1
|
Ahmed B, Rahman AA, Lee S, Malhotra R. The Implications of Aging on Vascular Health. Int J Mol Sci 2024; 25:11188. [PMID: 39456971 PMCID: PMC11508873 DOI: 10.3390/ijms252011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Vascular aging encompasses structural and functional changes in the vasculature, significantly contributing to cardiovascular diseases, which are the leading cause of death globally. The incidence and prevalence of these diseases increase with age, with most morbidity and mortality attributed to myocardial infarction and stroke. Diagnosing and intervening in vascular aging while understanding the mechanisms behind age-induced vascular phenotypic and pathophysiological alterations offers the potential for delaying and preventing cardiovascular mortality in an aging population. This review delves into various aspects of vascular aging by examining age-related changes in arterial health at the cellular level, including endothelial dysfunction, cellular senescence, and vascular smooth muscle cell transdifferentiation, as well as at the structural level, including arterial stiffness and changes in wall thickness and diameter. We also explore aging-related changes in perivascular adipose tissue deposition, arterial collateralization, and calcification, providing insights into the physiological and pathological implications. Overall, aging induces phenotypic changes that augment the vascular system's susceptibility to disease, even in the absence of traditional risk factors, such as hypertension, diabetes, obesity, and smoking. Overall, age-related modifications in cellular phenotype and molecular homeostasis increase the vulnerability of the arterial vasculature to structural and functional alterations, thereby accelerating cardiovascular risk. Increasing our understanding of these modifications is crucial for success in delaying or preventing cardiovascular diseases. Non-invasive techniques, such as measuring carotid intima-media thickness, pulse wave velocity, and flow-mediated dilation, as well as detecting vascular calcifications, can be used for the early detection of vascular aging. Targeting specific pathological mechanisms, such as cellular senescence and enhancing angiogenesis, holds promise for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Ahmed A. Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sujin Lee
- Division of Vascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Liu Y, Niu Z, Wang X, Xiu C, Hu Y, Wang J, Lei Y, Yang J. Yiqihuoxue decoction (GSC) inhibits mitochondrial fission through the AMPK pathway to ameliorate EPCs senescence and optimize vascular aging transplantation regimens. Chin Med 2024; 19:143. [PMID: 39402613 PMCID: PMC11479513 DOI: 10.1186/s13020-024-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND During the aging process, the number and functional activity of endothelial progenitor cells (EPCs) are impaired, leading to the unsatisfactory efficacy of transplantation. Previous studies demonstrated that Yiqihuoxue decoction (Ginseng-Sanqi-Chuanxiong, GSC) exerts anti-vascular aging effects. The purpose of this study is to evaluated the effects of GSC on D-galactose (D-gal)induced senescence and the underlying mechanisms. METHODS The levels of cellular senescence-related markers P16, P21, P53, AMPK and p-AMPK were detected by Western blot analysis (WB). SA-β-gal staining was used to evaluate cell senescence. EPCs function was measured by CCK-8, Transwell cell migration and cell adhesion assay. The morphological changes of mitochondria were detected by confocal microscopy. The protein and mRNA expression of mitochondrial fusion fission Drp1, Mff, Fis1, Mfn1, Mfn2 and Opa1 in mitochondria were detect using WB and RT-qPCR. Mitochondrial membrane potential, mtROS and ATP of EPCs were measured using IF. H&E staining was used to observe the pathological changes and IMT of the aorta. The expressions of AGEs, MMP-2 and VEGF in aorta were measured using Immunohistochemical (IHC). The levels of SOD, MDA, NO and ET-1 in serum were detected by SOD, MDA and NO kits. RESULTS In vitro, GSC ameliorated the senescence of EPCs induced by D-gal and reduced the expression of P16, P21 and P53. The mitochondrial morphology of EPCs was restored, the expression of mitochondrial Drp1, Mff and Fis1 protein was decreased, the levels of mtROS and ATP were decreased, and mitochondrial function was improved. Meanwhile, the expression of AMPK and p-AMPK increased. The improvement effects of GSC on aging and mitochondrial morphology and function were were hindered after adding AMPK inhibitor. In vivo, GSC improved EPCs efficiency, ameliorated aortic structural disorder and decreased IMT in aging mice. The serum SOD level increased and MDA level decreased, indicating the improvement of antioxidant capacity. Increased NO content and ET-1 content suggested improvement of vascular endothelial function. The changes observed in SOD and MMP-2 suggested a reduction in vascular stiffness and the degree of vascular damage. The decreased expression of P21 and P53 indicates the delay of vascular senescence.
Collapse
Affiliation(s)
- Yinan Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zenghui Niu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chengkui Xiu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanhong Hu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiali Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Yan Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Wang P, Konja D, Singh S, Zhang B, Wang Y. Endothelial Senescence: From Macro- to Micro-Vasculature and Its Implications on Cardiovascular Health. Int J Mol Sci 2024; 25:1978. [PMID: 38396653 PMCID: PMC10889199 DOI: 10.3390/ijms25041978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Endothelial cells line at the most inner layer of blood vessels. They act to control hemostasis, arterial tone/reactivity, wound healing, tissue oxygen, and nutrient supply. With age, endothelial cells become senescent, characterized by reduced regeneration capacity, inflammation, and abnormal secretory profile. Endothelial senescence represents one of the earliest features of arterial ageing and contributes to many age-related diseases. Compared to those in arteries and veins, endothelial cells of the microcirculation exhibit a greater extent of heterogeneity. Microcirculatory endothelial senescence leads to a declined capillary density, reduced angiogenic potentials, decreased blood flow, impaired barrier properties, and hypoperfusion in a tissue or organ-dependent manner. The heterogeneous phenotypes of microvascular endothelial cells in a particular vascular bed and across different tissues remain largely unknown. Accordingly, the mechanisms underlying macro- and micro-vascular endothelial senescence vary in different pathophysiological conditions, thus offering specific target(s) for therapeutic development of senolytic drugs.
