
Affiliation(s)
- Debra I Diz
- The Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mayorov DN. Nitric oxide synthase inhibition in rostral ventrolateral medulla attenuates pressor response to psychological stress in rabbits. Neurosci Lett 2007; 424:89-93. [PMID: 17709184 DOI: 10.1016/j.neulet.2007.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 06/22/2007] [Accepted: 07/20/2007] [Indexed: 01/16/2023]
Abstract
Nitric oxide (NO) has been critically implicated in the central regulation of autonomic function. We recently found, however, that acute (up to 30min) blockade of NO synthase (NOS) in the rostral ventrolateral medulla (RVLM) inhibited sympathetic baroreflex transmission, without altering the cardiovascular response to psychological (air-jet) stress in rabbits. In the present study, we examined the effect of the later phase (1-3h) of NOS inhibition in the RVLM on the pressor and sympathetic responses to air-jet stress in conscious rabbits. Air-jet evoked a sustained increase in blood pressure (+14+/-2mmHg), heart rate (+37+/-9beats/min) and renal sympathetic nerve activity (+52+/-8%). Bilateral microinjection of a NOS inhibitor l-NAME (10nmol) into RVLM did not affect resting parameters or stress responses during the first 30min after injection. Conversely, in the later phase of NOS inhibition, the pressor, tachycardic and renal sympathetic responses to air-jet stress were reversibly attenuated by 48-72%. Microinjection of l-NAME outside the RVLM did not change stress responses. Microinjection of glutamate (3nmol) into the RVLM induced similar pressor effects before and after l-NAME (+30+/-6mmHg and +26+/-6mmHg, respectively). Microinjection of d-NAME altered neither stress responses nor pressor response to glutamate. These results suggest that NOS inhibition in the RVLM has a dual effect on the autonomic response to psychological stress. In the early phase, NOS inhibition has little impact on this response. However, in the later phase, NOS inhibition attenuates the stress response, perhaps via indirect mechanisms such as altering the local redox state.
Collapse
|
39
|
Mayorov DN. ERK1/2 as a molecular switch for the initiation of long-term pressor response to central angiotensin II. J Hypertens 2007; 25:1788-90. [PMID: 17762639 DOI: 10.1097/hjh.0b013e32829fb3fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Dampney RAL, Tan PSP, Sheriff MJ, Fontes MAP, Horiuchi J. Cardiovascular effects of angiotensin II in the rostral ventrolateral medulla: The push-pull hypothesis. Curr Hypertens Rep 2007; 9:222-7. [PMID: 17519129 DOI: 10.1007/s11906-007-0040-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurons within the rostral ventrolateral medulla (RVLM) play a pivotal role in the tonic and phasic control of blood pressure. This region also contains a high density of angiotensin II type 1 (AT1) receptors. There is evidence that tonic activation of AT1 receptors in the RVLM contributes to an increased sympathetic vasomotor activity in some models of hypertension. At the same time, under certain conditions, activation of AT1 receptors in the RVLM can cause sympathoinhibition. In this review we argue that the effect of endogenous angiotensin II in the RVLM on sympathetic vasomotor activity depends upon the balance between tonic excitatory and inhibitory effects on sympathetic premotor neurons mediated by AT1 receptors within this region, and that this balance may be altered in different physiological or pathophysiological conditions.
Collapse
Affiliation(s)
- R A L Dampney
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney F13, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
41
|
Mayorov DN. Brain superoxide as a key regulator of the cardiovascular response to emotional stress in rabbits. Exp Physiol 2007; 92:471-9. [PMID: 17303648 DOI: 10.1113/expphysiol.2006.036830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cardiovascular reactivity, an abrupt increase in blood pressure and heart rate in response to emotional stress, is a risk factor for hypertension and heart disease. Brain angiotensin II (Ang II) type 1 (AT(1)) receptor is increasingly recognized as an important regulator of cardiovascular reactivity. Given that a wide variety of AT(1) receptor signalling pathways exists in neurones, the precise molecular mechanisms that underlie central cardiovascular actions of Ang II during emotional stress are yet to be determined. Growing evidence, however, indicates that reactive oxygen species, and in particular superoxide (.O(2)(-)), are important intracellular messengers of many actions of brain Ang II. In particular, studies employing microinjection of .O(2)(-) scavengers directly into the rostral ventrolateral medulla (RVLM) and dorsomedial hypothalamus of rabbits have shown that the activation of AT(1) receptor-.O(2)(-) signalling is required for full manifestation of the cardiovascular response to emotional stress. This role of .O(2)(-) appears to be highly specific, because .O(2)(-) scavengers in the RVLM do not alter the sympathoexcitatory response to baroreceptor unloading or sciatic nerve stimulation. The subcellular mechanisms for the stress-induced .O(2)(-) production are likely to include the activation of NADPH oxidase and are essentially independent of nitric oxide. This review summarizes current knowledge of redox-sensitive signalling mechanisms in the brain that regulate cardiovascular effects of stress. Additionally, it presents initial evidence that .O(2)(-) may be less important in the activation of central pressor pathways mediating cardiovascular arousal associated with appetitive events, such as food anticipation and feeding.
