1
|
Patel SN, Kulkarni K, Faisal T, Hussain T. Angiotensin-II type 2 receptor-mediated renoprotection is independent of receptor Mas in obese Zucker rats fed high-sodium diet. Front Pharmacol 2024; 15:1409313. [PMID: 39135807 PMCID: PMC11317439 DOI: 10.3389/fphar.2024.1409313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
The consumption of a high-sodium diet (HSD) is injurious and known to elevate blood pressure (BP), especially in obesity. Acute infusion studies depict a functional interdependency between angiotensin-II type 2 receptor (AT2R) and receptor Mas (MasR). Hence, we hypothesize that the subacute blockade of MasR should reverse AT2R-mediated renoprotection in obese Zucker rats (OZRs). Male OZRs were fed an HSD (for 14 days) and treated with the AT2R agonist C21 (100 ng/min) without or with a MasR antagonist A779 (1,000 ng/min). The indices of oxidative stress, proteinuria, kidney injury, and BP were measured before and after, along with the terminal measurements of an array of inflammatory and kidney injury markers. The HSD significantly decreased the estimated glomerular filtration rate and urinary osmolality and increased thirst, diuresis, natriuresis, kaliuresis, plasma creatinine, urinary excretion of H2O2, proteinuria, renal expression and urinary excretion of kidney injury markers (NGAL and KIM-1), and BP indexes. The HSD feeding showed early changes in the renal expression of CRP, ICAM-1, and galectin-1. The C21 treatment prevented these pathological changes. The MasR antagonist A779 attenuated C21-mediated effects on the urinary excretion and renal expression of NGAL and oxidative stress in the absence of inflammation and BP changes. Overall, we conclude that the subacute functional interactions between AT2R and MasR are weak or transient and that the beneficial effects of AT2R activation are independent of the MasR blockade in the kidney of male obese rats fed an HSD.
Collapse
Affiliation(s)
| | | | | | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
2
|
Molaei A, Molaei E, Hayes AW, Karimi G. Mas receptor: a potential strategy in the management of ischemic cardiovascular diseases. Cell Cycle 2023; 22:1654-1674. [PMID: 37365840 PMCID: PMC10361149 DOI: 10.1080/15384101.2023.2228089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
MasR is a critical element in the RAS accessory pathway that protects the heart against myocardial infarction, ischemia-reperfusion injury, and pathological remodeling by counteracting the effects of AT1R. This receptor is mainly stimulated by Ang 1-7, which is a bioactive metabolite of the angiotensin produced by ACE2. MasR activation attenuates ischemia-related myocardial damage by facilitating vasorelaxation, improving cell metabolism, reducing inflammation and oxidative stress, inhibiting thrombosis, and stabilizing atherosclerotic plaque. It also prevents pathological cardiac remodeling by suppressing hypertrophy- and fibrosis-inducing signals. In addition, the potential of MasR in lowering blood pressure, improving blood glucose and lipid profiles, and weight loss has made it effective in modulating risk factors for coronary artery disease including hypertension, diabetes, dyslipidemia, and obesity. Considering these properties, the administration of MasR agonists offers a promising approach to the prevention and treatment of ischemic heart disease.Abbreviations: Acetylcholine (Ach); AMP-activated protein kinase (AMPK); Angiotensin (Ang); Angiotensin receptor (ATR); Angiotensin receptor blocker (ARB); Angiotensin-converting enzyme (ACE); Angiotensin-converting enzyme inhibitor (ACEI); Anti-PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16); bradykinin (BK); Calcineurin (CaN); cAMP-response element binding protein (CREB); Catalase (CAT); C-C Motif Chemokine Ligand 2 (CCL2); Chloride channel 3 (CIC3); c-Jun N-terminal kinases (JNK); Cluster of differentiation 36 (CD36); Cocaine- and amphetamine-regulated transcript (CART); Connective tissue growth factor (CTGF); Coronary artery disease (CAD); Creatine phosphokinase (CPK); C-X-C motif chemokine ligand 10 (CXCL10); Cystic fibrosis transmembrane conductance regulator (CFTR); Endothelial nitric oxide synthase (eNOS); Extracellular signal-regulated kinase 1/2 (ERK 1/2); Fatty acid transport protein (FATP); Fibroblast growth factor 21 (FGF21); Forkhead box protein O1 (FoxO1); Glucokinase (Gk); Glucose transporter (GLUT); Glycogen synthase kinase 3β (GSK3β); High density lipoprotein (HDL); High sensitive C-reactive protein (hs-CRP); Inositol trisphosphate (IP3); Interleukin (IL); Ischemic heart disease (IHD); Janus kinase (JAK); Kruppel-like factor 4 (KLF4); Lactate dehydrogenase (LDH); Left ventricular end-diastolic pressure (LVEDP); Left ventricular end-systolic pressure (LVESP); Lipoprotein lipase (LPL); L-NG-Nitro arginine methyl ester (L-NAME); Low density lipoprotein (LDL); Mammalian target of rapamycin (mTOR); Mas-related G protein-coupled receptors (Mrgpr); Matrix metalloproteinase (MMP); MAPK phosphatase-1 (MKP-1); Mitogen-activated protein kinase (MAPK); Monocyte chemoattractant protein-1 (MCP-1); NADPH oxidase (NOX); Neuropeptide FF (NPFF); Neutral endopeptidase (NEP); Nitric oxide (NO); Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB); Nuclear-factor of activated T-cells (NFAT); Pancreatic and duodenal homeobox 1 (Pdx1); Peroxisome proliferator- activated receptor γ (PPARγ); Phosphoinositide 3-kinases (PI3k); Phospholipase C (PLC); Prepro-orexin (PPO); Prolyl-endopeptidase (PEP); Prostacyclin (PGI2); Protein kinase B (Akt); Reactive oxygen species (ROS); Renin-angiotensin system (RAS); Rho-associated protein kinase (ROCK); Serum amyloid A (SAA); Signal transducer and activator of transcription (STAT); Sirtuin 1 (Sirt1); Slit guidance ligand 3 (Slit3); Smooth muscle 22α (SM22α); Sterol regulatory element-binding protein 1 (SREBP-1c); Stromal-derived factor-1a (SDF); Superoxide dismutase (SOD); Thiobarbituric acid reactive substances (TBARS); Tissue factor (TF); Toll-like receptor 4 (TLR4); Transforming growth factor β1 (TGF-β1); Tumor necrosis factor α (TNF-α); Uncoupling protein 1 (UCP1); Ventrolateral medulla (VLM).
Collapse
Affiliation(s)
- Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Emad Molaei
- PharmD, Assistant of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Wallace Hayes
- University of South Florida College of Public Health, Tampa, Florida, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Sex Difference in MasR Expression and Functions in the Renal System. J Renin Angiotensin Aldosterone Syst 2022; 2022:1327839. [PMID: 36148474 PMCID: PMC9482541 DOI: 10.1155/2022/1327839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Renin-angiotensin system (RAS), as a critical system for controlling body fluid and hemostasis, contains peptides and receptors, including angiotensin 1-7 (Ang 1-7) and Mas receptor (MasR). Ang 1-7 implements its function via MasR. Ang II is another peptide in RAS that performs its actions via two Ang II type 1 and 2 receptors (AT1R and AT2R). The functions of AT2R and MasR are very similar, and both have a vasodilation effect, while AT1R has a vasoconstriction role. MasR affects many mechanisms in the brain, heart, blood vessels, kidney, lung, endocrine, reproductive, skeletal muscle, and liver and probably acts like a paracrine hormone in these organs. The effect of Ang 1-7 in the kidney is complex according to the hydroelectrolyte status, the renal sympathetic nervous system, and the activity level of the RAS. The MasR expression and function seem more complex than Ang II receptors and have interacted with Ang II receptors and many other factors, including sex hormones. Also, pathological conditions including hypertension, diabetes, and ischemia-reperfusion could change MasR expression and function. In this review, we consider the role of sex differences in MasR expression and functions in the renal system under physiological and pathological conditions.
Collapse
|
4
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
5
|
Zaman A, Banday AA. Angiotensin1-7 Protects Against Renal Ischemia-Reperfusion Injury via Regulating the Expression of NRF2 and microRNAs in Fisher 344 Rats. Am J Physiol Renal Physiol 2022; 323:F33-F47. [PMID: 35532070 DOI: 10.1152/ajprenal.00283.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemia/reperfusion (I/R) is considered the primary cause of acute kidney injury and is higher among older individuals. While ischemic episodes are hard to predict and prevent, detrimental ischemic effects could be mitigated by exogenous intervention. This study aims to identify the protective role of angiotensin (ANG)1-7 against I/R-induced renal injury in adult vs. aged rats. Adult and aged male Fisher 344 rats were subjected to 40-minute bilateral renal ischemia followed by 28-days reperfusion. ANG1-7 was administered intraperitoneally in ischemic rats for 28 days without or with Mas receptor antagonist A779. I/R increased blood pressure, plasma creatinine, urinary 8-isoprostane, and renal infiltration of pro and anti-inflammatory macrophages and reduced glomerular filtration rate in both adult and aged rats compared to shams. In addition to causing glomerular sclerosis and tubular damage, I/R increased the expression of pathogenic microRNAs (miRNAs): miR-20a-5p, miR-21-5p, miR-24-3p, and miR-194-5p in both the age groups. ANG1-7 treatment of ischemic rats mitigated oxidative stress and renal inflammation, restored renal structure and function, and reduced high blood pressure. Also, ANG1-7 suppressed the expression of pathogenic miRNAs. In addition, ANG1-7 treatment of I/R rats increased the expression of redox-sensitive transcription factor NRF2 and phase II antioxidant enzymes. The beneficial effects of ANG1-7 were sensitive to A779. Collectively, these data suggest that ANG1-7 associated with NRF2 activation could alleviate post-I/R-induced kidney injury and therefore serve as a potential therapeutic compound to protect against biochemical and morphological pathologies of I/R in both adults and aged populations.
