1
|
Silva-Cunha M, Lacchini R, Tanus-Santos JE. Facilitating Nitrite-Derived S-Nitrosothiol Formation in the Upper Gastrointestinal Tract in the Therapy of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:691. [PMID: 38929130 PMCID: PMC11200996 DOI: 10.3390/antiox13060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often associated with impaired nitric oxide (NO) bioavailability, a critical pathophysiological alteration in CVDs and an important target for therapeutic interventions. Recent studies have revealed the potential of inorganic nitrite and nitrate as sources of NO, offering promising alternatives for managing various cardiovascular conditions. It is now becoming clear that taking advantage of enzymatic pathways involved in nitrite reduction to NO is very relevant in new therapeutics. However, recent studies have shown that nitrite may be bioactivated in the acidic gastric environment, where nitrite generates NO and a variety of S-nitrosating compounds that result in increased circulating S-nitrosothiol concentrations and S-nitrosation of tissue pharmacological targets. Moreover, transnitrosation reactions may further nitrosate other targets, resulting in improved cardiovascular function in patients with CVDs. In this review, we comprehensively address the mechanisms and relevant effects of nitrate and nitrite-stimulated gastric S-nitrosothiol formation that may promote S-nitrosation of pharmacological targets in various CVDs. Recently identified interfering factors that may inhibit these mechanisms and prevent the beneficial responses to nitrate and nitrite therapy were also taken into consideration.
Collapse
Affiliation(s)
- Mila Silva-Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil;
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| |
Collapse
|
2
|
Costa MA, Matsumoto JPP, Carrettiero DC, Fior-Chadi DR. Adenosine A 1 and A 2a receptors modulate the nitrergic system in cell culture from dorsomedial medulla oblongata. Auton Neurosci 2020; 229:102737. [PMID: 33166836 DOI: 10.1016/j.autneu.2020.102737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022]
Abstract
Adenosine and nitric oxide act on the fine-tuning regulation of neural cardiovascular control in the nucleus tractus solitarius (NTS). Although the interaction between adenosine and NO is well known in the periphery, the mechanisms by which adenosine interferes in the dynamics of nitrergic neurotransmission, related to neural control of circulation, are not completely understood and might be relevant for individuals predisposed to hypertension. In this study we evaluate the interaction between adenosinergic and nitrergic systems in cell culture from the dorsomedial medulla oblongata of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Using quantification of nitrite levels, RT-PCR analysis and RNA interference we demonstrate that adenosine A1 (A1R) and A2a receptor (A2aR) agonists induce a concentration-dependent decrease and increase of nitrite and nNOS mRNA levels in cultured cells from WKY and SHR, respectively. These effects in nitrite levels are attenuated by the administration of A1R and A2aR selective antagonists, CPT and ZM 241385. Furthermore, knockdown of A1R and A2aR show an increase and decrease of nNOS mRNA levels, respectively. Pretreatment with the nonselective inhibitor of NOS, L-NAME, abolishes nitrite-increased levels triggered by CGS 21680 in WKY and SHR cells. Finally, it is shown that the cAMP-PKA pathway is involved in A1R and A2aR-mediated decrease and increase in nitrite levels in SHR and WKY cells. Our results highlight the influence of adenosine on nitric oxide levels in cultured cells from dorsal medulla oblongata of neonate WKY and SHR rats. In part, the modulatory profile is different in the SHR strain.
Collapse
Affiliation(s)
- M A Costa
- Universidade de Sao Paulo, Department of Physiology, Institute of Biosciences, SP, Brazil
| | - J P P Matsumoto
- Universidade de Sao Paulo, Department of Physiology, Institute of Biosciences, SP, Brazil
| | - D C Carrettiero
- Center of Natural Sciences and Humanities, University of ABC, Santo André, SP, Brazil
| | - D R Fior-Chadi
- Universidade de Sao Paulo, Department of Physiology, Institute of Biosciences, SP, Brazil.
