1
|
Kaufmann P, Ilina Y, Press M, Bergmann A. Sandwich immunoassay for adrenomedullin precursor and its practical application. Sci Rep 2024; 14:28091. [PMID: 39543387 PMCID: PMC11564509 DOI: 10.1038/s41598-024-79542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Adrenomedullin (ADM) is a multifaceted peptide hormone involved in numerous physiological processes, including vascular stability, vasodilation, angiogenesis, and anti-inflammatory responses. The processing of ADM results in several fragments, including midregional proadrenomedullin (MR-proADM), and glycine-extended ADM (ADM-Gly) and bioactive ADM (bio-ADM). MR-proADM, the stable ADM fragment, and bio-ADM, the active form of ADM with a short half-life, have been shown to be potent biomarkers in a variety of pathologies. ADM-Gly, the direct precursor of bio-ADM, is a predominant form in human plasma, but remains less understood and least investigated. This study presents the development of a specific immunoluminometric assay for the quantification of ADM-Gly and offers a robust one-step approach for large-scale sample screening. Applied to human and rodent plasma, it elucidates the release kinetics and plasma half-life of ADM-Gly. Our findings confirm the predominance of ADM-Gly in healthy individuals and its significant release under pathological conditions. Our immunoluminometric assay enables precise measurement of ADM-Gly, advancing research into ADM-related pathophysiology and supporting its use as a biomarker and therapeutic target in various diseases.
Collapse
Affiliation(s)
- Paul Kaufmann
- PAM Theragnostics GmbH, 16761, Hennigsdorf, Germany.
| | - Yulia Ilina
- PAM Theragnostics GmbH, 16761, Hennigsdorf, Germany
| | | | | |
Collapse
|
2
|
Mogi M. Effect of adrenomedullin on obesity-related hypertension. Hypertens Res 2024; 47:2221-2222. [PMID: 38844558 DOI: 10.1038/s41440-024-01740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 08/06/2024]
Affiliation(s)
- Masaki Mogi
- Department of Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan.
| |
Collapse
|
3
|
Gatto M, Esposito M, Morelli M, De Rose S, Gizurarson S, Meiri H, Mandalà M. Placental Protein 13: Vasomodulatory Effects on Human Uterine Arteries and Potential Implications for Preeclampsia. Int J Mol Sci 2024; 25:7522. [PMID: 39062763 PMCID: PMC11276665 DOI: 10.3390/ijms25147522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Placental protein 13 (PP13) exhibits a plasma concentration that increases gradually during normal gestation, a process that is disrupted in preeclampsia, which is characterized by elevated vascular resistance, reduced utero-placental blood flow, and intrauterine growth restriction. This study investigated PP13's role in vascular tone regulation and its molecular mechanisms. Uterine and subcutaneous arteries, isolated from both pregnant and non-pregnant women, were precontracted with the thromboxane analogue U46619 and exposed to PP13 using pressurized myography. The molecular mechanisms were further investigated, using specific inhibitors for nitric oxide synthase (L-NAME+LNNA at 10-4 M) and guanylate cyclase (ODQ at 10-5 M). The results showed that PP13 induced vasodilation in uterine arteries, but not in subcutaneous arteries. Additionally, PP13 counteracted U46619-induced vasoconstriction, which is particularly pronounced in pregnancy. Further investigation revealed that PP13's mechanism of action is dependent on the activation of the nitric oxide-cGMP pathway. This study provides novel insights into the vasomodulatory effects of PP13 on human uterine arteries, underscoring its potential role in regulating utero-placental blood flow. These findings suggest that PP13 may be a promising candidate for improving utero-placental blood flow in conditions such as preeclampsia. Further research and clinical studies are warranted to validate PP13's efficacy and safety as a therapeutic agent for managing preeclampsia.
Collapse
Affiliation(s)
- Mariacarmela Gatto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.G.); (M.E.)
| | - Milena Esposito
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.G.); (M.E.)
| | - Michele Morelli
- Department of Gynecology and Obstetrics, Hospital SS Annunziata, 87100 Cosenza, Italy; (M.M.); (S.D.R.)
| | - Silvia De Rose
- Department of Gynecology and Obstetrics, Hospital SS Annunziata, 87100 Cosenza, Italy; (M.M.); (S.D.R.)
| | | | - Hamutal Meiri
- Hylabs Ltd., Rehovot 7670606, Israel;
- TeleMarpe Ltd., Tel Aviv 6908742, Israel
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.G.); (M.E.)
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT 05401, USA
| |
Collapse
|
4
|
Silvestro M, Iannone LF, Orologio I, Tessitore A, Tedeschi G, Geppetti P, Russo A. Migraine Treatment: Towards New Pharmacological Targets. Int J Mol Sci 2023; 24:12268. [PMID: 37569648 PMCID: PMC10418850 DOI: 10.3390/ijms241512268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a debilitating neurological condition affecting millions of people worldwide. Until a few years ago, preventive migraine treatments were based on molecules with pleiotropic targets, developed for other indications, and discovered by serendipity to be effective in migraine prevention, although often burdened by tolerability issues leading to low adherence. However, the progresses in unravelling the migraine pathophysiology allowed identifying novel putative targets as calcitonin gene-related peptide (CGRP). Nevertheless, despite the revolution brought by CGRP monoclonal antibodies and gepants, a significant percentage of patients still remains burdened by an unsatisfactory response, suggesting that other pathways may play a critical role, with an extent of involvement varying among different migraine patients. Specifically, neuropeptides of the CGRP family, such as adrenomedullin and amylin; molecules of the secretin family, such as pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP); receptors, such as transient receptor potential (TRP) channels; intracellular downstream determinants, such as potassium channels, but also the opioid system and the purinergic pathway, have been suggested to be involved in migraine pathophysiology. The present review provides an overview of these pathways, highlighting, based on preclinical and clinical evidence, as well as provocative studies, their potential role as future targets for migraine preventive treatment.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luigi Francesco Iannone
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pierangelo Geppetti
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Antonio Russo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
5
|
Chin CG, Elimam AM, Lin FJ, Chen YC, Lin YK, Lu YY, Higa S, Chen SA, Hsieh MH, Chen YJ. Effects of Adrenomedullin on Atrial Electrophysiology and Pulmonary Vein Arrhythmogenesis. Int J Mol Sci 2022; 23:ijms232214064. [PMID: 36430541 PMCID: PMC9696567 DOI: 10.3390/ijms232214064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Adrenomedullin, a peptide with vasodilatory, natriuretic, and diuretic effects, may be a novel agent for treating heart failure. Heart failure is associated with an increased risk of atrial fibrillation (AF), but the effects of adrenomedullin on atrial arrhythmogenesis remain unclear. This study investigated whether adrenomedullin modulates the electrophysiology of the atria (AF substrate) or pulmonary vein (PV; AF trigger) arrhythmogenesis. Conventional microelectrode or whole-cell patch clamps were used to study the effects of adrenomedullin (10, 30, and 100 pg/mL) on the electrical activity, mechanical response, and ionic currents of isolated rabbit PV and sinoatrial node tissue preparations and single PV cardiomyocytes. At 30 and 100 pg/mL, adrenomedullin significantly reduced the spontaneous beating rate of the PVs from 2.0 ± 0.4 to 1.3 ± 0.5 and 1.1 ± 0.5 Hz (reductions of 32.9% ± 7.1% and 44.9 ± 8.4%), respectively, and reduced PV diastolic tension by 12.8% ± 4.1% and 14.5% ± 4.1%, respectively. By contrast, adrenomedullin did not affect sinoatrial node beating. In the presence of L-NAME (a nitric oxide synthesis inhibitor, 100 μM), adrenomedullin (30 pg/mL) did not affect the spontaneous beating rate or diastolic tension of the PVs. In the single-cell experiments, adrenomedullin (30 pg/mL) significantly reduced the L-type calcium current (ICa-L) and reverse-mode current of the sodium-calcium exchanger (NCX). Adrenomedullin reduces spontaneous PV activity and PV diastolic tension by reducing ICa-L and NCX current and thus may be useful for treating atrial tachyarrhythmia.
Collapse
Affiliation(s)
- Chye-Gen Chin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
| | - Ahmed Moustafa Elimam
- Division of Cardiovascular Medicine, Department of Internal Medicine, Mansoura International Hospital, Mansoura 35511, Egypt
| | - Fong-Jhih Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 901-2131, Japan
| | - Shih-Ann Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Ming-Hsiung Hsieh
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Correspondence: (M.-H.H.); (Y.-J.C.); Tel.: +886-0970746502 (Y.-J.C.); Fax: +886-2-2933-9378 (Y.-J.C.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Correspondence: (M.-H.H.); (Y.-J.C.); Tel.: +886-0970746502 (Y.-J.C.); Fax: +886-2-2933-9378 (Y.-J.C.)
| |
Collapse
|
6
|
Doneray E, Yazici KU, Yazici IP, Ustundag B. Altered Arginine/Nitric Oxide Pathway in Children Diagnosed Attention Deficit Hyperactivity Disorder, and the Effect of 10 Weeks Methylphenidate Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:350-363. [PMID: 35466106 PMCID: PMC9048004 DOI: 10.9758/cpn.2022.20.2.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022]
Abstract
Objective In this study, we investigated the levels of arginine, nitric oxide (NO), asymmetric dimethylarginine (ADMA), and adrenomedullin that are presumed to play a role in attention deficit hyperactivity disorder (ADHD) etiology, and to compare the findings with healthy controls. Methods Thirty ADHD patients and thirty healthy control subjects aged 6−12 years were included in the study. Sociodemographic data form, Schedule for Affective Disorders and Schizophrenia for School Age Children-Present and Lifetime Version; Conners’ Parent/Teacher Rating Scale-Revised Long Form; Children’s Depression Inventory; and The State-Trait Anxiety Inventory for Children were applied to all cases. All participants included in the study were evaluated in terms of their serum arginine, NO, ADMA, and adrenomedullin levels. Subsequently, methylphenidate treatment was started in ADHD patients and blood parameters were tested again in the tenth week of treatment. Results At the start of the study, arginine and ADMA levels were significantly higher and NO and adrenomedullin levels were significantly lower in the ADHD group compared to the control group. Post-treatment arginine and ADMA levels were found to be significantly lower than in the pre-treatment period. There were no significant differences in NO and adrenomedullin levels before and after treatment. There was no correlation between scale scores and blood parameters. Conclusion These variations in the blood parameters of the ADHD group seem to be worth further investigation. Studies to be conducted with larger sample groups after longer-term treatment may provide new information about the alterations in neurobiological processes related to ADHD etiology and treatment.
