1
|
Yang C, Isaeva E, Shimada S, Kurth T, Stumpf M, Zheleznova NN, Staruschenko A, Dash RK, Cowley AW. Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity. Am J Physiol Renal Physiol 2024; 327:F435-F449. [PMID: 38779754 PMCID: PMC11460535 DOI: 10.1152/ajprenal.00403.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na+ channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K+ associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.NEW & NOTEWORTHY This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na+ channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.
Collapse
Affiliation(s)
- Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Satoshi Shimada
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Megan Stumpf
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nadezhda N Zheleznova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Ares GR. Ubiquitination of NKCC2 by the cullin-RING E3 ubiquitin ligase family in the thick ascending limb of the loop of Henle. Am J Physiol Renal Physiol 2023; 324:F315-F328. [PMID: 36727946 PMCID: PMC9988521 DOI: 10.1152/ajprenal.00079.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Na+/K+/2Cl- cotransporter (NKCC2) in the thick ascending limb of the loop of Henle (TAL) mediates NaCl reabsorption. cGMP, the second messenger of nitric oxide and atrial natriuretic peptide, inhibits NKCC2 activity by stimulating NKCC2 ubiquitination and decreasing surface NKCC2 levels. Among the E3 ubiquitin ligase families, the cullin-RING E3 ubiquitin ligase (CRL) family is the largest. Cullins are molecular scaffold proteins that recruit multiple subunits to form the CRL complex. We hypothesized that a CRL complex mediates the cGMP-dependent increase in NKCC2 ubiquitination in TALs. Cullin-1, cullin-2, cullin-3, cullin-4A, and cullin-5 were expressed at the protein level, whereas the other members of the cullin family were expressed at the mRNA level, in rat TALs. CRL complex activity is regulated by neuronal precursor cell-expressed developmentally downregulated protein 8 (Nedd8) to cullins, a process called neddylation. Inhibition of cullin neddylation blunted the cGMP-dependent increase in ubiquitinated NKCC2 while increasing the expression of cullin-1 by threefold, but this effect was not seen with other cullins. CRL complex activity is also regulated by cullin-associated Nedd8-dissociated 1 (CAND1). CAND1 binds to cullins and promotes the exchange of substrate-recognition proteins to target different proteins for ubiquitination. CAND1 inhibition exacerbated the cGMP-dependent increase in NKCC2 ubiquitination and decreased surface NKCC2 expression. Finally, cGMP increased neddylation of cullins. We conclude that the cGMP-dependent increase in NKCC2 ubiquitination is mediated by a CRL complex. To the best of our knowledge, this is the first evidence that a CRL complex mediates NKCC2 ubiquitination in native TALs.NEW & NOTEWORTHY The Na+/K+/2Cl- cotransporter (NKCC2) reabsorbs NaCl by the thick ascending limb. Nitric oxide and atrial natriuretic peptide decrease NaCl reabsorption in thick ascending limbs by increasing the second messenger cGMP. The present findings indicate that cGMP increases NKCC2 ubiquitination via a cullin-RING ligase complex and regulates in part surface NKCC2 levels. Identifying the E3 ubiquitin ligases that regulate NKCC2 expression and activity may provide new targets for the development of specific loop diuretics.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States.,Department of Physiology, Integrative Bioscience Center, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
3
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
4
|
Abstract
20-HETE, the ω-hydroxylation product of arachidonic acid catalyzed by enzymes of the cytochrome P450 (CYP) 4A and 4F gene families, is a bioactive lipid mediator with potent effects on the vasculature including stimulation of smooth muscle cell contractility, migration and proliferation as well as activation of endothelial cell dysfunction and inflammation. Clinical studies have shown elevated levels of plasma and urinary 20-HETE in human diseases and conditions such as hypertension, obesity and metabolic syndrome, myocardial infarction, stroke, and chronic kidney diseases. Studies of polymorphic associations also suggest an important role for 20-HETE in hypertension, stroke and myocardial infarction. Animal models of increased 20-HETE production are hypertensive and are more susceptible to cardiovascular injury. The current review summarizes recent findings that focus on the role of 20-HETE in the regulation of vascular and cardiac function and its contribution to the pathology of vascular and cardiac diseases.
Collapse
Affiliation(s)
- Petra Rocic
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, United States
| | | |
Collapse
|
5
|
Hao S, Hao M, Ferreri NR. Renal-Specific Silencing of TNF (Tumor Necrosis Factor) Unmasks Salt-Dependent Increases in Blood Pressure via an NKCC2A (Na +-K +-2Cl - Cotransporter Isoform A)-Dependent Mechanism. Hypertension 2018; 71:1117-1125. [PMID: 29735631 DOI: 10.1161/hypertensionaha.117.10764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/02/2018] [Accepted: 03/23/2018] [Indexed: 01/11/2023]
Abstract
We tested the hypothesis that TNF (tumor necrosis factor)-α produced within the kidney and acting on the renal tubular system is part of a regulatory mechanism that attenuates increases in blood pressure in response to high salt intake. Intrarenal administration of a lentivirus construct, which specifically silenced TNF in the kidney, did not affect baseline blood pressure. However, blood pressure increased significantly 1 day after mice with intrarenal silencing of TNF ingested 1% NaCl in the drinking water. The increase in blood pressure, which was continuously observed for 11 days, promptly returned to baseline levels when mice were switched from 1% NaCl to tap water. Silencing of renal TNF also increased NKCC2 (Na+-K+-2Cl- cotransporter) phosphorylation and induced a selective increase in NKCC2A (NKCC2 isoform A) mRNA accumulation in both the cortical and medullary thick ascending limb of Henle loop that was neither associated with a compensatory decrease of NKCC2F in the medulla nor NKCC2B in the cortex. The NaCl-mediated increases in blood pressure were completely absent when NKCC2A, using a lentivirus construct that did not alter expression of NKCC2F or NKCC2B, and TNF were concomitantly silenced in the kidney. Moreover, the decrease in urine volume and NaCl excretion induced by renal TNF silencing was abolished when NKCC2A was concurrently silenced, suggesting that this isoform contributes to the transition from a salt-resistant to salt-sensitive phenotype. Collectively, the data are the first to demonstrate a role for TNF produced by the kidney in the modulation of sodium homeostasis and blood pressure regulation.
Collapse
MESH Headings
- Animals
- Blood Pressure/physiology
- Blotting, Western
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Hypertension, Renal/physiopathology
- Kidney/metabolism
- Kidney/pathology
- Male
- Mice
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sodium Chloride/toxicity
- Solute Carrier Family 12, Member 1/biosynthesis
- Solute Carrier Family 12, Member 1/genetics
- Transcription, Genetic
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Shoujin Hao
- From the Department of Pharmacology, New York Medical College, Valhalla
| | - Mary Hao
- From the Department of Pharmacology, New York Medical College, Valhalla
| | - Nicholas R Ferreri
- From the Department of Pharmacology, New York Medical College, Valhalla.
| |
Collapse
|
6
|
Jo CH, Kim S, Oh IH, Park JS, Kim GH. Alteration of Tight Junction Protein Expression in Dahl Salt-Sensitive Rat Kidney. Kidney Blood Press Res 2017; 42:951-960. [PMID: 29179201 DOI: 10.1159/000485332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/26/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Altered pressure natriuresis is an important mechanism of hypertension, but it remains elusive at the molecular level. We hypothesized that in the kidney, tight junctions (TJs) may have a role in pressure natriuresis because paracellular NaCl transport affects interstitial hydrostatic pressure. METHODS To assess the association of salt-sensitive hypertension with altered renal TJ protein expression, Dahl salt-sensitive (SS) and salt-resistant (SR) rats were put on an 8% NaCl-containing rodent diet for 4 weeks. Systolic blood pressure (SBP) and urine NaCl excretion were measured weekly, and kidneys were harvested for immunoblotting and quantitative PCR analysis at the end of the animal experiments. RESULTS SBP was significantly higher in SS rats than in SR rats during the first to fourth weeks of the animal experiments. During the first and second week, urinary NaCl excretion was significantly lower in SS rats as compared with SR rats. However, the difference between the two groups vanished at the third and fourth weeks. In the kidney, claudin-4 protein and mRNA were significantly increased in SS rats as compared with SR rats. On the other hand, occludin protein and mRNA were significantly decreased in SS rats as compared with SR rats. The expression of claudin-2, claudin-7, and claudin-8 did not vary significantly between the two groups. CONCLUSIONS In SS rats, SS hypertension was associated with differential changes in renal TJ protein expression. Both upregulation of claudin-4 and downregulation of occludin might increase paracellular NaCl transport in the kidney, resulting in impaired pressure natriuresis in SS rats.