| |
Collapse
|
3
|
Villar-Briones A, Aird SD. Organic and Peptidyl Constituents of Snake Venoms: The Picture Is Vastly More Complex Than We Imagined. Toxins (Basel) 2018; 10:E392. [PMID: 30261630 PMCID: PMC6215107 DOI: 10.3390/toxins10100392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
Small metabolites and peptides in 17 snake venoms (Elapidae, Viperinae, and Crotalinae), were quantified using liquid chromatography-mass spectrometry. Each venom contains >900 metabolites and peptides. Many small organic compounds are present at levels that are probably significant in prey envenomation, given that their known pharmacologies are consistent with snake envenomation strategies. Metabolites included purine nucleosides and their bases, neurotransmitters, neuromodulators, guanidino compounds, carboxylic acids, amines, mono- and disaccharides, and amino acids. Peptides of 2⁻15 amino acids are also present in significant quantities, particularly in crotaline and viperine venoms. Some constituents are specific to individual taxa, while others are broadly distributed. Some of the latter appear to support high anabolic activity in the gland, rather than having toxic functions. Overall, the most abundant organic metabolite was citric acid, owing to its predominance in viperine and crotaline venoms, where it chelates divalent cations to prevent venom degradation by venom metalloproteases and damage to glandular tissue by phospholipases. However, in terms of their concentrations in individual venoms, adenosine, adenine, were most abundant, owing to their high titers in Dendroaspis polylepis venom, although hypoxanthine, guanosine, inosine, and guanine all numbered among the 50 most abundant organic constituents. A purine not previously reported in venoms, ethyl adenosine carboxylate, was discovered in D. polylepis venom, where it probably contributes to the profound hypotension caused by this venom. Acetylcholine was present in significant quantities only in this highly excitotoxic venom, while 4-guanidinobutyric acid and 5-guanidino-2-oxopentanoic acid were present in all venoms.
Collapse
Affiliation(s)
- Alejandro Villar-Briones
- Division of Research Support, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.
| | - Steven D Aird
- Division of Faculty Affairs and Ecology and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.
| |
Collapse
|
4
|
The PI3K signaling-mediated nitric oxide contributes to cardiovascular effects of angiotensin-(1-7) in the nucleus tractus solitarii of rats. Nitric Oxide 2016; 52:56-65. [DOI: 10.1016/j.niox.2015.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023]
|
5
|
Sousa JB, Vieira-Rocha MS, Arribas SM, González MC, Fresco P, Diniz C. Endothelial and Neuronal Nitric Oxide Activate Distinct Pathways on Sympathetic Neurotransmission in Rat Tail and Mesenteric Arteries. PLoS One 2015; 10:e0129224. [PMID: 26075386 PMCID: PMC4468141 DOI: 10.1371/journal.pone.0129224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) seems to contribute to vascular homeostasis regulating neurotransmission. This work aimed at assessing the influence of NO from different sources and respective intracellular pathways on sympathetic neurotransmission, in two vascular beds. Electrically-evoked [3H]-noradrenaline release was assessed in rat mesenteric and tail arteries in the presence of NO donors or endothelial/neuronal nitric oxide synthase (NOS) inhibitors. The influence of NO on adenosine-mediated effects was also studied using selective antagonists for adenosine receptors subtypes. Location of neuronal NOS (nNOS) was investigated by immunohistochemistry (with specific antibodies for nNOS and for Schwann cells) and Confocal Microscopy. Results indicated that: 1) in mesenteric arteries, noradrenaline release was reduced by NO donors and it was increased by nNOS inhibitors; the effect of NO donors was only abolished by the adenosine A1 receptors antagonist; 2) in tail arteries, noradrenaline release was increased by NO donors and it was reduced by eNOS inhibitors; adenosine receptors antagonists were devoid of effect; 3) confocal microscopy showed nNOS staining in adventitial cells, some co-localized with Schwann cells. nNOS staining and its co-localization with Schwann cells were significantly lower in tail compared to mesenteric arteries. In conclusion, in mesenteric arteries, nNOS, mainly located in Schwann cells, seems to be the main source of NO influencing perivascular sympathetic neurotransmission with an inhibitory effect, mediated by adenosine A1 receptors activation. Instead, in tail arteries endothelial NO seems to play a more relevant role and has a facilitatory effect, independent of adenosine receptors activation.