Collapse
Affiliation(s)
- Ebru Doneray
- Department of Child and Adolescent Psychiatry, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Kemal Utku Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Ipek Percinel Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Bilal Ustundag
- Department of Biochemistry, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
7
|
Martínez-Herrero S, Martínez A. Adrenomedullin: Not Just Another Gastrointestinal Peptide. Biomolecules 2022; 12:biom12020156. [PMID: 35204657 PMCID: PMC8961556 DOI: 10.3390/biom12020156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022] Open
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two bioactive peptides derived from the same precursor with several biological functions including vasodilation, angiogenesis, or anti-inflammation, among others. AM and PAMP are widely expressed throughout the gastrointestinal (GI) tract where they behave as GI hormones, regulating numerous physiological processes such as gastric emptying, gastric acid release, insulin secretion, bowel movements, or intestinal barrier function. Furthermore, it has been recently demonstrated that AM/PAMP have an impact on gut microbiome composition, inhibiting the growth of bacteria related with disease and increasing the number of beneficial bacteria such as Lactobacillus or Bifidobacterium. Due to their wide functions in the GI tract, AM and PAMP are involved in several digestive pathologies such as peptic ulcer, diabetes, colon cancer, or inflammatory bowel disease (IBD). AM is a key protective factor in IBD onset and development, as it regulates cytokine production in the intestinal mucosa, improves vascular and lymphatic regeneration and function and mucosal epithelial repair, and promotes a beneficial gut microbiome composition. AM and PAMP are relevant GI hormones that can be targeted to develop novel therapeutic agents for IBD, other GI disorders, or microbiome-related pathologies.
Collapse
|
8
|
Paudel S, Liu B, Cummings MJ, Quinn KE, Bazer FW, Caron KM, Wang X. Temporal and spatial expression of adrenomedullin and its receptors in the porcine uterus and peri-implantation conceptuses. Biol Reprod 2021; 105:876-891. [PMID: 34104954 DOI: 10.1093/biolre/ioab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Adrenomedullin (ADM) is an evolutionarily conserved multi-functional peptide hormone that regulates implantation, embryo spacing and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy. Total recoverable ADM was greater in the uterine fluid of pregnant compared with cyclic gilts between Days 10 and 16 post-estrus, and was from uterine luminal epithelial (LE) and conceptus trophectoderm (Tr) cells. Uterine expression of CALCRL, RAMP2, and ACKR3 were affected by day (P < 0.05), pregnant status (P < 0.01) and/or day x status (P < 0.05). Within porcine conceptuses, expression of CALCRL, RAMP2 and ACKR3 increased between Days 10 and 16 of pregnancy. Using an established porcine trophectoderm (pTr1) cell line, it was determined that 10-7 M ADM stimulated proliferation of pTr1 cells (P < 0.05) at 48 h, and increased phosphorylated mechanistic target of rapamycin (p-MTOR) and 4E binding protein 1 (p-4EBP1) by 6.1- and 4.9-fold (P < 0.0001), respectively. These novel results indicate a significant role for ADM in uterine receptivity for implantation and conceptus growth and development in pigs. They also provide a framework for future studies of ADM signaling to affect proliferation and migration of Tr cells, spacing of blastocysts, implantation and placentation in pigs.
Collapse
Affiliation(s)
- Sudikshya Paudel
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Bangmin Liu
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Magdalina J Cummings
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Kelsey E Quinn
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station TX, 77843, USA
| | - Kathleen M Caron
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| |
Collapse
|
9
|
Ma F, Chen G, Rodriguez EL, Klein JD, Sands JM, Wang Y. Adrenomedullin Inhibits Osmotic Water Permeability in Rat Inner Medullary Collecting Ducts. Cells 2020; 9:cells9122533. [PMID: 33255239 PMCID: PMC7760190 DOI: 10.3390/cells9122533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 01/10/2023] Open
Abstract
Adrenomedullin (ADM) is a vasodilator that causes natriuresis and diuresis. However, the direct effect of ADM on osmotic water permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether ADM and its ADM receptor components (CRLR, RAMP2, and 3) are expressed in rat inner medulla (IM) and whether ADM regulates osmotic water permeability in isolated perfused rat IMCDs. The mRNAs of ADM, CRLR, and RAMP2 and 3 were detected in rat IM. Abundant protein of CRLR and RAMP3 were also seen but RAMP2 protein level was extremely low. Adding ADM (100 nM) to the bath significantly decreased osmotic water permeability. ADM significantly decreased aquaporin-2 (AQP2) phosphorylation at Serine 256 (pS256) and increased it at Serine 261 (pS261). ADM significantly increased cAMP levels in IM. However, inhibition of cAMP by SQ22536 further decreased ADM-attenuated osmotic water permeability. Stimulation of cAMP by roflumilast increased ADM-attenuated osmotic water permeability. Previous studies show that ADM also stimulates phospholipase C (PLC) pathways including protein kinase C (PKC) and cGMP. We tested whether PLC pathways regulate ADM-attenuated osmotic water permeability. Blockade of either PLC by U73122 or PKC by rottlerin significantly augmented the ADM-attenuated osmotic water permeability and promoted pS256-AQP2 but did change pS261-AQP2. Inhibition of cGMP by L-NAME did not change AQP2 phosphorylation. In conclusion, ADM primarily binds to the CRLR-RAMP3 receptor to initiate signaling pathways in the IM. ADM reduced water reabsorption through a PLC-pathway involving PKC. ADM-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. cAMP is not involved in ADM-attenuated osmotic water permeability.
Collapse
Affiliation(s)
- Fuying Ma
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (F.M.); (E.L.R.); (J.D.K.); (J.M.S.)
| | - Guangping Chen
- Department of Physiology, Emory University, Atlanta, GA 30322, USA;
| | - Eva L. Rodriguez
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (F.M.); (E.L.R.); (J.D.K.); (J.M.S.)
| | - Janet D. Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (F.M.); (E.L.R.); (J.D.K.); (J.M.S.)
- Department of Physiology, Emory University, Atlanta, GA 30322, USA;
| | - Jeff M. Sands
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (F.M.); (E.L.R.); (J.D.K.); (J.M.S.)
- Department of Physiology, Emory University, Atlanta, GA 30322, USA;
| | - Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (F.M.); (E.L.R.); (J.D.K.); (J.M.S.)
- Correspondence: ; Tel.: +1-404-712-9538; Fax: +1-404-727-3425
| |
Collapse
|
10
|
An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4579140. [PMID: 30271527 PMCID: PMC6151216 DOI: 10.1155/2018/4579140] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as important regulators in the cardiovascular system, although they were historically considered as toxic gases. As gaseous transmitters, H2S and NO share a wide range of physical properties and physiological functions: they penetrate into the membrane freely; they are endogenously produced by special enzymes, they stimulate endothelial cell angiogenesis, they regulate vascular tone, they protect against heart injury, and they regulate target protein activity via posttranslational modification. Growing evidence has determined that these two gases are not independent regulators but have substantial overlapping pathophysiological functions and signaling transduction pathways. H2S and NO not only affect each other's biosynthesis but also produce novel species through chemical interaction. They play a regulatory role in the cardiovascular system involving similar signaling mechanisms or molecular targets. However, the natural precise mechanism of the interactions between H2S and NO remains unclear. In this review, we discuss the current understanding of individual and interactive regulatory functions of H2S and NO in biosynthesis, angiogenesis, vascular one, cardioprotection, and posttranslational modification, indicating the importance of their cross-talk in the cardiovascular system.
Collapse
|
11
|
Liu CW, Huang CC, Tsai HC, Su YB, Huang SF, Lee KC, Hsieh YC, Li TH, Tsai CY, Chong LW, Ou SM, Yang YY, Fan WC, Hou MC, Lin HC, Lee SD. Serum adrenomedullin and urinary thromboxane B 2 help early categorizing of acute kidney injury in decompensated cirrhotic patients: A prospective cohort study. Hepatol Res 2018; 48:E9-E21. [PMID: 28544540 DOI: 10.1111/hepr.12917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023]
Abstract
AIMS Increases in the systemic vasodilator adrenomedullin and the renal vasoconstrictors thromboxane A2 in cirrhotic patients are pathogenic factors for the development of functional acute kidney injury (AKI), including pre-renal azotemia (PRA) and hepatorenal syndrome (HRS), which is associated with high mortality. This study aims to find biomarkers that can diagnose HRS at an early stage, to enable treatment as soon as possible. METHODS Acute decompensated cirrhotic patients who had been admitted to hospital were enrolled in this prospective cohort study. Blood and urinary samples were collected immediately after admission. In addition to initially categorizing AKI cases into PRA, acute tubular necrosis (ATN), and HRS groups, their final diagnosis was adjudicated by a nephrologist and a hepatologist who checked the corrected and misclassification rates for significant biomarkers. RESULTS The cut-off values for serum adrenomedullin and urinary thromboxane B2 (TXB2 ), when used as predictors for functional AKI (adrenomedullin >283 pg/mL, urinary TXB2 >978 [pg/mg urinary creatinine]), for HRS (adrenomedullin >428, urinary TXB2 >1604), and for good terlipressin plus albumin treatment responders (adrenomedullin >490, urinary TXB2 >1863), were observed. Patients with HRS who could be treated, due to high mortality, had significantly higher serum adrenomedullin and urinary TXB2 levels compared to HRS patients receiving standard treatment. In addition to predicting 60-day mortality, a combination of these two markers further increased diagnostic accuracy for HRS among functional AKI. CONCLUSIONS Prompt diagnosis of HRS by differentiating it from PRA and ATN can be achieved by using serum adrenomedullin and urinary TXB2 in acute decompensated cirrhotic patients. In combination with severe clinical courses, these two markers are useful to select HRS patients who cannot be treated.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Division of Allergy and Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chia-Chang Huang
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hung-Cheng Tsai
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Bo Su
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shiang-Fen Huang
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Infection, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuei-Chuan Lee
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Hao Li
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Chia-Yi Branch of Taichung Veterans General Hospital, Chiayi, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy and Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Lee-Won Chong
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shuo-Ming Ou
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Ying Yang
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Chien Fan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ming-Chih Hou
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Abstract
Adrenomedullin (ADM), the product of the vascular endothelial and smooth muscle cells, and cardiomyocytes, is considered to be a local factor controlling vascular tone, cardiac contractility and renal sodium excretion. The aim of this article was to review the existing data on the effect of different types of exercise on plasma ADM concentration in healthy men. The results of studies on the effect of dynamic exercise on the plasma ADM are contradictory. Some authors reported an increase in plasma ADM, while others showed a slight decrease or did not observe any changes. The inverse relationship between plasma ADM and mean blood pressure observed during maximal exercise support the concept that ADM might blunt the exercise-induced systemic blood pressure increase. Positive relationships between increases in plasma ADM and those in noradrenaline, atrial natriuretic peptide (ANP) or interleukin-6 observed during prolonged exercise suggest that the sympathetic nervous system and cytokine induction may be involved in ADM release. Increased secretion of ADM and ANP during this type of exercise may be a compensatory mechanism attenuating elevation of blood pressure and preventing deterioration of cardiac function. Studies performed during static exercise have showed an increase in plasma ADM only in older healthy men. Positive correlations between increases in plasma ADM and those in noradrenaline and endothelin-1 may indicate the interaction of these hormones in shaping the cardiovascular response to static exercise. Inverse relationships between exercise-induced changes in plasma ADM and those in cardiovascular indices may be at least partly associated with inotropic action of ADM on the heart. Interactions of ADM with vasoactive peptides, catecholamines and hemodynamic factors demonstrate the potential involvement of this peptide in the regulation of blood pressure and myocardial contractility during exercise.