Collapse
Affiliation(s)
- Chor Ho Jo
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sua Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Il Hwan Oh
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Joon-Sung Park
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Gheun-Ho Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea.,Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zhou X, Forrest MJ, Sharif-Rodriguez W, Forrest G, Szeto D, Urosevic-Price O, Zhu Y, Stevenson AS, Zhou Y, Stribling S, Dajee M, Walsh SP, Pasternak A, Sullivan KA. Chronic Inhibition of Renal Outer Medullary Potassium Channel Not Only Prevented but Also Reversed Development of Hypertension and End-Organ Damage in Dahl Salt-Sensitive Rats. Hypertension 2017; 69:332-338. [DOI: 10.1161/hypertensionaha.116.08358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/05/2016] [Accepted: 11/13/2016] [Indexed: 01/21/2023]
Abstract
The renal outer medullary potassium (ROMK) channel mediates potassium recycling and facilitates sodium reabsorption through the Na
+
/K
+
/2Cl
−
cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Evidence from the phenotype of humans and rodents with functional ROMK deficiency supports the contention that selective ROMK inhibitors (ROMKi) will represent a novel diuretic with potential of therapeutic benefit for hypertension. ROMKi have recently been synthesized by Merck & Co, Inc. The present studies were designed to examine the effects of ROMKi B on systemic hemodynamics, renal function and structure, and vascular function in Dahl salt-sensitive rats. Four experimental groups—control, high-salt diet alone; ROMKi B 3 mg·kg
−
1
·d
−
1
; ROMKi B 10 mg·kg
−
1
·d
−
1
; and hydrochlorothiazide 25 mg·kg
−
1
·d
−
1
—were included in prophylactic (from week 1 to week 9 on high-salt diet) and therapeutic studies (from week 5 to week 9 on high-salt diet), respectively. ROMKi B produced sustained blood pressure reduction and improved renal and vascular function and histological alterations induced by a high-salt diet. ROMKi B was superior to hydrochlorothiazide at reducing blood pressure. Furthermore, ROMKi B provided beneficial effects on both the plasma lipid profile and bone mineral density. Chronic ROMK inhibition not only prevented but also reversed the development of hypertension and end-organ damage in Dahl salt-sensitive rats. Our findings suggest a potential utility of ROMKi B as a novel antihypertensive agent, particularly for the treatment of the salt-sensitive hypertension patient population.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Michael J. Forrest
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Wanda Sharif-Rodriguez
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Gail Forrest
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Daphne Szeto
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Olga Urosevic-Price
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Yonghua Zhu
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Andra S. Stevenson
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Yuchen Zhou
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Sloan Stribling
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Maya Dajee
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Shawn P. Walsh
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Alexander Pasternak
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Kathleen A. Sullivan
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| |
Collapse
|
8
|
Staruschenko A, Ilatovskaya DV, Pavlov TS. High salt diet and caffeine: food for thought. J Thorac Dis 2016; 8:E1410-E1412. [PMID: 27867643 PMCID: PMC5107454 DOI: 10.21037/jtd.2016.10.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tengis S Pavlov
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
9
|
Zicha J, Dobešová Z, Vokurková M, Rauchová H, Hojná S, Kadlecová M, Behuliak M, Vaněčková I, Kuneš J. Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res 2013; 61:S35-S87. [PMID: 22827876 DOI: 10.33549/physiolres.932363] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.
Collapse
Affiliation(s)
- J Zicha
- Centre for Cardiovascular Research, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhou X, Zhang Z, Shin MK, Horwitz SB, Levorse JM, Zhu L, Sharif-Rodriguez W, Streltsov DY, Dajee M, Hernandez M, Pan Y, Urosevic-Price O, Wang L, Forrest G, Szeto D, Zhu Y, Cui Y, Michael B, Balogh LA, Welling PA, Wade JB, Roy S, Sullivan KA. Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure. Hypertension 2013; 62:288-94. [PMID: 23753405 DOI: 10.1161/hypertensionaha.111.01051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The renal outer medullary potassium channel (ROMK, KCNJ1) mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Human genetic studies indicate that ROMK homozygous loss-of-function mutations cause type II Bartter syndrome, featuring polyuria, renal salt wasting, and hypotension; humans heterozygous for ROMK mutations identified in the Framingham Heart Study have reduced blood pressure. ROMK null mice recapitulate many of the features of type II Bartter syndrome. We have generated an ROMK knockout rat model in Dahl salt-sensitive background by using zinc finger nuclease technology and investigated the effects of knocking out ROMK on systemic and renal hemodynamics and kidney histology in the Dahl salt-sensitive rats. The ROMK(-/-) pups recapitulated features identified in the ROMK null mice. The ROMK(+/-) rats, when challenged with a 4% salt diet, exhibited a reduced blood pressure compared with their ROMK(+/+) littermates. More importantly, when challenged with an 8% salt diet, the Dahl salt-sensitive rats with 50% less ROMK expression showed increased protection from salt-induced blood pressure elevation and signs of protection from renal injury. Our findings in ROMK knockout Dahl salt-sensitive rats, together with the previous reports in humans and mice, underscore a critical role of ROMK in blood pressure regulation.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Cardiovascular Diseases, Merck Research Laboratories, 126 E Lincoln Ave, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ares GR, Haque MZ, Delpire E, Ortiz PA. Hyperphosphorylation of Na-K-2Cl Cotransporter in Thick Ascending Limbs of Dahl Salt-Sensitive Rats. Hypertension 2012; 60:1464-70. [DOI: 10.1161/hypertensionaha.112.202101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salt-sensitive hypertension involves a renal defect preventing the kidney from eliminating excess NaCl. The thick ascending limb of Henle loop reabsorbs ≈30% of filtered NaCl via the apical Na-K-2Cl cotransporter (NKCC2). Higher NKCC2 activity and Cl reabsorption have been reported in the thick ascending limbs from Dahl salt-sensitive rats (DSS) fed normal salt. NKCC2 activity is primarily regulated by protein trafficking and phosphorylation at Thr
96
/Thr
101
via STE20- and SPS1-related proline and alanine-rich kinases and oxidative stress-responsive kinase 1. However, the mechanism for enhanced NKCC2 activity in DSS is unclear. We hypothesized that DSS exhibit enhanced NKCC2 trafficking and higher NKCC2 phosphorylation compared with Dahl salt-resistant rats on normal salt diet. We measured steady state surface NKCC2 expression and phosphorylation at Thr
96
and Thr
101
by surface biotinylation and Western blot. In DSS, the surface:total NKCC2 ratio was enhanced by 25% compared with Dahl salt-resistant rats (
P
<0.05) despite lower NKCC2 expression. Total NKCC2 phosphorylation at Thr
96
and Thr
101
was enhanced ≈5-fold in DSS thick ascending limbs. Moreover, total STE20- and SPS1-related proline and alanine-rich kinases expression, kidney-specific STE20- and SPS1-related proline and alanine-rich kinases, and oxidative stress-responsive kinase 1 were not different between strains, although STE20- and SPS1-related proline and alanine-rich kinases/oxidative stress-responsive kinase 1 phosphorylation was enhanced by 60% (
P
<0.05) in DSS rats, suggesting increased activity. We concluded that phosphorylation of NKCC2 Thr
96
and Thr
101
and surface:total NKCC2 ratio are enhanced in DSS rats. These differences in NKCC2 may be, in part, responsible for higher NKCC2 activity and abnormally enhanced thick ascending limb NaCl reabsorption in DSS rats.
Collapse
Affiliation(s)
- Gustavo R. Ares
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI (G.R.A., M.Z.H., P.A.O.); Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN (E.D.); Department of Physiology, Wayne State University, Detroit, MI (P.A.O.)
| | - Mohammed Z. Haque
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI (G.R.A., M.Z.H., P.A.O.); Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN (E.D.); Department of Physiology, Wayne State University, Detroit, MI (P.A.O.)
| | - Eric Delpire
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI (G.R.A., M.Z.H., P.A.O.); Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN (E.D.); Department of Physiology, Wayne State University, Detroit, MI (P.A.O.)
| | - Pablo A. Ortiz
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI (G.R.A., M.Z.H., P.A.O.); Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN (E.D.); Department of Physiology, Wayne State University, Detroit, MI (P.A.O.)
| |
Collapse
|
12
|
Yang C, Stingo FC, Ahn KW, Liu P, Vannucci M, Laud PW, Skelton M, O'Connor P, Kurth T, Ryan RP, Moreno C, Tsaih SW, Patone G, Hummel O, Jacob HJ, Liang M, Cowley AW. Increased proliferative cells in the medullary thick ascending limb of the loop of Henle in the Dahl salt-sensitive rat. Hypertension 2012. [PMID: 23184381 DOI: 10.1161/hypertensionaha.112.199380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Studies of transcriptome profiles have provided new insights into mechanisms underlying the development of hypertension. Cell type heterogeneity in tissue samples, however, has been a significant hindrance in these studies. We performed a transcriptome analysis in medullary thick ascending limbs of the loop of Henle isolated from Dahl salt-sensitive rats. Genes differentially expressed between Dahl salt-sensitive rats and salt-insensitive consomic SS.13(BN) rats on either 0.4% or 7 days of 8.0% NaCl diet (n=4) were highly enriched for genes located on chromosome 13, the chromosome substituted in the SS.13(BN) rat. A pathway involving cell proliferation and cell cycle regulation was identified as one of the most highly ranked pathways based on differentially expressed genes and by a Bayesian model analysis. Immunofluorescent analysis indicated that just 1 week of a high-salt diet resulted in a severalfold increase in proliferative medullary thick ascending limb cells in both rat strains, and that Dahl salt-sensitive rats exhibited a significantly greater proportion of medullary thick ascending limb cells in a proliferative state than in SS.13(BN) rats (15.0±1.4% versus 10.1±0.6%; n=7-9; P<0.05). The total number of cells per medullary thick ascending limb section analyzed was not different between the 2 strains. The study revealed alterations in regulatory pathways in Dahl salt-sensitive rats in tissues highly enriched for a single cell type, leading to the unexpected finding of a greater increase in the number of proliferative medullary thick ascending limb cells in Dahl salt-sensitive rats on a high-salt diet.