Collapse
Affiliation(s)
- Asif Zaman
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas, United States
| | - Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas, United States
| |
Collapse
|
6
|
Pacheco LF, de Castro CH, Dutra JBR, de Souza Lino Junior R, Ferreira PM, Dos Santos RAS, Ulhoa CJ. Oral Treatment with Angiotensin-(1-7) Attenuates the Kidney Injury Induced by Gentamicin in Wistar Rats. Protein Pept Lett 2021; 28:1425-1433. [PMID: 34792000 DOI: 10.2174/0929866528666211118091810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acute Kidney Injury (AKI), a common disease of the urinary system, can be induced by high doses of gentamicin (GM). The Renin-Angiotensin System exerts a key role in the progression of the AKI since elevated intrarenal levels of Ang II, and ACE activity is found in this condition. However, it is unknown whether oral administration of Ang-(1-7), a heptapeptide that evokes opposite effects of Ang II, may attenuate the renal injuries induced by gentamicin. OBJECTIVES To evaluate the effects of Ang (1-7) on GM-induced renal dysfunction in rats. METHODS AKI was induced by subcutaneous administration of GM (80 mg/Kg) for 5 days. Simultaneously, Ang-(1-7) included in hydroxypropyl β-cyclodextrin (HPβCD) was administered by gavage [46 μg/kg HPβCD + 30 μg/kg Ang- (1-7)]. At the end of the treatment period (sixth day), the rats were housed in metabolic cages for renal function evaluation. Thereafter, blood and kidney samples were collected. RESULTS The Ang-(1-7) attenuated the increase of the plasmatic creatinine and proteinuria caused by GM but did not change the glomerular filtration rate nor tubular necrosis. Ang-(1-7) attenuated the increased urinary flow and the fractional excretion of H2O and potassium observed in GM rats but intensified the elevated excretion of sodium in these animals. Morphological analysis showed that Ang-(1-7) also reduced the tubular vacuolization in kidneys from GM rats. CONCLUSION Ang-(1-7) promotes selective beneficial effects in renal injuries induced by GM.
Collapse
Affiliation(s)
- Lílian Fernanda Pacheco
- Superior School of Physical Education and Physiotherapy of the State of Goiás, State University of Goiás (UEG), Goiânia-Goiás. Brazil
| | - Carlos Henrique de Castro
- Department of Physiology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia-GO. Brazil
| | - João Batista Rodrigues Dutra
- Department of Physiology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia-GO. Brazil
| | - Ruy de Souza Lino Junior
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás (UFG), Goiânia. Brazil
| | - Patrícia Maria Ferreira
- Department of Physiology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia-GO. Brazil
| | - Robson Augusto Souza Dos Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences. Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais. Brazil
| | - Cirano José Ulhoa
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás. Brazil
| |
Collapse
|
7
|
Liu PMF, de Carvalho ST, Fradico PF, Cazumbá MLB, Campos RGB, Simões E Silva AC. Hepatorenal syndrome in children: a review. Pediatr Nephrol 2021; 36:2203-2215. [PMID: 33001296 PMCID: PMC7527294 DOI: 10.1007/s00467-020-04762-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/01/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Hepatorenal syndrome (HRS) occurs in patients with cirrhosis or fulminant hepatic failure and is a kind of pre-renal failure due to intense reduction of kidney perfusion induced by severe hepatic injury. While other causes of pre-renal acute kidney injury (AKI) respond to fluid infusion, HRS does not. HRS incidence is 5% in children with chronic liver conditions before liver transplantation. Type 1 HRS is an acute and rapidly progressive form that often develops after a precipitating factor, including gastrointestinal bleeding or spontaneous bacterial peritonitis, while type 2 is considered a slowly progressive form of kidney failure that often occurs spontaneously in chronic ascites settings. HRS pathogenesis is multifactorial. Cirrhosis causes portal hypertension; therefore, stasis and release of vasodilator substances occur in the hepatic vascular bed, leading to vasodilatation of splanchnic arteries and systemic hypotension. Many mechanisms seem to work together to cause this imbalance: splanchnic vasodilatation; vasoactive mediators; hyperdynamic circulation states and subsequent cardiac dysfunction; neuro-hormonal mechanisms; changes in sympathetic nervous system, renin-angiotensin system, and vasopressin. In patients with AKI and cirrhosis, fluid expansion therapy needs to be initiated as soon as possible and nephrotoxic drugs discontinued. Once HRS is diagnosed, pharmacological treatment with vasoconstrictors, mainly terlipressin plus albumin, should be initiated. If there is no response, other options can include surgical venous shunts and kidney replacement therapy. In this regard, extracorporeal liver support can be a bridge for liver transplantation, which remains as the ideal treatment. Further studies are necessary to investigate early biomarkers and alternative treatments for HRS.
Collapse
Affiliation(s)
- Priscila Menezes Ferri Liu
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Sarah Tayná de Carvalho
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Pollyanna Faria Fradico
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Maria Luiza Barreto Cazumbá
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Ramon Gustavo Bernardino Campos
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil.
| |
Collapse
|
8
|
Gintoni I, Adamopoulou M, Yapijakis C. The Angiotensin-converting Enzyme Insertion/Deletion Polymorphism as a Common Risk Factor for Major Pregnancy Complications. In Vivo 2021; 35:95-103. [PMID: 33402454 DOI: 10.21873/invivo.12236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Idiopathic pregnancy complications pose a major threat to both maternal and fetal health worldwide. Numerous studies have implicated the role of the renin-angiotensin system (RAS) in the development of obstetric syndromes, since it is crucial for the uteroplacental function. A major RAS component is the angiotensin-converting enzyme (ACE), which hydrolyses angiotensin I to angiotensin II, and not only regulates arterial pressure, but also fibrinolytic activity, indirectly, through the expression of plasminogen activator inhibitor-1. A key functional polymorphism of the ACE gene is the insertion/deletion (I/D) polymorphism, which affects gene expression and product levels, and can therefore lead to high blood pressure and/or reduced fibrinolytic activity. These can cause major pregnancy complications, such as preeclampsia, recurrent pregnancy loss and preterm birth. This review discusses how the ACE I/D is associated with susceptibility towards pregnancy complications, on its own or in combination with other functional gene polymorphisms such, as the angiotensin II receptor type 1 (AT1R) A1166CC, angiotensin II receptor type 2 (AT2R) G1332A, plasminogen activator inhibitor-1 (PAI-1) 4G/5G, matrix metallopeptidase-9 (MMP-9) C1562T, angiotensinogen (AGT) M235T, renin (REN) 83A/G, factor XIII (F13) Val34Leu and endothelial nitric oxide synthase (eNOS) 4a/b.
Collapse
Affiliation(s)
- Iphigenia Gintoni
- Unit of Orofacial Genetics, 1 Department of Paediatrics, School of Medicine, "Agia Sophia" Children's Hospital, National Kapodistrian University of Athens, Athens, Greece.,Department of Molecular Genetics, "Cephalogenetics" Center, Athens, Greece
| | - Maria Adamopoulou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1 Department of Paediatrics, School of Medicine, "Agia Sophia" Children's Hospital, National Kapodistrian University of Athens, Athens, Greece; .,Department of Molecular Genetics, "Cephalogenetics" Center, Athens, Greece
| |
Collapse
|
9
|
Armaly Z, Kinaneh S, Skorecki K. Renal Manifestations of Covid-19: Physiology and Pathophysiology. J Clin Med 2021; 10:1216. [PMID: 33804075 PMCID: PMC8000200 DOI: 10.3390/jcm10061216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Corona virus disease 2019 (COVID-19) imposes a serious public health pandemic affecting the whole world, as it is spreading exponentially. Besides its high infectivity, SARS-CoV-2 causes multiple serious derangements, where the most prominent is severe acute respiratory syndrome as well as multiple organ dysfunction including heart and kidney injury. While the deleterious impact of SARS-CoV-2 on pulmonary and cardiac systems have attracted remarkable attention, the adverse effects of this virus on the renal system is still underestimated. Kidney susceptibility to SARS-CoV-2 infection is determined by the presence of angiotensin-converting enzyme 2 (ACE2) receptor which is used as port of the viral entry into targeted cells, tissue tropism, pathogenicity and subsequent viral replication. The SARS-CoV-2 cellular entry receptor, ACE2, is widely expressed in proximal epithelial cells, vascular endothelial and smooth muscle cells and podocytes, where it supports kidney integrity and function via the enzymatic production of Angiotensin 1-7 (Ang 1-7), which exerts vasodilatory, anti-inflammatory, antifibrotic and diuretic/natriuretic actions via activation of the Mas receptor axis. Loss of this activity constitutes the potential basis for the renal damage that occurs in COVID-19 patients. Indeed, several studies in a small sample of COVID-19 patients revealed relatively high incidence of acute kidney injury (AKI) among them. Although SARS-CoV-1 -induced AKI was attributed to multiorgan failure and cytokine release syndrome, as the virus was not detectable in the renal tissue of infected patients, SARS-CoV-2 antigens were detected in kidney tubules, suggesting that SARS-CoV-2 infects the human kidney directly, and eventually induces AKI characterized with high morbidity and mortality. The mechanisms underlying this phenomenon are largely unknown. However, the fact that ACE2 plays a crucial role against renal injury, the deprivation of the kidney of this advantageous enzyme, along with local viral replication, probably plays a central role. The current review focuses on the critical role of ACE2 in renal physiology, its involvement in the development of kidney injury during SARS-CoV-2 infection, renal manifestations and therapeutic options. The latter includes exogenous administration of Ang (1-7) as an appealing option, given the high incidence of AKI in this ACE2-depleted disorder, and the benefits of ACE2/Ang1-7 including vasodilation, diuresis, natriuresis, attenuation of inflammation, oxidative stress, cell proliferation, apoptosis and coagulation.
Collapse
Affiliation(s)
- Zaher Armaly
- Department of Nephrology, Nazareth Hospital, EMMS, Nazareth 16100, Israel;
- The Bar-Ilan University Azrieli Faculty of Medicine, Safed 1311502, Israel;
| | - Safa Kinaneh
- Department of Nephrology, Nazareth Hospital, EMMS, Nazareth 16100, Israel;
| | - Karl Skorecki
- The Bar-Ilan University Azrieli Faculty of Medicine, Safed 1311502, Israel;
| |
Collapse
|
10
|
La Rosa M, Kechichian T, Olson G, Saade G, Bytautiene Prewit E. Lactation Leads to Modifications in Maternal Renin-Angiotensin System in Later Life. Reprod Sci 2020; 27:260-266. [PMID: 32046371 DOI: 10.1007/s43032-019-00018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/28/2019] [Indexed: 01/22/2023]
Abstract
The objective of this study was to evaluate whether the renin-angiotensin system (RAS) is associated with maternal cardioprotective phenotype observed in post-lactated mice later in life. Following the delivery, CD-1 female mice were randomized to one of the following groups: lactated (nursed pups for 3 weeks, n = 10) or non-lactated (pups were removed after birth, n = 10). The mice were sacrificed 6 months after the delivery, and tissues were collected. Protein levels of angiotensinogen, angiotensin type 1 and 2 receptors (AT1R, AT2R), angiotensin converting enzymes (ACE, ACE2), and MAS receptor were determined using Western blot. Results were analyzed using Student's t-test and Mann-Whitney test as appropriate (significance: P < 0.05). Angiotensinogen levels were significantly lower in the liver (P = 0.0002), and ACE was significantly decreased in the lungs (P = 0.04) and kidney (P = 0.001) from lactated mice as compared to non-lactated. The levels of AT2R in the kidney (P = 0.02) and visceral adipose tissue (VAT, P = 0.04), the ACE 2 in the VAT (P = 0.03) and heart (P = 0.04), and MAS receptor in VAT (P = 0.02) were significantly elevated in tissues from lactated mice. No other differences were found. Lactation led to the upregulation and downregulation of selected RAS components in lactated mice as compared to non-lactated group and may be a contributing factor to maternal cardioprotective phenotype later in life. Further studies are needed to dissect the mechanisms between lactation and the long-term maternal cardiometabolic benefits, which could lead to the therapies to prevent cardiovascular disease in women.