Collapse
Affiliation(s)
- Krzysztof Krzeminski
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL, calcitonin gene-related peptide, adrenomedullin, adrenomedullin-2/intermedin) in mouse and human heart valves. Cell Tissue Res 2016; 366:587-599. [DOI: 10.1007/s00441-016-2473-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
|
14
|
Martínez-Herrero S, Martínez A. Adrenomedullin regulates intestinal physiology and pathophysiology. Domest Anim Endocrinol 2016; 56 Suppl:S66-83. [PMID: 27345325 DOI: 10.1016/j.domaniend.2016.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 02/08/2023]
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are 2 biologically active peptides produced by the same gene, ADM, with ubiquitous distribution and many physiological functions. Adrenomedullin is composed of 52 amino acids, has an internal molecular ring composed by 6 amino acids and a disulfide bond, and shares structural similarities with calcitonin gene-related peptide, amylin, and intermedin. The AM receptor consists of a 7-transmembrane domain protein called calcitonin receptor-like receptor in combination with a single transmembrane domain protein known as receptor activity-modifying protein. Using morphologic techniques, it has been shown that AM and PAMP are expressed throughout the gastrointestinal tract, being specially abundant in the neuroendocrine cells of the gastrointestinal mucosa; in the enterochromaffin-like and chief cells of the gastric fundus; and in the submucosa of the duodenum, ileum, and colon. This wide distribution in the gastrointestinal tract suggests that AM and PAMP may act as gut hormones regulating many physiological and pathologic conditions. To date, it has been proven that AM and PAMP act as autocrine/paracrine growth factors in the gastrointestinal epithelium, play key roles in the protection of gastric mucosa from various kinds of injury, and accelerate healing in diseases such as gastric ulcer and inflammatory bowel diseases. In addition, both peptides are potent inhibitors of gastric acid secretion and gastric emptying; they regulate the active transport of sugars in the intestine, regulate water and ion transport in the colon, modulate colonic bowel movements and small-intestine motility, improve endothelial barrier function, and stabilize circulatory function during gastrointestinal inflammation. Furthermore, AM and PAMP are antimicrobial peptides, and they contribute to the mucosal host defense system by regulating gut microbiota. To get a formal demonstration of the effects that endogenous AM and PAMP may have in gut microbiota, we developed an inducible knockout of the ADM gene. Using this model, we have shown, for the first time, that lack of AM/PAMP leads to changes in gut microbiota composition in mice. Further studies are needed to investigate whether this lack of AM/PAMP may have an impact in the development and/or progression of intestinal diseases through their effect on microbiota composition.
Collapse
Affiliation(s)
- S Martínez-Herrero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja 26006, Spain
| | - A Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja 26006, Spain.
| |
Collapse
|
15
|
Yanagimoto Y, Takiguchi S, Miyazaki Y, Makino T, Takahashi T, Kurokawa Y, Yamasaki M, Miyata H, Nakajima K, Mori M, Doki Y. Plasma ghrelin levels as a predictor of adverse renal events due to cisplatin-based chemotherapy in patients with esophageal cancer. Jpn J Clin Oncol 2016; 46:421-6. [DOI: 10.1093/jjco/hyw004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yoshitomo Yanagimoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| |
Collapse
|
16
|
Yamauchi H, Miura S, Owada T, Saitoh SI, Machii H, Yamada S, Ishigami A, Takeishi Y. Senescence marker protein-30 deficiency impairs angiogenesis under ischemia. Free Radic Biol Med 2016; 94:66-73. [PMID: 26912033 DOI: 10.1016/j.freeradbiomed.2016.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 01/09/2023]
Abstract
Aging decreases collateral-dependent flow recovery following acute arterial obstruction. However, the mechanisms are partially understood, therefore critical management has been lacked in clinical setting. Senescence marker protein-30 (SMP30) is a novel aging marker, which is assumed to act as an anti-aging factor in various organs. Therefore, we studied the effect of SMP30 on ischemia-induced collateral growth in SMP30 knockout (KO) mice, young and old C57BL/6 mice. The SMP30 expression in gastrocnemius tissue was decreased in old mice compared to that of young mice. The recovery of cutaneous blood flow in hind limb after femoral artery ligation and tissue capillary density recoveries were suppressed in SMP30 KO and old mice compared to those in young mice. Nitric oxide generation induced by l-arginine and GSH/GSSG in aorta of SMP30 KO and old mice were lower than those in young mice. The levels of NADPH oxidase activity and superoxide production in the ischemic tissue were higher in SMP30 KO and old mice than in young mice. The phosphorylated eNOS and Akt levels and VEGF levels in ischemic muscle were lower in SMP30 KO and old mice than in young mice. Deficiency of SMP30 exacerbates oxidative stress related to NADPH oxidase activity enhancement and impairs eNOS activity, which leads to rarefaction of angiogenesis induced by ischemia. These results suggest that SMP30 plays a key role in disrupting collateral growth under ischemia in aging.
Collapse
Affiliation(s)
- Hiroyuki Yamauchi
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shunsuke Miura
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Takashi Owada
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shu-Ichi Saitoh
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| | - Hirofumi Machii
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shinya Yamada
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|
17
|
Figueira L, Israel A. Cerebellar Adrenomedullinergic System. Role in Cardiovascular Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:541-560. [PMID: 27614623 DOI: 10.1007/5584_2016_48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenomedullin (AM) is a multifunctional peptide which exerts numerous biological activities through the activation of AM1 (CRLR + RAMP2) and AM2 (CRLR + RAMP3) receptors. AM immunoreactivity, AM binding sites and CRLR, RAMP1, RAMP2 and RAMP3 are expressed in rat cerebellar vermis. AM binding sites are discretely and differentially distributed in the rat cerebellar cortex with higher levels detected in SHR when compared with WKY rats. In addition, there is an up-regulation of cerebellar CGRP1 (CRLR + RAMP1) and AM2 (CRLR + RAMP3) receptors and a down-regulation of AM1 (CRLR + RAMP2) receptor during hypertension associated with a decreased AM expression. These changes may constitute a mechanism which contributes to the development of hypertension, and supports the notion that cerebellar AM is involved in the regulation of blood pressure. Cerebellar AM activates ERK, increases cAMP, cGMP and nitric oxide, and decreases antioxidant enzyme activity. These effects are mediated through AM1 receptor since they are blunted by AM(22-52). AM-stimulated cAMP production is mediated through AM2 and CGRP receptors. In vivo administration of AM into the cerebellar vermis caused a profound, specific and dose-dependent hypotensive effect in SHR, but not in normotensive WKY rats. This effect was mediated through AM1 receptor since it was abolished by AM(22-52). In addition, AM injected into the cerebellar vermis reduced vasopressor response to footshock stress. These findings demonstrate dysregulation of cerebellar AM system during hypertension, and suggest that cerebellar AM plays an important role in the regulation of blood pressure. Likewise, they constitute a novel mechanism of blood pressure control which has not been described so far.
Collapse
Affiliation(s)
- Leticia Figueira
- Laboratory of Neuropeptides, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela.,School of Bioanalysis, Department of Health Sciences, Universidad de Carabobo, Carabobo, Venezuela
| | - Anita Israel
- Laboratory of Neuropeptides, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
18
|
Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6904327. [PMID: 26640616 PMCID: PMC4657111 DOI: 10.1155/2016/6904327] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/21/2015] [Indexed: 01/07/2023]
Abstract
Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress.
Collapse
|
19
|
Cameron MS, Nobata S, Takei Y, Donald JA. Vasodilatory effects of homologous adrenomedullin 2 and adrenomedullin 5 on isolated blood vessels of two species of eel. Comp Biochem Physiol A Mol Integr Physiol 2015; 179:157-63. [DOI: 10.1016/j.cbpa.2014.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 09/10/2014] [Accepted: 09/24/2014] [Indexed: 11/26/2022]
|
20
|
Larráyoz IM, Martínez-Herrero S, García-Sanmartín J, Ochoa-Callejero L, Martínez A. Adrenomedullin and tumour microenvironment. J Transl Med 2014; 12:339. [PMID: 25475159 PMCID: PMC4272513 DOI: 10.1186/s12967-014-0339-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/21/2014] [Indexed: 01/03/2023] Open
Abstract
Adrenomedullin (AM) is a regulatory peptide whose involvement in tumour progression is becoming more relevant with recent studies. AM is produced and secreted by the tumour cells but also by numerous stromal cells including macrophages, mast cells, endothelial cells, and vascular smooth muscle cells. Most cancer patients present high levels of circulating AM and in some cases these higher levels correlate with a worst prognosis. In some cases it has been shown that the high AM levels return to normal following surgical removal of the tumour, thus indicating the tumour as the source of this excessive production of AM. Expression of this peptide is a good investment for the tumour cell since AM acts as an autocrine/paracrine growth factor, prevents apoptosis-mediated cell death, increases tumour cell motility and metastasis, induces angiogenesis, and blocks immunosurveillance by inhibiting the immune system. In addition, AM expression gets rapidly activated by hypoxia through a HIF-1α mediated mechanism, thus characterizing AM as a major survival factor for tumour cells. Accordingly, a number of studies have shown that inhibition of this peptide or its receptors results in a significant reduction in tumour progression. In conclusion, AM is a great target for drug development and new drugs interfering with this system are being developed.