Collapse
Affiliation(s)
- Dmitry N Mayorov
- Baker Heart Research Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria 8008, Australia.
| |
Collapse
|
42
|
Cudnoch-Jedrzejewska A, Dobruch J, Puchalska L, Szczepańska-Sadowska E. Interaction of AT1 receptors and V1a receptors-mediated effects in the central cardiovascular control during the post-infarct state. ACTA ACUST UNITED AC 2007; 142:86-94. [PMID: 17350115 DOI: 10.1016/j.regpep.2007.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 01/29/2007] [Accepted: 01/31/2007] [Indexed: 11/24/2022]
Abstract
UNLABELLED Experimental objectives. Because myocardial infarct is associated with overactivation of brain angiotensin II (ANG II) and vasopressin (AVP) V1a receptors we decided to determine whether AT1 and V1a receptors-mediated effects of ANG II and AVP interact in central cardiovascular control during the post-infarct state. Four groups of infarcted and four groups of sham-operated conscious rats entered the study. Results. In the infarcted rats cerebroventricular infusion of AT1 (AT1ANT, losartan) and V1a antagonist {V1aANT,d(CH(2))(5)[Tyr(Me)(2)Ala-NH(2)(9)]VP} and combined infusion of both these compounds performed 4 weeks after induction of the infarct significantly and comparably reduced mean arterial blood pressure (MABP) in comparison to control experiments (artificial cerebrospinal fluid infusion). In the sham rats MABP was not affected by any of the infusions. In control experiments MABP and HR responses to an alarming air jet stress were significantly higher in the infarcted than in the sham rats. Both responses were normalized with the same effectiveness by administration of AT1ANT, V1aANT and AT1ANT+V1aANT. In the sham rats administration of these compounds did not affect MABP and HR responses to stress. CONCLUSION The results provide evidence for interaction of AT1 and V1a receptors-mediated effects of ANG II and AVP in the central cardiovascular control during the post-infarct state.
Collapse
Affiliation(s)
- Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Krakowskie Przedm. 26/28 Street, Warsaw 00-927, Poland
| | | | | | | |
Collapse
|
43
|
Nakamoto M, Ohya Y, Sakima A, Yamazato M, Takishita S. Azelnidipine Attenuates Cardiovascular and Sympathetic Responses to Air-Jet Stress in Genetically Hypertensive Rats. Hypertens Res 2007; 30:359-66. [PMID: 17541215 DOI: 10.1291/hypres.30.359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Azelnidipine is a new dihydropyridine calcium channel blocker that causes minimal stimulation of the sympathetic nervous system despite its significant depressor effect. In the present study, we examined the effects of oral or intravenous administration of azelnidipine on cardiovascular and renal sympathetic nerve activity (RSNA) responses to air-jet stress in conscious, unrestrained stroke-prone spontaneously hypertensive rats. Oral administration of high-dose azelnidipine (10 mg/kg per day) or nicardipine (150 mg/kg per day) for 10 days caused a significant and comparable decrease in blood pressure, but low-dose azelnidipine (3 mg/kg per day) did not. Air-jet stress increased mean arterial pressure (MAP), heart rate (HR) and RSNA. High-dose azelnidipine significantly attenuated the increases in MAP, HR and RSNA in response to air-jet stress while nicardipine did not. Low-dose azelnidipine significantly attenuated the pressor response with a trend of decrease in RSNA. Intravenous injection of azelnidipine induced a slowly developing depressor effect. To obtain a similar time course of decrease in MAP by azelnidipine, nicardipine was continuously infused at adjusted doses. Both drugs increased HR and RSNA significantly, while the change in RSNA was smaller in the azelnidipine group. In addition, intravenous administration of azelnidipine attenuated the responses of MAP, HR, and RSNA to air-jet stress; by comparison, the inhibitory actions of nicardipine were weak. In conclusion, oral or intravenous administration of azelnidipine inhibited cardiovascular and sympathetic responses to air-jet stress. This action of azelnidipine may be mediated at least in part by the inhibition of the sympathetic nervous system.