Collapse
Affiliation(s)
- Mauricio La Rosa
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Talar Kechichian
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gayle Olson
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - George Saade
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Egle Bytautiene Prewit
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
11
|
Kangussu LM, de Almeida TCS, Prestes TRR, de Andrade De Maria ML, da Silva Filha R, Vieira MAR, Silva ACSE, Ferreira AJ. Beneficial Effects of the Angiotensin-Converting Enzyme 2 Activator Dize in Renovascular Hypertension. Protein Pept Lett 2019; 26:523-531. [PMID: 30950337 DOI: 10.2174/0929866526666190405123422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiotensin Converting Enzyme (ACE) 2 is an important modulator of the Renin Angiotensin System (RAS) and the RAS plays a central role in renovascular hypertension. Very few studies investigated the role of components of the counterregulatory RAS axis (ACE2, Ang-(1-7) and Mas receptor) in renovascular hypertension and the results are controversial. OBJECTIVE The aim of this study was to investigate the effects of Diminazene Aceturate (DIZE) administration on renal function and renal inflammation parameters in 2K1C hypertensive rats. METHODS Male Wistar rats were divided into three experimental groups: sham-operated animals, 2K1C+saline and 2K1C+DIZE orally (1 mg/kg/day). At the end of the 30 days of treatment, renal function was analyzed and kidneys from all the groups were collected and processed separately for measurement of N-acetyl-beta-D-glucosaminidase (NAG) and Myeloperoxidase (MPO) activities, cytokines, chemokines and nitric oxide levels. RESULTS Oral DIZE administration for 4 weeks in hypertensive rats attenuated renal dysfunction and reduced the levels of MPO and NAG, cytokines and chemokines (IL1β, IL-6, TNF-α and MCP-1) and increased urinary nitrate/nitrite levels in 2K1C hypertensive rats. CONCLUSION Our findings showed that ACE2 activation may effectively improve renal alterations and inflammation induced by renovascular hypertension.
Collapse
Affiliation(s)
- Lucas Miranda Kangussu
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiane Cristine S de Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago Ruiz R Prestes
- Department of Pediatrics, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Roberta da Silva Filha
- Department of Pediatrics, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Department of Pediatrics, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson José Ferreira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
12
|
Leite APO, Aragão DS, Nogueira MD, Pereira RO, Jara ZP, Fiorino P, Casarini DE, Farah V. Modulation of renin angiotensin system components by high glucose levels in the culture of collecting duct cells. J Cell Physiol 2019; 234:22809-22818. [DOI: 10.1002/jcp.28845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 11/11/2022]
Affiliation(s)
- A. P. O. Leite
- Disciplina de Nefrologia, Departamento de Medicina, Escola Paulista de Medicina Universidade Federal de São Paulo São Paulo Brazil
- Laboratório de Renal, Cardiovascular e Fisiofarmacologia Metabólica, Centro de Ciência da Saúde e Biologia Universidade Presbiteriana Mackenzie São Paulo Brazil
| | - Danielle S. Aragão
- Disciplina de Nefrologia, Departamento de Medicina, Escola Paulista de Medicina Universidade Federal de São Paulo São Paulo Brazil
| | - Marie D. Nogueira
- Disciplina de Nefrologia, Departamento de Medicina, Escola Paulista de Medicina Universidade Federal de São Paulo São Paulo Brazil
| | - Renata O. Pereira
- Disciplina de Nefrologia, Departamento de Medicina, Escola Paulista de Medicina Universidade Federal de São Paulo São Paulo Brazil
- Laboratório de Renal, Cardiovascular e Fisiofarmacologia Metabólica, Centro de Ciência da Saúde e Biologia Universidade Presbiteriana Mackenzie São Paulo Brazil
| | - Zaira P. Jara
- Disciplina de Nefrologia, Departamento de Medicina, Escola Paulista de Medicina Universidade Federal de São Paulo São Paulo Brazil
- Department of Molecular Cardiology Lerner Research Institute—Cleveland Clinic Cleveland Ohio
| | - Patricia Fiorino
- Laboratório de Renal, Cardiovascular e Fisiofarmacologia Metabólica, Centro de Ciência da Saúde e Biologia Universidade Presbiteriana Mackenzie São Paulo Brazil
| | - Dulce E. Casarini
- Disciplina de Nefrologia, Departamento de Medicina, Escola Paulista de Medicina Universidade Federal de São Paulo São Paulo Brazil
| | - Vera Farah
- Disciplina de Nefrologia, Departamento de Medicina, Escola Paulista de Medicina Universidade Federal de São Paulo São Paulo Brazil
- Laboratório de Renal, Cardiovascular e Fisiofarmacologia Metabólica, Centro de Ciência da Saúde e Biologia Universidade Presbiteriana Mackenzie São Paulo Brazil
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Angiotensin type 2 receptor (AT2R) and receptor Mas (MasR) are part of the "protective arm" of the renin angiotensin system. Gene and pharmacological manipulation studies reveal that AT2R and MasR are involved in natriuretic, vasodilatory, and anti-inflammatory responses and in lowering blood pressure in various animal models under normal and pathological conditions such as salt-sensitive hypertension, obesity, and diabetes. The scope of this review is to discuss co-localization and heterodimerization as potential molecular mechanisms of AT2R- and MasR-mediated functions including antihypertensive activities. RECENT FINDINGS Accumulating evidences show that AT2R and MasR are co-localized, make a heterodimer, and are functionally interdependent in producing their physiological responses. Moreover, ang-(1-7) preferably may be an AT1R-biased agonist while acting as a MasR agonist. The physical interactions of AT2R and MasR appear to be an important mechanism by which these receptors are involved in blood pressure regulation and antihypertensive activity. Whether heteromers of these receptors influence affinity or efficacy of endogenous or synthetic agonists remains a question to be considered.
Collapse
MESH Headings
- Animals
- Blood Pressure/physiology
- Dimerization
- Humans
- Hypertension/metabolism
- Hypertension/physiopathology
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Sanket Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, Room 3046, 4849 Calhoun Street, Houston, TX, 77204-5000, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, Room 3046, 4849 Calhoun Street, Houston, TX, 77204-5000, USA.
| |
Collapse
|
14
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 722] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
15
|
Maleki M, Nematbakhsh M. Renal Blood Flow Response to Angiotensin 1-7 versus Hypertonic Sodium Chloride 7.5% Administration after Acute Hemorrhagic Shock in Rats. Int J Vasc Med 2016; 2016:6562017. [PMID: 27073699 PMCID: PMC4814681 DOI: 10.1155/2016/6562017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/04/2016] [Accepted: 02/17/2016] [Indexed: 11/24/2022] Open
Abstract
Background. Angiotensin 1-7 (Ang1-7) plays an important role in renal circulation. Hemorrhagic shock (HS) may cause kidney circulation disturbance, and this study was designed to investigate the renal blood flow (RBF) response to Ang1-7 after HS. Methods. 27 male Wistar rats were subjected to blood withdrawal to reduce mean arterial pressure (MAP) to 45 mmHg for 45 min. The animals were treated with saline (group 1), Ang1-7 (300 ng·kg(-1) min(-1)), Ang1-7 in hypertonic sodium chloride 7.5% (group 3), and hypertonic solution alone (group 4). Results. MAP was increased in a time-related fashion (P time < 0.0001) in all groups; however, there was a tendency for the increase in MAP in response to hypertonic solution (P = 0.09). Ang1-7, hypertonic solution, or combination of both increased RBF in groups 2-4, and these were significantly different from saline group (P = 0.05); that is, Ang1-7 leads to a significant increase in RBF to 1.35 ± 0.25 mL/min compared with 0.55 ± 0.12 mL/min in saline group (P < 0.05). Conclusion. Although Ang1-7 administration unlike hypertonic solution could not elevate MAP after HS, it potentially could increase RBF similar to hypertonic solution. This suggested that Ang1-7 recovers RBF after HS when therapeutic opportunities of hypertonic solution are limited.
Collapse
Affiliation(s)
- Maryam Maleki
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan 81745, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan 81745, Iran; Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745, Iran; Isfahan MN Institute of Basic and Applied Sciences Research, Isfahan 81745, Iran
| |
Collapse
|
16
|
Meinert C, Gembardt F, Böhme I, Tetzner A, Wieland T, Greenberg B, Walther T. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7). J Proteomics 2015; 130:129-39. [PMID: 26388433 DOI: 10.1016/j.jprot.2015.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/21/2015] [Accepted: 09/12/2015] [Indexed: 10/23/2022]
Abstract
The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.
Collapse
Affiliation(s)
- Christian Meinert
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Universität Heidelberg, Germany; Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Ilka Böhme
- Department of Obstetrics, Division of Women and Child Health, Universität Leipzig, Leipzig, Germany
| | - Anja Tetzner
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; Department of Obstetrics, Division of Women and Child Health, Universität Leipzig, Leipzig, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Universität Heidelberg, Germany
| | - Barry Greenberg
- Division of Cardiology, University of California, San Diego, USA
| | - Thomas Walther
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Universität Heidelberg, Germany; Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; Department of Obstetrics, Division of Women and Child Health, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
17
|
Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 2014; 169:477-92. [PMID: 23488800 DOI: 10.1111/bph.12159] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/14/2022] Open
Abstract
Recent advances have improved our understanding of the renin-angiotensin system (RAS). These have included the recognition that angiotensin (Ang)-(1-7) is a biologically active product of the RAS cascade. The identification of the ACE homologue ACE2, which forms Ang-(1-7) from Ang II, and the GPCR Mas as an Ang-(1-7) receptor have provided the necessary biochemical and molecular background and tools to study the biological significance of Ang-(1-7). Most available evidence supports a counter-regulatory role for Ang-(1-7) by opposing many actions of Ang II on AT₁ receptors, especially vasoconstriction and proliferation. Many studies have now shown that Ang-(1-7) by acting via Mas receptor exerts inhibitory effects on inflammation and on vascular and cellular growth mechanisms. Ang-(1-7) has also been shown to reduce key signalling pathways and molecules thought to be relevant for fibrogenesis. Here, we review recent findings related to the function of the ACE2/Ang-(1-7)/Mas axis and focus on the role of this axis in modifying processes associated with acute and chronic inflammation, including leukocyte influx, fibrogenesis and proliferation of certain cell types. More attention will be given to the involvement of the ACE2/Ang-(1-7)/Mas axis in the context of renal disease because of the known relevance of the RAS for the function of this organ and for the regulation of kidney inflammation and fibrosis. Taken together, this knowledge may help in paving the way for the development of novel treatments for chronic inflammatory and renal diseases.