Collapse
Affiliation(s)
- Ignacio M Larráyoz
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Sonia Martínez-Herrero
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Josune García-Sanmartín
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Laura Ochoa-Callejero
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| |
Collapse
|
21
|
Leite LN, Gonzaga NA, Tirapelli DPC, Tirapelli LF, Tirapelli CR. Pharmacological characterization of the relaxant effect induced by adrenomedullin in rat cavernosal smooth muscle. Braz J Med Biol Res 2014; 47:876-85. [PMID: 25140812 PMCID: PMC4181223 DOI: 10.1590/1414-431x20143911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/09/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to determine the mechanisms underlying the relaxant
effect of adrenomedullin (AM) in rat cavernosal smooth muscle (CSM) and the
expression of AM system components in this tissue. Functional assays using standard
muscle bath procedures were performed in CSM isolated from male Wistar rats. Protein
and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR), and Subtypes
1, 2 and 3 of the receptor activity-modifying protein (RAMP) family were assessed by
Western immunoblotting and quantitative real-time polymerase chain reaction,
respectively. Nitrate and 6-keto-prostaglandin F1α
(6-keto-PGF1α; a stable product of prostacyclin) levels were determined
using commercially available kits. Protein and mRNA of AM, CRLR, and RAMP 1, -2, and
-3 were detected in rat CSM. Immunohistochemical assays demonstrated that AM and CRLR
were expressed in rat CSM. AM relaxed CSM strips in a concentration-dependent manner.
AM22-52, a selective antagonist for AM receptors, reduced the
relaxation induced by AM. Conversely, CGRP8-37, a selective antagonist for
calcitonin gene-related peptide receptors, did not affect AM-induced relaxation.
Preincubation of CSM strips with NG-nitro-L-arginine-methyl-ester (L-NAME,
nitric oxide synthase inhibitor), 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ,
quanylyl cyclase inhibitor), Rp-8-Br-PET-cGMPS (cGMP-dependent protein kinase
inhibitor), SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole,
selective cyclooxygenase-1 inhibitor], and 4-aminopyridine (voltage-dependent
K+ channel blocker) reduced AM-induced relaxation. On the other hand,
7-nitroindazole (selective neuronal nitric oxide synthase inhibitor), wortmannin
(phosphatidylinositol 3-kinase inhibitor), H89 (protein kinase A inhibitor), SQ22536
[9-(tetrahydro-2-furanyl)-9H-purin-6-amine, adenylate cyclase inhibitor],
glibenclamide (selective blocker of ATP-sensitive K+ channels), and apamin
(Ca2+-activated channel blocker) did not affect AM-induced relaxation.
AM increased nitrate levels and 6-keto-PGF1α in rat CSM. The major new
contribution of this research is that it demonstrated expression of AM and its
receptor in rat CSM. Moreover, we provided evidence that AM-induced relaxation in
this tissue is mediated by AM receptors by a mechanism that involves the nitric
oxide-cGMP pathway, a vasodilator prostanoid, and the opening of voltage-dependent
K+ channels.
Collapse
Affiliation(s)
- L N Leite
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - N A Gonzaga
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - D P C Tirapelli
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - L F Tirapelli
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - C R Tirapelli
- Laboratório de Farmacologia, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
22
|
Passaglia P, Gonzaga NA, Tirapelli DPC, Tirapelli LF, Tirapelli CR. Pharmacological characterisation of the mechanisms underlying the relaxant effect of adrenomedullin in the rat carotid artery. ACTA ACUST UNITED AC 2014; 66:1734-46. [PMID: 25117796 DOI: 10.1111/jphp.12299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/04/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVES We investigated the mechanisms underlying the relaxant effect of adrenomedullin (AM) in the rat carotid artery and verified the expression of AM system components in this tissue. METHODS The carotid artery was isolated from male Wistar rats and immunohistochemical, Western immunoblotting, real-time polymerase chain reaction and functional assays were conducted. KEY FINDINGS Protein and mRNA expression of AM, calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMP)1, 2, 3 were detected in carotid segments from male Wistar rats. Immunohistochemical assays showed that AM and CRLR receptors are expressed in the endothelium and smooth muscle cells. Functional assays showed that AM concentration dependently relaxed carotid rings with intact endothelium. Endothelial removal reduced, but not abolished, the relaxation induced by AM. AM22-52 (selective antagonist for AM receptors) and calcitonin gene-related peptide (CGRP)8-37 (selective CGRP receptor antagonist) reduced AM-induced relaxation in endothelium-intact rings. Pre-incubation of endothelium-intact rings with N-nitro-L-arginine methyl ester, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one or Rp-8-Bromo-?-phenyl-1,N2-ethenoguanosine 3',5'cyclic monophosphorothioate reduced AM-induced relaxation. Inhibition of cyclooxygenase-1 and protein kinase A (PKA) reduced AM-induced relaxation. The relaxation induced by AM was attenuated by the K(+) channel blockers apamin and glibenclamide. AM increased nitrate levels and 6-keto-prostaglandin F1α (stable product of prostacyclin) in the rat carotid. In endothelium-denuded rings, AM22-52 , glibenclamide and PKA inhibition by H89 reduced AM-induced relaxation. CONCLUSIONS The novelty of this work is that it first demonstrated functionally that AM-induced relaxation is mediated by AM and CGRP receptors located on the endothelium and AM receptors located on smooth muscle of rat carotid arteries. AM-induced relaxation involves the nitric oxide-cGMP pathway, a vasodilator prostanoid, the opening of K(+) channels and the activation of PKA.
Collapse
Affiliation(s)
- Patrícia Passaglia
- Programa de pós-graduação em Toxicologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
23
|
Wong HK, Tang F, Cheung TT, Cheung BMY. Adrenomedullin and diabetes. World J Diabetes 2014; 5:364-371. [PMID: 24936257 PMCID: PMC4058740 DOI: 10.4239/wjd.v5.i3.364] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/19/2013] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
Adrenomedullin (ADM) is a peptide hormone widely expressed in different tissues, especially in the vasculature. Apart from its vasodilatatory and hypotensive effect, it plays multiple roles in the regulation of hormonal secretion, glucose metabolism and inflammatory response. ADM regulates insulin balance and may participate in the development of diabetes. The plasma level of ADM is increased in people with diabetes, while in healthy individuals the plasma ADM concentration remains low. Plasma ADM levels are further increased in patients with diabetic complications. In type 1 diabetes, plasma ADM level is correlated with renal failure and retinopathy, while in type 2 diabetes its level is linked with a wider range of complications. The elevation of ADM level in diabetes may be due to hyperinsulinemia, oxidative stress and endothelial injury. At the same time, a rise in plasma ADM level can trigger the onset of diabetes. Strategies to reduce ADM level should be explored so as to reduce diabetic complications.
Collapse
|
24
|
Mathematical model of wall shear stress-dependent vasomotor response based on physiological mechanisms. Comput Biol Med 2014; 45:126-35. [DOI: 10.1016/j.compbiomed.2013.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/20/2022]
|
25
|
Kach J, Sandbo N, Sethakorn N, Williams J, Reed EB, La J, Tian X, Brain SD, Rajendran K, Krishnan R, Sperling AI, Birukov K, Dulin NO. Regulation of myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by adrenomedullin. Am J Physiol Lung Cell Mol Physiol 2013; 304:L757-64. [PMID: 23585227 DOI: 10.1152/ajplung.00262.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Myofibroblast differentiation induced by transforming growth factor-β (TGF-β) is characterized by the expression of smooth muscle α-actin (SMA) and extracellular matrix proteins. We and others have previously shown that these changes are regulated by protein kinase A (PKA). Adrenomedullin (ADM) is a vasodilator peptide that activates cAMP/PKA signaling through the calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying proteins (RAMP). In this study, we found that recombinant ADM had little effect on cAMP/PKA in quiescent human pulmonary fibroblasts, whereas it induced a profound activation of cAMP/PKA signaling in differentiated (by TGF-β) myofibroblasts. In contrast, the prostacyclin agonist iloprost was equally effective at activating PKA in both quiescent fibroblasts and differentiated myofibroblasts. TGF-β stimulated a profound expression of CRLR with a time course that mirrored the increased PKA responses to ADM. The TGF-β receptor kinase inhibitor SB431542 abolished expression of CRLR and attenuated the PKA responses of cells to ADM but not to iloprost. CRLR expression was also dramatically increased in lungs from bleomycin-treated mice. Functionally, ADM did not affect initial differentiation of quiescent fibroblasts in response to TGF-β but significantly attenuated the expression of SMA, collagen-1, and fibronectin in pre-differentiated myofibroblasts, which was accompanied by decreased contractility of myofibroblasts. Finally, sensitization of ADM signaling by transgenic overexpression of RAMP2 in myofibroblasts resulted in enhanced survival and reduced pulmonary fibrosis in the bleomycin model of the disease. In conclusion, differentiated pulmonary myofibroblasts gain responsiveness to ADM via increased CRLR expression, suggesting the possibility of using ADM for targeting pathological myofibroblasts without affecting normal fibroblasts.