Collapse
Affiliation(s)
- Peichun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sandeep Singh
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Beijia Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Huang C, Huang W, Meng Y, Zhou C, Wang X, Zhang C, Tian Y, Wei W, Li Y, Zhou Q, Chen W, Tang Y. T1-weighted MRI of targeting atherosclerotic plaque based on CD40 expression on engulfed USPIO's cell surface. Biomed Mater 2024; 19:025019. [PMID: 38215489 DOI: 10.1088/1748-605x/ad1df6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of cholesterol within the arterial wall. Its progression can be monitored via magnetic resonance imaging (MRI). Ultrasmall Superparamagnetic Particles of Iron Oxide (USPIO) (<5 nm) have been employed as T1 contrast agents for MRI applications. In this study, we synthesized USPIO with an average surface carboxylation of approximately 5.28 nm and a zeta potential of -47.8 mV. These particles were phagocytosed by mouse aortic endothelial cells (USPIO-MAECs) and endothelial progenitor cells (USPIO-EPCs), suggesting that they can be utilized as potential contrast agent and delivery vehicle for the early detection of atherosclerosis. However, the mechanism by which this contrast agent is delivered to the plaque remains undetermined. Our results demonstrated that with increasing USPIO concentration during 10-100 μg ml-1, consistent change appeared in signal enhancement on T1-weighted MRI. Similarly, T1-weighted MRI of MAECs and EPCs treated with these concentrations exhibited a regular change in signal enhancement. Prussian blue staining of USPIO revealed substantial absorption into MAECs and EPCs after treatment with 50 μg ml-1USPIO for 24 h. The iron content in USPIO-EPCs was much higher (5 pg Fe/cell) than in USPIO-MAECs (0.8 pg Fe/cell). In order to substantiate our hypothesis that CD40 protein on the cell surface facilitates migration towards inflammatory cells, we utilized AuNPs-PEI (gold nanoparticles-polyethylenimine) carrying siRNACD40to knockout CD40 expression in MAECs. It has been documented that gold nanoparticle-oligonucleotide complexes could be employed as intracellular gene regulation agents for the control of protein level in cells. Our results confirmed that macrophages are more likely to bind to MAECs treated with AuNPs-PEI-siRNANC(control) for 72 h than to MAECs treated with AuNPs-PEI-siRNACD40(reduced CD40 expression), thus confirming CD40 targeting at the cellular level. When USPIO-MAECs and MAECs (control) were delivered to mice (high-fat-fed) via tail vein injection respectively, we observed a higher iron accumulation in plaques on blood vessels in high-fat-fed mice treated with USPIO-MAECs. We also demonstrated that USPIO-EPCs, when delivered to high-fat-fed mice via tail vein injection, could indeed label plaques by generating higher T1-weighted MRI signals 72 h post injection compared to controls (PBS, USPIO and EPCs alone). In conclusion, we synthesized a USPIO suitable for T1-weighted MRI. Our results have confirmed separately at the cellular and tissue andin vivolevel, that USPIO-MAECs or USPIO-EPCs are more accessible to atherosclerotic plaques in a mouse model. Furthermore, the high expression of CD40 on the cell surface is a key factor for targeting and USPIO-EPCs may have potential therapeutic effects.
Collapse
Affiliation(s)
- Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Medical Imaging Institute of Panyu District, Guangzhou 511400, People's Republic of China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Chengqian Zhou
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America
| | - Xiaozhuan Wang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, People's Republic of China
| | - Chunyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou 510663, People's Republic of China
| | - Yongsheng Li
- Guangdong Cord Blood Bank, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou 510663, People's Republic of China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, People's Republic of China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Medical Imaging Institute of Panyu District, Guangzhou 511400, People's Republic of China
| |
Collapse
|
5
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
6
|
Khaing ZZ, Chandrasekaran A, Katta A, Reed MJ. The Brain and Spinal Microvasculature in Normal Aging. J Gerontol A Biol Sci Med Sci 2023; 78:1309-1319. [PMID: 37093786 PMCID: PMC10395569 DOI: 10.1093/gerona/glad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/25/2023] Open
Abstract
Changes in the brain and spinal cord microvasculature during normal aging contribute to the "sensitive" nature of aged central nervous system tissue to ischemic insults. In this review, we will examine alterations in the central nervous system microvasculature during normal aging, which we define as aging without a dominant pathology such as neurodegenerative processes, vascular injury or disease, or trauma. We will also discuss newer technologies to improve the study of central nervous system microvascular structure and function. Microvasculature within the brain and spinal cord will be discussed separately as anatomy and physiology differ between these compartments. Lastly, we will identify critical areas for future studies as well as key unanswered questions.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Anjali Katta
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Hollwedel FD, Maus R, Stolper J, Jonigk D, Hildebrand CB, Welte T, Brandenberger C, Maus UA. Neutrophilic Pleuritis Is a Severe Complication of Klebsiella pneumoniae Pneumonia in Old Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2172-2180. [PMID: 36426980 DOI: 10.4049/jimmunol.2200413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
The pathomechanisms underlying the frequently observed fatal outcome of Klebsiella pneumoniae pneumonia in elderly patients are understudied. In this study, we examined the early antibacterial immune response in young mice (age 2-3 mo) as compared with old mice (age 18-19 mo) postinfection with K. pneumoniae. Old mice exhibited significantly higher bacterial loads in lungs and bacteremia as early as 24 h postinfection compared with young mice, with neutrophilic pleuritis nearly exclusively developing in old but not young mice. Moreover, we observed heavily increased cytokine responses in lungs and pleural spaces along with increased mortality in old mice. Mechanistically, Nlrp3 inflammasome activation and caspase-1-dependent IL-1β secretion contributed to the observed hyperinflammation, which decreased upon caspase-1 inhibitor treatment of K. pneumoniae-infected old mice. Irradiated old mice transplanted with the bone marrow of young mice did not show hyperinflammation or early bacteremia in response to K. pneumoniae. Collectively, the accentuated lung pathology observed in K. pneumoniae-infected old mice appears to be due to regulatory defects of the bone marrow but not the lung, while involving dysregulated activation of the Nlrp3/caspase-1/IL-1β axis.