Collapse
Affiliation(s)
- A C Simões e Silva
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
18
|
Castelo-Branco RC, Leite-Delova DCA, de Mello-Aires M. Dose-dependent effects of angiotensin-(1-7) on the NHE3 exchanger and [Ca(2+)](i) in in vivo proximal tubules. Am J Physiol Renal Physiol 2013; 304:F1258-65. [PMID: 23515716 DOI: 10.1152/ajprenal.00401.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The acute direct action of angiotensin-(1-7) [ANG-(1-7)] on bicarbonate reabsorption (JHCO(3)(-)) was evaluated by stationary microperfusions on in vivo middle proximal tubules in rats using H ion-sensitive microelectrodes. The control JHCO(3)(-) is 2.82 ± 0.078 nmol·cm(-2)·s(-1) (50). ANG-(1-7) (10(-12) or 10(-9) M) in luminally perfused tubules decreases JHCO(3)(-) (36 or 60%, respectively), but ANG-(1-7) (10(-6) M) increases it (80%). A779 increases JHCO(3)(-) (30%) and prevents both the inhibitory and the stimulatory effects of ANG-(1-7) on it. S3226 decreases JHCO(3)(-) (45%) and changes the stimulatory effect of ANG-(1-7) to an inhibitory effect (30%) but does not affect the inhibitory effect of ANG-(1-7). Our results indicate that in the basal condition endogenous ANG-(1-7) inhibits JHCO(3)(-) and that the biphasic dose-dependent effect of ANG-(1-7) on JHCO(3)(-) is mediated by the Mas receptors via the Na(+)/H(+) exchanger 3 (NHE3). The control value of intracellular Ca(2+) concentration ([Ca(2+)](i)), as monitored using fura-2 AM, is 101 ± 2 nM (6), and ANG-(1-7) (10(-12), 10(-9), or 10(-6)M) transiently (3 min) increases it (by 151, 102, or 52%, respectively). A779 increases the [Ca(2+)](i) (25%) but impairs the stimulatory effect of all doses of ANG-(1-7) on it. The use of BAPTA or thapsigargin suggests a correlation between the ANG-(1-7) dose-dependent effects on [Ca(2+)](i) and JHCO(3)(-). Therefore, the interaction of the opposing dose-dependent effects of ANG II and ANG-(1-7) on [Ca(2+)](i) and JHCO(3)(-) may represent an physiological regulatory mechanism of extracellular volume and/or pH changes. However, whether [Ca(2+)](i) modification is an important direct mechanism for NHE3 activation by these peptides or is a side effect of other signaling pathways will require additional studies.
Collapse
Affiliation(s)
- Regiane C Castelo-Branco
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
19
|
Santos RAS, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol 2013; 216:R1-R17. [PMID: 23092879 DOI: 10.1530/joe-12-0341] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiotensin (Ang)-(1-7) is now recognized as a biologically active component of the renin-angiotensin system (RAS). Ang-(1-7) appears to play a central role in the RAS because it exerts a vast array of actions, many of them opposite to those attributed to the main effector peptide of the RAS, Ang II. The discovery of the Ang-converting enzyme (ACE) homolog ACE2 brought to light an important metabolic pathway responsible for Ang-(1-7) synthesis. This enzyme can form Ang-(1-7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1-9) with subsequent Ang-(1-7) formation by ACE. In addition, it is now well established that the G protein-coupled receptor Mas is a functional binding site for Ang-(1-7). Thus, the axis formed by ACE2/Ang-(1-7)/Mas appears to represent an endogenous counterregulatory pathway within the RAS, the actions of which are in opposition to the vasoconstrictor/proliferative arm of the RAS consisting of ACE, Ang II, and AT(1) receptor. In this brief review, we will discuss recent findings related to the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight the potential interactions of Ang-(1-7) and Mas with AT(1) and AT(2) receptors.
Collapse
Affiliation(s)
- Robson A S Santos
- Departments of Physiology and Biophysics Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
20
|
O'Neill J, Corbett A, Johns EJ. Dietary sodium intake modulates renal excretory responses to intrarenal angiotensin (1-7) administration in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 2012; 304:R260-6. [PMID: 23255591 DOI: 10.1152/ajpregu.00583.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II at the kidney regulates renal hemodynamic and excretory function, but the actions of an alternative metabolite, angiotensin (1-7), are less clear. This study investigated how manipulation of dietary sodium intake influenced the renal hemodynamic and excretory responses to intrarenal administration of angiotensin (1-7). Renal interstitial infusion of angiotensin (1-7) in anesthetized rats fed a normal salt intake had minimal effects on glomerular filtration rate but caused dose-related increases in urine flow and absolute and fractional sodium excretions ranging from 150 to 200%. In rats maintained for 2 wk on a low-sodium diet angiotensin (1-7) increased glomerular filtration rate by some 45%, but the diuretic and natriuretic responses were enhanced compared with those in rats on a normal sodium intake. By contrast, renal interstitial infusion of angiotensin (1-7) in rats maintained on a high-sodium intake had no effect on glomerular filtration rate, whereas the diuresis and natriuresis was markedly attenuated compared with those in rats fed either a normal or low-sodium diet. Plasma renin and angiotensin (1-7) were highest in the rats on the low-sodium diet and depressed in the rats on a high-sodium diet. These findings demonstrate that the renal hemodynamic and excretory responses to locally administered angiotensin (1-7) is dependent on the level of sodium intake and indirectly on the degree of activation of the renin-angiotensin system. The exact way in which angiotensin (1-7) exerts its effects may be dependent on the prevailing levels of angiotensin II and its receptor expression.
Collapse
Affiliation(s)
- Julie O'Neill
- Dept. of Physiology, Western Gateway Bldg., Univ. College Cork, Cork, Republic of Ireland
| | | | | |
Collapse
|
21
|
The renin-angiotensin-aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol 2012; 27:1835-45. [PMID: 21947887 DOI: 10.1007/s00467-011-2002-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 12/16/2022]
Abstract
Over the past two decades, considerable advances have been made in our understanding of the renin-angiotensin-aldosterone system (RAAS) and its roles in various disease states. In this review, we will discuss the current state of knowledge of the many components of the RAAS, including new data on prorenin and its receptors, and important angiotensin fragments. The roles of these components of the RAAS in the pathogenesis of primary hypertension and the progression of chronic kidney disease (CKD) will also be highlighted. Given the new understanding of the many components and roles of the RAAS, it may be possible to develop improved therapies for hypertension and CKD.
Collapse
|
22
|
Heringer-Walther S, Gembardt F, Perschel FH, Katz N, Schultheiss HP, Walther T. The genetic deletion of Mas abolishes salt induced hypertension in mice. Eur J Pharmacol 2012; 689:147-53. [PMID: 22652430 DOI: 10.1016/j.ejphar.2012.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 05/04/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
The G protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor and is associated with angiotensin-(1-7) signaling. We investigated the effect of Mas-deficiency on blood pressure regulation under physiological conditions and salt load using radiotelemetry. Mas-knockout mice and their wild-type controls received a telemetry implant in the carotid artery. One week after surgery, animals were monitored for 3 days receiving normal diet (0.6% NaCl) followed by one-week high-salt diet (8% NaCl). Under same high-salt diet, another set of mice was placed in individual metabolic cages for 4 days. Basal mean arterial pressure, heart rate and locomotor activity displayed normal day-night rhythm in Mas-deficient mice. Mas-knockout mice were normotensive. High dietary NaCl ingestion did not alter heart rate or locomotor activity in both groups, but significantly increased night time mean arterial pressure in control mice whereas this increase was blunted in Mas-deficient mice. Baseline food and water intake and urine osmolality were not different between both genotypes. Under high-salt diet, water consumption and food intake were equally increased in wild-type controls and Mas-knockout, but urinary electrolytes and osmolality were significantly higher in Mas-knockout. Taken together, basal hemodynamic parameters are unchanged in Mas-knockout mice. In contrast to wild-type controls, telemetric mean arterial pressure measurement revealed salt resistance in Mas-deficient animals, probably due to their higher urinary NaCl excretion. This is the first direct proof that Mas blockade might be a new option in the treatment of salt-sensitive hypertension.
Collapse
|
23
|
Angiotensin converting enzyme 2, Angiotensin-(1-7), and receptor MAS axis in the kidney. Int J Hypertens 2012; 2012:414128. [PMID: 22518283 PMCID: PMC3296191 DOI: 10.1155/2012/414128] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/02/2011] [Indexed: 02/07/2023] Open
Abstract
In the past few years the understanding of the renin-angiotensin system (RAS) has improved, helping to better define the role of this system in physiological conditions and in human diseases. Besides Angiotensin (Ang) II, the biological importance of other Ang fragments was progressively evidenced. In this regard, Angiotensin- (Ang-) (1-7) was recognized as a biologically active product of the RAS cascade with a specific receptor, the G-protein-coupled receptor Mas, and that is mainly formed by the action of the angiotensin-converting enzyme (ACE) homolog enzyme, ACE2, which converts Ang II into Ang-(1-7). Taking into account the biological effects of these two mediators, Ang II and Ang-(1-7), the RAS can be envisioned as a dual function system in which the vasoconstrictor/proliferative or vasodilator/antiproliferative actions are primarily driven by the balance between Ang II and Ang-(1-7), respectively. In this paper, we will discuss our current understanding of the ACE2/Ang-(1-7)/Mas axis of the RAS in renal physiology and in the pathogenesis of primary hypertension and chronic kidney disease.
Collapse
|
24
|
Gembardt F, van Veghel R, Coffman TM, Schultheiss HP, Danser AHJ, Walther T. Hemodynamic effects of vasorelaxant compounds in mice lacking one, two or all three angiotensin II receptors. Hypertens Res 2012; 35:547-51. [DOI: 10.1038/hr.2012.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Yang R, Smolders I, Dupont AG. Blood pressure and renal hemodynamic effects of angiotensin fragments. Hypertens Res 2011; 34:674-83. [PMID: 21412242 DOI: 10.1038/hr.2011.24] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Angiotensin (Ang) II, the main effector peptide of the renin-Ang system, increases arterial blood pressure through Ang II type 1A (AT(1a)) receptor-dependent arterial vasoconstriction and by decreasing renal salt and water excretion through extrarenal and intrarenal mechanisms. AT(2) receptors are assumed to oppose these responses mediated by AT(1) receptors, thereby attenuating the pressor effects of Ang II. Nevertheless, a possible role of AT(2) receptors in the regulation of renal hemodynamics and sodium homeostasis remains to be unclear. Several other Ang fragments such as Ang III, Ang IV, Ang-(1-7) and Ang A have also been shown to display biological activity. In this review, we focus on the effects of these Ang on blood pressure, renal hemodynamics and sodium water handling, and discuss the receptors involved in these actions.