Collapse
Affiliation(s)
- Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wu J, Liu X, Lai G, Yang X, Wang L, Zhao Y. Synergistical effect of 20-HETE and high salt on NKCC2 protein and blood pressure via ubiquitin-proteasome pathway. Hum Genet 2012; 132:179-87. [PMID: 23104236 DOI: 10.1007/s00439-012-1238-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/16/2012] [Indexed: 11/28/2022]
Abstract
We previously generated a cytochrome P450 4F2 (CYP4F2) transgenic mouse model and demonstrated that overexpressed CYP4F2 and overproduced 20-HETE in the kidneys contribute to the increase of blood pressure in the CYP4F2 transgenic mice with normal salt intake. We currently expect to elucidate a potential mechanism of salt-related hypertension whereby diverse levels of 20-HETE interact with dietary salt on Na(+)-K(+)-2Cl(-) cotransporter, isoform 2 (NKCC2) in the kidneys of the transgenic and wild-type mice with high salt intake. High salt intake reduced about 85 % abundance of renal NKCC2 protein in the transgenic mice and about 24 % in the wild-type mice by Western blot. Furthermore, we first found that NKCC2 was ubiquitinated and interacted with Nedd4-2 by immunoprecipitation in the transgenic mice with high salt intake. In addition, inhibition of 20-HETE synthesis or proteasome activity reversed the reduction of NKCC2 expression induced by 20-HETE and high salt intake. These results suggest that 20-HETE and high salt intake synergistically decrease the expression of NKCC2 protein via Nedd4-2-mediated ubiquitin-proteasome pathway, and thereby modulate natriuresis and blood pressure. We propose that diverse levels of 20-HETE have diverse effects on blood pressure in different salt concentrations.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | |
Collapse
|
14
|
Ares GR, Ortiz PA. Dynamin2, clathrin, and lipid rafts mediate endocytosis of the apical Na/K/2Cl cotransporter NKCC2 in thick ascending limbs. J Biol Chem 2012; 287:37824-34. [PMID: 22977238 DOI: 10.1074/jbc.m112.386425] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Steady-state surface levels of the apical Na/K/2Cl cotransporter NKCC2 regulate NaCl reabsorption by epithelial cells of the renal thick ascending limb (THAL). We reported that constitutive endocytosis of NKCC2 controls NaCl absorption in native THALs; however, the pathways involved in NKCC2 endocytosis are unknown. We hypothesized that NKCC2 endocytosis at the apical surface depends on dynamin-2 and clathrin. Measurements of steady-state surface NKCC2 and the rate of NKCC2 endocytosis in freshly isolated rat THALs showed that inhibition of endogenous dynamin-2 with dynasore blunted NKCC2 endocytosis by 56 ± 11% and increased steady-state surface NKCC2 by 67 ± 27% (p < 0.05). Expression of the dominant negative Dyn2K44A in THALs slowed the rate of NKCC2 endocytosis by 38 ± 8% and increased steady-state surface NKCC2 by 37 ± 8%, without changing total NKCC2 expression. Inhibition of clathrin-mediated endocytosis with chlorpromazine blunted NKCC2 endocytosis by 54 ± 6%, while preventing clathrin from interacting with synaptojanin also blunted NKCC2 endocytosis by 52 ± 5%. Disruption of lipid rafts blunted NKCC2 endocytosis by 39 ± 4% and silencing caveolin-1 by 29 ± 4%. Simultaneous inhibition of clathrin- and lipid raft-mediated endocytosis completely blocked NKCC2 internalization. We concluded that dynamin-2, clathrin, and lipid rafts mediate NKCC2 endocytosis and maintain steady-state apical surface NKCC2 in native THALs. These are the first data identifying the endocytic pathway for apical NKCC2 endocytosis.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
15
|
Zheleznova NN, Yang C, Ryan RP, Halligan BD, Liang M, Greene AS, Cowley AW. Mitochondrial proteomic analysis reveals deficiencies in oxygen utilization in medullary thick ascending limb of Henle in the Dahl salt-sensitive rat. Physiol Genomics 2012; 44:829-42. [PMID: 22805345 DOI: 10.1152/physiolgenomics.00060.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal medullary thick ascending limb (mTAL) of the Dahl salt-sensitive (SS) rat is the site of enhanced NaCl reabsorption and excess superoxide production. In the present studies we isolated mitochondria from mTAL of SS and salt-resistant control strain SS.13(BN) rats on 0.4 and 8% salt diet for 7 days and performed a proteomic analysis. Purity of mTAL and mitochondria isolations exceeded 93.6 and 55%, respectively. Using LC/MS spectral analysis techniques we identified 96 mitochondrial proteins in four biological mTAL mitochondria samples, run in duplicate, as defined by proteins with a false discovery rate <5% and scan count ≥2. Seven of these 96 proteins, including IDH2, ACADM, SCOT, Hsp60, ATPA, EFTu, and VDAC2 were differentially expressed between the two rat strains. Oxygen consumption and high-resolution respirometry analyses showed that mTAL cells and the mitochondria in the outer medulla of SS rats fed high-salt diet exhibited lower rates of oxygen utilization compared with those from SS.13(BN) rats. These studies advance the conventional proteomic paradigm of focusing exclusively upon whole tissue homogenates to a focus upon a single cell type and specific subcellular organelle. The results reveal the importance of a largely unexplored role for deficiencies of mTAL mitochondrial metabolism and oxygen utilization in salt-induced hypertension and renal medullary oxidative stress.
Collapse
Affiliation(s)
- Nadezhda N Zheleznova
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Huang BS, White RA, Leenen FHH. Possible role of brain salt-inducible kinase 1 in responses to central sodium in Dahl rats. Am J Physiol Regul Integr Comp Physiol 2012; 303:R236-45. [DOI: 10.1152/ajpregu.00381.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Dahl salt-sensitive (S) rats, Na+ entry into the cerebrospinal fluid (CSF) and sympathoexcitatory and pressor responses to CSF Na+ are enhanced. Salt-inducible kinase 1 (SIK1) increases Na+/K+-ATPase activity in kidney cells. We tested the possible role of SIK1 in regulation of CSF [Na+] and responses to Na+ in the brain. SIK1 protein and activity were lower in hypothalamic tissue of Dahl S (SS/Mcw) compared with salt-resistant SS.BN13 rats. Intracerebroventricular infusion of the protein kinase inhibitor staurosporine at 25 ng/day, to inhibit SIK1 further increased mean arterial pressure (MAP) and HR but did not affect the increase in CSF [Na+] or hypothalamic aldosterone in Dahl S on a high-salt diet. Intracerebroventricular infusion of Na+-rich artificial CSF caused significantly larger increases in renal sympathetic nerve activity, MAP, and HR in Dahl S vs. SS.BN13 or Wistar rats on a normal-salt diet. Intracerebroventricular injection of 5 ng staurosporine enhanced these responses, but the enhancement in Dahl S rats was only one-third that in SS.BN13 and Wistar rats. Staurosporine had no effect on MAP and HR responses to intracerebroventricular ANG II or carbachol, whereas the specific protein kinase C inhibitor GF109203X inhibited pressor responses to intracerebroventricular Na+-rich artificial CSF or ANG II. These results suggest that the SIK1-Na+/K+-ATPase network in neurons acts to attenuate sympathoexcitatory and pressor responses to increases in brain [Na+]. The lower hypothalamic SIK1 activity and smaller effect of staurosporine in Dahl S rats suggest that impaired activation of neuronal SIK1 by Na+ may contribute to their enhanced central responses to sodium.
Collapse
Affiliation(s)
- Bing S. Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Roselyn A. White
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Frans H. H. Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Ramseyer VD, Hong NJ, Garvin JL. Tumor necrosis factor α decreases nitric oxide synthase type 3 expression primarily via Rho/Rho kinase in the thick ascending limb. Hypertension 2012; 59:1145-50. [PMID: 22566503 DOI: 10.1161/hypertensionaha.111.189761] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inappropriate Na(+) reabsorption by thick ascending limbs (THALs) induces hypertension. NO produced by NO synthase type 3 (NOS3) inhibits NaCl reabsorption by THALs. Tumor necrosis factor α (TNF-α) decreases NOS3 expression in endothelial cells and contributes to increases in blood pressure. However, the effects of TNF-α on THAL NOS3 and the signaling cascade are unknown. TNF-α activates several signaling pathways, including Rho/Rho kinase (ROCK), which is known to reduce NOS3 expression in endothelial cells. Therefore, we hypothesized that TNF-α decreases NOS3 expression via Rho/ROCK in rat THAL primary cultures. THAL cells were incubated with either vehicle or 1 nmol/L of TNF-α for 24 hours, and NOS3 expression was measured by Western blot. TNF-α decreased NOS3 expression by 51 ± 6% (P<0.002) and blunted stimulus-induced NO production. A 10-minute treatment with TNF-α stimulated RhoA activity by 60 ± 23% (P<0.04). Inhibition of Rho GTPase with 0.05 μg/mL of C3 exoenzyme blocked TNF-α-induced reductions in NOS3 expression by 30 ± 8% (P<0.02). Inhibition of ROCK with 10 μmol/L of H-1152 blocked TNF-α-induced decreases in NOS3 expression by 66 ± 15% (P<0.001). Simultaneous inhibition of Rho and ROCK had no additive effect. Myosin light chain kinase, NO, protein kinase C, mitogen-activated kinase kinase, c-Jun amino terminal kinases, and Rac-1 were also not involved in TNF-α-induced decreases in NOS3 expression. We conclude that TNF-α decreases NOS3 expression primarily via Rho/ROCK in rat THALs. These data suggest that some of the beneficial effects of ROCK inhibitors in hypertension could be attributed to the mitigation of TNF-α-induced reduction in NOS3 expression.