Collapse
Affiliation(s)
- Minori Nakamoto
- Department of Cardiovascular Medicine, Nephrology and Neurology, School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | |
Collapse
|
44
|
De Matteo R, Head GA, Mayorov DN. Angiotensin II in dorsomedial hypothalamus modulates cardiovascular arousal caused by stress but not feeding in rabbits. Am J Physiol Regul Integr Comp Physiol 2006; 290:R257-64. [PMID: 16141307 DOI: 10.1152/ajpregu.00372.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dorsomedial hypothalamus (DMH) is critically implicated in the cardiovascular response to emotional stress. This study aimed to determine whether the DMH is also important in cardiovascular arousal associated with appetitive feeding behavior and, if so, whether locally released angiotensin II and glutamate are important in this arousal. Emotional (air-jet) stress and feeding elicited similar tachycardic (+51 and +45 beats/min, respectively) and pressor (+16 and +9 mmHg, respectively) responses in conscious rabbits. Bilateral microinjection of GABAA agonist muscimol (500 pmol) into the DMH, but not nearby hypothalamic regions, attenuated pressor and tachycardic responses to air-jet by 56–63% and evoked anorexia. Conversely, stimulation of the DMH with the glutamate analog kainic acid (250 pmol) elicited hypertension (+25 mmHg) and tachycardia (+114 beats/min) and activated feeding behavior. Local microinjection of a glutamate receptor antagonist, kynurenic acid (10 nmol), decreased pressor responses to stress and eating by 46 and 72%, respectively, without affecting feeding behavior. Bilateral microinjection of a selective AT1-receptor antagonist, candesartan (500 pmol), into the DMH, but not nearby sites, attenuated pressor and tachycardic stress responses by 31 and 33%, respectively. Candesartan did not alter feeding behavior or circulatory response to feeding. These results indicate that, in addition to its role in mediating stress responses, the DMH may be important in regulating cardiovascular arousal associated with feeding. Local glutamatergic inputs appear to regulate cardiovascular response to both stress and feeding. Conversely, angiotensin II, acting via AT1 receptors, may selectively modulate, in the DMH, cardiovascular response to stress, but not feeding.
Collapse
Affiliation(s)
- Robert De Matteo
- Baker Heart Research Institute, P.O. Box 6492, St. Kilda Rd. Central, Melbourne, Victoria 8008, Australia
| | | | | |
Collapse
|
45
|
McDougall SJ, Widdop RE, Lawrence AJ. Central autonomic integration of psychological stressors: Focus on cardiovascular modulation. Auton Neurosci 2005; 123:1-11. [PMID: 16289941 DOI: 10.1016/j.autneu.2005.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/14/2005] [Accepted: 09/28/2005] [Indexed: 02/04/2023]
Abstract
During stress the sympathoadrenal system and the hypothalamo-pituitary-adrenal axis act in a coordinated manner to force changes within an animal's current physiological and behavioral state. Such changes have been described as 'fight flight' or stress responses. The central nervous system may generate a stress response by different neural circuits, this being dependent upon the type of stressor presented. For instance, the central control of the autonomic function during physical stress would seem to be based on existing homeostatic mechanisms. In contrast, with exposure to psychological stress the means by which autonomic outflow is regulated has not been fully established. This review discusses recent observations of autonomic flow, cardiovascular components in particular, during psychological stress and the possible implications these may have for our understanding of the central nervous system. In addition, an update of recent findings concerning several regions thought to be important to the regulation of autonomic function during psychological stress exposure is provided.
Collapse
Affiliation(s)
- Stuart J McDougall
- Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
46
|
Yamazato M, Ohya Y, Nakamoto M, Sakima A, Tagawa T, Harada Y, Nabika T, Takishita S. Sympathetic hyperreactivity to air-jet stress in the chromosome 1 blood pressure quantitative trait locus congenic rats. Am J Physiol Regul Integr Comp Physiol 2005; 290:R709-14. [PMID: 16239369 DOI: 10.1152/ajpregu.00610.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A chromosome 1 blood pressure quantitative trait locus (QTL) was introgressed from the stroke-prone spontaneously hypertensive rats (SHRSP) to Wistar-Kyoto (WKY) rats. This congenic strain (WKYpch1.0) showed an exaggerated pressor response to both restraint and cold stress. In this study, we evaluated cardiovascular and sympathetic response to an air-jet stress and also examined the role of the brain renin-angiotensin system (RAS) in the stress response of WKYpch1.0. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) responses to air-jet stress in WKYpch1.0, WKY, and SHRSP. We also examined effects of intracerebroventricular administration of candesartan, an ANG II type 1 receptor blocker, on MAP and HR responses to air-jet stress. Baseline MAP in the WKYpch1.0 and WKY rats were comparable, while it was lower than that in SHRSP rats. Baseline HR did not differ among the strains. In WKYpch1.0, air-jet stress caused greater increase in MAP and RSNA than in WKY. The increase in RSNA was as large as that in SHRSP, whereas the increase in MAP was smaller than in SHRSP. Intracerebroventricular injection of a nondepressor dose of candesartan inhibited the stress-induced pressor response to a greater extent in WKYpch1.0 than in WKY. Intravenous injection of phenylephrine caused a presser effect comparable between WKYpch1.0 and WKY. These results suggest that the chromosome 1 blood pressure QTL congenic rat has a sympathetic hyperreactivity to an air-jet stress, which causes exaggerated pressor responses. The exaggerated response is at least partly mediated by the brain RAS.