Collapse
Affiliation(s)
- Jacob Kach
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Martínez-Herrero S, Larráyoz IM, Ochoa-Callejero L, García-Sanmartín J, Martínez A. Adrenomedullin as a growth and cell fate regulatory factor for adult neural stem cells. Stem Cells Int 2012; 2012:804717. [PMID: 23049570 PMCID: PMC3462413 DOI: 10.1155/2012/804717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 01/10/2023] Open
Abstract
The use of stem cells as a strategy for tissue repair and regeneration is one of the biomedical research areas that has attracted more interest in the past few years. Despite the classic belief that the central nervous system (CNS) was immutable, now it is well known that cell turnover occurs in the mature CNS. Postnatal neurogenesis is subjected to tight regulation by many growth factors, cell signals, and transcription factors. An emerging molecule involved in this process is adrenomedullin (AM). AM, a 52-amino acid peptide which exerts a plethora of physiological functions, acts as a growth and cell fate regulatory factor for adult neural stem and progenitor cells. AM regulates the proliferation rate and the differentiation into neurons, astrocytes, and oligodendrocytes of stem/progenitor cells, probably through the PI3K/Akt pathway. The active peptides derived from the AM gene are able to regulate the cytoskeleton dynamics, which is extremely important for mature neural cell morphogenesis. In addition, a defective cytoskeleton may impair cell cycle and migration, so AM may contribute to neural stem cell growth regulation by allowing cells to pass through mitosis. Regulation of AM levels may contribute to program stem cells for their use in medical therapies.
Collapse
Affiliation(s)
| | - Ignacio M. Larráyoz
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Laura Ochoa-Callejero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | | | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
27
|
Hiradate Y, Ohtake J, Hoshino Y, Tanemura K, Sato E. Adrenomedullin: a possible regulator of germinal vesicle breakdown. Biochem Biophys Res Commun 2011; 415:691-5. [PMID: 22079286 DOI: 10.1016/j.bbrc.2011.10.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Adrenomedullin (ADM) is a multifunctional hormone that regulates processes as diverse as blood pressure and cell growth. Although expressed in the ovary, the role of ADM in this organ is not clear. In the present study, we found the expression of ADM receptor and receptor activity-modifying proteins in mouse cumulus cells but not in the oocytes. We report that germinal vesicle breakdown (GVBD), which is required for oocyte maturation, is not inhibited by ADM alone. However, ADM in the presence of the nitric oxide donor sodium nitroprusside (SNP) significantly inhibited GVBD. Furthermore, the ADM- and SNP-dependent inhibition of GVBD was abrogated by Akt blockade. Additionally, Akt expression and phosphorylation was exhibited by ADM, suggesting that Akt signaling upstream in cumulus cells is responsible. Additionally, immunohistochemical analysis revealed that ADM was localized in the granulosa cells of developed follicles, implying the possibility that ADM physiologically affects oocyte maturation in vivo. Our results provide the evidence that ADM can act as a GVBD regulator.
Collapse
Affiliation(s)
- Yuuki Hiradate
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi Aobaku, Sendai 981-8555, Japan.
| | | | | | | | | |
Collapse
|
28
|
Ramachandran V, Arumugam T, Langley R, Hwang RF, Vivas-Mejia P, Sood AK, Lopez-Berestein G, Logsdon CD. The ADMR receptor mediates the effects of adrenomedullin on pancreatic cancer cells and on cells of the tumor microenvironment. PLoS One 2009; 4:e7502. [PMID: 19847298 PMCID: PMC2760778 DOI: 10.1371/journal.pone.0007502] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 09/15/2009] [Indexed: 11/24/2022] Open
Abstract
Background Adrenomedullin (AM) is highly expressed in pancreatic cancer and stimulates pancreatic cancer cells leading to increased tumor growth and metastasis. The current study examines the role of specific AM receptors on tumor and cells resembling the tumor microenvironment (human pancreatic stellate - HPSC, human umbilical vein – HUVEC and mouse lung endothelial cells - MLEC). Methods and Findings AM receptors ADMR and CRLR were present in HPSC, HUVEC and MLECs while PDAC cells possessed only ADMR receptors as assessed by RT-PCR and western blotting. All cell lines expressed and secreted AM as indicated by ELISA. The growth of each of the cell lines was stimulated by exogenous AM and inhibited by the antagonist AMA. AM also stimulated in vitro angiogenesis assessed by polygon formation of endothelial cell lines. SiRNA-mediated silencing of ADMR, but not CRLR, reduced basal growth of all cells examined and reduced polygon formation of endothelial cells in vitro. Orthotopic tumors developed with shADMR bearing cancer cells had dramatically reduced primary tumor volume (>90%) and lung and liver metastasis compared to shControl bearing cells. To validate ADMR as a potential therapeutic target, in vivo studies were conducted using neutral nanoliposomes to systemically deliver human siRNA to ADMR to silence human cancer cells and mouse siRNA to ADMR to silence mouse tumor stromal cells. Systemic silencing of both human and mouse ADMR had no obvious adverse effects but strongly reduced tumor development. Conclusion ADMR mediates the stimulatory effects of AM on cancer cells and on endothelial and stellate cells within the tumor microenvironment. These data support the further development of ADMR as a useful target treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Vijaya Ramachandran
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
| | - Thiruvengadam Arumugam
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
| | - Robert Langley
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
| | - Rosa F. Hwang
- Department of Surgical Oncology, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
| | - Pablo Vivas-Mejia
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
| | - Anil K. Sood
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
- Department of Gynecologic Oncology, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
- Center for RNAi and Non-Coding RNA, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
| | - Gabriel Lopez-Berestein
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
- Center for RNAi and Non-Coding RNA, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
| | - Craig D. Logsdon
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
- Department of Medical Oncology, University of Texas M. D. Anderson Cancer Centre, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Grossini E, Molinari C, Mary DASG, Uberti F, Caimmi PP, Vacca G. Intracoronary intermedin 1-47 augments cardiac perfusion and function in anesthetized pigs: role of calcitonin receptors and beta-adrenoreceptor-mediated nitric oxide release. J Appl Physiol (1985) 2009; 107:1037-50. [PMID: 19696365 DOI: 10.1152/japplphysiol.00569.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systemic intermedin (IMD)1-47 administration has been reported to result in vasodilation and marked hypotension through calcitonin-related receptor complexes. However, its effects on the coronary circulation and the heart have not been examined in vivo. The present study was therefore planned to determine the primary in vivo effect of IMD1-47 on coronary blood flow and cardiac function and the involvement of the autonomic nervous system and nitric oxide (NO). In 35 anesthetized pigs, IMD1-47, infused into the left anterior descending coronary artery at doses of 87.2 pmol/min, at constant heart rate and arterial blood pressure, augmented coronary blood flow and cardiac function. These responses were graded in a further five pigs by increasing the infused dose of IMD1-47 between 0.81 and 204.1 pmol/min. In the 35 pigs, the blockade of cholinergic receptors (intravenous atropine, 5 pigs), alpha-adrenoceptors (intravenous phentolamine, 5 pigs), and beta1-adrenoceptors (intravenous atenolol, 5 pigs) did not abolish the cardiac response to IMD1-47, the effects of which were prevented by blockade of beta2-adrenoceptors (intravenous butoxamine, 5 pigs), NO synthase (intracoronary N(omega)-nitro-l-arginine methyl ester, 5 pigs), and calcitonin-related receptors (intracoronary CGRP8-37/AM22-52, 10 pigs). In porcine coronary endothelial cells, IMD1-47 induced the phosphorylation of endothelial NO synthase and NO production through cAMP signaling leading to ERK, Akt, and p38 activation, which was prevented by the inhibition of beta2-adrenoceptors, calcitonin-related receptor complexes, and K+ channels. In conclusion, IMD1-47 primarily augmented coronary blood flow and cardiac function through the involvement of calcitonin-related receptor complexes and beta2-adrenoreceptor-mediated NO release. The intracellular signaling involved cAMP-dependent activation of kinases and the opening of K+ channels.
Collapse
Affiliation(s)
- Elena Grossini
- Facoltà di Medicina e Chirurgia, via Solaroli 17, Novara I-28100, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Nishikimi T, Karasawa T, Inaba C, Ishimura K, Tadokoro K, Koshikawa S, Yoshihara F, Nagaya N, Sakio H, Kangawa K, Matsuoka H. Effects of long-term intravenous administration of adrenomedullin (AM) plus hANP therapy in acute decompensated heart failure: a pilot study. Circ J 2009; 73:892-8. [PMID: 19346663 DOI: 10.1253/circj.cj-08-0487] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND It was reported previously that 30 min administration of adrenomedullin (AM) improves hemodynamics in chronic stable heart failure patients. The present study was designed to examine whether long-term AM + human atrial natriuretic peptide (hANP) administration can be used as a therapeutic drug in patients with acute decompensated heart failure (ADHF) in clinical setting. METHODS AND RESULTS Seven acute heart failure patients (74 +/- 5 years) with dyspnea and pulmonary congestion were studied. AM (0.02 microg x kg(-1) x min(-1)) + hANP (0.05 microg x kg(-1) x min(-1)) was infused for 12 h and then hANP (0.05 microg x kg(-1) x min(-1)) was infused for 12 h. Hemodynamic, renal, hormonal and oxidative stress responses were evaluated. AM + hANP significantly reduced mean arterial pressure, pulmonary arterial pressure and systemic and pulmonary vascular resistance without changing heart rate, and increased cardiac output for most time-points compared with those at baseline. In addition, AM + hANP reduced aldosterone, brain natriuretic peptide and free-radical metabolites compared with those at baseline (all P<0.05). AM + hANP increased urine volume and U(Na)V compared with baseline data. CONCLUSIONS In this small, pilot trial, AM + hANP therapy had beneficial hemodynamic and hormonal effects in ADHF. Intravenous infusion of AM with hANP could be used as a therapeutic drug in ADHF. These data are preliminary and require confirmation in a larger clinical study.