Collapse
Affiliation(s)
- Femke D Hollwedel
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Jennifer Stolper
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany
| | | | - Tobias Welte
- German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,Clinic for Pneumology, Hannover Medical School, Hannover, Germany; and
| | - Christina Brandenberger
- German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,Institute of Functional Anatomy, Charité University Medicine, Berlin, Germany
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany
| |
Collapse
|
8
|
Azam T, Zhang H, Zhou F, Wang X. Recent Advances on Drug Development and Emerging Therapeutic Agents Through Targeting Cellular Homeostasis for Ageing and Cardiovascular Disease. FRONTIERS IN AGING 2022; 3:888190. [PMID: 35821839 PMCID: PMC9261412 DOI: 10.3389/fragi.2022.888190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Ageing is a progressive physiological process mediated by changes in biological pathways, resulting in a decline in tissue and cellular function. It is a driving factor in numerous age-related diseases including cardiovascular diseases (CVDs). Cardiomyopathies, hypertension, ischaemic heart disease, and heart failure are some of the age-related CVDs that are the leading causes of death worldwide. Although individual CVDs have distinct clinical and pathophysiological manifestations, a disturbance in cellular homeostasis underlies the majority of diseases which is further compounded with aging. Three key evolutionary conserved signalling pathways, namely, autophagy, mitophagy and the unfolded protein response (UPR) are involved in eliminating damaged and dysfunctional organelle, misfolded proteins, lipids and nucleic acids, together these molecular processes protect and preserve cellular homeostasis. However, amongst the numerous molecular changes during ageing, a decline in the signalling of these key molecular processes occurs. This decline also increases the susceptibility of damage following a stressful insult, promoting the development and pathogenesis of CVDs. In this review, we discuss the role of autophagy, mitophagy and UPR signalling with respect to ageing and cardiac disease. We also highlight potential therapeutic strategies aimed at restoring/rebalancing autophagy and UPR signalling to maintain cellular homeostasis, thus mitigating the pathological effects of ageing and CVDs. Finally, we highlight some limitations that are likely hindering scientific drug research in this field.
Collapse
Affiliation(s)
- Tayyiba Azam
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hongyuan Zhang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Fangchao Zhou
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Tian Y, Zhan Y, Jiang Q, Lu W, Li X. Expression and function of PDGF-C in development and stem cells. Open Biol 2021; 11:210268. [PMID: 34847773 PMCID: PMC8633783 DOI: 10.1098/rsob.210268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.
Collapse
Affiliation(s)
- Yi Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Ying Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Qin Jiang
- Ophthalmic Department, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
10
|
Yang X, Wan JX, Yuan J, Dong R, Da JJ, Sun ZL, Zha Y. Effects of calcitriol on peripheral endothelial progenitor cells and renal renovation in rats with chronic renal failure. J Steroid Biochem Mol Biol 2021; 214:105956. [PMID: 34348182 DOI: 10.1016/j.jsbmb.2021.105956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 06/20/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The role of calcitriol (1,25-dihydroxyvitamin D3 or 1,25-(OH)2D3) in physiological processes, such as anti-fibrosis, anti-inflammation, and immunoregulation is known; however, its role in the remodeling of the glomerular capillary endothelium in rats with chronic renal failure (CRF) remains unclear. METHODS Here, we analyzed the role/number of endothelial progenitor cells (EPCs), renal function, and pathological alterations in rats with CRF, and compared the results before and after supplementation with calcitriol in vivo. RESULTS Amongst the three experimental groups (sham group, CRF group, and calcitriol-treated group (0.03 μg/kg/d), we observed substantially elevated cell adhesion and vasculogenesis in vivo in the calcitriol-treated group. Additionally, lower levels of serum creatinine (Scr) and blood urea nitrogen (BUN) was recorded in the calcitriol-treated group than the CRF group (p > 0.05). Calcitriol treatment also resulted in an improvement in renal pathological injury. CONCLUSIONS Thus, calcitriol could ameliorate the damage of glomerular arterial structural and renal tubules vascular network integrity, maybe through regulating the number and function of EPCs in the peripheral blood of CRF rats. Treatment with it may improve outcomes in patients with renal insufficiency or combined cardiac insufficiency. Calcitriol could ameliorate CRF-induced renal pathological injury and renal dysfunction by remodeling of the glomerular capillary endothelium, thus, improving the function of glomerular endothelial cells.
Collapse
Affiliation(s)
- Xia Yang
- School of Medical, Guizhou University, Guiyang, China; Renal Divisihttp://10.10.23.106:8080/TDXPSLIVEGANG/gateway/elsevierjournal/index.jsp#on, Department of Medicine, Guizhou Provincial People's Hospital, Guiyang, China; NHC Key Laboratory of Pulmonary Immunological People's Hospital, Guiyang, China
| | - Jian-Xin Wan
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Yuan
- Renal Divisihttp://10.10.23.106:8080/TDXPSLIVEGANG/gateway/elsevierjournal/index.jsp#on, Department of Medicine, Guizhou Provincial People's Hospital, Guiyang, China; NHC Key Laboratory of Pulmonary Immunological People's Hospital, Guiyang, China
| | - Rong Dong
- School of Medical, Guizhou University, Guiyang, China; NHC Key Laboratory of Pulmonary Immunological People's Hospital, Guiyang, China
| | - Jing-Jing Da
- School of Medical, Guizhou University, Guiyang, China; NHC Key Laboratory of Pulmonary Immunological People's Hospital, Guiyang, China
| | - Zhao-Lin Sun
- School of Medical, Guizhou University, Guiyang, China
| | - Yan Zha
- School of Medical, Guizhou University, Guiyang, China; Renal Divisihttp://10.10.23.106:8080/TDXPSLIVEGANG/gateway/elsevierjournal/index.jsp#on, Department of Medicine, Guizhou Provincial People's Hospital, Guiyang, China; NHC Key Laboratory of Pulmonary Immunological People's Hospital, Guiyang, China.