Collapse
Affiliation(s)
- Joana Beatriz Sousa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
- * E-mail:
| | - Maria Sofia Vieira-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Carmen González
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carmen Diniz
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Rocha-Pereira C, Arribas SM, Fresco P, González MC, Gonçalves J, Diniz C. Impaired inhibitory function of presynaptic A1-adenosine receptors in SHR mesenteric arteries. J Pharmacol Sci 2014; 122:59-70. [PMID: 23782593 DOI: 10.1254/jphs.12266fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In hypertension, vascular reactivity alterations have been attributed to numerous factors, including higher sympathetic innervation/adenosine. This study examined the modulation of adenosine receptors on vascular sympathetic nerves and their putative contribution to higher noradrenaline spillover in hypertension. We assessed adenosine receptors distribution in the adventitia through confocal microscopy, histomorphometry, and their regulatory function on electrically-evoked [(3)H]-noradrenaline overflow, using selective agonists/antagonists. We found that: i) A1-adenosine receptor agonist (CPA: 100 nM) inhibited tritium overflow to a lower extent in SHR (25% ± 3%, n = 14) compared to WKY (38% ± 3%, n = 14) mesenteric arteries; ii) A2A-adenosine receptor agonist (CGS 21680: 100 nM) induced a slight increase of tritium overflow that was similar in SHR (22% ± 8%, n = 8) and WKY (24% ± 5%, n = 8) mesenteric arteries; iii) A2B- and A3-adenosine receptors did not alter tritium overflow in either strain; iv) all adenosine receptors were present on mesenteric artery sympathetic nerves and/or some adventitial cells of both strains; and v) A1-adenosine receptor staining fractional area was lower in SHR than in WKY mesenteric arteries. We conclude that there is an impaired inhibitory function of vascular presynaptic A1-adenosine receptors in SHR, likely related to a reduced presence of these receptors on sympathetic innervation, which might lead to higher levels of noradrenaline in the synaptic cleft and contribute to hypertension in this strain.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- REQUIMTE/FARMA, Department of Drug Science, Laboratory of Pharmacology, Faculty of Pharmacy, Universidade do Porto, Portugal
| | | | | | | | | | | |
Collapse
|
7
|
Sasaki-Hamada S, Ito K, Oka JI. Neuronal Fos-like immunoreactivity associated with dexamethasone-induced hypertension in rats and effects of glucagon-like peptide-2. Life Sci 2013. [DOI: 10.1016/j.lfs.2013.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Czell D, Efe T, Preuss M, Schofer MD, Becker R. Influence of Intraventricular Application of Baclofen on Arterial Blood Pressure and Neurotransmitter Concentrations in the Hypothalamic Paraventricular Nucleus of Rats. Neurochem Res 2011; 37:381-6. [DOI: 10.1007/s11064-011-0621-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/30/2022]
|
9
|
de Matsumoto JPP, de Ferrari MFR, Fior-Chadi DR. Adenosine receptor type 2a is differently modulated by nicotine in dorsal brainstem cells of Wistar Kyoto and spontaneously hypertensive rats. J Neural Transm (Vienna) 2010; 117:799-807. [DOI: 10.1007/s00702-010-0417-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 05/02/2010] [Indexed: 02/04/2023]
|
10
|
Neuronal Nitric Oxide Synthase Activation Is Involved in Insulin-Mediated Cardiovascular Effects in the Nucleus Tractus Solitarii of Rats. Neuroscience 2009; 159:727-34. [DOI: 10.1016/j.neuroscience.2008.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 11/22/2008] [Accepted: 12/27/2008] [Indexed: 11/20/2022]
|
11
|
Babic T, de Oliveira CVR, Ciriello J. Collateral axonal projections from rostral ventromedial medullary nitric oxide synthase containing neurons to brainstem autonomic sites. Brain Res 2007; 1211:44-56. [PMID: 18423427 DOI: 10.1016/j.brainres.2007.10.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 10/26/2007] [Accepted: 10/31/2007] [Indexed: 11/25/2022]
Abstract
The magnocellular reticular nucleus and adjacent lateral paragigantocellular nucleus have been shown to contain a large population of nitric oxide synthase (NOS) immunoreactive neurons. However, little is known about the projections of these neurons within the central nervous system. Retrograde tract-tracing techniques combined with immunohistochemistry were used in this study to investigate whether NOS neurons in this rostral ventromedial medullary (RVMM) region send collateral axonal projections to autonomic sites in the nucleus of the solitary tract (NTS) and in the nucleus ambiguus (Amb). Fluorogold and/or rhodamine labeled latex microspheres were microinjected into the NTS and Amb at sites that elicited bardycardia and/or depressor responses (l-glutamate; 0.25 M; 10 nl). After a survival period of 10-14 days, the rats were sacrificed and tissue sections of the brainstem were processed immunohistochemically for the identification of NOS containing neuronal perikarya. After unilateral injection of the tract-tracers into the NTS and Amb, retrogradely labeled neurons were observed bilaterally throughout the RVMM region. Of the number of RVMM neurons retrogradely labeled from the NTS (684+/-143), 9% were found to be immunoreactive to NOS. Similarly, of those RVMM neurons retrogradely labeled from the Amb (963+/-207), 7% also contained NOS immunoreactivity. Neurons with collateral axonal projections to NTS and Amb (14% and 10%, respectively) were observed predominantly within a region of RVMM that extended co-extensively with approximately the rostrocaudal extent of the facial nucleus. Of these double labeled neurons, 36.4+/-20 (39%) were also found to be immunoreactive to NOS. These data indicate that the RVMM contains at least three population of NOS neurons that send axons to innervate functionally similar cardiovascular responsive sites in the NTS and Amb. Although the function of these NOS containing medullary pathways in cardiovascular control is not known, it is likely that those with collateral axonal projections represent the anatomical substrate by which the RVMM may simultaneously coordinate cardiovascular responses during physiological changes associated with respiration and/or motor movements.