Collapse
Affiliation(s)
- Rui Yang
- Department of Pharmacology, Brussels, Belgium
| | | | | |
Collapse
|
26
|
ACE2-angiotensin-(1-7)-Mas axis in renal ischaemia/reperfusion injury in rats. Clin Sci (Lond) 2010; 119:385-94. [PMID: 20528771 DOI: 10.1042/cs20090554] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AngII (angiotensin II), ACE (angiotensin I-converting enzyme) and the AT1 receptor (AngII type 1 receptor) are associated with the inflammatory process and microvascular dysfunction of AKI (acute kidney injury) induced by renal I/R (ischaemia/reperfusion). However, Ang-(1-7) [angiotensin-(1-7)], ACE2 (angiotensin I-converting enzyme 2) and the Mas receptor also play a role in renal disease models. Therefore, in the present study, we have examined the renal profile of Ang-(1-7), ACE2 and the Mas receptor in renal I/R and compared them with that of AngII, ACE and the AT1 receptor. Male Wistar rats were submitted to left nephrectomy and ischaemia (45 min) followed by reperfusion (2 or 4 h) in the right kidney. At 4 h of reperfusion, renal AngII was increased (P<0.01) and renal Ang-(1-7) was decreased substantially (P<0.05), although plasma levels of both angiotensins were unchanged. In addition, renal I/R decreased the renal mRNA expression of renin (P<0.05), AT1 receptors (P<0.001) and ACE2 (P<0.05). At 2 and 4 h of reperfusion, renal ACE activity was reduced (P<0.05). On the other hand, renal expression of the Mas receptor was greatly increased at 4 h of reperfusion (P<0.01), which was confirmed by immunohistochemical and Western blot analysis. In conclusion, increased renal expression of the Mas receptor associated with changes in the RAS (renin-angiotensin system)-related peptidases support an important role for the ACE2-Ang-(1-7)-Mas axis in AKI.
Collapse
|
27
|
Ferrario CM, Varagic J. The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. Am J Physiol Renal Physiol 2010; 298:F1297-305. [PMID: 20375118 DOI: 10.1152/ajprenal.00110.2010] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The study of experimental hypertension and the development of drugs with selective inhibitory effects on the enzymes and receptors constituting the components of the circulating and tissue renin-angiotensin systems have led to newer concepts of how this system participates in both physiology and pathology. Over the last decade, a renewed emphasis on understanding the role of angiotensin-(1-7) and angiotensin-converting enzyme 2 in the regulation of blood pressure and renal function has shed new light on the complexity of the mechanisms by which these components of the renin angiotensin system act in the heart and in the kidneys to exert a negative regulatory influence on angiotensin converting enzyme and angiotensin II. The vasodepressor axis composed of angiotensin-(1-7)/angiotensin-converting enzyme 2/mas receptor emerges as a site for therapeutic interventions within the renin-angiotensin system. This review summarizes the evolving knowledge of the counterregulatory arm of the renin-angiotensin system in the control of nephron function and renal disease.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Research Center and Department of Surgery, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA.
| | | |
Collapse
|
28
|
Ferrario CM, Ahmad S, Joyner J, Varagic J. Advances in the renin angiotensin system focus on angiotensin-converting enzyme 2 and angiotensin-(1-7). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:197-233. [PMID: 20933203 PMCID: PMC5863743 DOI: 10.1016/s1054-3589(10)59007-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The contribution of the renin angiotensin system to physiology and pathology is undergoing a rapid reconsideration of its mechanisms from emerging new concepts implicating angiotensin-converting enzyme 2 and angiotensin-(1-7) as new elements negatively influencing the vasoconstrictor, trophic, and pro-inflammatory actions of angiotensin II. This component of the system acts to oppose the vasoconstrictor and proliferative effects on angiotensin II through signaling mechanisms mediated by the mas receptor. In addition, a reduced expression of the vasodepressor axis composed by angiotensin-converting enzyme 2 and angiotensin-(1-7) may contribute to the expression of essential hypertension, the remodeling of heart and renal function associated with this disease, and even the physiology of pregnancy and the development of eclampsia.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | |
Collapse
|
29
|
Reduction in renal ACE2 expression in subtotal nephrectomy in rats is ameliorated with ACE inhibition. Clin Sci (Lond) 2009; 118:269-79. [PMID: 19698082 PMCID: PMC2782317 DOI: 10.1042/cs20090318] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/06/2009] [Accepted: 08/21/2009] [Indexed: 02/06/2023]
Abstract
Alterations within the RAS (renin–angiotensin system) are pivotal for the development of renal disease. ACE2 (angiotensin-converting enzyme 2) is expressed in the kidney and converts the vasoconstrictor AngII (angiotensin II) into Ang-(1–7), a peptide with vasodilatory and anti-fibrotic actions. Although the expression of ACE2 in the diabetic kidney has been well studied, little is known about its expression in non-diabetic renal disease. In the present study, we assessed ACE2 in rats with acute kidney injury induced by STNx (subtotal nephrectomy). STNx and Control rats received vehicle or ramipril (1 mg·kg−1 of body weight·day−1), and renal ACE, ACE2 and mas receptor gene and protein expression were measured 10 days later. STNx rats were characterized by polyuria, proteinuria, hypertension and elevated plasma ACE2 activity (all P<0.01) and plasma Ang-(1–7) (P<0.05) compared with Control rats. There was increased cortical ACE binding and medullary mas receptor expression (P<0.05), but reduced cortical and medullary ACE2 activity in the remnant kidney (P<0.05 and P<0.001 respectively) compared with Control rats. In STNx rats, ramipril reduced blood pressure (P<0.01), polyuria (P<0.05) and plasma ACE2 (P<0.01), increased plasma Ang-(1–7) (P<0.001), and inhibited renal ACE (P<0.001). Ramipril increased both cortical and medullary ACE2 activity (P<0.01), but reduced medullary mas receptor expression (P<0.05). In conclusion, our results show that ACE2 activity is reduced in kidney injury and that ACE inhibition produced beneficial effects in association with increased renal ACE2 activity. As ACE2 both degrades AngII and generates the vasodilator Ang-(1–7), a decrease in renal ACE2 activity, as observed in the present study, has the potential to contribute to the progression of kidney disease.
Collapse
|
30
|
Joyner J, Neves L, Ferrario C, Brosnihan K. Administration of D-Alanine-[Ang-(1-7)] (A-779) Prior to Pregnancy in Sprague Dawley Rats Produces Antidiuresis in Late Gestation. ACTA ACUST UNITED AC 2008; 2:425-430. [PMID: 19198668 DOI: 10.1016/j.jash.2008.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We previously demonstrated that angiotensin-(1-7) [Ang-(1-7)], which is increased in the kidney and urine during pregnancy, influences normal fluid expansion of pregnancy. These previous studies were completed by chronic administration of the Ang-(1-7) receptor antagonist D-Alanine-[Ang-(1-7)] (A-779) at a dose of 48 μg/kg/hr after the start of pregnancy (gestational days 11-19). To further explore the role of Ang-(1-7) on kidney function during early, middle, and late pregnancy, Sprague Dawley rats were chronically pretreated 8 days prior to pregnancy and throughout pregnancy (gestational days 0-19) with vehicle or A-779 at a dose of 24 μg/kg/hr. Metabolic studies were completed in virgin animals and throughout pregnancy (gestational days 4-5, 14-15, and 18-19). Chow consumption and water intake increased throughout pregnancy while the difference between intake and output (balance) was increased only at late (day 19) pregnancy with both vehicle and A-779 administration. Urine volume and urinary osmolality were significantly increased and decreased respectively throughout pregnancy in vehicle treated rats only. In late (19 day) pregnancy, A-779 administration significantly decreased chow consumption and water intake. In virgin animals, A-779 administration significantly increased urine volume, while during late pregnancy (19 day), urine volume was significantly decreased with A-779 administration. These studies using pretreatment with a lower dose of A-779 prior to pregnancy confirm results of higher dose A-779 administration after the start of pregnancy. These studies show that Ang-(1-7) produces antidiuresis in virgin rats and diuresis in late gestation. Ang-(1-7) also contributes to the enhanced water intake during pregnancy allowing maintenance of the normal volume expanded state despite diuresis.
Collapse
Affiliation(s)
- J Joyner
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina USA
| | | | | | | |
Collapse
|
31
|
Anton L, Brosnihan KB. Systemic and uteroplacental renin--angiotensin system in normal and pre-eclamptic pregnancies. Ther Adv Cardiovasc Dis 2008; 2:349-62. [PMID: 19124433 PMCID: PMC2692864 DOI: 10.1177/1753944708094529] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pregnancy is characterized by an increase in many of the different components of the circulating renin-angiotensin system (RAS). However, the physiological mechanisms of stimulated RAS activity during pregnancy are unknown. Even less understood is how this system may be altered in pre-eclampsia, a hypertensive disorder of pregnancy. Additional studies have shown the presence of a local tissue specific RAS in the uteroplacental unit of normal and pre-eclamptic pregnancies. Differences in normal pregnant and pre-eclamptic RAS component regulation may provide insight into the mechanisms responsible for the clinical pathological features of pre-eclampsia. Specifically, this review summarizes the key findings in the circulating and uteroplacental RAS in normal and pre-eclamptic pregnancies.
Collapse
Affiliation(s)
- Lauren Anton
- Hypertension and Vascular, Research Center, Wake, Forest University School, of Medicine, Winston-Salem, North Carolina, USA
| | - K. Bridget Brosnihan
- Hypertension and Vascular, Research Center, Wake, Forest University School, of Medicine, Winston-Salem, North Carolina, USA,
| |
Collapse
|
32
|
Pereira RM, Santos RASD, Oliveira EA, Leite VHR, Dias FLC, Rezende AS, Costa LP, Barcelos LS, Teixeira MM, Silva ACSE. Development of hepatorenal syndrome in bile duct ligated rats. World J Gastroenterol 2008; 14:4505-11. [PMID: 18680230 PMCID: PMC2731277 DOI: 10.3748/wjg.14.4505] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate in bile duct ligated rats whether there were progressive alterations of renal function without changes in histopathology.