| |
Collapse
|
11
|
Horitani K, Iwasaki M, Kishimoto H, Wada K, Nakano M, Park H, Adachi Y, Motooka D, Okuzaki D, Shiojima I. Repetitive spikes of glucose and lipid induce senescence-like phenotypes of bone marrow stem cells through H3K27me3 demethylase-mediated epigenetic regulation. Am J Physiol Heart Circ Physiol 2021; 321:H920-H932. [PMID: 34533398 DOI: 10.1152/ajpheart.00261.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023]
Abstract
Bone marrow-derived endothelial progenitor cells (EPCs) contribute to endothelial repair and angiogenesis. Reduced number of circulating EPCs is associated with future cardiovascular events. We tested whether dysregulated glucose and/or triglyceride (TG) metabolism has an impact on EPC homeostasis. The analysis of metabolic factors associated with circulating EPC number in humans revealed that postprandial hyperglycemia is negatively correlated with circulating EPC number, and this correlation appears to be further enhanced in the presence of postprandial hypertriglyceridemia (hTG). We therefore examined the effect of glucose/TG spikes on bone marrow lineage-sca-1+ c-kit+ (LSK) cells in mice, because primitive EPCs reside in bone marrow LSK fraction. Repetitive glucose + lipid (GL) spikes, but not glucose (G) or lipid (L) spikes alone, induced senescence-like phenotypes of LSK cells, and this phenomenon was reversible after cessation of GL spikes. G spikes and GL spikes differentially affected transcriptional program of LSK cell metabolism and differentiation. GL spikes upregulated a histone H3K27 demethylase JMJD3, and inhibition of JMJD3 eliminated GL spikes-induced LSK cell senescence-like phenotypes. These observations suggest that postprandial glucose/TG dysmetabolism modulate transcriptional regulation in LSK cells through H3K27 demethylase-mediated epigenetic regulation, leading to senescence-like phenotypes of LSK cells, reduced number of circulating EPCs, and development of atherosclerotic cardiovascular disease.NEW & NOTEWORTHY Combination of hyperglycemia and hypertriglyceridemia is associated with increased risk of atherosclerotic cardiovascular disease. We found that 1) hypertriglyceridemia may enhance the negative impact of hyperglycemia on circulating EPC number in humans and 2) metabolic stress induced by glucose + triglyceride spikes in mice results in senescence-like phenotypes of bone marrow stem/progenitor cells via H3K27me3 demethylase-mediated epigenetic regulation. These findings have important implications for understanding the pathogenesis of atherosclerotic cardiovascular disease in patients with T2DM.
Collapse
Affiliation(s)
- Keita Horitani
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| | | | | | - Kensaku Wada
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| | - Miyuki Nakano
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| | - Haengnam Park
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| | - Yasushi Adachi
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ichiro Shiojima
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| |
Collapse
|
12
|
Aberdeen H, Battles K, Taylor A, Garner-Donald J, Davis-Wilson A, Rogers BT, Cavalier C, Williams ED. The Aging Vasculature: Glucose Tolerance, Hypoglycemia and the Role of the Serum Response Factor. J Cardiovasc Dev Dis 2021; 8:58. [PMID: 34067715 PMCID: PMC8156687 DOI: 10.3390/jcdd8050058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The fastest growing demographic in the U.S. at the present time is those aged 65 years and older. Accompanying advancing age are a myriad of physiological changes in which reserve capacity is diminished and homeostatic control attenuates. One facet of homeostatic control lost with advancing age is glucose tolerance. Nowhere is this more accentuated than in the high proportion of older Americans who are diabetic. Coupled with advancing age, diabetes predisposes affected subjects to the onset and progression of cardiovascular disease (CVD). In the treatment of type 2 diabetes, hypoglycemic episodes are a frequent clinical manifestation, which often result in more severe pathological outcomes compared to those observed in cases of insulin resistance, including premature appearance of biomarkers of senescence. Unfortunately, molecular mechanisms of hypoglycemia remain unclear and the subject of much debate. In this review, the molecular basis of the aging vasculature (endothelium) and how glycemic flux drives the appearance of cardiovascular lesions and injury are discussed. Further, we review the potential role of the serum response factor (SRF) in driving glycemic flux-related cellular signaling through its association with various proteins.
Collapse
Affiliation(s)
- Hazel Aberdeen
- Department of Biomedical Sciences, Baptist Health Sciences University, Memphis, TN 38103, USA; or
| | - Kaela Battles
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Ariana Taylor
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Jeranae Garner-Donald
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Ana Davis-Wilson
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Bryan T. Rogers
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Candice Cavalier
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Emmanuel D. Williams
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| |
Collapse
|
13
|
Povsic TJ, Gersh BJ. Stem Cells in Cardiovascular Diseases: 30,000-Foot View. Cells 2021; 10:cells10030600. [PMID: 33803227 PMCID: PMC8001267 DOI: 10.3390/cells10030600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Stem cell and regenerative approaches that might rejuvenate the heart have immense intuitive appeal for the public and scientific communities. Hopes were fueled by initial findings from preclinical models that suggested that easily obtained bone marrow cells might have significant reparative capabilities; however, after initial encouraging pre-clinical and early clinical findings, the realities of clinical development have placed a damper on the field. Clinical trials were often designed to detect exceptionally large treatment effects with modest patient numbers with subsequent disappointing results. First generation approaches were likely overly simplistic and relied on a relatively primitive understanding of regenerative mechanisms and capabilities. Nonetheless, the field continues to move forward and novel cell derivatives, platforms, and cell/device combinations, coupled with a better understanding of the mechanisms that lead to regenerative capabilities in more primitive models and modifications in clinical trial design suggest a brighter future.