Collapse
Affiliation(s)
- Vanesa D Ramseyer
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202-2689, USA
| | | | | |
Collapse
|
18
|
The role of the kidney in salt-sensitive hypertension. Clin Exp Nephrol 2011; 16:68-72. [PMID: 22038257 DOI: 10.1007/s10157-011-0489-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/22/2010] [Indexed: 10/16/2022]
Abstract
Primary hypertension is one of the leading risk factors for cardiovascular disease. Although the pathogenesis is not completely understood, an imbalance of sodium and chloride homeostasis seems to be relevant both in the induction and in the maintenance of salt-sensitive hypertension. Besides individual renal phenotypes, salt intake is one of the most important environmental determinants of this condition. The Milan hypertensive strain (MHS) of rats is an interesting model to investigate the molecular mechanisms underling the development of salt-sensitive hypertension. In young MHS rats, hypertension is anticipated by a phase of increased salt reabsorption localized along the medullary thick ascending limb associated with the up-regulation of the apical sodium-potassium-chloride cotransporter (NKCC2). Later, the frank hypertensive status of adult MHS rats is accompanied by the activation of the luminal and basal lateral transporters of sodium chloride (NaCl) in the distal convoluted tubule (DCT). Several lines of evidence have proven the key role of DCT in the maintenance of hypertension in MHS rats; more importantly, hypertensive patients carrying a mutation of α-adducin (resembling the MHS model) have a high sensitivity to thiazides, suggesting that the Na(+)-Cl(-) cotransporter also plays a pivotal role in humans.
Collapse
|
19
|
Ares GR, Caceres PS, Ortiz PA. Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Renal Physiol 2011; 301:F1143-59. [PMID: 21900458 DOI: 10.1152/ajprenal.00396.2011] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kidney plays an essential role in blood pressure regulation by controlling short-term and long-term NaCl and water balance. The thick ascending limb of the loop of Henle (TAL) reabsorbs 25-30% of the NaCl filtered by the glomeruli in a process mediated by the apical Na(+)-K(+)-2Cl(-) cotransporter NKCC2, which allows Na(+) and Cl(-) entry from the tubule lumen into TAL cells. In humans, mutations in the gene coding for NKCC2 result in decreased or absent activity characterized by severe salt and volume loss and decreased blood pressure (Bartter syndrome type 1). Opposite to Bartter's syndrome, enhanced NaCl absorption by the TAL is associated with human hypertension and animal models of salt-sensitive hypertension. TAL NaCl reabsorption is subject to exquisite control by hormones like vasopressin, parathyroid, glucagon, and adrenergic agonists (epinephrine and norepinephrine) that stimulate NaCl reabsorption. Atrial natriuretic peptides or autacoids like nitric oxide and prostaglandins inhibit NaCl reabsorption, promoting salt excretion. In general, the mechanism by which hormones control NaCl reabsorption is mediated directly or indirectly by altering the activity of NKCC2 in the TAL. Despite the importance of NKCC2 in renal physiology, the molecular mechanisms by which hormones, autacoids, physical factors, and intracellular ions regulate NKCC2 activity are largely unknown. During the last 5 years, it has become apparent that at least three molecular mechanisms determine NKCC2 activity. As such, membrane trafficking, phosphorylation, and protein-protein interactions have recently been described in TALs and heterologous expression systems as mechanisms that modulate NKCC2 activity. The focus of this review is to summarize recent data regarding NKCC2 regulation and discuss their potential implications in physiological control of TAL function, renal physiology, and blood pressure regulation.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | |
Collapse
|
20
|
Abstract
Arachidonic acid is metabolized by enzymes of the CYP4A and 4F families to 20-hydroxyeicosatetraeonic acid (20-HETE), which plays an important role in the regulation of renal function, vascular tone, and the long-term control of arterial pressure. In the vasculature, 20-HETE is a potent vasoconstrictor, and upregulation of the production of this compound contributes to the elevation in oxidative stress and endothelial dysfunction and the increase in peripheral vascular resistance associated with some forms of hypertension. In kidney, 20-HETE inhibits Na transport in the proximal tubule and thick ascending loop of Henle, and deficiencies in the renal formation of 20-HETE contributes to sodium retention and development of some salt-sensitive forms of hypertension. 20-HETE also has renoprotective actions and opposes the effects of transforming growth factor β to promote proteinuria and renal end organ damage in hypertension. Several new inhibitors of the synthesis of 20-HETE and 20-HETE agonists and antagonists have recently been developed. These compounds along with peroxisome proliferator-activated receptor-α agonists that induce the renal formation of 20-HETE seem to have promise as antihypertensive agents. This review summarizes the rationale for the development of drugs that target the 20-HETE pathway for the treatment of hypertension and associated cardiovascular complications.
Collapse
|
21
|
Programmed hypertension in rats treated with a NF-κB inhibitor during nephrogenesis: renal mechanisms. Hypertens Res 2011; 34:693-700. [PMID: 21326302 DOI: 10.1038/hr.2011.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Suppression of the renin-angiotensin system (RAS) during murine lactation causes progressive renal injury, indicating a physiological action of angiotensin II on nephrogenesis. The nuclear factor NF-κB system is one of the main intracellular mediators of angiotensin II. We investigated whether inhibition of this system with pyrrolidine dithiocarbamate (PDTC) during rat nephrogenesis would lead to similar hypertension and renal injury as observed with RAS suppressors. Immediately after delivery, 32 Munich-Wistar dams, each nursing 6 male pups, were divided into 2 groups: C, untreated, and PDTC, receiving PDTC, 280 mg kg(-1) day(-1) orally, during 21 days. After weaning, the offspring were followed until 10 months of age without treatment. Adult rats that received neonatal PDTC exhibited stable hypertension and myocardial injury, without albuminuria. To gain additional insight into this process, the renal expression of RAS components and sodium transporters were determined by quantitative real-time PCR (qRT-PCR) at 3 and 10 months of life. Renal renin and angiotensinogen were upregulated at 3 and downregulated at 10 months of age, suggesting a role for early local RAS activation. Likewise, there was early upregulation of the proximal sodium/glucose and sodium/bicarbonate transporters, which abated later in life, suggesting that additional factors sustained hypertension in the long run. The conclusions drawn from the findings were as follows: (1) an intact NF-κB system during nephrogenesis may be essential to normal renal and cardiovascular function in adult life; (2) neonatal PDTC represents a new model of hypertension, lacking overt structural injury or functional impairment of the kidneys; and (3) hypertension in this model seems associated with early temporary activation of renal RAS and sodium transporters.
Collapse
|
22
|
Haque MZ, Ares GR, Caceres PS, Ortiz PA. High salt differentially regulates surface NKCC2 expression in thick ascending limbs of Dahl salt-sensitive and salt-resistant rats. Am J Physiol Renal Physiol 2011; 300:F1096-104. [PMID: 21307126 DOI: 10.1152/ajprenal.00600.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NaCl reabsorption by the thick ascending limb of the loop of Henle (THAL) occurs via the apical Na-K-2Cl cotransporter, NKCC2. Overall, NKCC2 activity and NaCl reabsorption are regulated by the amount of NKCC2 at the apical surface, and also by phosphorylation. Dahl salt-sensitive rats (SS) exhibit higher NaCl reabsorption by the THAL compared with Dahl salt-resistant rats (SR), and they become hypertensive during high-salt (HS) intake. However, the effect of HS on THAL transport, surface NKCC2 expression, and NKCC2 NH(2)-terminus phosphorylation has not been studied. We hypothesized that HS enhances surface NKCC2 and its phosphorylation in THALs from Dahl SS. THAL suspensions were obtained from a group of SS and SR rats on normal-salt (NS) or HS intake. In SR rats THAL NaCl transport measured as furosemide-sensitive oxygen consumption was decreased by HS (-34%, P < 0.05). In contrast, HS did not affect THAL transport in SS rats. As expected, HS increased systolic blood pressure only in SS rats (Δ 23 ± 2 mmHg, P < 0.002) but not in SR rats (Δ 5 ± 3 mmHg). We next tested the effect of HS intake on apical surface NKCC2 and its NH(2)-terminus threonine phosphorylation (P-NKCC2) in SS and SR rats. HS intake decreased surface NKCC2 by 15 ± 2% (P < 0.03) in THALs from SR without affecting total NKCC2 or NH(2)-terminus P-NKCC2. In contrast, in SS rats HS intake increased surface NKCC2 by 54 ± 6% (P < 0.01) without affecting total NKCC2 expression or P-NKCC2. We conclude that HS intake causes different effects on surface NKCC2 in SS and SR rats. Our data suggest that enhanced surface NKCC2 in SS rats might contribute to enhanced NaCl reabsorption in SS rats during HS intake.