METHODS: Male Wistar rats were submitted to sham-surgery or bile duct ligation (BDL) and divided according to the post-procedure time (2, 4 and 6-wk). To determine renal function parameters, rats were placed in metabolic cages and, at the end of the experiment, blood and urine samples were obtained. Histology and hydroxyproline content were analyzed in liver and renal tissue.
RESULTS: Rats with 2 wk of BDL increased free water clearance (P = 0.02), reduced urinary osmolality (P = 0.03) and serum creatinine (P = 0.01) in comparison to the sham group. In contrast, rats at 6 wk of BDL showed features of HRS, including significant increase in serum creatinine and reductions in creatinine clearance, water excretion and urinary sodium concentration. Rats with 4 wk of BDL exhibited an intermediate stage of renal dysfunction. Progressive hepatic fibrosis according to post-procedure time was confirmed by histology. The increased levels of liver hydroxyproline contrasted with the absence of structural changes in the kidney, as assessed by histology and unchanged hydroxyproline content in renal tissue.
CONCLUSION: Our data show that BDL produced progressive renal dysfunction without structural changes in the kidney, characterizing HRS. The present model will be useful to understand the pathophysiology of HRS.
Collapse
|
33
|
Ebermann L, Spillmann F, Sidiropoulos M, Escher F, Heringer-Walther S, Schultheiss HP, Tschöpe C, Walther T. The angiotensin-(1-7) receptor agonist AVE0991 is cardioprotective in diabetic rats. Eur J Pharmacol 2008; 590:276-80. [PMID: 18571157 DOI: 10.1016/j.ejphar.2008.05.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/24/2008] [Accepted: 05/19/2008] [Indexed: 10/22/2022]
Abstract
Angiotensin-(1-7) is associated with beneficial effects in cardiovascular diseases. In this study, we determined the effect of AVE0991, a nonpeptide angiotensin-(1-7) receptor agonist, on cardiac function in an animal model of diabetes mellitus type I. Diabetes was induced in Sprague-Dawley rats by a single injection of streptozotocin (70 mg/kg). Diabetic and non-diabetic animals were fed with AVE0991 (20 mg/kg per day) or control chow. Normoglycemic control chow- or AVE0991-fed rats served as controls (n=10/group). After five weeks, metabolic cage experiments were performed to assess metabolic parameters. Six weeks after induction of diabetes, cardiac function was monitored using a Millar-tip catheter system. AVE0991 had no effect on any of the investigated hemodynamic parameters under normoglycemic conditions. Hyperglycemia was comparable in diabetic animals with or without AVE0991 treatment. Diabetic control rats suffered from severe systolic dysfunction, indicated by a significant decrease in heart rate, left ventricular systolic pressure, systolic blood pressure and an impairment of left ventricular contractility. Administration of AVE0991 clearly rescued cardiac function under diabetic conditions as indicated by a normalisation of blood pressure and contractility parameters. Our data demonstrates a dominant beneficial impact of AVE0991 on the diabetic heart, implying a cardioprotective role for angiotensin-(1-7) under hyperglycemic conditions and thus pointing to new therapeutic strategies using angiotensin-(1-7) agonists to treat cardiovascular complications in diabetes mellitus.
Collapse
Affiliation(s)
- Linda Ebermann
- Department of Cardiology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Angiotensin converting enzyme 2 (ACE2) is an important homeostatic component of the renin angiotensin system (RAS). ACE2 both degrades the vasoconstrictor, angiotensin II and generates the potent vasodilator peptide, angiotensin 1–7. These actions counterbalance those of ACE. ACE2 is highly expressed in the healthy kidney, particularly in the proximal tubules, where it colocalizes with ACE and angiotensin receptors. Kidney disease and subtotal nephrectomy is associated with a reduction in renal ACE2 expression, possibly facilitating the damaging effects of angiotensin II in the failing kidney. Acquired or genetic ACE2 deficiency also appears to exacerbate renal damage and albuminuria in experimental models, supporting this hypothesis. ACE2 also has an important role in blood pressure control. Many models of hypertension are associated with reduced ACE2 expression. Although ACE2 KO animals are normotensive, in states associated with activation of the RAS, ACE2 overexpression improves blood pressure control and reduces angiotensin responsiveness.
Collapse
Affiliation(s)
- A Koitka
- Division of Diabetic Complications, Baker Medical Research Institute, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
35
|
Joyner J, Neves LAA, Stovall K, Ferrario CM, Brosnihan KB. Angiotensin-(1-7) serves as an aquaretic by increasing water intake and diuresis in association with downregulation of aquaporin-1 during pregnancy in rats. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1073-80. [DOI: 10.1152/ajpregu.00572.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that kidney and urine levels of angiotensin-(1-7) [ANG-(1-7)] were increased in pregnancy. To explore the role of ANG-(1-7) on fluid and electrolyte homeostasis during pregnancy, we evaluated the effect of the ANG-(1-7) antagonist d-alanine-[ANG-(1-7)] (A-779) on kidney function. Virgin and pregnant rats received infusion of vehicle or A-779 (48 μg·kg−1·h−1) for 8 days by osmotic minipumps. Metabolic studies were done on treatment day 7–8. Virgin and pregnant rats at day 15 and 19 were killed, and blood and kidneys were collected. Kidneys were prepared for Western blot analysis for aquaporin-1 (AQP1) and aquaporin-2. In virgin female rats, A-779 increased urine volume and decreased urinary osmolality and AQP1 with no change in water intake. In 19-day pregnant rats, A-779 significantly decreased water intake and urine volume and increased urinary osmolality and kidney AQP1 expression. Only in late gestation did A-779 treatment decrease the difference between intake and output (balance). A-779 treatment increased plasma vasopressin in late gestation but did not change vasopressin in virgins. In virgin and pregnant animals, A-779 administration had no effect on blood pressure, plasma volume, blood volume, or urinary electrolytes. These results suggest that ANG-(1-7) produces antidiuresis associated with upregulation of AQP1 in virgin rats, whereas ANG-(1-7) produces diuresis in late gestation with downregulation of AQP1. ANG-(1-7) contributes to the enhanced water intake during pregnancy, allowing maintenance of the normal volume-expanded state despite diuresis produced in part by decreased AVP and AQP1.
Collapse
|
36
|
Abstract
The discovery of angiotensin-converting enzyme 2 (ACE2) in 2000 is an important event in the renin-angiotensin system (RAS) story. This enzyme, an homolog of ACE, hydrolyzes angiotensin (Ang) I to produce Ang-(1-9), which is subsequently converted into Ang-(1-7) by a neutral endopeptidase and ACE. ACE2 releases Ang-(1-7) more efficiently than its catalysis of Ang-(1-9) by cleavage of Pro(7)-Phe(8) bound in Ang II. Thus, the major biologically active product of ACE2 is Ang-(1-7), which is considered to be a beneficial peptide of the RAS cascade in the cardiovascular system. This enzyme has 42% identity with the catalytic domain of ACE, is present in most cardiovascular-relevant tissues, and is an ectoenzyme as ACE. Despite these similarities, ACE2 is distinct from ACE. Since it is a monocarboxypeptidase, it has only 1 catalytic site and is insensitive to ACE inhibitors. As a result, ACE2 is a central enzyme in balancing vasoconstrictor and proliferative actions of Ang II with vasodilatory and antiproliferative effects of Ang-(1-7). In this review, we will summarize the role of ACE2 in the cardiovascular system and discuss the importance of ACE2-Ang-(1-7) axis in the control of normal cardiovascular physiology and ACE2 as a potential target in the development of novel therapeutic agents for cardiovascular diseases.
Collapse
Affiliation(s)
- Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW In this review we will focus on the recent findings related to angiotensin-(1-7) as an angiotensin II counter-regulatory peptide within the renin-angiotensin system. RECENT FINDINGS The identification of the angiotensin-converting enzyme homologue ACE2 as an angiotensin peptide processing enzyme and of Mas as a receptor for angiotensin-(1-7) has contributed to establishing this heptapeptide as a biologically active member of the renin-angiotensin system cascade. SUMMARY The previously unsuspected complexity of the renin-angiotensin system, unmasked by novel findings, has revealed new possibilities for exploring its physiological and pathophysiological roles. In addition, the ACE2-angiotensin-(1-7)-Mas axis may be seriously considered as a putative target for the development of new cardiovascular drugs.
Collapse
Affiliation(s)
- Robson A S Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | |
Collapse
|
38
|
Pereira RM, Dos Santos RAS, Teixeira MM, Leite VHR, Costa LP, da Costa Dias FL, Barcelos LS, Collares GB, Simões e Silva AC. The renin-angiotensin system in a rat model of hepatic fibrosis: evidence for a protective role of Angiotensin-(1-7). J Hepatol 2007; 46:674-81. [PMID: 17188388 DOI: 10.1016/j.jhep.2006.10.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 10/08/2006] [Accepted: 10/12/2006] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS The circulating renin-angiotensin system (RAS) [plasma renin activity (PRA), Angiotensin (Ang) I, Ang II and Ang-(1-7)] was evaluated in a model of hepatic fibrosis in rats. To investigate the pathophysiological involvement of Ang-(1-7), animals were treated with the Ang-(1-7) Mas receptor antagonist, A-779. METHODS RAS components, liver function and histology were examined in male Wistar rats (220-300 g). Animals were submitted to sham-surgery or ligature of the bile duct and evaluated 1, 2, 4 and 6 weeks later. Blood samples were obtained to determine biochemical parameters and RAS components. A second group was treated with A-779 or vehicle to measure liver hydroxyproline and total transforming growth factor beta-1 (TGFbeta1). RESULTS PRA and Ang I were significantly elevated in rats at 4 and 6 weeks compared to sham-operated animals. Ang II and Ang-(1-7) progressively increased over the 6 weeks. Changes in RAS profile correlated with histological signs of fibrosis and deterioration in liver function. Pharmacological blockade of the Ang-(1-7) receptor aggravated liver fibrosis with a significant elevation in hydroxyproline and total TGFbeta(1). CONCLUSIONS Hepatic fibrosis was associated with RAS activation in our model. Our data also suggested that Ang-(1-7) played a protective role in hepatic fibrosis.