Collapse
Affiliation(s)
- Thomas J. Povsic
- Department of Medicine, and Duke Clinical Research Institute, Duke University, Durham, NC 27705, USA
- Correspondence:
| | - Bernard J. Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| |
Collapse
|
14
|
Endothelial Progenitor Cells Induce Angiogenesis: a Potential Mechanism Underlying Neovascularization in Encephaloduroarteriosynangiosis. Transl Stroke Res 2020; 12:357-365. [PMID: 32632776 DOI: 10.1007/s12975-020-00834-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Encephaloduroarteriosynangiosis (EDAS) is one of the most commonly used indirect vascular reconstruction methods. EDAS aids in the formation of collateral vessels from the extracranial to the intracranial circulation in patients with moyamoya disease (MMD). However, the underlying mechanism of collateral vessel formation is not well understood. Endothelial progenitor cells (EPCs) differentiate to form the vascular endothelial cells and play a very important role in angiogenesis. We designed this prospective clinical trial to investigate the presence of EPCs in patients with MMD and to explore the neovascularization mechanism mediated by the EPCs in EDAS. The patients who were diagnosed with MMD were recruited between February 5, 2017, and January 7, 2018. The blood samples were obtained from an antecubital vein and were analyzed using flow cytometry. EPCs were defined as CD34brCD133+CD45dimKDR+. All the patients enrolled in the study underwent EDAS. Cerebral arteriography was performed 6 months post-EDAS to assess the efficacy of synangiosis. The correlation between EPC count and good collateral circulation was evaluated. Among the 116 patients with MMD enrolled in this study, 73 were women and 43 were men. The average age of the patients was 33.8 ± 15.2 years. The EPC count of the patients with MMD was 0.071% ± 0.050% (expressed as percentage of the peripheral blood mononuclear cells). The EPC count in the good postoperative collateral circulation group was significantly higher (0.085% ± 0.054%) than that in the poor collateral circulation group (0.048% ± 0.034%) (P = 0.000). The age, modified Suzuki-Mugikura grade, and EPC count were significantly correlated with the good collateral circulation post-EDAS in the multivariate analysis (P = 0.018, P = 0.007, and P = 0.003, respectively). The formation of collateral vessels by EDAS is primarily driven by angiogenesis. The EPC count may be the most critical factor for collateral circulation. The therapeutic effect of EDAS is more likely to benefit younger or severe ischemic patients with MMD.
Collapse
|
15
|
Reduced expression of microRNA-130a promotes endothelial cell senescence and age-dependent impairment of neovascularization. Aging (Albany NY) 2020; 12:10180-10193. [PMID: 32457253 PMCID: PMC7346016 DOI: 10.18632/aging.103340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/18/2020] [Indexed: 12/30/2022]
Abstract
Aging is associated with impaired neovascularization in response to ischemia. MicroRNAs are small noncoding RNAs emerging as key regulators of physiological and pathological processes. Here we investigated the potential role of microRNAs in endothelial cell senescence and age-dependent impairment of neovascularization. Next generation sequencing and qRT-PCR analyses identified miR-130a as a pro-angiogenic microRNA which expression is significantly reduced in old mouse aortic endothelial cells (ECs). Transfection of young ECs with a miR-130a inhibitor leads to accelerated senescence and reduced angiogenic functions. Conversely, forced expression of miR-130a in old ECs reduces senescence and improves angiogenesis. In a mouse model of hindlimb ischemia, intramuscular injection of miR-130a mimic in older mice restores blood flow recovery and vascular densities in ischemic muscles, improves mobility and reduces tissue damage. miR-130a directly targets antiangiogenic homeobox genes MEOX2 and HOXA5. MEOX2 and HOXA5 are significantly increased in the ischemic muscles of aging mice, but forced expression of miR-130a reduces the expression of these factors. miR-130a treatment after ischemia is also associated with increased number and improved functional activities of pro-angiogenic cells (PACs). Forced expression of miR-130a could constitute a novel strategy to improve blood flow recovery and reduce ischemia in older patients with ischemic vascular diseases.
Collapse
|
16
|
Abstract
Microvascular dysfunction is a frequent complication of many chronic and acute conditions, especially in the critically ill. Moreover, the severity of microvascular alterations is associated with development of organ dysfunction and poor outcome. The complexities and heterogeneity of critical illness, especially in the elderly patient, requires more mechanistically oriented clinical trials that monitor the effectiveness of existing therapies and of those to come. Recent advances in the ability to obtain physiologically based assessments of microcirculatory function at the bedside will make microcirculatory-guided resuscitation a point of care reality.