Collapse
Affiliation(s)
- Tanja Babic
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | |
Collapse
|
12
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
13
|
Ramchandra R, Barrett CJ, Guild SJ, McBryde F, Malpas SC. Role of renal sympathetic nerve activity in hypertension induced by chronic nitric oxide inhibition. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1479-85. [PMID: 17218445 DOI: 10.1152/ajpregu.00435.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide levels are diminished in hypertensive patients, suggesting nitric oxide might have an important role to play in the development of hypertension. Chronic blockade of nitric oxide leads to hypertension that is sustained throughout the period of the blockade in baroreceptor-intact animals. It has been suggested that the sympathetic nervous system is involved in the chronic increase in blood pressure; however, the evidence is inconclusive. We measured renal sympathetic nerve activity and blood pressure via telemetry in rabbits over 7 days of nitric oxide blockade. Nitric oxide blockade via Nω-nitro-l-arginine methyl ester (l-NAME) in the drinking water (50 mg·kg−1·day−1) for 7 days caused a significant increase in arterial pressure (7 ± 1 mmHg above control levels; P < 0.05). While the increase in blood pressure was associated with a decrease in heart rate (from 233 ± 6 beats/min before the l-NAME to 202 ± 6 beats/min on day 7), there was no change in renal sympathetic nerve activity (94 ± 4 %baseline levels on day 2 and 96 ± 5 %baseline levels on day 7 of l-NAME; baseline nerve activity levels were normalized to the maximum 2 s of nerve activity evoked by nasopharyngeal stimulation). The lack of change in renal sympathetic nerve activity during the l-NAME-induced hypertension indicates that the renal nerves do not mediate the increase in blood pressure in conscious rabbits.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Circulatory Control Laboratory, Department of Physiology, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
14
|
Tai MH, Weng WT, Lo WC, Chan JYH, Lin CJ, Lam HC, Tseng CJ. Role of nitric oxide in alpha-melanocyte-stimulating hormone-induced hypotension in the nucleus tractus solitarii of the spontaneously hypertensive rats. J Pharmacol Exp Ther 2007; 321:455-61. [PMID: 17283224 DOI: 10.1124/jpet.106.118299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is expressed in the nucleus tractus solitarii (NTS) of the brainstem, where nitric oxide (NO) plays an important role in cardiovascular regulation. The POMC-derived neuropeptides and their receptors are important regulators of energy homeostasis and cardiovascular functions in the central nervous system. In this study, we investigated the cardiovascular effect of alpha-melanocyte-stimulating hormone (alpha-MSH), a POMC-derived neuropeptide, and its relationship with NO pathway in the NTS of spontaneously hypertensive rats (SHR). Unilateral microinjection of alpha-MSH (0.3-300 pmol) into the NTS resulted in a dose-dependent hypotension and bradycardia in urethane-anesthetized SHR. The alpha-MSH-induced hypotension was abolished by pretreatment with the antagonist of melanocortin-3/4 receptor (MC-3/4R), Ac-Nle-c[Asp-His-D-Nal(2')-Arg-Trp-Lys]-NH2 (SHU9119). Blockade of cAMP/protein kinase A (PKA), the downstream effector of melanocortin receptors, by previous injection of N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H89) also ablated the cardiovascular effect of alpha-MSH. To elucidate the role of NO pathway in alpha-MSH-evoked hypotension, pretreatment with Nomega-nitro-L-arginine methyl ester, a universal inhibitor of nitric-oxide synthase (NOS), partially reversed the depressor and bradycardic effects of alpha-MSH. Furthermore, previous application of the inducible NOS (iNOS) inhibitor, aminoguanidine, but not the neuronal NOS inhibitor, 7-nitroindazole, attenuated the cardiovascular effect of alpha-MSH. Histological analysis revealed the colocalization of MC-4R, but not MC-3R, with iNOS in the NTS of SHR. In summary, intra-NTS injection of alpha-MSH induces hypotension and bradycardia of SHR via MC-4R signaling, which activates cAMP/PKA and iNOS.