Collapse
Affiliation(s)
- Regina Maria Pereira
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Alfredo Balena, 190, Belo Horizonte, MG 30130-100, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Silva DMR, Vianna HR, Cortes SF, Campagnole-Santos MJ, Santos RAS, Lemos VS. Evidence for a new angiotensin-(1-7) receptor subtype in the aorta of Sprague-Dawley rats. Peptides 2007; 28:702-7. [PMID: 17129638 DOI: 10.1016/j.peptides.2006.10.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/14/2006] [Accepted: 10/17/2006] [Indexed: 12/12/2022]
Abstract
We have recently described, in the mouse aorta, the vasodilator effect of angiotensin-(1-7) (Ang-(1-7)) was mediated by activation of the Mas Ang-(1-7) receptor and that A-779 and D-Pro7-Ang-(1-7) act as Mas receptor antagonists. In this work we show pharmacological evidence for the existence of a different Ang-(1-7) receptor subtype mediating the vasodilator effect of Ang-(1-7) in the aorta from Sprague-Dawley (SD) rats. Ang-(1-7) induced an endothelium-dependent vasodilator effect in aortic rings from SD rats which was inhibited by removal of the endothelium and by L-NAME (100 microM) but not by indomethacin (10 microM). The Ang-(1-7) receptor antagonist D-Pro7-Ang-(1-7) (0.1 microM) abolished the vasodilator effect of the peptide. However, the other specific Ang-(1-7) receptor antagonist, A-779 in concentrations up to 10 microM, did not affect vasodilation induced by Ang-(1-7). The Ang II AT1 and AT2 receptors antagonists CV11974 (0.01 microM) and PD123319 (1 microM), respectively, the bradykinin B2 receptor antagonist HOE 140 (1 microM) and the inhibitor of ACE captopril (10 microM) did not change the effect of Ang-(1-7). Our results show that in the aorta of SD rats, the vasodilator effect of Ang-(1-7) is dependent on endothelium-derived nitric oxide. This effect is mediated by the activation of Ang-(1-7) receptors sensitive to D-Pro7-Ang-(1-7), but not to A-779, which suggests the existence of a different Ang-(1-7) receptor subtype.
Collapse
Affiliation(s)
- D M R Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Wessel N, Malberg H, Heringer-Walther S, Schultheiss HP, Walther T. The Angiotensin-(1-7) Receptor Agonist AVE0991 Dominates the Circadian Rhythm and Baroreflex in Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2007; 49:67-73. [PMID: 17312445 DOI: 10.1097/fjc.0b013e31802cffe9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Because we previously suggested the endogenous heptapeptide angiotensin (Ang)-(1-7) to be involved in the improvement of baroreflex sensitivity observed in spontaneously hypertensive rats (SHR), we here investigated the role of the heptapeptide in blood pressure control under physiologic conditions in awake SHR using the first nonpeptide, orally applicable Ang-(1-7) receptor agonist AVE0991 by telemetry. Five weeks after the start of treatment the blood pressure signals (500 Hz) were monitored in 10 untreated and 6 age-matched male SHR treated by AVE0991 for 24 hours (every 2 hours for 10 minutes). The autonomous tone was estimated from the heart rate and blood pressure variability (HRV, BPV) and from the spontaneous baroreceptor sensitivity (BRS).AVE0991 treatment blunted the rodent-characterizing nightly increase in blood pressure and led to pronounced changes in the BPV and HRV parameters during the night in comparison to untreated controls (eg, sdNN: AVE0991=8.19 versus control=11.5 mm Hg; P<0.001). However, even more significant differences were detected for BRS. Whereas the average slope did not alter, the activation of the baroreflexes (P<10E-6) and the number of baroreflex fluctuations were reduced dramatically by AVE0991 (P<10E-5). The data obtained pointed to an abating impact of AVE0991 on the baroreceptor in SHR and to its influence on the circadian rhythm, thus implying a direct involvement of Ang-(1-7) in cardiovascular control.
Collapse
Affiliation(s)
- N Wessel
- Department of Physics, University of Potsdam, Germany
| | | | | | | | | |
Collapse
|
41
|
van der Wouden EA, Ochodnický P, van Dokkum RP, Roks AJ, Deelman LE, de Zeeuw D, Henning RH. The role of angiotensin(1-7) in renal vasculature of the rat. J Hypertens 2007; 24:1971-8. [PMID: 16957556 DOI: 10.1097/01.hjh.0000244945.42169.c0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Angiotensin(1-7) is an active component of the renin-angiotensin-aldosterone system. Its exact role in renal vascular function is unclear. We therefore studied the effects of angiotensin(1-7) on the renal vasculature in vitro and in vivo. METHODS Isolated small renal arteries were studied in an arteriograph system by constructing concentration-response curves to angiotensin II, without and with angiotensin(1-7). In isolated perfused kidneys, the response of angiotensin II on renal vascular resistance was measured without and with angiotensin(1-7). The influence of angiotensin(1-7) on angiotensin II-induced glomerular afferent and efferent constriction was assessed with intravital microscopy in vivo under anaesthesia. In freely moving rats, we studied the effect of angiotensin(1-7) on angiotensin II-induced reduction of renal blood flow with an electromagnetic flow probe. RESULTS Angiotensin(1-7) alone had no effect on the renal vasculature in any of the experiments. In vitro, angiotensin(1-7) antagonized angiotensin-II-induced constriction of isolated renal arteries (9.71 +/- 1.21 and 3.20 +/- 0.57%, for control and angiotensin(1-7) pre-treated arteries, respectively; P < 0.0005). In isolated perfused kidneys, angiotensin(1-7) reduced the angiotensin II response (100 +/- 16.6 versus 72.6 +/- 15.6%, P < 0.05) and shifted the angiotensin II dose-response curve rightward (pEC50, 6.69 +/- 0.19 and 6.26 +/- 0.12 for control and angiotensin(1-7) pre-treated kidneys, respectively; P < 0.05). Angiotensin(1-7), however, was devoid of effects on angiotensin-II-induced constriction of glomerular afferent and efferent arterioles and on angiotensin-II-induced renal blood flow reduction in freely moving rats in vivo. CONCLUSION Angiotensin(1-7) antagonizes angiotensin II in renal vessels in vitro, but does not appear to have a major function in normal physiological regulation of renal vascular function in vivo.
Collapse
Affiliation(s)
- Els A van der Wouden
- Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Simões e Silva AC, Diniz JSS, Pereira RM, Pinheiro SVB, Santos RAS. Circulating renin Angiotensin system in childhood chronic renal failure: marked increase of Angiotensin-(1-7) in end-stage renal disease. Pediatr Res 2006; 60:734-9. [PMID: 17065573 DOI: 10.1203/01.pdr.0000246100.14061.bc] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to evaluate plasma renin activity (PRA) and Angiotensin (Ang) levels [Ang I, Ang II and Ang-(1-7)] to examine the circulating Renin-Angiotensin System (RAS) in renal disease among children with different forms and stages of chronic renal failure (CRF). Subjects were divided as follows: 32 normotensive healthy subjects, 23 normotensive CRF subjects, 34 hypertensive CRF subjects and 21 subjects with end-stage renal disease (ESRD). Radioimmunoassays for PRA (ngAngI/mL/h) and angiotensin (pg/mL) measurements were performed on all subjects. PRA, Ang I, Ang II and Ang-(1-7) levels were significantly higher in hypertensive CRF subjects when compared with normotensive CRF and healthy subjects (p < 0.05 for all comparisons). No differences were observed between normotensive CRF and healthy subjects. ESRD subjects exhibited a dramatic increase in Ang-(1-7) (25-fold higher than control values). In hypertensive CRF subjects, treatment with angiotensin-converting enzyme inhibitors (ACEi) increased (1.4-fold) plasma Ang-(1-7) and decreased (2.4-fold) Ang II. In ESRD, the use of ACEi produced a similar (1.5-fold) elevation of Ang-(1-7), but no changes in plasma Ang II. Our data showed different circulating RAS profiles between hypertensive and in normotensive CRF subjects. Marked changes in plasma Ang-(1-7) were associated with the presence of hypertension and progression of kidney dysfunction.
Collapse
Affiliation(s)
- Ana C Simões e Silva
- Department of Pediatrics, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil.
| | | | | | | | | |
Collapse
|
43
|
Ferreira AJ, Pinheiro SVB, Castro CH, Silva GAB, Silva ACSE, Almeida AP, Bader M, Rentzsch B, Reudelhuber TL, Santos RAS. Renal function in transgenic rats expressing an angiotensin-(1-7)-producing fusion protein. ACTA ACUST UNITED AC 2006; 137:128-33. [PMID: 16934886 DOI: 10.1016/j.regpep.2006.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Transgenic rats [TGR(A1-7)3292] present a chronic 2.5-fold increase in plasma Angiotensin-(1-7) [Ang-(1-7)] concentration. In the present study, we investigated the effects of this chronic elevation on renal function, vasopressin levels, kidney morphology, expression of Ang-(1-7) and vasopressin receptors in TGR(A1-7)3292. Urine volume and water intake were measured for 24 h. At the end of this period, plasma and urine samples were collected to evaluate renal function parameters and circulating vasopressin levels. Expression of renal V2 receptors and Mas was assessed by ribonuclease protection assay. Renal slices were processed for histological analysis. The urine flow of TGR(A1-7)3292 was significantly lower in comparison with Sprague-Dawley rats. The reduced urine volume of TGR(A1-7)3292 was accompanied by a significant increase in urinary osmolality and decrease free water clearance. Glomerular filtration rate, urinary sodium and potassium excretion were similar in both strains. No significant changes were observed in vasopressin levels as well as in V2 receptor and Mas mRNA expression in renal tissue. No changes in kidney structure of TGR(A1-7)3292 were detected. These data suggest that changes in circulating renin-angiotensin system produced by chronic increase of Ang-(1-7) levels can lead to adjustments in the water balance that are independent of vasopressin release and V2 receptor expression.
Collapse
Affiliation(s)
- Anderson J Ferreira
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Marangoni RA, Carmona AK, Passaglia RCAT, Nigro D, Fortes ZB, de Carvalho MHC. Role of the kallikrein-kinin system in Ang-(1-7)-induced vasodilation in mesenteric arterioles of Wistar rats studied in vivo-in situ. Peptides 2006; 27:1770-5. [PMID: 16595159 DOI: 10.1016/j.peptides.2006.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/01/2006] [Accepted: 02/03/2006] [Indexed: 11/17/2022]
Abstract
Angiotensin-(1-7) [Ang-(1-7)], exerts a variety of actions in the cardiovascular system, with an important effect being vasodilation. In this work, we investigated the relationship between the vasodilatory activity of Ang-(1-7) and the kallikrein-kinin system. Intravital microscopy was used to study the vasodilation caused by Ang-(1-7) in the mesenteric vascular bed of anesthetized Wistar rats. The topical application of Ang-(1-7) caused vasodilation of mesenteric arterioles that was reduced by A-779, JE 049 and peptidase inhibitors (aprotinin, SBTI, PKSI 527, E-64, PMSF). These results indicated that the vasodilation induced by Ang-(1-7) in the mesenteric arterioles of Wistar rats was heavily dependent on the activation of kallikrein and subsequent kinin formation.