Collapse
Affiliation(s)
- Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals and Université Libre de Bruxelles, Bd du Triomphe 201, 1160 Brussels, Belgium
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611, Little Rock, AR 72212, USA.
| |
Collapse
|
17
|
Oliva AA, McClain-Moss L, Pena A, Drouillard A, Hare JM. Allogeneic mesenchymal stem cell therapy: A regenerative medicine approach to geroscience. Aging Med (Milton) 2019; 2:142-146. [PMID: 31667462 PMCID: PMC6820701 DOI: 10.1002/agm2.12079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extraordinary advances in medicine and public health have contributed to increasing life expectancy worldwide. However, health span-"healthy aging"-has paradoxically lagged to parallel this increase. Consequently, aging-associated illnesses, such as Alzheimer's disease and aging frailty, are having a growing impact on patients, their families, and entire health-care systems. Typically, such disorders have been treated as isolated disease entities. However, the inextricable links between aging-associated disorders and the aging process itself have become increasingly recognized, leading to formation of the field of geroscience. The geroscience concept is that treating the aging process itself should lead to treatment and prevention of aging-related disorders. However, the aging process is complex, dictated by highly interrelated pleiotropic processes. As such, therapeutics with pleiotropic mechanisms of action (either alone, or as part of combinatorial strategies) will be required for preventing and treating both aging and related disorders. Mesenchymal stem cells (MSCs) have multiple mechanisms of action that make these highly promising geroscience therapeutic candidates. These cells have a high safety profile for clinical use, are amenable to allogeneic use since tissue-type matching is not required, and can have sustained activity after transplantation. Herein, we review preclinical and clinical data supporting the utility of allogeneic MSCs as a geroscience therapeutic candidate.
Collapse
Affiliation(s)
| | | | | | | | - Joshua M Hare
- Longeveron LLC, Miami, FL, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
19
|
Marvasti TB, Alibhai FJ, Weisel RD, Li RK. CD34 + Stem Cells: Promising Roles in Cardiac Repair and Regeneration. Can J Cardiol 2019; 35:1311-1321. [PMID: 31601413 DOI: 10.1016/j.cjca.2019.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022] Open
Abstract
Cell therapy has received significant attention as a novel therapeutic approach to restore cardiac function after injury. CD34-positive (CD34+) stem cells have been investigated for their ability to promote angiogenesis and contribute to the prevention of remodelling after infarct. However, there are significant differences between murine and human CD34+ cells; understanding these differences might benefit the therapeutic use of these cells. Herein we discuss the function of the CD34 cell and highlight the similarities and differences between murine and human CD34 cell function, which might explain some of the differences between the animal and human evolutions. We also summarize the studies that report the application of murine and human CD34+ cells in preclinical studies and clinical trials and current limitations with the application of cell therapy for cardiac repair. Finally, to overcome these limitations we discuss the application of novel humanized rodent models that can bridge the gap between preclinical and clinical studies as well as rejuvenation strategies for improving the quality of old CD34+ cells for future clinical trials of autologous cell transplantation.
Collapse
Affiliation(s)
- Tina Binesh Marvasti
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada
| | - Richard D Weisel
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto; Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto; Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Tal R, Dong D, Shaikh S, Mamillapalli R, Taylor HS. Bone-marrow-derived endothelial progenitor cells contribute to vasculogenesis of pregnant mouse uterus†. Biol Reprod 2019; 100:1228-1237. [PMID: 30601943 PMCID: PMC6497522 DOI: 10.1093/biolre/ioy265] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/02/2018] [Accepted: 01/01/2019] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis is essential for cyclic endometrial growth, implantation, and pregnancy maintenance. Vasculogenesis, the formation of new blood vessels by bone marrow (BM)-derived endothelial progenitor cells (EPCs), has been shown to contribute to endometrial vasculature. However, it is unknown whether vasculogenesis occurs in neovascularization of the decidua during pregnancy. To investigate the contribution of BM-derived EPCs to vascularization of the pregnant uterus, we induced non-gonadotoxic submyeloablation by 5-fluorouracil administration to wild-type FVB/N female mice recipients followed by BM transplantation from transgenic mice expressing green fluorescent protein (GFP) under regulation of Tie2 endothelial-specific promoter. Following 1 month, Tie2-GFP BM-transplanted mice were bred and sacrificed at various gestational days (ED6.5, ED10.5, ED13.5, ED18.5, and postpartum). Bone-marrow-transplanted non-pregnant and saline-injected pregnant mice served as controls (n = 5-6/group). Implantation sites were analyzed by flow cytometry, immunohistochemistry, and immunofluorescence. While no GFP-positive EPCs were found in non-pregnant or early pregnant uteri of BM-transplanted mice, GFP-positive EPCs were first detected in pregnant uterus on ED10.5 (0.12%) and increased as the pregnancy progressed (1.14% on ED13.5), peaking on ED18.5 (1.42%) followed by decrease in the postpartum (0.9%). The percentage of endothelial cells that were BM-derived out of the total endothelial cell population in the implantation sites (GFP+CD31+/CD31+) were 9.3%, 15.8%, and 6.1% on ED13.5, ED18.5, and postpartum, respectively. Immunohistochemistry demonstrated that EPCs incorporated into decidual vasculature, and immunofluorescence showed that GFP-positive EPCs colocalized with CD31 in vascular endothelium of uterine implantation sites, confirming their endothelial lineage. Our findings indicate that BM-derived EPCs contribute to vasculogenesis of the pregnant mouse decidua.