Collapse
Affiliation(s)
- Mohammed Ziaul Haque
- Department of Internal Medicine, Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
23
|
Esteva-Font C, Wang X, Ars E, Guillén-Gómez E, Sans L, González Saavedra I, Torres F, Torra R, Masilamani S, Ballarín JA, Fernández-Llama P. Are sodium transporters in urinary exosomes reliable markers of tubular sodium reabsorption in hypertensive patients? Nephron Clin Pract 2010; 114:p25-34. [PMID: 20068364 DOI: 10.1159/000274468] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/23/2009] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Altered renal sodium handling has a major pathogenic role in salt-sensitive hypertension. Renal sodium transporters are present in urinary exosomes. We hypothesized that sodium transporters would be excreted into the urine in different amounts in response to sodium intake in salt-sensitive versus salt-resistant patients. METHODS Urinary exosomes were isolated by ultracentrifugation, and their content of Na-K-2Cl cotransporter (NKCC2) and Na-Cl cotransporter (NCC) was analyzed by immunoblotting. Animal studies: NKCC2 and NCC excretion was measured in 2 rat models to test whether changes in sodium transporter excretion are indicative of regulated changes in the kidney tissue. Human studies: in hypertensive patients (n = 41), we investigated: (1) a possible correlation between sodium reabsorption and urinary exosomal excretion of sodium transporters, and (2) the profile of sodium transporter excretion related to blood pressure (BP) changes with salt intake. A 24-hour ambulatory BP monitoring and a 24-hour urine collection were performed after 1 week on a low- and 1 week on a high-salt diet. RESULTS Animal studies: urinary NKCC2 and NCC excretion rates correlated well with their abundance in the kidney. Human studies: 6 patients (15%) were classified as salt sensitive. The NKCC2 and NCC abundance did not decrease after the high-salt period, when the urinary sodium reabsorption decreased from 99.7 to 99.0%. In addition, the changes in BP with salt intake were not associated with a specific profile of exosomal excretion. CONCLUSIONS Our results do not support the idea that excretion levels of NKCC2 and NCC via urinary exosomes are markers of tubular sodium reabsorption in hypertensive patients.
Collapse
Affiliation(s)
- Cristina Esteva-Font
- Molecular Biology Laboratory, Universitat Autònoma de Barcelona, Fundació Puigvert, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jung JY, Lee JW, Kim S, Jung ES, Jang HR, Han JS, Joo KW. Altered regulation of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy. Electrolyte Blood Press 2009; 7:58-66. [PMID: 21468187 PMCID: PMC3041484 DOI: 10.5049/ebp.2009.7.2.58] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 11/05/2022] Open
Abstract
Uninephrectomy (uNx) in young rats causes salt-sensitive hypertension (SSH). Alterations of sodium handling in residual nephrons may play a role in the pathogenesis. Therefore, we evaluated the adaptive alterations of renal sodium transporters according to salt intake in uNx-SSH rats. uNx or sham operations were performed in male Sprague-Dawley rats, and normal-salt diet was fed for 4 weeks. Four experimental groups were used: sham-operated rats raised on a high-salt diet for 2 weeks (CHH) or on a low-salt diet for 1 week after 1 week's high-salt diet (CHL) and uNx rats fed on the same diet (NHH, NHL) as the sham-operated rats were fed. Expression of major renal sodium transporters were determined by semiquantitative immunoblotting. Systolic blood pressure was increased in NHH and NHL groups, compared with CHH and CHL, respectively. Protein abundances of Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and Na(+)/Cl(-) cotransporter (NCC) in the CHH group were lower than the CHL group. Expression of epithelial sodium channel (ENaC)-γ increased in the CHH group. In contrast, expressions of NKCC2 and NCC in the NHH group didn't show any significant alterations, compared to the NHL group. Expressions of ENaC-α and ENaC-β in the NHH group were higher than the CHH group. Adaptive alterations of NKCC2 and NCC to changes of salt intake were different in the uNx group, and changes in ENaC-α and ENaC-β were also different. These altered regulations of sodium transporters may be involved in the pathogenesis of SSH in the uNx rat model.
Collapse
Affiliation(s)
- Ji Yong Jung
- Department of Internal Medicine, Laboratory of Molecular Nephrology, Gachon University of Medicine and Science, Incheon, Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Silvani A, Bastianini S, Berteotti C, Franzini C, Lenzi P, Lo Martire V, Zoccoli G. Central and baroreflex control of heart period during the wake-sleep cycle in consomic rats with different genetic susceptibility to hypertension. Clin Exp Pharmacol Physiol 2009; 37:322-7. [PMID: 19769608 DOI: 10.1111/j.1440-1681.2009.05293.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. In spontaneously hypertensive rats (SHR), the contributions of the baroreflex and central autonomic commands to the control of heart period (HP) vary among wake-sleep states and are impaired during quiet wakefulness and rapid eye movement sleep (REMS), respectively. 2. Dahl salt-sensitive (SS) rats are genetically susceptible to salt-sensitive hypertension, the development of which depends on diet. Substitution of chromosome 13 of SS rats with that of Brown Norway rats confers salt-resistance to consomic SS-13BN rats. 3. In the present study, we tested whether differences in the central and baroreflex contributions to HP control occur among wake-sleep states in SS and SS-13BN rats and reflect genetic susceptibility to hypertension. Rats (n = 5 per group) were fed a prohypertensive diet late during development to minimize hypertension in SS rats and were instrumented with an arterial catheter and electrodes for discriminating wake-sleep states. 4. The cross-correlation function between HP and blood pressure indicated that, in SS and SS-13BN rats, the contributions of the baroreflex and central commands to the control of HP differed significantly among wake-sleep states, with central commands outweighing the baroreflex in REMS. However, these contributions did not differ significantly between SS and SS-13BN rats in any wake-sleep state. 5. The data suggest that differences in the central and baroreflex contributions to HP control among wake-sleep states, which have been demonstrated in SHR, can be generalized to other rat models used in hypertension research. Impairments in the baroreflex and central autonomic control of HP during quiet wakefulness and REMS, respectively, cannot be generalized as an index of genetic susceptibility to hypertension.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Inoue K, Sodhi K, Puri N, Gotlinger KH, Cao J, Rezzani R, Falck JR, Abraham NG, Laniado-Schwartzman M. Endothelial-specific CYP4A2 overexpression leads to renal injury and hypertension via increased production of 20-HETE. Am J Physiol Renal Physiol 2009; 297:F875-84. [PMID: 19675180 DOI: 10.1152/ajprenal.00364.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that adenoviral-mediated delivery of cytochrome P-450 (CYP) 4A2, which catalyzes the synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE), results in endothelial dysfunction and hypertension in Sprague-Dawley (SD) rats (Wang JS, Singh H, Zhang F, Ishizuka T, Deng H, Kemp R, Wolin MS, Hintze TH, Abraham NG, Nasjletti A, Laniado-Schwartzman M. Circ Res 98: 962-969, 2006). In this study, we targeted the vascular endothelium by using a lentivirus construct expressing CYP4A2 under the control of the endothelium-specific promoter VE-cadherin (VECAD-4A2) and examined the effect of long-term CYP4A2 overexpression on blood pressure and kidney function in SD rats. A bolus injection of VECAD-4A2 increased blood pressure (P < 0.001) by 26, 36, and 30 mmHg 10, 20, and 30 days postinjection, respectively. Arteries from VECAD-4A2-transduced rats produced increased levels of 20-HETE (P < 0.01), expressed lower levels of endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (p-eNOS) (P < 0.05), generated higher levels of superoxide anion, and displayed decreased relaxing responsiveness to acetylcholine (P < 0.05). Proteinuria increased by twofold in VECAD-4A2-transduced rats compared with controls. Treatment of VECAD-4A2-transduced rats with HET0016, an inhibitor of 20-HETE biosynthesis, not only attenuated the increase in blood pressure (P < 0.05) but also improved vascular function (acetylcholine-induced relaxations) and reduced plasma creatinine and proteinuria. HET0016 treatment decreased oxidative stress and increased the phosphorylated state of key proteins that regulate endothelial function, including eNOS, AKT, and AMPK. Collectively, these findings demonstrate that augmentation of vascular endothelial 20-HETE levels results in hypertension, endothelial dysfunction, and renal injury, which is offset by HET0016 through a reduction in vascular 20-HETE coupled with a lessening of oxidative stress and the amplification of pAKT, pAMPK, and p-eNOS levels leading to normalization of endothelial responses.