Collapse
Affiliation(s)
- Toshio Nishikimi
- Department of Hypertension and Cardiorenal Medicine, Dokkyo Medical University, Mibu, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Human adrenomedullin and its binding protein attenuate organ injury and reduce mortality after hepatic ischemia-reperfusion. Ann Surg 2009; 249:310-7. [PMID: 19212187 DOI: 10.1097/sla.0b013e3181961d43] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To determine whether administration of a vasoactive peptide, human adrenomedullin (AM), in combination with its binding protein (ie, AMBP-1), prevents or minimizes hepatic ischemia-reperfusion (I/R) injury. SUMMARY BACKGROUND DATA Hepatic I/R injury results from tissue hypoxia and subsequent inflammatory responses. Even though numerous pharmacological modalities and substances have been studied to reduce I/R-induced mortality, none have been entirely successful. We have shown that administration of AM/AMBP-1 produces significant beneficial effects under various pathophysiological conditions. However, it remains unknown if human AM/AMBP-1 has any protective effects on hepatic I/R-induced tissue damage and mortality. METHODS Seventy percent hepatic ischemia was induced in male adult rats by placing a microvascular clip across the hilum of the left and median lobes for 90 minutes. After removing the clip, human AM alone, human AMBP-1 alone, human AM in combination with human AMBP-1 or vehicle was administered intravenously over a period of 30 minutes. Blood and tissue samples were collected 4 hours after reperfusion for various measurements. In additional groups of animals, the nonischemic liver lobes were resected at the end of 90-minute ischemia. The animals were monitored for 7 days and survival was recorded. RESULTS After hepatic I/R, plasma levels of AM were significantly increased, whereas AMBP-1 levels were markedly decreased. Likewise, gene expression of AM in the liver was increased significantly, whereas AMBP-1 expression was markedly decreased. Administration of AM in combination with AMBP-1 immediately after the onset of reperfusion down-regulated inflammatory cytokines, decreased hepatic neutrophil infiltration, inhibited liver cell apoptosis and necrosis, and reduced liver injury and mortality in a rat model of hepatic I/R. On the other hand, administration of human AM alone or human AMBP-1 alone after hepatic I/R failed to produce significant protection. CONCLUSIONS Human AM/AMBP-1 may be a novel treatment to attenuate tissue injury after an episode of hepatic ischemia.
Collapse
|
32
|
Ouafik L, Berenguer-Daize C, Berthois Y. Adrenomedullin promotes cell cycle transit and up-regulates cyclin D1 protein level in human glioblastoma cells through the activation of c-Jun/JNK/AP-1 signal transduction pathway. Cell Signal 2009; 21:597-608. [PMID: 19166930 DOI: 10.1016/j.cellsig.2009.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/29/2008] [Accepted: 01/03/2009] [Indexed: 01/09/2023]
Abstract
Adrenomedullin is a secreted peptide hormone with multiple functions. Although a number of reports have indicated that adrenomedullin may be involved in tumor progression, its mechanism of action remains obscure. In this study, we have analysed the signal transduction pathway activated by adrenomedullin in human glioma cells. Our results revealed that adrenomedullin induced the phosphorylation of both c-Jun and JNK in glioblastoma cells. Silencing JNK expression with siRNA reversed the phosphorylation of c-Jun induced by adrenomedullin, indicating that JNK is responsible of c-Jun activation. In addition, electrophoretic mobility-shift assays showed that the increase in phosphorylation of c-Jun was associated with increased AP-1 DNA binding activity. Supershift assays and co-immunoprecipitation demonstrated that c-Jun and JunD are part of the AP-1 complex, indicating that activated c-Jun is dimerized with JunD in response to adrenomedullin. Furthermore, adrenomedullin was shown to promote cell transit beyond cell cycle phases with a concomittant increase in cyclin D1 protein level, suggesting that adrenomedullin effects cell proliferation through up-regulation of cyclin D1. The inhibition of JNK activation or the suppression of c-Jun or JunD expression with siRNA impaired the effects of adrenomedullin on cell proliferation and on cyclin D1. Taken together, these data demonstrate that activation of cJun/JNK pathway is involved in the growth regulatory activity of adrenomedullin in glioblastoma cells.
Collapse
Affiliation(s)
- L'Houcine Ouafik
- INSERM UMR 911 CRO2, Angiogénèse, invasivité et micro-environnement tumoral, Faculté de Médecine Secteur Nord, Boulevard Pierre Dramard, 13916 Marseille Cédex 20, France
| | | | | |
Collapse
|
33
|
Kandilci HB, Gumusel B, Lippton H. Intermedin/adrenomedullin-2 (IMD/AM2) relaxes rat main pulmonary arterial rings via cGMP-dependent pathway: role of nitric oxide and large conductance calcium-activated potassium channels (BK(Ca)). Peptides 2008; 29:1321-8. [PMID: 18538894 DOI: 10.1016/j.peptides.2008.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
The present study was designed to investigate the effects of rat intermedin/adrenomedullin2 (rIMD), an agonist for calcitonin-like calcitonin receptors (CRLR), on the isolated rat pulmonary arterial rings (PA). When PA were precontracted with 9,11-dideoxy-11alpha,9alpha-epoxymethanoprostaglandin F2alpha (U-46619), rIMD (10(-11) to 10(-6)M) induced concentration-dependent relaxation. The pulmonary vasorelaxant response (PVR) to rIMD in PA were completely inhibited by endothelium removal, NG-nitro-L-arginine-methyl-ester (L-NAME), l-N5-(1-iminoethyl)-ornithine hydrochloride (l-NIO) or 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The PVR to rIMD were also significantly attenuated by a protein kinase inhibitor, Rp-8-bromo-beta-phenyl-1,N2-ethenoguanosine 3':5'-cyclic monophosphorothioate sodium salt hydrate (Rp-8-Br-PETcGMPs), cholera toxin and abolished by tetraethylammonium chloride (TEA), iberiotoxin and precontraction with KCl. The relaxant effect was not affected by 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536), (9S,10S,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy 1H diindolo [1,2,3fg:3',2',1'kl] pyrrolo [3,4-i] [1,6] benzodiazocine-10-carboxylic acid hexyl ester (KT5720), meclofenamate, glybenclamide or apamin. In parallel with SQ22536 and KT5720 results rolipram pretreatment did not alter the rIMD-induced PVR. The PVR to rIMD was potentialized either in the presence of zaprinast or sildenafil. Since the PVR to rIMD was also significantly reduced by rCGRP(8-37) and hADM(22-52) and rIMD(17-47), the present data suggest that rIMD produces PVR by acting in an indiscriminant manner on functional, and possibly different, endothelial CRLR. In conclusion, rIMD stimulates endothelial CRLR are coupled to release of nitric oxide, activation of guanylate cyclases, and promotion of hyperpolarization through large conductance calcium-activated K(+) channels in rat main PA.
Collapse
Affiliation(s)
- Hilmi Burak Kandilci
- Department of Pharmacology, Hacettepe University, Faculty of Pharmacy, 06100 Ankara, Turkey
| | | | | |
Collapse
|
34
|
|
35
|
Huang PH, Sata M, Nishimatsu H, Sumi M, Hirata Y, Nagai R. Pioglitazone ameliorates endothelial dysfunction and restores ischemia-induced angiogenesis in diabetic mice. Biomed Pharmacother 2008; 62:46-52. [PMID: 17692499 DOI: 10.1016/j.biopha.2007.06.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a physiological response to tissue ischemia. Clinical evidence suggests that diabetic patients have endothelial dysfunction and impaired angiogenesis in response to ischemia. Here, we investigated the impact of diabetes on ischemia-induced collateral growth, and tested the hypothesis that peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist augments collateral flow to ischemic tissue. We conducted unilateral hindlimb ischemia surgery in KKAy mice. Blood flow recovery was markedly impaired in diabetic mice compared with that in wild-type mice as determined by laser Doppler imaging. Treatment of KKAy mice with pioglitazone partially restored the blood flow recovery. Anti-CD31 immunostaining revealed that pioglitazone also significantly improved the capillary density in ischemic limb muscle. Endothelial NO synthase (eNOS) activity was ameliorated in diabetic mice treated with pioglitazone as determined by vasorelaxation in response to acetylcholine. Pioglitazone normalized vascular endothelial growth factor (VEGF) protein levels, which was decreased in ischemic muscle of KKAy mice, and up-regulated eNOS phosphorylation at Ser-1177 and Akt phosphorylation at Ser-473 in ischemic muscle. Pioglitazone had no beneficial effects on blood flow recovery in diabetic mice treated with N(G)-nitro-l-arginine methyl ester (L-NAME). Our findings demonstrate that pioglitazone significantly ameliorates endothelial dysfunction and enhances blood flow recovery after tissue ischemia in diabetic mice. Activation of eNOS appears to be essential for pioglitazone to promote angiogenesis in ischemic tissue.
Collapse
Affiliation(s)
- Po-Hsun Huang
- Department of Cardiovascular Medicine, University of Tokyo, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Ertmer C, Morelli A, Rehberg S, Lange M, Hucklenbruch C, Van Aken H, Booke M, Westphal M. Exogenous adrenomedullin prevents and reverses hypodynamic circulation and pulmonary hypertension in ovine endotoxaemia. Br J Anaesth 2007; 99:830-6. [DOI: 10.1093/bja/aem295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
37
|
Ramachandran V, Arumugam T, Hwang RF, Greenson JK, Simeone DM, Logsdon CD. Adrenomedullin is expressed in pancreatic cancer and stimulates cell proliferation and invasion in an autocrine manner via the adrenomedullin receptor, ADMR. Cancer Res 2007; 67:2666-75. [PMID: 17363587 DOI: 10.1158/0008-5472.can-06-3362] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current study investigated adrenomedullin as a potential autocrine regulator of pancreatic cancer cell function. Adrenomedullin was localized in the neoplastic epithelium of 90% (43 of 48) of human pancreatic adenocarcinomas analyzed by immunohistochemistry and was expressed by 100% (8 of 8) of pancreatic cancer cell lines analyzed by reverse transcription-PCR. Pancreatic cancer cell lines also secreted adrenomedullin into the culture medium as determined by ELISA (5 of 5). Exogenous adrenomedullin treatment of Panc-1, BxPC3, and MPanc96 cells in vitro stimulated cell proliferation, invasion, and nuclear factor kappaB activity, indicating the ability of the cells to respond to adrenomedullin. Treatment of the cell cultures with an adrenomedullin antagonist inhibited basal levels of proliferation and nuclear factor kappaB activity, supporting the autocrine function of this molecule. Furthermore, increasing adrenomedullin levels by gene transfer to Panc-1 cells increased, whereas adrenomedullin small hairpin RNA silencing in MPanc96 cells inhibited tumor growth and metastasis in vivo. Adrenomedullin is able to act through at least two different receptors, adrenomedullin receptor (ADMR) and calcitonin receptor-like receptor (CRLR). Reverse transcription-PCR and Western blotting indicated that pancreatic cancer cells expressed only ADMR but not CRLR. In contrast, cells found in the tumor microenvironment, primary human pancreatic stellate and endothelial (HUVEC) cells, expressed both ADMR and CRLR. Small hairpin RNA silencing of ADMR in pancreatic cancer cells blocked adrenomedullin-induced growth and invasion, indicating that this receptor is involved in the autocrine actions of adrenomedullin. These data indicate that adrenomedullin acting via ADMR increases the aggressiveness of pancreatic cancer cells and suggests that these molecules may be useful therapeutic targets.