Collapse
Affiliation(s)
- Masanobu Yamazato
- Department of Cardiovascular Medicine, Nephrology and Neurology, University of the Ryukyus, School of Medicine, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sherrod M, Davis DR, Zhou X, Cassell MD, Sigmund CD. Glial-specific ablation of angiotensinogen lowers arterial pressure in renin and angiotensinogen transgenic mice. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1763-9. [PMID: 16109805 DOI: 10.1152/ajpregu.00435.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensinogen (AGT) is mainly expressed in glial cells in close proximity to renin-expressing neurons in the brain. We previously reported that glial-specific overexpression of ANG II results in mild hypertension. Here, we tested the hypothesis that glial-derived AGT plays an important role in blood pressure regulation in hypertensive mice carrying human renin (hREN) and human AGT transgenes under the control of their own endogenous promoters. To perform a glial-specific deletion of AGT, we used an AGT transgene containing loxP sites (hAGT(flox)), so the gene can be permanently ablated in the presence of cre-recombinase expression, driven by the glial fibrillary acidic protein (GFAP) promoter. Triple transgenic mice (RAC) containing a: 1) systemically expressed hREN transgene, 2) systemically expressed hAGT(flox) transgene, and 3) GFAP-cre-recombinase were generated and compared with double transgenic mice (RA) lacking cre-recombinase. Liver and kidney hAGT mRNA levels were unaltered in RAC and RA mice, as was the level of hAGT in the systemic circulation, consistent with the absence of cre-recombinase expression in those tissues. Whereas hAGT mRNA was present in the brain of RA mice (lacking cre-recombinase), it was absent from the brain of RAC mice expressing cre-recombinase, confirming brain-specific elimination of AGT. Immunohistochemistry revealed a loss of AGT immunostaining glial cells throughout the brain in RAC mice. Arterial pressure measured by radiotelemetry was significantly lower in RAC than RA mice and unchanged from nontransgenic control mice. These data suggest that there is a major contribution of glial-AGT to the hypertensive state in mice carrying systemically expressed hREN and hAGT genes and confirm the importance of a glial source of ANG II substrate in the brain.
Collapse
Affiliation(s)
- Mikhiela Sherrod
- Genetics Graduate Program, Roy J. and Lucille A. Carver College of Medicine, Univ. of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
48
|
Mayorov DN, Head GA, De Matteo R. Tempol Attenuates Excitatory Actions of Angiotensin II in the Rostral Ventrolateral Medulla During Emotional Stress. Hypertension 2004; 44:101-6. [PMID: 15159379 DOI: 10.1161/01.hyp.0000131290.12255.04] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Superoxide has been shown to be an important intracellular mediator of actions of angiotensin II. Recently, we found that blockade of angiotensin II type-1 receptors in the rostral ventrolateral medulla (RVLM) abrogated the pressor effect of emotional stress in rabbits. In the present study, we examined the influence of superoxide dismutase mimetics, tempol and tiron, in RVLM on cardiovascular stress response in conscious rabbits. Air-jet stress evoked a sustained increase in blood pressure (+14±2 mm Hg), tachycardia (+52±7 bpm), and renal sympathoactivation (+58±8%). Bilateral microinjections of tempol or tiron (20 nmol) into RVLM did not alter resting cardiovascular parameters, but attenuated the pressor, sympathetic, and tachycardiac response to stress by 40% to 55%. By contrast, 3-carbamoylproxyl, which is structurally close to tempol but has a lower superoxide scavenging activity, did not alter the stress response. Neither tempol nor tiron altered the sympathoexcitatory response to glutamate microinjections into RVLM or to baroreceptor unloading. Microinjections of nitric oxide synthase inhibitor
N
G
-nitro-
l
-arginine methyl ester (
l
-NAME; 10 nmol) into RVLM did not affect the stress response. Coinjections of tempol and
l
-NAME decreased the pressor response to stress by 35±3%. Tempol attenuated the pressor response to microinjection of angiotensin II into RVLM by 59±15%, whereas
l
-NAME did not alter this response. These results suggest that superoxide dismutase mimetics in RVLM attenuate, partially via a nitric oxide-independent mechanism, the pressor effect of emotional stress in rabbits. Together with our previous studies, these results also indicate that superoxide is a key mediator of excitatory actions of angiotensin II in RVLM during acute stress.