Collapse
Affiliation(s)
- Kazuyoshi Inoue
- Dept. of Pharmacology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
28
|
Williams JM, Sarkis A, Hoagland KM, Fredrich K, Ryan RP, Moreno C, Lopez B, Lazar J, Fenoy FJ, Sharma M, Garrett MR, Jacob HJ, Roman RJ. Transfer of the CYP4A region of chromosome 5 from Lewis to Dahl S rats attenuates renal injury. Am J Physiol Renal Physiol 2008; 295:F1764-77. [PMID: 18842817 DOI: 10.1152/ajprenal.90525.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study examined the effect of transfer of overlapping regions of chromosome 5 that includes (4A(+)) or excludes (4A(-)) the cytochrome P-450 4A (CYP4A) genes from the Lewis rat on the renal production of 20-hydroxyeicosatetraenoic acid (20-HETE) and the development of hypertension-induced renal disease in congenic strains of Dahl salt-sensitive (Dahl S) rats. The production of 20-HETE was higher in the outer medulla of 4A(+) than in Dahl S or 4A(-) rats. Mean arterial pressure (MAP) rose to 190 +/- 7 and 185 +/- 3 mmHg in Dahl S and 4A(-) rats fed a high-salt (HS) diet for 21 days but only to 150 +/- 5 mmHg in the 4A(+) strain. Protein excretion increased to 423 +/- 40 and 481 +/- 37 mg/day in Dahl S and 4A(-) rats vs. 125 +/- 15 mg/day in the 4A(+) strain. Baseline glomerular capillary pressure (Pgc) was lower in 4A(+) rats (38 +/- 1 mmHg) than in Dahl S rats (42 +/- 1 mmHg). Pgc increased to 50 +/- 1 mmHg in Dahl S rats fed a HS diet, whereas it remained unaltered in 4A(+) rats (39 +/- 1 mmHg). Baseline glomerular permeability to albumin (P(alb)) was lower in 4A(+) rats (0.19 +/- 0.05) than in Dahl S or 4A(-) rats (0.39 +/- 0.02). P(alb) rose to approximately 0.61 +/- 0.03 in 4A(-) and Dahl S rats fed a HS diet for 7 days, but it remained unaltered in the 4A(+) rats. The expression of transforming growth factor-beta2 was higher in glomeruli of Dahl S rats than in 4A(+) rats fed either a low-salt (LS) or HS diet. Chronic administration of a 20-HETE synthesis inhibitor (HET0016; 10 mg.kg(-1).day(-1) sc) reversed the fall in MAP and renoprotection seen in 4A(+) rats. These results indicate that the introgression of the CYP4A genes from Lewis rats into the Dahl S rats increases the renal formation of 20-HETE and attenuates the development of hypertension and renal disease.
Collapse
Affiliation(s)
- Jan Michael Williams
- Kidney Disease Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chun TY, Bankir L, Eckert GJ, Bichet DG, Saha C, Zaidi SA, Wagner MA, Pratt JH. Ethnic Differences in Renal Responses to Furosemide. Hypertension 2008; 52:241-8. [DOI: 10.1161/hypertensionaha.108.109801] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blacks have a greater tendency to retain Na than whites. The present study sought evidence for ethnic differences in parameters reflective of Na uptake by the Na,K,2Cl cotransporter in the thick ascending limb, namely, the urine concentration and urinary excretion of certain cations before and after furosemide administration (40 mg IV). Subjects were healthy (ages 18 to 36 years). During the preceding overnight period, urine volume was lower, and osmolality was higher in blacks than in whites, an ethnic difference that disappeared when water intake was restricted to infused normal saline (60 mL/h). Plasma vasopressin levels were higher in black males than in other sex/ethnic groups. Baseline urinary excretion rates of K, Ca, and Mg were significantly lower in blacks than in whites. After furosemide (0 to 1 hour), K and Ca excretion rates increased, but the proportionate ethnic difference decreased from 44% to 22% and from 22% to 10%, respectively, consistent with blacks having more basal Na,K,2Cl cotransporter activity to inhibit. During a later postfurosemide period (1 to 5 hours), urinary concentrations of Ca and Mg recovered more slowly in blacks, consistent with greater reuptake in the thick ascending limb. In summary, there were distinct ethnic differences in renal handling of Ca and Mg basally and in response to furosemide that were consistent with a more active Na,K,2Cl cotransporter in the thick ascending limb in blacks. An increase in vasopressin levels appeared to explain greater urine concentrations in black males but not black females.
Collapse
Affiliation(s)
- Tae-Yon Chun
- From the Departments of Medicine (T-Y.C., G.J.E., C.S., M.A.W., J.H.P.) and Medical and Molecular Genetics (S-A.Z.), Indiana University School of Medicine, Indianapolis; Richard L. Rhoudebush Veterans’ Affairs Medical Center (T-Y.C., J.H.P.), Indianapolis, Ind; INSERM Unit 872 (L.B.), Universite Pierre et Marie Curie (Paris VI), Centre de Recherche des Cordeliers, Paris, France; and the Departments of Medicine and Physiology (D.G.B.), Université de Montréal, Hôpital du Sacré-Coeur de Montréal,
| | - Lise Bankir
- From the Departments of Medicine (T-Y.C., G.J.E., C.S., M.A.W., J.H.P.) and Medical and Molecular Genetics (S-A.Z.), Indiana University School of Medicine, Indianapolis; Richard L. Rhoudebush Veterans’ Affairs Medical Center (T-Y.C., J.H.P.), Indianapolis, Ind; INSERM Unit 872 (L.B.), Universite Pierre et Marie Curie (Paris VI), Centre de Recherche des Cordeliers, Paris, France; and the Departments of Medicine and Physiology (D.G.B.), Université de Montréal, Hôpital du Sacré-Coeur de Montréal,
| | - George J. Eckert
- From the Departments of Medicine (T-Y.C., G.J.E., C.S., M.A.W., J.H.P.) and Medical and Molecular Genetics (S-A.Z.), Indiana University School of Medicine, Indianapolis; Richard L. Rhoudebush Veterans’ Affairs Medical Center (T-Y.C., J.H.P.), Indianapolis, Ind; INSERM Unit 872 (L.B.), Universite Pierre et Marie Curie (Paris VI), Centre de Recherche des Cordeliers, Paris, France; and the Departments of Medicine and Physiology (D.G.B.), Université de Montréal, Hôpital du Sacré-Coeur de Montréal,
| | - Daniel G. Bichet
- From the Departments of Medicine (T-Y.C., G.J.E., C.S., M.A.W., J.H.P.) and Medical and Molecular Genetics (S-A.Z.), Indiana University School of Medicine, Indianapolis; Richard L. Rhoudebush Veterans’ Affairs Medical Center (T-Y.C., J.H.P.), Indianapolis, Ind; INSERM Unit 872 (L.B.), Universite Pierre et Marie Curie (Paris VI), Centre de Recherche des Cordeliers, Paris, France; and the Departments of Medicine and Physiology (D.G.B.), Université de Montréal, Hôpital du Sacré-Coeur de Montréal,
| | - Chandan Saha
- From the Departments of Medicine (T-Y.C., G.J.E., C.S., M.A.W., J.H.P.) and Medical and Molecular Genetics (S-A.Z.), Indiana University School of Medicine, Indianapolis; Richard L. Rhoudebush Veterans’ Affairs Medical Center (T-Y.C., J.H.P.), Indianapolis, Ind; INSERM Unit 872 (L.B.), Universite Pierre et Marie Curie (Paris VI), Centre de Recherche des Cordeliers, Paris, France; and the Departments of Medicine and Physiology (D.G.B.), Université de Montréal, Hôpital du Sacré-Coeur de Montréal,
| | - Syed-Adeel Zaidi
- From the Departments of Medicine (T-Y.C., G.J.E., C.S., M.A.W., J.H.P.) and Medical and Molecular Genetics (S-A.Z.), Indiana University School of Medicine, Indianapolis; Richard L. Rhoudebush Veterans’ Affairs Medical Center (T-Y.C., J.H.P.), Indianapolis, Ind; INSERM Unit 872 (L.B.), Universite Pierre et Marie Curie (Paris VI), Centre de Recherche des Cordeliers, Paris, France; and the Departments of Medicine and Physiology (D.G.B.), Université de Montréal, Hôpital du Sacré-Coeur de Montréal,
| | - Mary Anne Wagner
- From the Departments of Medicine (T-Y.C., G.J.E., C.S., M.A.W., J.H.P.) and Medical and Molecular Genetics (S-A.Z.), Indiana University School of Medicine, Indianapolis; Richard L. Rhoudebush Veterans’ Affairs Medical Center (T-Y.C., J.H.P.), Indianapolis, Ind; INSERM Unit 872 (L.B.), Universite Pierre et Marie Curie (Paris VI), Centre de Recherche des Cordeliers, Paris, France; and the Departments of Medicine and Physiology (D.G.B.), Université de Montréal, Hôpital du Sacré-Coeur de Montréal,
| | - J. Howard Pratt
- From the Departments of Medicine (T-Y.C., G.J.E., C.S., M.A.W., J.H.P.) and Medical and Molecular Genetics (S-A.Z.), Indiana University School of Medicine, Indianapolis; Richard L. Rhoudebush Veterans’ Affairs Medical Center (T-Y.C., J.H.P.), Indianapolis, Ind; INSERM Unit 872 (L.B.), Universite Pierre et Marie Curie (Paris VI), Centre de Recherche des Cordeliers, Paris, France; and the Departments of Medicine and Physiology (D.G.B.), Université de Montréal, Hôpital du Sacré-Coeur de Montréal,
| |
Collapse
|
30
|
Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer TM, Caulfield M, Burton PR, Samani NJ. Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension 2008; 51:1658-64. [PMID: 18443236 DOI: 10.1161/hypertensionaha.108.112664] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genes responsible for several monogenic hypertensive and hypotensive disorders have been identified. Our aim was to evaluate whether common variants in these genes affect blood pressure in the general population. We studied 2037 adults from 520 nuclear families characterized for 24-hour ambulatory blood pressure and related cardiovascular traits. We genotyped 298 tagging and putative functional single nucleotide polymorphisms, achieving a median coverage of 82.4% across 11 candidate loci. Five polymorphisms in the KCNJ1 gene coding for the potassium channel, ROMK, showed associations with mean 24-hour systolic or diastolic blood pressure. The strongest association was with an intronic polymorphism, rs2846679, where the minor allele (frequency 16%) was associated with a -1.58 (95% CI -2.47 to -0.69) mm Hg change in mean 24-hour systolic blood pressure, after accounting for age, sex, and familial correlations (P=0.00048). Polymorphisms in the gene were also associated with clinic blood pressure and left ventricular mass as assessed by ECG Sokolow-Lyon voltage (P=0.0081 for rs675759). Associations with mean 24-hour systolic or diastolic blood pressure were also observed for variants in CASR, NR3C2, SCNN1B, and SCNN1G. The findings show that common variants in genes responsible for some Mendelian disorders of hypertension and hypotension affect blood pressure in the general population. Notably, variants in KCNJ1, which causes Bartter syndrome type 2, were strongly associated, potentially providing a novel target for intervention.