Collapse
Affiliation(s)
- Ming-Hong Tai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, and Graduate Institute of Biochemistry, Kaohsiung Medical University, 386 Ta-Chung 1st Road, Kaohsiung 813, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Li X, Zhou T, Zhi X, Zhao F, Yin L, Zhou P. Effect of hypoxia/reoxygenation on CD73 (ecto-5'-nucleotidase) in mouse microvessel endothelial cell lines. Microvasc Res 2006; 72:48-53. [PMID: 16828810 DOI: 10.1016/j.mvr.2006.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 04/21/2006] [Accepted: 04/23/2006] [Indexed: 01/16/2023]
Abstract
Cerebral ischemia and post-ischemic reperfusion commonly result in significant brain damage. Brain microvessel endothelial cells, the key target cells and regulating sites, can secrete adenosine which plays an important neuroprotective role in the ischemic brain. A primary determinant of localized production of adenosine at tissue interfaces is ecto-5'-nucleotidase (CD73). In our experiments, we used bEnd.3 cells, immortalized mouse brain microvessel endothelial cell lines, as the target cells to study the effect of hypoxia and posthypoxic reoxygenation on CD73 in brain microvessel endothelial cells. CD73 activity in bEnd.3 cells exposed to hypoxia significantly increased in time-dependent way. The upregulation of CD73 mRNA and protein expression induced by hypoxia in bEnd.3 cells were detected by RT-PCR and Western blot. However, for reoxygenation studies, CD73 activity, mRNA and protein expression decreased at the initial stages, but increased at prolonged reoxygenation. Our results suggest that hypoxia can induce upregulation of CD73 expression in brain microvessel endothelial cells, which can be reversed by reoxygenation of short duration. But CD73 expression increased gradually with the duration of reoxygenation. Then, we infer that CD73 in brain microvessel endothelial cells plays a very important role through forming adenosine during brain ischemia and reperfusion.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, 138# Yixueyuan Road, Shanghai 200032, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Nassar N, Abdel-Rahman AA. Central Adenosine Signaling Plays a Key Role in Centrally Mediated Hypotension in Conscious Aortic Barodenervated Rats. J Pharmacol Exp Ther 2006; 318:255-61. [PMID: 16595736 DOI: 10.1124/jpet.105.100495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that clonidine-evoked hypotension is dependent on central adenosinergic pathways. Five groups of male, conscious, aortic baroreceptor-denervated (ABD) rats received clonidine (10 microg/kg i.v.) 30 min after i.v. 1) saline, 2) theophylline (10 mg/kg), or 3) 8-(p-sulfophenyl)theophylline (8-SPT) (2.5 mg/kg) or 1 h after i.p. 4) dipyridamole (5 mg/kg) or 5) an equal volume of sesame oil. Blockade of central (theophylline) but not peripheral (8-SPT) adenosine receptors abolished clonidine hypotension. In contrast, dipyridamole substantially enhanced the bradycardic response to clonidine. In additional groups, intracisternal (i.c.) dipyridamole (150 microg) and 8-SPT (10 microg) enhanced and abolished, respectively, clonidine (0.6 microg i.c.)-evoked hypotension. Because clonidine is a mixed I1/alpha2 agonist, we also investigated whether adenosine signaling is linked to the I1 or the alpha2A receptor by administering the selective I1 (rilmenidine, 25 microg) or alpha2A [alpha-methylnorepinephrine (alpha-MNE), 4 microg] agonist 30 min after central adenosine receptor blockade (8-SPT; 10 microg i.c.) or artificial cerebrospinal fluid. The hypotensive response elicited by rilmenidine or alpha-MNE was abolished in 8-SPT-pretreated rats. To delineate the role of the adenosine A2A receptor in clonidine-evoked hypotension, i.c. clonidine (0.6 microg) was administered 30 min after central adenosine receptor A2A blockade [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-epsilon]-1,2,4-triazolo[1,5-c]-pyrimidine (SCH58261); 150 microg i.c.]. The latter virtually abolished the hypotensive and bradycardic responses elicited by clonidine. In conclusion, central adenosine A2A signaling plays a key role in clonidine-evoked hypotension in conscious aortic barodenervated rats.
Collapse
Affiliation(s)
- Noha Nassar
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | |
Collapse
|
17
|
Kasparov S, Paton J, Wang S, Deuchars J. Nitroxergic Modulation in the NTS. ADVANCES IN VAGAL AFFERENT NEUROBIOLOGY 2005. [DOI: 10.1201/9780203492314.ch9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Scislo TJ, O'Leary DS. Purinergic mechanisms of the nucleus of the solitary tract and neural cardiovascular control. Neurol Res 2005; 27:182-94. [PMID: 15829182 DOI: 10.1179/016164105x21959] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES This review addresses the role of central purinergic receptors in the operation of the cardiovascular reflexes. METHODS Potential physiological role of purinergic receptors operating in the nucleus of the solitary tract (NTS) was assessed via comparison of the regional patterns of hemodynamic and sympathetic responses evoked by selective stimulation/inhibition of NTS purinergic receptor subtypes, with the patterns evoked by stimulation and unloading of arterial baroreceptors, and other known patterns of autonomic responses. The effects of sino-aortic denervation plus vagotomy and ionotropic glutamatergic blockade of NTS mechanisms on the patterns of the responses were also considered. RESULTS Selective stimulation of NTS A1 receptors with CPA evoked a pattern of regional autonomic responses consistent with inhibition of baroreflex mechanisms and facilitation/ disinhibition of chemoreflex mechanisms. Selective stimulation of NTS A(2a) receptors with CGS 21680-evoked pattern of the responses different than that evoked by stimulation of baroreflex afferents what remains in contrast to previous reports suggesting that NTS A2a receptors facilitate baroreflex transmission. The pattern of the responses was similar to that observed during hypotensive hemorrhage. Preferential, b -adrenergic iliac vasodilation evoked by stimulation of adenosine A2a receptors and preferential activation of sympathetic output to the adrenal medulla by both adenosine A1 and A2a receptors are consistent with contribution of these receptors to the defense response, stress and exercise. These observations support previous findings that NTS A1 receptors contribute to the hypothalamic defense response. The effects of stimulation and blockade of NTS P2x receptors with alpha, beta-methylene ATP and suramin, respectively, suggested that neuronally-released ATP operating via P2x receptors may be a crucial co-transmitter with glutamate in mediating baroreflex responses. DISCUSSION The above observations strongly suggest that purinergic receptor subtypes operating in NTS circuitry are linked to specific afferent and descending mechanisms primarily integrated in the NTS.