Collapse
Affiliation(s)
- Rossana Anderson Marangoni
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes 1524, Cidade Universitária, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Su Z, Zimpelmann J, Burns KD. Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int 2006; 69:2212-8. [PMID: 16672906 DOI: 10.1038/sj.ki.5001509] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a homolog of ACE, which is not blocked by ACE inhibitors. High amounts of ACE2 are present in the proximal tubule, and ACE2 catalyzes generation of angiotensin 1-7 (Ang-(1-7)) by this segment. Ang-(1-7) binds to a receptor distinct from the AT1 or AT2 Ang II receptor, identified as the mas receptor. We studied the effects of Ang-(1-7) on Ang II-mediated cell signaling pathways in proximal tubule. In primary cultures of rat proximal tubular cells, activation of mitogen-activated protein kinases (MAPK) was detected by immunoblotting, in the presence or absence of agonists/antagonists. Transforming growth factor-beta1 (TGF-beta1) was measured by enzyme-linked immunosorbent assay. Ang II (5 min, 10(-7) M) stimulated phosphorylation of the three MAPK (p38, extracellular signal-related kinase (ERK 1/2), and c-Jun N-terminal kinase (JNK)). While incubation of proximal tubular cells with Ang-(1-7) alone did not significantly affect MAPK phosphorylation, Ang-(1-7) (10(-7) M) completely inhibited Ang II-stimulated phosphorylation of p38, ERK 1/2, and JNK. This inhibitory effect was reversed by the Ang-(1-7) receptor antagonist, D-Ala7-Ang-(1-7). Ang II significantly increased production of TGF-beta1 in proximal tubular cells, an effect that was partly inhibited by Ang-(1-7). Ang-(1-7) had no significant effect on cyclic 3',5'-adenosine monophosphate production in these cells. In summary, Ang-(1-7) inhibits Ang II-stimulated MAPK phosphorylation in proximal tubular cells. Generation of Ang-(1-7) by proximal tubular ACE2 could thereby serve a protective role by counteracting the effects of locally generated Ang II.
Collapse
MESH Headings
- Angiotensin I/metabolism
- Angiotensin I/pharmacology
- Angiotensin II/pharmacology
- Angiotensin-Converting Enzyme 2
- Animals
- Blotting, Western
- Cells, Cultured
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- JNK Mitogen-Activated Protein Kinases/analysis
- JNK Mitogen-Activated Protein Kinases/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/metabolism
- Male
- Mitogen-Activated Protein Kinase 3/analysis
- Mitogen-Activated Protein Kinase 3/metabolism
- Mitogen-Activated Protein Kinase Kinases/analysis
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Peptidyl-Dipeptidase A/analysis
- Peptidyl-Dipeptidase A/physiology
- Phosphorylation/drug effects
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transforming Growth Factor beta/analysis
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta1
- p38 Mitogen-Activated Protein Kinases/analysis
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Z Su
- Division of Nephrology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | |
Collapse
|
46
|
van der Wouden EA, Henning RH, Deelman LE, Roks AJM, Boomsma F, de Zeeuw D. Does angiotensin (1-7) contribute to the anti-proteinuric effect of ACE-inhibitors. J Renin Angiotensin Aldosterone Syst 2006; 6:96-101. [PMID: 16470489 DOI: 10.3317/jraas.2005.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACE-I) reduce proteinuria and protect the kidney in proteinuric renal disease. During ACE-I therapy, circulating levels of angiotensin (1-7) [Ang (1-7)] are increased. As cardiac and renal protective effects of Ang (1-7) have been reported, we questioned whether Ang (1-7) contributes to the anti-proteinuric effects of ACE-I treatment. Therefore, we evaluated whether Ang (1-7) infusion reduces proteinuria in a rat model of adriamycin-induced renal disease. In addition, the effect of a selective Ang (1-7) blocker, [D-Ala7]-Ang (1-7) (A779), was investigated in rats treated with the ACE-I, lisinopril (LIS). Six weeks after induction of proteinuria, therapy was started in four different groups: control, Ang (1-7), LIS, and LIS+A779. After two weeks, the rats were sacrificed. Six weeks after injection of adriamycin, the rats had developed proteinuria of 323+/-40 mg/24 hours. The proteinuria remained stable in the control group and in the Ang (1-7) group, but was reduced in both LIS and LIS+A779-treated groups. Similarly, blood pressure (BP) was unchanged in the control and the Ang (1-7) groups, but reduced in both the LIS and the LIS+A779 groups. Plasma levels of Ang (1-7) were increased in the Ang (1-7) and in both LIS-treated groups. We conclude that systemic Ang (1-7) plays no major role in the anti-proteinuric and BPlowering effects of ACE-I in this rat model of adriamycin-induced nephrosis.
Collapse
Affiliation(s)
- Els A van der Wouden
- Department of Clinical Pharmocology, Division of Nephrology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Lemos VS, Silva DMR, Walther T, Alenina N, Bader M, Santos RAS. The endothelium-dependent vasodilator effect of the nonpeptide Ang(1-7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J Cardiovasc Pharmacol 2006; 46:274-9. [PMID: 16116331 DOI: 10.1097/01.fjc.0000175237.41573.63] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, we demonstrated that the endothelium-dependent vasodilator effect of angiotensin(1-7) in the mouse aorta is abolished by genetic deletion of the G protein-coupled receptor encoded by the Mas protooncogene. To circumvent the limitations posed by the possible metabolism of Ang(1-7) in this vessel, in this work we studied the mechanism underlying the vasorelaxant effect of AVE 0991, a nonpeptide mimic of the effects of Ang(1-7), using wild-type and Mas-deficient mice. Ang(1-7) and AVE 0991 induced an equipotent concentration-dependent vasodilator effect in aortic rings from wild-type mice that was dependent on the presence of endothelium. The vasodilator effect of Ang(1-7) and AVE 0991 was completely blocked by 2 specific Ang(1-7) receptor antagonists, A-779 and D-Pro-Ang(1-7), and by inhibition of NO synthase with L-NAME. Moreover, in aortic rings from Mas-deficient mice, the vasodilator effect of both Ang(1-7) and AVE 0991 was abolished. In contrast, the vasodilator effect of acetylcholine and substance P were preserved in Mas-null mice. In addition, the vasoconstriction effect induced by Ang II was slightly increased, and the vasodilation induced by the AT2 agonist CGP 42112A was not altered in Mas-deficient mice. Our results show that Ang(1-7) and AVE 0991 produced an NO-dependent vasodilator effect in the mouse aorta that is mediated by the G protein-coupled receptor Mas.
Collapse
Affiliation(s)
- Virginia S Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil, and Department of Cardiology and Pneumology, University Hospital Benjamin Franklin, Free University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Lara LS, De Carvalho T, Leão-Ferreira LR, Lopes AG, Caruso-Neves C. Modulation of the (Na(+)+K+)ATPase activity by Angiotensin-(1-7) in MDCK cells. ACTA ACUST UNITED AC 2005; 129:221-6. [PMID: 15927719 DOI: 10.1016/j.regpep.2005.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 02/08/2005] [Indexed: 12/26/2022]
Abstract
In the present paper the effect of Ang-(1-7) on the distal tubule (Na(+)+K+)ATPase activity was evaluated by using MDCK cells as a model. Confluent cell monolayers were incubated with increasing concentrations of Ang-(1-7) for 30 min. Thereafter, the (Na(+)+K+)ATPase activity was evaluated and a dose-dependent (from 10(-12) to 10(-7) M) inhibition was observed. The maximal inhibitory effect (54%) was reached at the concentration of 10(-8) M. The inhibitory effect of Ang-(1-7) was not affected by the AT2 receptor selective antagonist PD123319 (from 10(-10) to 10(-7) M) but was blocked in a dose-dependent manner by the AT1 receptor selective antagonists losartan (10(-10) M), candesartan (10(-17) M), irbesartan (2 x 10(-12) M) and telmisartan (2 x 10(-16) M). The signaling pathway triggered by stimulation of the AT(1) receptor was also investigated. The PI-phospholipase C (PI-PLC) inhibitor U73122 (5 x 10(-8) M) blocked the inhibitory effect elicited by Ang-(1-7). Involvement of the protein kinase C (PKC) was evidenced by the sensitivity of the inhibitory effect of Ang-(1-7) to calphostin C (6.32 x 10(-7) M) and the lack of additive effects when the cells were co-incubated with Ang-(1-7) and 3.2 x 10(-8) M PMA. Altogether, these results demonstrate that Ang-(1-7) inhibits the (Na(+)+K+)ATPase activity of the prototypic distal tubule cell MDCK through the AT1 receptor-mediated stimulation of PI-PLC/PKC signaling pathway.
Collapse
Affiliation(s)
- L S Lara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949-900, Rio de Janeiro, RJ, Brasil
| | | | | | | | | |
Collapse
|
49
|
Bürgelová M, Kramer HJ, Teplan V, Thumová M, Cervenka L. Effects of angiotensin-(1–7) blockade on renal function in rats with enhanced intrarenal Ang II activity. Kidney Int 2005; 67:1453-61. [PMID: 15780097 DOI: 10.1111/j.1523-1755.2005.00222.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Increasing evidence suggests that angiotensin-(1-7) [Ang-(1-7)] acts as an endogenous antagonist of Ang II when the renin-angiotensin system (RAS) is activated. In the present study, we therefore compared the effects of acute intrarenal (i.r.) Ang-(1-7) receptor blockade on renal function under conditions of normal and increased intrarenal Ang II concentration. METHODS Salt-replete Hannover-Sprague Dawley rats (HanSD) served as control animals. As models with enhanced action of Ang II we first used transgenic rats harboring the Ren-2 renin gene (TGR), second, Ang II-infused rats, third, 2-kidney, 1-clip (2K1C) hypertensive rats on normal salt intake, and fourth, salt-depleted TGR and HanSD. RESULTS I.r. Ang-(1-7) receptor blockade elicited significant decreases in glomerular filtration rate (GFR), renal plasma flow (RPF), and sodium excretion in 2K1C rats, and in salt-depleted TGR and HanSD. In contrast, i.r. Ang-(1-7) receptor blockade did not significantly change GFR, RPF, and sodium excretion in salt-replete TGR and HanSD, or in Ang II-infused rats. CONCLUSION These findings suggest that under conditions of normal intrarenal RAS activity and increased intrarenal Ang II action by infusion of Ang II or by insertion of a renin gene in salt-replete conditions, Ang-(1-7) is not an important factor in the regulation of renal function. In contrast, under conditions of endogenous RAS activation due to clipping of the renal artery or to sodium restriction, Ang-(1-7) serves as opponent of the vasoconstrictor actions of Ang II.
Collapse
Affiliation(s)
- Marcela Bürgelová
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
50
|
|