Collapse
Affiliation(s)
- Martin D Tobin
- Department of Health Sciences & Genetics, University of Leicester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Esteva-Font C, Torra Balcells R, Fernández-Llama P. Transportadores de sodio y aquaporinas: ¿futuros biomarcadores renales? Med Clin (Barc) 2007; 129:433-7. [DOI: 10.1157/13110477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W, Insel PA, Vallon V. Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J 2007; 21:3717-26. [PMID: 17575258 DOI: 10.1096/fj.07-8807com] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular nucleotides (e.g., ATP) regulate many physiological and pathophysiological processes through activation of nucleotide (P2) receptors in the plasma membrane. Here we report that gene-targeted (knockout) mice that lack P2Y2 receptors have salt-resistant arterial hypertension in association with an inverse relationship between salt intake and heart rate, indicating intact baroreceptor function. Knockout mice have multiple alterations in their handling of salt and water: these include suppressed plasma renin and aldosterone concentrations, lower renal expression of the aldosterone-induced epithelial sodium channel alpha-ENaC, greater medullary expression of the Na-K-2Cl-cotransporter NKCC2, and greater furosemide-sensitive Na+ reabsorption in association with greater renal medullary expression of aquaporin-2 and vasopressin-dependent renal cAMP formation and water reabsorption despite similar vasopressin levels compared with wild type. Of note, smaller increases in plasma aldosterone were required to adapt renal Na+ excretion to restricted intake in knockout mice, suggesting a facilitation in renal Na+ retention. The results thus identify a previously unrecognized role for P2Y2 receptors in blood pressure regulation that is linked to an inhibitory influence on renal Na+ and water reabsorption. Based on these findings in knockout mice, we propose that a blunting in P2Y2 receptor expression or activity is a new mechanism for salt-resistant arterial hypertension.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine, University of California San Diego, San Diego, CA 92161, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Williams JM, Sarkis A, Lopez B, Ryan RP, Flasch AK, Roman RJ. Elevations in Renal Interstitial Hydrostatic Pressure and 20-Hydroxyeicosatetraenoic Acid Contribute to Pressure Natriuresis. Hypertension 2007; 49:687-94. [PMID: 17210834 DOI: 10.1161/01.hyp.0000255753.89363.47] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined the role of changes in renal interstitial pressure on the renal levels of cytochrome P450 metabolites of arachidonic acid and compared the effects of inhibition of the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids with 1-aminobenzotriazole on the pressure-natriuretic response versus that seen after administration of HET0016, a more selective inhibitor of the formation of 20-HETE. Renal interstitial pressure rose by 3.4±0.3 mm Hg, and the levels of 20-HETE in renal cortical tissue doubled when renal perfusion pressure was increased from 100 to 160 mm Hg. Removal of the renal capsule prevented the increase in renal interstitial pressure and 20-HETE levels after an elevation in renal perfusion pressure. Urine flow and sodium excretion increased 5-fold when renal perfusion pressure was increased from 106 to 160 mm Hg. The administration of 1-aminobenzotriazole (50 mg/kg, IP) or HET0016 (10 mg/kg IV bolus plus 1 mg/kg per hour of infusion) decreased the pressure-natriuretic response by 50% and inhibited the renal formation of 20-HETE and epoxyeicosatrienoic acids by 90% and 50%, respectively. Administration of a lower dose of HET0016 (1 mg/kg per hour, IV) selectively reduced the formation of 20-HETE by 80% without inhibiting renal epoxygenase activity and blunted the pressure-natriuretic response by 42%. These results indicate that elevations in renal perfusion pressure increase 20-HETE levels in the kidney secondary to a rise in renal interstitial pressure. They also suggest that 20-HETE, rather than epoxyeicosatrienoic acids, modulates the pressure-natriuretic response, because selective blockade of the formation of 20-HETE with HET0016 blunts the response to the same extent as that seen after inhibition of the formation of 20-HETE and epoxyeicosatrienoic acids with 1-aminobenzotriazole.
Collapse
Affiliation(s)
- Jan M Williams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
34
|
Capasso G, Cantone A, Evangelista C, Zacchia M, Trepiccione F, Acone D, Rizzo M. Channels, carriers, and pumps in the pathogenesis of sodium-sensitive hypertension. Semin Nephrol 2006; 25:419-24. [PMID: 16298266 DOI: 10.1016/j.semnephrol.2005.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sodium-sensitive hypertension is thought to be dependent on primary alterations in renal tubular sodium reabsorption. The major apical plasma membrane Na(+) transporters include the proximal tubular Na(+)-H(+) exchanger, the thick ascending limb Na(+)-K(+)-2Cl(-) cotransport system, the distal tubular Na(+)-Cl(-) cotransporter, and the collecting duct epithelial sodium channel (ENaC). This article explores the role of each transporter in the pathogenesis of hypertension. Although the contribution of the proximal tubule Na(+)-H(+) exchanger is not yet defined completely, more convincing data have been generated about the importance of the Na(+)-K(+)-2Cl(-). Indeed at least 2 forms of hypertension appear to be related to the up-regulation of the transporter: the so-called programmed hypertension induced by low-protein diet during pregnancy and the early phase of hypertension in the Milan strain of rats. With respect to the Na(+)-Cl(-) cotransporter this may be overactive caused by inactivating mutation of WNK4 as in the Gordon syndrome, although it is the main actor for the maintenance phase of the hypertension found in the Milan strain of rats. Finally, the contribution of the ENaC has been established clearly; indeed, in the Liddle syndrome the mutation of the ENaC gene leads to a longer retention of the channel on the cell surface of collecting duct principal cells, thus inducing stronger sodium reabsorption along this segment. All these examples clearly indicate that renal sodium transporters may be responsible for various types of sodium-sensitive hypertension.
Collapse
Affiliation(s)
- Giovambattista Capasso
- Department of Nephrology and Research Center for Cardiovascular Diseases, Faculty of Medicine, Second University of Napoli, Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Bobulescu IA, Di Sole F, Moe OW. Na+/H+ exchangers: physiology and link to hypertension and organ ischemia. Curr Opin Nephrol Hypertens 2005; 14:485-94. [PMID: 16046909 PMCID: PMC2861558 DOI: 10.1097/01.mnh.0000174146.52915.5d] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Na/H exchangers (NHEs) are ubiquitous proteins with a very wide array of physiological functions, and they are summarized in this paper in view of the most recent advances. Hypertension and organ ischemia are two disease states of paramount importance in which NHEs have been implicated. The involvement of NHEs in the pathophysiology of these disorders is incompletely understood. This paper reviews the principal findings and current hypotheses linking NHE dysfunction to hypertension and ischemia. RECENT FINDINGS With the advent of large-scale sequencing projects and powerful in-silico analyses, we have come to know what is most likely the entire mammalian NHE gene family. Recent advances have detailed the roles of NHE proteins, exploring new functions such as anchoring, scaffolding and pH regulation of intracellular compartments. Studies of NHEs in disease models, even though not conclusive to date, have contributed new evidence on the interplay of ion transporters and the delicate ion balances that may become disrupted. SUMMARY This paper provides the interested reader with a concise overview of NHE physiology, and aims to address the implication of NHEs in the pathophysiology of hypertension and organ ischemia in light of the most recent literature.