Collapse
Affiliation(s)
- Tadeusz J Scislo
- Department of Physiology Wayne State University School of Medicine Detroit, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | |
Collapse
|
19
|
Ramchandra R, Barrett CJ, Malpas SC. NITRIC OXIDE and SYMPATHETIC NERVE ACTIVITY IN THE CONTROL OF BLOOD PRESSURE. Clin Exp Pharmacol Physiol 2005; 32:440-6. [PMID: 15854155 DOI: 10.1111/j.1440-1681.2005.04208.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Endothelial dysfunction marked by impairment in the release of nitric oxide (NO) is seen very early in the development of hypertension and is considered important in mediating the impaired vascular tone evident in essential hypertensive patients. 2. Recently, a hypothesis has emerged that NO acting as a neurotransmitter in the brain can modulate levels of sympathetic nerve activity and thereby blood pressure. The NO inhibition model of hypertension has been used to explore the possibility that a decrease in levels of NO can cause an increase in levels of sympathetic nerve activity that can mediate the hypertension. 3. In the present review, we examine the literature regarding the role of NO in setting the mean level of sympathetic nerve activity and blood pressure. Although the acute effects of NO inhibition are well understood, the chronic interaction between the sympathetic nervous system and NO has only been investigated using indirect measures of sympathetic nerve activity, such as ganglionic blockade. This has led to inconsistent results regarding the role of NO in modulating sympathetic nerve activity chronically. 4. Some of the conflicting results may be explained by differences in the 'background' levels of angiotensin (Ang) II. Evidence suggests that NO may interact with AngII and baroreceptor afferent inputs in the central nervous system to set the mean level of sympathetic nerve activity. 5. We suggest chronic NO inhibition can increase sympathetic nerve activity if baroreceptor input is intact and AngII levels are elevated. Although studies exploring the actions of NO or AngII in isolation are useful for gathering initial information, future studies should focus on their interactions and their role in setting the long-term levels of sympathetic activity and blood pressure.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Circulatory Control Laboratory, Department of Physiology, University of Auckland, New Zealand
| | | | | |
Collapse
|
20
|
Scislo TJ, Tan N, O'Leary DS. Differential role of nitric oxide in regional sympathetic responses to stimulation of NTS A2a adenosine receptors. Am J Physiol Heart Circ Physiol 2004; 288:H638-49. [PMID: 15539419 DOI: 10.1152/ajpheart.00857.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies showed that preganglionic adrenal (pre-ASNA), renal (RSNA), lumbar, and postganglionic adrenal sympathetic nerve activities (post-ASNA) are inhibited after stimulation of arterial baroreceptors, nucleus of the solitary tract (NTS), and glutamatergic and P2x receptors and are activated after stimulation of adenosine A1 receptors. However, stimulation of adenosine A2a receptors inhibited RSNA and post-ASNA, whereas it activated pre-ASNA. Because the effects evoked by NTS A2a receptors may be mediated via activation of nitric oxide (NO) mechanisms in NTS neurons, we tested the hypothesis that NO synthase (NOS) inhibitors would attenuate regional sympathetic responses to NTS A2a receptor stimulation, whereas NO donors would evoke contrasting responses from pre-ASNA versus RSNA and post-ASNA. Therefore, in chloralose/urethane-anesthetized rats, we compared hemodynamic and regional sympathetic responses to microinjections of selective A2a receptor agonist (CGS-21680, 20 pmol/50 nl) after pretreatment with NOS inhibitors Nomega-nitro-L-arginine methyl ester (10 nmol/100 nl) and 1-[2-(trifluoromethyl)phenyl]imidazole (100 pmol/100 nl) versus pretreatment with vehicle (100 nl). In addition, responses to microinjections into the NTS of different NO donors [40 and 400 pmol/50 nl sodium nitroprusside (SNP); 0.5 and 5 nmol/50 nl 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA NONOate, also known as NOC-18), and 2 nmol/50 nl 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA NONOate, also known as NOC-15)], the NO precursor L-arginine (10-50 nmol/50 nl), and sodium glutamate (500 pmol/50 nl) were evaluated. SNP, DETA NONOate, and PAPA NONOate activated pre-ASNA and inhibited RSNA and post-ASNA, whereas l-arginine and glutamate microinjected into the same site of the NTS inhibited all these sympathetic outputs. Decreases in heart rate and depressor or biphasic responses accompanied the neural responses. Pretreatment with NOS inhibitors reversed the normal depressor and sympathoinhibitory responses to stimulation of NTS A2a receptors into pressor and sympathoactivatory responses and attenuated the heart rate decreases; however, it did not change the increases in pre-ASNA. We conclude that NTS NO mechanisms differentially affect regional sympathetic outputs and differentially contribute to the pattern of regional sympathetic responses evoked by stimulation of NTS A2a receptors.