Collapse
Affiliation(s)
- Vijaya Ramachandran
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kaneko Y, Saito M, Mori A, Sakamoto K, Nakahara T, Ishii K. Vasodilator effects of adrenomedullin on retinal arterioles in streptozotocin-induced diabetic rats. J Ocul Pharmacol Ther 2007; 22:317-22. [PMID: 17076625 DOI: 10.1089/jop.2006.22.317] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The aim of this study was to examine whether diabetes changes the in vivo effects of adrenomedullin (ADM) on diameter of retinal arteriole and blood pressure in rats. METHODS Male Wistar rats were treated with streptozotocin (65 mg/kg, intravenously [i.v.]) and experiments were performed 6-8 weeks later. Under artificial ventilation, rats were injected with tetrodotoxin (50 microg/kg, i.v.) to eliminate any nerve activity and prevent movement of the eye. A mixture solution of norepinephrine and epinephrine (1:9) was used to maintain adequate systemic circulation. Diameters of retinal vessels were measured from the fundus images and were captured by a digital camera that was equipped with a special objective lens. RESULTS ADM dose-dependently increased diameters of retinal arterioles and decreased blood pressure in streptozotocin-induced diabetic rats and the age-matched controls. The depressor responses, but not vasodilator responses of retinal arterioles, to ADM were reduced in diabetic rats. CONCLUSIONS These results suggest that mechanism(s) of ADM-induced vasodilation of retinal arterioles is preserved in diabetes, even when depressor effects of ADM are impaired. ADM may play a role as a regulatory mechanism of retinal circulation in nondiabetic and diabetic conditions.
Collapse
Affiliation(s)
- Yoshiko Kaneko
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Changes in expression of adrenomedullin in the myocardium of streptozotocin-induced diabetic rats. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200702010-00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Ertmer C, Van Aken H, Westphal M. Adrenomedullin in the Treatment of Cardiovascular Dysfunction and Sepsis. Intensive Care Med 2007. [DOI: 10.1007/978-0-387-49518-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
|
42
|
Ross GR, Yallampalli C. Vascular hyperresponsiveness to adrenomedullin during pregnancy is associated with increased generation of cyclic nucleotides in rat mesenteric artery. Biol Reprod 2006; 76:118-23. [PMID: 17050860 DOI: 10.1095/biolreprod.106.053777] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cardiovascular adaptation is a hallmark of pregnancy. Here we report on vascular hyperresponsiveness to an endogenous vasodilator, adrenomedullin (ADM), during pregnancy. Intravenous administration of ADM dose dependently decreased the mean arterial pressure, and the decrease was significantly greater in pregnant compared with nonpregnant rats without affecting the heart rate. In endothelium-intact mesenteric artery precontracted by ED70 concentration of norepinephrine, the potency and efficacy of ADM in causing the vasodilation of mesenteric arterial rings from pregnant rats are significantly higher compared with nonpregnant females at diestrus. The magnitude of inhibition of concentration-dependent response to ADM by the inhibition of either soluble guanylate cyclase or adenylate cyclase was greater in pregnant rats. Moreover, ADM-induced cyclic nucleotide generation, both cGMP and cAMP, in the mesenteric artery was elevated during pregnancy and was sensitive to the receptor antagonist, ADM22-52. These findings suggest that during pregnancy the vasodilatory effects of ADM are greater and are associated with increased generation of cyclic nucleotides in resistance vessels, and these changes may be part of the cardiovascular adaptations that occur during pregnancy.
Collapse
Affiliation(s)
- Gracious R Ross
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | |
Collapse
|
43
|
Looi YH, Kane KA, McPhaden AR, Wainwright CL. Adrenomedullin acts via nitric oxide and peroxynitrite to protect against myocardial ischaemia-induced arrhythmias in anaesthetized rats. Br J Pharmacol 2006; 148:599-609. [PMID: 16715121 PMCID: PMC1751863 DOI: 10.1038/sj.bjp.0706771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/17/2006] [Accepted: 03/30/2006] [Indexed: 11/09/2022] Open
Abstract
1. The overall aim of this study was to determine if adrenomedullin (AM) protects against myocardial ischaemia (MI)-induced arrhythmias via nitric oxide (NO) and peroxynitrite. 2. In sham-operated rats, the effects of in vivo administration of a bolus dose of AM (1 nmol kg-1) was assessed on arterial blood pressure (BP), ex vivo leukocyte reactive oxygen species generation and nitrotyrosine deposition (a marker for peroxynitrite formation) in the coronary endothelium. 3. In pentobarbitone-anaesthetized rats subjected to ligation of the left main coronary artery for 30 min, the effects of a bolus dose of AM (1 nmol kg-1, i.v.; n=19) or saline (n=18) given 5 min pre-occlusion were assessed on the number and incidence of cardiac arrhythmias. In a further series of experiments, some animals received infusions of the NO synthase inhibitor N(G)-nitro-L-arginine (LNNA) (0.5 mg kg-1 min-1) or the peroxynitrite scavenger N-mercaptopropionyl-glycine (MPG) (20 mg kg-1 h-1) before AM. 4. AM treatment significantly reduced mean arterial blood pressure (MABP) and increased ex vivo chemiluminescence (CL) generation from leukocytes in sham-operated animals. AM also enhanced the staining for nitrotyrosine in the endothelium of coronary arteries. 5. AM significantly reduced the number of total ventricular ectopic beats that occurred during ischaemia (from 1185+/-101 to 520+/-74; P<0.05) and the incidences of ventricular fibrillation (from 61 to 26%; P<0.05). AM also induced a significant fall in MABP prior to occlusion. AM-induced cardioprotection was abrogated in animals treated with the NO synthase inhibitor LNNA and the peroxynitrite scavenger MPG. 6. This study has shown that AM exhibits an antiarrhythmic effect through a mechanism that may involve generation of NO and peroxynitrite.
Collapse
Affiliation(s)
- Yee Hoo Looi
- Department of Physiology & Pharmacology, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland
| | - Kathleen A Kane
- Department of Physiology & Pharmacology, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland
| | - Allan R McPhaden
- Department of Pathology, Glasgow Royal Infirmary, Glasgow G4 0SF, Scotland
| | - Cherry L Wainwright
- School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland
| |
Collapse
|
44
|
Ishimitsu T, Ono H, Minami J, Matsuoka H. Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther 2006; 111:909-27. [PMID: 16616959 DOI: 10.1016/j.pharmthera.2006.02.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Adrenomedullin (AM) is a vasodilator peptide that originally isolated from pheochromocytoma tissue. However, the mRNA is expressed in the normal adrenal gland, heart, kidney and blood vessels. The human AM gene is located in the short arm of chromosome 11 and is composed of 4 exons. There are 2 single nucleotide polymorphisms in introns 1 and 3, and the 3'-end of the AM gene is flanked by a microsatellite marker of cytosine-adenine repeats that is associated with an increased risk of developing hypertension and diabetic nephropathy. AM gene expression is promoted by various stimuli, including inflammation, hypoxia, oxidative stress, mechanical stress and activation of the renin-angiotensin and sympathetic nervous systems. The AM gene promoter region possessed binding site for several transcription factors, including nuclear factor for interleukin-6 expression (NF-IL6) and activator protein 2 (AP-2). Further, plasma AM levels are increased in patients with various cardiovascular diseases, including hypertension, heart failure and renal failure. These findings suggest that AM plays a role in the development of or response to cardiovascular disease. Indeed, experimental and clinical studies have demonstrated that systemic infusion of AM may have a therapeutic effect on myocardial infarction, heart failure and renal failure. Further, vasopeptidase inhibitors which augment the bioactivity of endogenous AM may benefit patients with hypertension and arteriosclerosis. Finally, the angiogenic and cytoprotective properties of AM may have utility in revascularization and infarcted myocardium and ischemic limbs. Because of the potential clinical benefits of AM, indications for use and optimal dosing strategies should be established.
Collapse
Affiliation(s)
- Toshihiko Ishimitsu
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan.
| | | | | | | |
Collapse
|
45
|
Yanagawa B, Nagaya N. Adrenomedullin: molecular mechanisms and its role in cardiac disease. Amino Acids 2006; 32:157-64. [PMID: 16583314 DOI: 10.1007/s00726-005-0279-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 12/03/2005] [Indexed: 10/24/2022]
Abstract
Adrenomedullin (AM) is a potent, long-lasting vasoactive peptide originally isolated from human pheochromocytoma. Since its discovery, serum and tissue AM expression have been shown to be increased in experimental models and in patients with cardiac hypertrophy, myocardial infarction and end-stage heart failure with several beneficial effects. Considerable evidence exists for a wide range of autocrine, paracrine and endocrine mechanisms for AM which include vasodilatory, anti-apoptotic, angiogenic, anti-fibrotic, natriuretic, diuretic and positive inotropic. Thus, through regulation of body fluid or direct cardiac mechanisms, AM has additive and beneficial effects in the context of heart disease. Notable molecular mechanisms of AM include cyclic adenosine monophosphate, guanosine-3',5'-monophosphate, PI3K/Akt and MAPK-ERK-mediated cascades. Given the endogenous and multifunctional nature of AM, we consider this molecule to have great potential in the treatment of cardiovascular diseases. In agreement, early experimental and preliminary clinical studies suggest that AM is a new and promising therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- B Yanagawa
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Osaka, Japan
| | | |
Collapse
|
46
|
Morrell ED, Tsai BM, Crisostomo PR, Hammoud ZT, Meldrum DR. EXPERIMENTAL THERAPIES FOR HYPOXIA-INDUCED PULMONARY HYPERTENSION DURING ACUTE LUNG INJURY. Shock 2006; 25:214-26. [PMID: 16552352 DOI: 10.1097/01.shk.0000191380.44972.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) and pulmonary hypertension present a common and formidable clinical problem for practicing thoracic, transplant, and trauma surgeons. The recent discovery of efficacious drugs that are selective for the pulmonary vasculature has brought about the potential for very powerful therapeutic agents. Inhaled nitric oxide (NO) therapy has already found broad clinical utility, yet its use is limited by potential toxicities. Rho kinase (ROK) has been discovered to play a very central role in the formation of hypoxia induced pulmonary hypertension, and the advent of very specific ROK inhibitors has shown positive clinical results. Finally, phosphodiesterase-5 inhibitors have been found to selectively vasodilate the pulmonary vasculature in the midst of HPV. The purposes of this review are to: 1) discuss the advantages and disadvantages of inhaled preparations of NO; 2) address experimental alternatives to inhaled preparations of NO to treat HPV; 3) explore potential therapeutic avenues associated with inhibition of Rho-kinase; and, 4) examine the use of phosphodiesterase-5 (PDE-5) inhibitors and combination therapy in the treatment of HPV.