Collapse
Affiliation(s)
- I. Alexandru Bobulescu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesca Di Sole
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
36
|
Zhou Y, Huang H, Chang HH, Du J, Wu JF, Wang CY, Wang MH. Induction of renal 20-hydroxyeicosatetraenoic acid by clofibrate attenuates high-fat diet-induced hypertension in rats. J Pharmacol Exp Ther 2005; 317:11-8. [PMID: 16339392 DOI: 10.1124/jpet.105.095356] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study compared renal hemodynamics, the expression of CYP4A isoforms [the enzymes for 20-hydroxyeicosatetraenoic acid (20-HETE) production], and tubular sodium transporters in male rats fed a high-fat (HF) or control diet for 10 weeks. We also studied the effect of treatment with clofibrate, a CYP4A inducer, on sodium retention and renal function and on CYP4A expression in HF rats. HF rats had higher blood pressure (BP), renal plasma flow, and glomerular filtration rate (GFR), but no significant change in renal vascular resistance. Reverse transcription-polymerase chain reaction analysis showed that CYP4A1 and CYP4A8 expression was significantly decreased in the renal cortex of HF rats. Western blot analysis showed up-regulation of expression of the alpha-subunit of the epithelial sodium channel (alpha-ENaC), the beta-subunit of the epithelial sodium channel (beta-ENaC), sodium/hydrogen exchanger (NHE)-3, and the renal outer medulla K(+) channel (ROMK) in HF rats, whereas expression of the gamma-subunit of the epithelial sodium channel and the alpha1-subunit of Na(+)-K(+)-ATPase remained unchanged. Thus, HF treatment caused the reduction of renal CYP4A1 and CYP4A8 expression, whereas the increases in alpha-ENaC, beta-ENaC, NHE-3, and ROMK expression in renal tubules may have contributed sodium retention and hypertension in HF rats. Furthermore, clofibrate treatment (240 mg/kg/day) caused the decrease of BP and GFR and the attenuation of cumulative sodium balance in HF rats. The attenuation of sodium retention by clofibrate treatment is linked to decreased expression of NHE-3 in renal cortex. Clofibrate induction of CYP4A expression occurred in proximal tubules and in the thick ascending limb of the loop of Henle but not in renal microvessels. This induction correlated with the expression of peroxisome proliferator-activated receptor (PPARalpha) in renal tubules. Therefore, these results suggest that the effects of clofibrate on sodium retention and blood pressure regulation in HF rats may be due to the induction of renal tubular 20-HETE production through the PPARalpha pathway.
Collapse
Affiliation(s)
- Yiqiang Zhou
- Department of Physiology, Medical College of Georgia, Augusta, 30912, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Kim SW, Wang W, Kwon TH, Knepper MA, Frøkiaer J, Nielsen S. Increased expression of ENaC subunits and increased apical targeting of AQP2 in the kidneys of spontaneously hypertensive rats. Am J Physiol Renal Physiol 2005; 289:F957-68. [PMID: 15956775 DOI: 10.1152/ajprenal.00413.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In models of genetic hypertension, renal tubular dysfunction could be involved in the increased sodium and water reabsorption. However, the molecular basis for the increased renal sodium and water retention remains largely undefined in spontaneously hypertensive rats (SHR). We hypothesized that dysregulation of renal epithelial sodium channels (ENaC), sodium (co)transporters, or aquaporin-2 (AQP2) could be involved in the pathogenesis of hypertension in SHR. Six-week-old or twelve-week-old SHR and corresponding age-matched Wistar-Kyoto control rats (WKY) were studied. In both SHR groups, systolic blood pressure was markedly increased, whereas urine output, creatinine clearance, and urinary sodium excretion were decreased compared with corresponding WKY. Moreover, urine osmolality and urine-to-plasma osmolality ratio were increased compared with WKY. Semiquantitative immunoblotting demonstrated that the protein abundance of β- and γ-subunits of ENaC was increased in the cortex and outer stripe of the outer medulla and inner stripe of the outer medulla (ISOM) in SHR, whereas α-ENaC abundance was increased in ISOM. Immunoperoxidase microscopy confirmed the increased labeling of β-ENaC and γ-ENaC subunits in the late distal convoluted tubule, connecting tubule, and cortical and outer medullary collecting duct segments. In contrast, subcellular localization of α-ENaC, β-ENaC, and γ-ENaC was not changed. Expression of sodium/hydrogen exchanger type 3, bumetanide-sensitive Na-K-2Cl cotransporter, and thiazide-sensitive Na-Cl cotransporter was not altered in SHR. AQP2 levels were increased in the ISOM in SHR, and immunoperoxidase microscopy demonstrated an increased apical labeling of AQP2 in the inner medullary collecting duct in SHR. These results suggest that the increased protein abundance of ENaC subunits as well as the increased apical targeting of AQP2 may contribute to renal sodium and water retention observed during the development of hypertension in SHR.
Collapse
Affiliation(s)
- Soo Wan Kim
- The Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
38
|
Williams JM, Zhao X, Wang MH, Imig JD, Pollock DM. Peroxisome proliferator-activated receptor-alpha activation reduces salt-dependent hypertension during chronic endothelin B receptor blockade. Hypertension 2005; 46:366-71. [PMID: 15967866 DOI: 10.1161/01.hyp.0000172755.25382.fc] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelin B (ETB) receptor stimulation inhibits sodium transport in a similar fashion as 20-HETE. Clofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist, increases protein expression of cytochrome P450 4A (CYP4A), which is responsible for 20-HETE synthesis in the kidney. Experiments were designed to determine whether clofibrate reduces hypertension associated with chronic ETB receptor blockade. Male Sprague-Dawley rats received either normal-salt (0.8% NaCl) or high-salt (8% NaCl) diet for 10 days. Female rats were fed a high-salt (8% NaCl) diet for 10 days. During the last 7 days, rats of both sexes were divided into 3 treatment groups: (1) clofibrate in drinking water (80 mg per day), (2) ETB receptor antagonist A-192621 in food (10 mg/kg per day), or (3) clofibrate and A-192621. During ETB receptor blockade, clofibrate had no effect on mean arterial pressure (MAP) under normal salt conditions. In contrast, clofibrate significantly inhibited the increase in MAP produced by A-192621 in rats fed a high-salt diet (34+/-3 versus 19+/-4 mm Hg; P <0.05). Similar results were observed in female rats administered A-192621 and fed a high-salt diet. ETB receptor blockade significantly decreased CYP4A protein expression in the renal cortex of rats on high salt. Clofibrate significantly increased renal cortical and medullary CYP4A protein expression in A-192621-treated male rats on high salt. Therefore, chronic PPAR-alpha agonist treatment reduces salt-dependent hypertension produced by ETB receptor blockade in male and female Sprague-Dawley rats. This suggests a possible relationship between ETB receptor activation and the maintenance of CYP4A protein expression in the kidney of rats fed a high-salt diet.
Collapse
Affiliation(s)
- Jan Michael Williams
- Department of Physiology, Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA
| | | | | | | | | |
Collapse
|
39
|
Dahly-Vernon AJ, Sharma M, McCarthy ET, Savin VJ, Ledbetter SR, Roman RJ. Transforming growth factor-beta, 20-HETE interaction, and glomerular injury in Dahl salt-sensitive rats. Hypertension 2005; 45:643-8. [PMID: 15723968 DOI: 10.1161/01.hyp.0000153791.89776.43] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined the role of transforming growth factor-beta (TGF-beta) in altering the glomerular permeability to albumin (P(alb)) during hypertension development in Dahl salt-sensitive (Dahl S) rats and whether TGF-beta acts by inhibiting the glomerular production of 20-HETE. The results indicate that the renal expression of TGF-beta doubles in Dahl S rats fed a high-salt diet for 7 days, and this is associated with a marked rise in P(alb) from 0.19+/-0.04 to 0.75+/-0.01 and changes in the ultrastructure of the glomerular filtration barrier. Chronic treatment of Dahl S rats with a TGF-beta neutralizing antibody prevented the increase in P(alb) and preserved the structure of glomerular capillaries. It had no effect on the rise in blood pressure produced by the high-salt diet. In other studies, preincubation of glomeruli isolated from Sprague Dawley rats with TGF-beta1 (10 ng/mL) for 15 minutes increased P(alb) from 0.01+/-0.01 to 0.60+/-0.02. This was associated with inhibition of the glomerular production of 20-HETE from 221+/-11 to 3.4+/-0.5 mug per 30 minutes per milligram of protein. Pretreatment of Sprague Dawley glomeruli with a stable analog of 20-HETE, 20-hydroxyeicosa-5(Z), 14(Z)-dienoic acid, reduced baseline P(alb) and opposed the effects of TGF-beta to increase P(alb). These studies indicate that upregulation of the glomerular formation of TGF-beta may contribute to the development of proteinuria and glomerular injury early in hypertension development in Dahl S rats by increasing P(alb) through inhibition of the glomerular production of 20-HETE.
Collapse
Affiliation(s)
- Annette J Dahly-Vernon
- Department of Physiology, and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, WI 53226-4801, USA
| | | | | | | | | | | |
Collapse
|
40
|
|