Collapse
Affiliation(s)
- Tadeusz J Scislo
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
21
|
|
22
|
Paton JFR, Kasparov S, Paterson DJ. Nitric oxide and autonomic control of heart rate: a question of specificity. Trends Neurosci 2002; 25:626-31. [PMID: 12446130 DOI: 10.1016/s0166-2236(02)02261-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite its highly diffusible nature, the gaseous signalling molecule nitric oxide (NO) can exert specific effects within the CNS and PNS. To date, the specificity of the actions of NO remains an unsolved puzzle. There are several plausible mechanisms that might account for this specificity in the context of autonomic regulation of heart rate. NO acts at distinct levels within the autonomic nervous system to control cardiac rate, with opposing effects at different sites. We discuss factors that might contribute to this diversity of action, and conclude that the isoform of enzyme involved in producing NO, the spatial proximity of the NO source to the target, and differences in the intracellular coupling within the target cell are all crucial for encoding the functional action of NO.
Collapse
Affiliation(s)
- Julian F R Paton
- Dept of Physiology, School of Medical Sciences, University of Bristol, UK.
| | | | | |
Collapse
|
23
|
Nieri P, Martinotti E, Calderone V, Breschi MC. Adenosine-mediated hypotension in in vivo guinea-pig: receptors involved and role of NO. Br J Pharmacol 2001; 134:745-52. [PMID: 11606314 PMCID: PMC1572997 DOI: 10.1038/sj.bjp.0704301] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Adenosine produced a biphasic lowering of the mean BP with a drastic bradycardic effect at the highest doses. The first phase hypotensive response was significantly reduced by the nitric oxide (NO) synthase inhibitor L-NAME. 2. The A(2a)/A(2b) agonist NECA produced hypotensive and bradycardic responses similar to those elicited by adenosine, which were not significantly modified by the A(2b) antagonist enprofylline. 3. The A(2a) agonist CGS 21680 did not significantly influence basal HR while induced a hypotensive response antagonized by the A(2a) selective antagonist ZM 241385, and reduced by both L-NAME and the guanylate cyclase inhibitor methylene blue. 4. The A(1) agonist R-PIA showed a dose-dependent decrease in BP with a drastic decrease in HR at the highest doses. The A(1) selective antagonist DPCPX significantly reduced the bradycardic activity and also the hypotensive responses obtained with the lowest doses while it increased those obtained with the highest ones. 5. The A(1)/A(3) agonist APNEA, in the presence of the xanthinic non-selective antagonist 8-pSPT, maintained a significant hypotensive, but not bradycardic, activity, not abolished by the histamine antagonist diphenhydramine. 6. The selective A(3) agonist IB-MECA revealed a weak hypotensive and bradycardic effect, but only at the highest doses. 7. In conclusion, in the systemic cardiovascular response to adenosine two major components may be relevant: an A(2a)- and NO-mediated hypotension, and a bradycardic effect with a consequent hypotension, via atypical A(1) receptors. Finally, an 8-pSPT-resistant hypotensive response not attributable to A(3) receptor-stimulation or to release of histamine by mastocytes or other immune cells was observed.
Collapse
Affiliation(s)
- P Nieri
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, Via Bonanno 6-56126, PISA, Italy.