Collapse
Affiliation(s)
- Dmitry N Mayorov
- Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Victoria 8008, Australia.
| | | | | |
Collapse
|
49
|
Kasper SO, Ferrario CM, Ganten D, Diz DI. Central depletion of angiotensinogen is associated with elevated AT1 receptors in the SFO and PVN. Neurotox Res 2004; 6:259-65. [PMID: 15545009 DOI: 10.1007/bf03033436] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The brain renin-angiotensin system (RAS) is important in fluid balance and blood pressure regulation. In this study, we compared angiotensin (Ang) receptor density in the subfornical organ (SFO) and paraventricular nucleus (PVN) of a) brain angiotensinogen deficient rats (ASrAogen); b) those with high levels of brain Ang II [(mRen2)27]; c) Hannover Sprague Dawley (SD) rats at 48 and 68 wks of age. Since there was no difference between the two ages in any of the three strains, the data from the 48 and 68 wk time points were combined. There was a significantly higher level of AT1 receptors in the SFO and PVN of ASrAogen animals compared to both the SD and (mRen2)27 rats. This suggests that the brain RAS is important in regulating receptor density and that the differences may be explained by lower levels of the peptide locally. These higher levels of receptors suggest that the ASrAogen animals in adulthood and early aging would be more sensitive to either circulating or endogenous brain Ang II than the SD animals of similar age. In contrast, the similar receptor density in the (mRen2)27 and SD rats suggest that previous reports of reduced responses in the (mRen2)27 rats may result from differences in post receptor mechanisms such as intracellular signaling. Moreover, our data reveal that functional assessments are necessary in addition to receptor density levels to understand the consequences of long-term alterations in brain tissue peptides.
Collapse
Affiliation(s)
- Sherry O Kasper
- The Hypertension and Vascular Disease Center and Physiology/Pharmacology Department, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | |
Collapse
|
50
|
Saigusa T, Granger NS, Godwin SJ, Head GA. The rostral ventrolateral medulla mediates sympathetic baroreflex responses to intraventricular angiotensin II in rabbits. Auton Neurosci 2003; 107:20-31. [PMID: 12927223 DOI: 10.1016/s1566-0702(03)00104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study examined the role of the rostral ventrolateral medulla (RVLM) in mediating the pressor and renal sympathetic baroreflex effects of intraventricularly administered angiotensin II (Ang II) in urethane anaesthetised rabbits. Microinjection of Ang II over a wide range of medullary sites showed that pressor responses were observed only in the RVLM. Ang II was particularly potent in producing a transient pressor response at this site with a half maximal dose of 9 fmol. The administration of the Ang II antagonist Sar(1)-Ile(8)-Ang II (10 pmol) bilaterally into the RVLM inhibited the pressor response to local and fourth ventricular Ang II, but not the pressor response to RVLM applied glutamate. To determine the contribution of the RVLM to the renal sympathetic baroreflex effects of Ang II, blood pressure-renal sympathetic nerve activity (RSNA) curves were constructed with intravenous infusion of phenylephrine or nitroprusside before and after Ang II, vehicle or glutamate infusions into the RVLM. Ang II infusion of 4 pmol/min into the RVLM increased blood pressure by 8+/-3 mm Hg and shifted the renal sympathetic baroreflex curve to the right. The maximum RSNA evoked by lowering blood pressure increased by 36+/-6%, similar to the effect seen with fourth ventricular Ang II and RVLM glutamate. These studies suggest that the major medullary pressor site of action of Ang II when injected into the hindbrain cerebro-spinal fluid of anaesthetized rabbits is the RVLM where it facilitates baroreflex control of RSNA.
Collapse
Affiliation(s)
- Takeshi Saigusa
- Department of Physiology, Faculty of Medicine, University of Yamanashi, Tamaho, Nakakoma, Yamanashi 409-3898, Japan.
| | | | | | | |
Collapse
|