Collapse
Affiliation(s)
- Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dirong Dong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shafiq Shaikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Le Couteur DG, Anderson RM, Newman AB, de Cabo R. Stem Cell Transplantation for Frailty. J Gerontol A Biol Sci Med Sci 2019; 72:1503-1504. [PMID: 29028259 DOI: 10.1093/gerona/glx158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- David G Le Couteur
- Centre for Education and Research on Aging, Charles Perkins Centre and ANZAC Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison GRECC, William S Middleton Memorial Veterans Hospital
| | - Anne B Newman
- Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
22
|
Ross MD. Endothelial Regenerative Capacity and Aging: Influence of Diet, Exercise and Obesity. Curr Cardiol Rev 2018; 14:233-244. [PMID: 30047332 PMCID: PMC6300798 DOI: 10.2174/1573403x14666180726112303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Background: The endothelium plays an important role in cardiovascular regulation, from blood flow to platelet aggregation, immune cell infiltration and demargination. A dysfunctional endo-thelium leads to the onset and progression of Cardiovascular Disease (CVD). The aging endothelium displays significant alterations in function, such as reduced vasomotor functions and reduced angio-genic capabilities. This could be partly due to elevated levels of oxidative stress and reduced endothe-lial cell turnover. Circulating angiogenic cells, such as Endothelial Progenitor Cells (EPCs) play a significant role in maintaining endothelial health and function, by supporting endothelial cell prolifera-tion, or via incorporation into the vasculature and differentiation into mature endothelial cells. Howev-er, these cells are reduced in number and function with age, which may contribute to the elevated CVD risk in this population. However, lifestyle factors, such as exercise, physical activity obesity, and dietary intake of omega-3 polyunsaturated fatty acids, nitrates, and antioxidants, significantly af-fect the number and function of these circulating angiogenic cells. Conclusion: This review will discuss the effects of advancing age on endothelial health and vascular regenerative capacity, as well as the influence of diet, exercise, and obesity on these cells, the mecha-nistic links and the subsequent impact on cardiovascular health
Collapse
Affiliation(s)
- Mark D Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Lidgerwood GE, Pitson SM, Bonder C, Pébay A. Roles of lysophosphatidic acid and sphingosine-1-phosphate in stem cell biology. Prog Lipid Res 2018; 72:42-54. [PMID: 30196008 DOI: 10.1016/j.plipres.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
Stem cells are unique in their ability to self-renew and differentiate into various cell types. Because of these features, stem cells are key to the formation of organisms and play fundamental roles in tissue regeneration and repair. Mechanisms controlling their fate are thus fundamental to the development and homeostasis of tissues and organs. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive phospholipids that play a wide range of roles in multiple cell types, during developmental and pathophysiological events. Considerable evidence now demonstrates the potent roles of LPA and S1P in the biology of pluripotent and adult stem cells, from maintenance to repair. Here we review their roles for each main category of stem cells and explore how those effects impact development and physiopathology.
Collapse
Affiliation(s)
- Grace E Lidgerwood
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Claudine Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, Australia.
| |
Collapse
|
24
|
An S, Wang X, Ruck MA, Rodriguez HJ, Kostyushev DS, Varga M, Luu E, Derakhshandeh R, Suchkov SV, Kogan SC, Hermiston ML, Springer ML. Age-Related Impaired Efficacy of Bone Marrow Cell Therapy for Myocardial Infarction Reflects a Decrease in B Lymphocytes. Mol Ther 2018; 26:1685-1693. [PMID: 29914756 DOI: 10.1016/j.ymthe.2018.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
Treatment of myocardial infarction (MI) with bone marrow cells (BMCs) improves post-MI cardiac function in rodents. However, clinical trials of BMC therapy have been less effective. While most rodent experiments use young healthy donors, patients undergoing autologous cell therapy are older and post-MI. We previously demonstrated that BMCs from aged and post-MI donor mice are therapeutically impaired, and that donor MI induces inflammatory changes in BMC composition including reduced levels of B lymphocytes. Here, we hypothesized that B cell alterations in bone marrow account for the reduced therapeutic potential of post-MI and aged donor BMCs. Injection of BMCs from increasingly aged donor mice resulted in progressively poorer cardiac function and larger infarct size. Flow cytometry revealed fewer B cells in aged donor bone marrow. Therapeutic efficacy of young healthy donor BMCs was reduced by depletion of B cells. Implantation of intact or lysed B cells improved cardiac function, whereas intact or lysed T cells provided only minor benefit. We conclude that B cells play an important paracrine role in effective BMC therapy for MI. Reduction of bone marrow B cells because of age or MI may partially explain why clinical autologous cell therapy has not matched the success of rodent experiments.
Collapse
Affiliation(s)
- Songtao An
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Cardiology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xiaoyin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melissa A Ruck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hilda J Rodriguez
- Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dmitry S Kostyushev
- Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Monika Varga
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emmy Luu
- Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ronak Derakhshandeh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sergey V Suchkov
- Center for Personalized Medicine, Sechenov University, Moscow, Russia; Department for Translational Medicine, Moscow Engineering Physical Institute, Moscow, Russia
| | - Scott C Kogan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle L Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew L Springer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Wen SW, Wong CHY. Aging- and vascular-related pathologies. Microcirculation 2018; 26:e12463. [PMID: 29846990 DOI: 10.1111/micc.12463] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/27/2018] [Indexed: 12/13/2022]
Abstract
Our aging population is set to grow considerably in the coming decades. In fact, the number of individuals older than 65 years will double by 2050. This projected increase in people living with extended life expectancy represents an inevitable upsurge in the presentation of age-related pathologies. However, our current understanding of the impact of aging on a number of biological processes is unfortunately inadequate. Cardiovascular, cerebrovascular, and neurodegenerative diseases are particularly prevalent in the elderly population. Intriguingly, these pathologies are all associated with vascular dysfunction, suggesting that the process of aging can induce structural and functional impairments in vascular networks. Together with elevated cell senescence, pre-existing comorbidities, and the emerging concept of age-associated inflammatory imbalance, impaired vascular functions can significantly increase one's risk in acquiring age-related diseases. In this short review, we highlight some current clinical and experimental evidence of how biological aging contributes to three vascular-associated pathologies: atherosclerosis, stroke, and Alzheimer's disease.