| | | | | | | |
Collapse
|
24
|
Tucker EJ, Ledingham JM, Zheng Y, Laverty R. Effects of chronic inhibition of nitric oxide synthase in the genetically hypertensive rat. Clin Exp Pharmacol Physiol 2000; 27:647-9. [PMID: 10901399 DOI: 10.1046/j.1440-1681.2000.03299.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The effects of graded inhibition of nitric oxide synthase (NOS) on blood pressure in the genetically hypertensive (GH) rat strain and NOS activity in regions of the brain (cerebellum, striatum, hippocampus, frontal cortex and medulla oblongata) as a measure of body NOS inhibition were studied. 2. Male GH and normotensive (N) rats (n = 7-10 per group) were given N(G)-nitro-L-arginine methyl ester (L-NAME; 2, 5, 10 or 20 mg/kg per day in drinking water) from age 7 weeks. Age- and weight-matched controls received water only. Systolic blood pressure (SBP) was measured weekly by the tail-cuff method from age 6 weeks. By age 10 weeks, rats were killed and NOS activity was measured. 3. Some GH rats that received over 5 mg/kg per day L-NAME developed stroke-like symptoms and were killed before the end of the treatment period. 4. No difference in NOS activity was found between untreated N and GH strains but, in those that received treatment, a graded inhibition was observed with increasing L-NAME dose levels. The frontal cortex in the GH strain given 20 mg/kg per day L-NAME had NOS inhibition of 90% where the N strain had 73% inhibition. Similar results were seen in the other areas of the brain. 5. Left ventricular mass, weight related, was significantly greater in the GH compared with N and was further elevated by treatment with L-NAME. 6. The SBP at 10 weeks was significantly elevated in GH rats by NOS inhibition with L-NAME in a dose-dependent manner; 25% for 2 mg/kg per day, 31% for 20 mg/kg per day (P < 0.001). There was a non-significant increase in BP in the N-treated groups (average change of 7.5%). 7. Nitric oxide synthase inhibition causing increased SBP in GH rats suggests an abnormality in the nitric oxide-L-arginine pathway in this strain.
Collapse
Affiliation(s)
- E J Tucker
- Department of Pharmacology, University of Otago Medical School, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
25
|
Israel A, Sosa B, Gutierez CI. Brain AT(2) receptor mediate vasodepressor response to footshocks: role of kinins and nitric oxide. Brain Res Bull 2000; 51:339-43. [PMID: 10704785 DOI: 10.1016/s0361-9230(99)00244-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present study the role of brain AT(2) receptor in the cardiovascular response to stress was investigated in conscious rats. Footshock-stress increased mean arterial pressure (MAP) and heart rate (p < 0.0001). Intracerebroventricular (i.c.v.) administration of losartan (100 microg/5 microl), a specific angiotensin AT(1) receptor antagonist, not only attenuated the pressor response to footshocks, but also resulted in a consistent vasodepressor response (-10 mmHg, p < 0.02). Meanwhile, heart rate response was not altered. Given alone, PD 123319 (3 microg/5 microl, i.c.v.), a specific angiotensin AT(2) receptor antagonist, did not alter the hemodynamic response to footshocks. However, simultaneous block of brain AT(1) and AT(2) receptors by combined administration of losartan and PD 12319, eliminated the vasodepressor response unmasked after footshocks in rats i.c.v.-pretreated with losartan alone. In addition, we studied the role of brain kinins and nitric oxide (NO) in the vasodepressor response observed after footshocks in losartan i.c.v.-treated rats. Intracerebroventricular administration of icatibant (20 pmol/5 microl), a selective B(2) receptor antagonist, or N(G)-nitro-L-arginine methyl ester (100 microg/5 microl), a selective NO-synthase inhibitor, abolished the vasodepressor response to footshocks in losartan-treated rats. Our data suggest that the vasodepressor response to footshocks in the presence of AT(1) antagonist is triggered by activation of AT(2) receptor. Brain NO and kinins appear to contribute in this effect.
Collapse
Affiliation(s)
- A Israel
- School of Pharmacy, Universidad Central de Venezuela, Caracas Schools of Medicine, Caracas, Venezuela.
| | | | | |
Collapse
|
26
|
Krukoff TL. Central actions of nitric oxide in regulation of autonomic functions. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:52-65. [PMID: 10407125 DOI: 10.1016/s0165-0173(99)00010-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The identification of nitric oxide (NO) as a gaseous, nonconventional neurotransmitter in the central nervous system has led to an explosion of studies aimed at learning about the roles of NO, not only at a cellular level, but also in regulating the activity of specific physiological systems that are coordinated by the brain. In the 1980s, publications began to appear which pointed to a role for NO in regulating peripheral autonomic function. In the 1990s, it became apparent that NO also acts centrally to affect autonomic responses. In this review, I will discuss the state of the current knowledge about the central role of NO in physiological functions which are related specifically to the control of sympathetic output. Studies which do not differentiate a central from a peripheral role for NO in these functions have not been included. After a brief discussion about the cellular events in which NO is involved, the distribution of NO-producing neurons in central autonomic areas of the brain will be presented. The more general actions of central NO in regulating sympathetic activity, as assessed with i.c.v. injections of pharmacological agents, will be followed by more specific sites of action achieved with microinjections into discrete brain areas. The review will be concluded with discussions about central NO in two physiological states of sympathetic imbalance, hypertension and stress.
Collapse
Affiliation(s)
- T L Krukoff
- Department of Cell Biology and Anatomy, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|