Collapse
Affiliation(s)
- Eric D Morrell
- Section of Cardiothoracic Surgery, Department of Surgery, Indiana University Medical Center, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
47
|
Yang JH, Pan CS, Jia YX, Zhang J, Zhao J, Pang YZ, Yang J, Tang CS, Qi YF. Intermedin1-53 activates l-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Biochem Biophys Res Commun 2006; 341:567-72. [PMID: 16434024 DOI: 10.1016/j.bbrc.2006.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
Intermedin (IMD), a novel member of the calcitonin/calcitonin gene-related peptide (CGRP) family, has similar or more potent vasodilatory and hypotensive actions than adrenomedullin (ADM) and CGRP. The present study was designed to observe the effects of synthetic rat IMD1-53 on L-arginine (L-Arg) cellular transport, nitric oxide synthase (NOS) activity, and nitric oxide (NO) production in the isolated rat aortic ring to illustrate its direct effect on the L-Arg/NOS/NO pathway in vasculature. IMD1-53 significantly increased NO production and cNOS activity in rat aortas and was more potent than equivalent ADM. But the peptides of both IMD and ADM had no effect on inducible NOS expression and activity. Otherwise, IMD1-53 induced a concentration-dependent increase in [3H]L-Arg transport and its effect was more potent than that of an equivalent concentration of ADM. Semiquantitative RT-PCR revealed that IMD1-53 significantly increased cationic amino acid transport (CAT)-1 and CAT-2B mRNA expression, and its effect was similar to that of ADM. All these results suggest that IMD1-53 might regulate vessel function homeostasis via upregulating the L-Arg/NOS/NO pathway.
Collapse
Affiliation(s)
- Jing-Hui Yang
- Institute of Cardiovascular Research, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brell B, Hippenstiel S, Dávid I, Pries AR, Habazettl H, Schmeck B, Suttorp N, Temmesfeld-Wollbrück B. Adrenomedullin treatment abolishes ileal mucosal hypoperfusion induced by Staphylococcus aureus α-toxin—An intravital microscopic study on an isolated rat ileum. Crit Care Med 2005; 33:2810-016. [PMID: 16352964 DOI: 10.1097/01.ccm.0000190625.14268.09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Disturbances of intestinal microcirculation associated with sepsis and septic shock result in diminished mucosal oxygenation. Tissue hypoxia as well as mediator formation may lead to intestinal mucosa dysfunction. As a consequence, bacteria and their products as well as gut-derived inflammatory mediators may further perpetuate septic and inflammatory events. Adrenomedullin is produced in the mucosa of the gastrointestinal tract and has been shown to improve survival in experimental sepsis. Using pore-forming Staphylococcus aureus alpha-toxin as a potent initiator of inflammatory reactions, we tested the hypothesis that exogenously added adrenomedullin improves ileal mucosal perfusion. DESIGN Prospective, experimental study. SETTING University laboratory. SUBJECTS Isolated perfused ileum from male Sprague-Dawley rats INTERVENTIONS Adrenomedullin treatment of S. aureus alpha-toxin infused ileum. MEASUREMENT AND MAIN RESULTS An infusion of alpha-toxin (0.05 microg/mL) induced a significant decrease of red blood cell velocity in villus terminal arterioles from 1.7 to 0.7 mm/sec assessed by intravital microscopy. This was accompanied by a significant reduction of mucosal hemoglobin oxygenation from 71.8% to 17.5% and impaired oxygen uptake. At constant bulk flow and oxygen delivery, these data indicate a redistribution of blood perfusion away from mucosa. Subsequent intervention with 0.1 microM adrenomedullin redistributed blood flow back toward the mucosa, causing an improvement of mucosal hemoglobin oxygenation and of organ oxygen uptake. CONCLUSION These data suggest that exogenously added adrenomedullin protects ileum mucosa by diminishing alpha-toxin-induced microcirculatory disturbances. Further investigations will have to clarify the therapeutic potential of adrenomedullin in sepsis-related gut dysfunction.
Collapse
Affiliation(s)
- Bernhard Brell
- Department of Internal Medicine/Infectious Diseases, Charité-University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Takeda R, Nishimatsu H, Suzuki E, Satonaka H, Nagata D, Oba S, Sata M, Takahashi M, Yamamoto Y, Terauchi Y, Kadowaki T, Kangawa K, Kitamura T, Nagai R, Hirata Y. Ghrelin improves renal function in mice with ischemic acute renal failure. J Am Soc Nephrol 2005; 17:113-21. [PMID: 16306169 DOI: 10.1681/asn.2004080626] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Growth hormone and IGF-1 have been suggested to have tissue-protective effects. Ghrelin is a stomach-derived growth hormone secretagogue. The effects of ghrelin on ischemia/reperfusion-induced renal failure in mice were examined. Ischemic acute renal failure was induced by bilateral renal artery clamping for 45 min and reperfusion for 24 h. Ghrelin (100 microg/kg mouse) or vehicle was injected subcutaneously six times before surgery and three times after surgery every 8 h. Twenty-four hours after reperfusion, the right kidney was isolated and perfused. Acetylcholine (ACh)- and adrenomedullin-induced endothelium-dependent vasorelaxation of renal vessels significantly improved in ghrelin-pretreated mice (%Delta renal perfusion pressure by 10(-7) M ACh -63.5 +/- 3.7 versus -41.2 +/- 5.5%; P < 0.05). This change was associated with significant increases of nitric oxide release in the kidneys of ghrelin-treated mice (10(-7) M ACh 35.5 +/- 5.8 versus 16.9 +/- 3.5 fmol/g kidney per min; P < 0.05). Serum concentration of urea nitrogen (53 +/- 7 versus 87 +/- 15 mg/dl; P < 0.05) and renal injury score were significantly lower in the ghrelin group (2.5 +/- 0.8 versus 5.3 +/- 1.5; P < 0.01). Tubular apoptotic index was significantly lower in the ghrelin group (5 +/- 5 versus 28 +/- 4; P < 0.05). Furthermore, the survival rate after the 60-min ischemic period was higher in the ghrelin group (80 versus 20%; P < 0.05). Ghrelin treatment significantly increased the serum level of IGF-1. However, such renal protective effects of ghrelin on ischemia/reperfusion injury were not observed in insulin receptor substrate-2 knockout mice. These results suggest that ghrelin may protect the kidneys from ischemia/reperfusion injury and that this effect is related to an improvement of endothelial function through an IGF-1-mediated pathway.
Collapse
Affiliation(s)
- Ryo Takeda
- Department of Cardiovascular Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Uchikawa Y, Okano M, Sawada A, Asada Y, Kobayashi H, Wada A, Nao-i N, Ohkura M, Tanaka N, Yamamoto R. RELAXANT EFFECT OF ADRENOMEDULLIN ON BOVINE ISOLATED IRIS SPHINCTER MUSCLE UNDER RESTING CONDITIONS. Clin Exp Pharmacol Physiol 2005; 32:675-80. [PMID: 16120196 DOI: 10.1111/j.0305-1870.2005.04249.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The mechanisms involved in the fine adjustment of iris sphincter muscle tone are largely unknown. The aim of the present study was to clarify the effects of adrenomedullin on the resting tension of the bovine isolated iris sphincter muscle. 2. The motor activity of the bovine isolated iris sphincter muscle was measured isometrically. The effects of adrenomedullin on resting tension were analysed in the presence of indomethacin. The presence of adrenomedullin mRNA in the preparation was determined by reverse transcription-polymerase chain reaction. Immunolabelling for adrenomedullin was also performed. 3. Adrenomedullin significantly decreased the resting tension of the muscle. The relaxant effect of adrenomedullin was significantly inhibited by adrenomedullin (22-52), a putative antagonist for the adrenomedullin receptor, or calcitonin gene-related peptide (CGRP) (8-37), a putative antagonist for the CGRP1 receptor. The relaxant effect was almost completely blocked by a combination of adrenomedullin (22-52) and CGRP (8-37). 4. The relaxant effect of adrenomedullin was also significantly diminished by 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase, N(G)-nitro-L-arginine, an inhibitor of nitric oxide synthesis, or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylate cyclase. 5. Reverse transcription-polymerase chain reaction analysis showed that adrenomedullin mRNA was expressed in the muscle strip. Immunopositive staining for adrenomedullin was detected in blood vessel cells and in the iris sphincter muscle cells. 6. These results suggest that adrenomedullin may be an autocrine and paracrine regulator of the resting tension of the iris sphincter muscle. Its biological effects may be due to the direct involvement of adrenomedullin receptors and also to the stimulation of CGRP1 receptors. The stimulation of these receptors by the peptide leads to the activation of adenylate cyclase and soluble guanylate cyclase and subsequent relaxation of the muscle strip.
Collapse
Affiliation(s)
- Y Uchikawa
- Department of Orthoptics and Visual Sciences, School of Health Sciences, Kyushu University of Health and Welfare, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|