Collapse
Affiliation(s)
- Shu Wen Wen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Vic., Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
26
|
Zhang C, Wang J, Ma X, Wang W, Zhao B, Chen Y, Chen C, Bihl JC. ACE2-EPC-EXs protect ageing ECs against hypoxia/reoxygenation-induced injury through the miR-18a/Nox2/ROS pathway. J Cell Mol Med 2018; 22:1873-1882. [PMID: 29363860 PMCID: PMC5824419 DOI: 10.1111/jcmm.13471] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/29/2017] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is one of the mechanisms of ageing‐associated vascular dysfunction. Angiotensin‐converting enzyme 2 (ACE2) and microRNA (miR)‐18a have shown to be down‐regulated in ageing cells. Our previous study has shown that ACE2‐primed endothelial progenitor cells (ACE2‐EPCs) have protective effects on endothelial cells (ECs), which might be due to their released exosomes (EXs). Here, we aimed to investigate whether ACE2‐EPC‐EXs could attenuate hypoxia/reoxygenation (H/R)‐induced injury in ageing ECs through their carried miR‐18a. Young and angiotensin II‐induced ageing ECs were subjected to H/R and co‐cultured with vehicle (medium), EPC‐EXs, ACE2‐EPCs‐EXs, ACE2‐EPCs‐EXs + DX600 or ACE2‐EPCs‐EXs with miR‐18a deficiency (ACE2‐EPCs‐EXsanti‐miR‐18a). Results showed (1) ageing ECs displayed increased senescence, apoptosis and ROS production, but decreased ACE2 and miR‐18a expressions and tube formation ability; (2) under H/R condition, ageing ECs showed higher rate of apoptosis, ROS overproduction and nitric oxide reduction, up‐regulation of Nox2, down‐regulation of ACE2, miR‐18a and eNOS, and compromised tube formation ability; (3) compared with EPC‐EXs, ACE2‐EPC‐EXs had better efficiencies on protecting ECs from H/R‐induced changes; (4) The protective effects were less seen in ACE2‐EPCs‐EXs + DX600 and ACE2‐EPCs‐EXsanti‐miR‐18a groups. These data suggest that ACE‐EPCs‐EXs have better protective effects on H/R injury in ageing ECs which could be through their carried miR‐18a and subsequently down‐regulating the Nox2/ROS pathway.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.,Institute of Spinal Surgery and Neurology, The First Affiliated Hospital of South China University, Hengyang, China
| | - Jinju Wang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wenjun Wang
- Institute of Spinal Surgery and Neurology, The First Affiliated Hospital of South China University, Hengyang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Can Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ji C Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
27
|
Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting Old through the Blood: Circulating Molecules in Aging and Senescence of Cardiovascular Regenerative Cells. Front Cardiovasc Med 2017; 4:62. [PMID: 29057227 PMCID: PMC5635266 DOI: 10.3389/fcvm.2017.00062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells.
Collapse
Affiliation(s)
- Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| |
Collapse
|
28
|
Xu X, Wang B, Ren C, Hu J, Greenberg DA, Chen T, Xie L, Jin K. Age-related Impairment of Vascular Structure and Functions. Aging Dis 2017; 8:590-610. [PMID: 28966804 PMCID: PMC5614324 DOI: 10.14336/ad.2017.0430] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/30/2017] [Indexed: 12/12/2022] Open
Abstract
Among age-related diseases, cardiovascular and cerebrovascular diseases are major causes of death. Vascular dysfunction is a key characteristic of these diseases wherein age is an independent and essential risk factor. The present work will review morphological alterations of aging vessels in-depth, which includes the discussion of age-related microvessel loss and changes to vasculature involving the capillary basement membrane, intima, media, and adventitia as well as the accompanying vascular dysfunctions arising from these alterations.
Collapse
Affiliation(s)
- Xianglai Xu
- 1Zhongshan Hospital, Fudan University, Shanghai 200032, China.,2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Brian Wang
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Changhong Ren
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.,4Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China
| | - Jiangnan Hu
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | | | - Tianxiang Chen
- 6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Xie
- 3Department of Urology, the First Affiliated Hospital, Zhejiang University, Zhejiang Province, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| |
Collapse
|
29
|
Abstract
Vascular complications contribute significantly to morbidity and mortality of diabetes mellitus. The primary cause of vascular complications in diabetes mellitus is hyperglycaemia, associated with endothelial dysfunction and impaired neovascularization. Circulating endothelial progenitor cells was shown to play important roles in vascular repair and promoting neovascularization. In this review, we will demonstrate the individual effect of high glucose on endothelial progenitor cells. Endothelial progenitor cells isolated from healthy subjects exposed to high glucose conditions or endothelial progenitor cells isolated from diabetic patients exhibit reduced number of endothelial cell colony forming units, impaired abilities of differentiation, proliferation, adhesion and migration, tubulization, secretion, mobilization and homing, whereas enhanced senescence. Increased production of reactive oxygen species by the mitochondria seems to play a crucial role in high glucose-induced endothelial progenitor cells deficit. Later, we will review the agents that might be used to alleviate dysfunction of endothelial progenitor cells induced by high glucose. The conclusions are that the relationship between hyperglycaemia and endothelial progenitor cells dysfunction is only beginning to be recognized, and future studies should pay more attention to the haemodynamic environment of endothelial progenitor cells and ageing factors to discover novel treatment agents.
Collapse
Affiliation(s)
- Hongyan Kang
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xuejiao Ma
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiajia Liu
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- 2 National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xiaoyan Deng
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
30
|
Song X, Yang B, Qiu F, Jia M, Fu G. High glucose and free fatty acids induce endothelial progenitor cell senescence via PGC-1α/SIRT1 signaling pathway. Cell Biol Int 2017; 41:1146-1159. [PMID: 28786152 DOI: 10.1002/cbin.10833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/28/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaoxiao Song
- The Department of Endocrinology; Second Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou 310009 Zhejiang Province China
- The Department of Cardiology; Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University; Hangzhou 310016 Zhejiang Province China
| | - Boyun Yang
- The Department of Endocrinology; Second Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou 310009 Zhejiang Province China
| | - Fuyu Qiu
- The Department of Cardiology; Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University; Hangzhou 310016 Zhejiang Province China
| | - Minyue Jia
- The Department of Endocrinology; Second Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou 310009 Zhejiang Province China
| | - Guosheng Fu
- The Department of Cardiology; Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University; Hangzhou 310016 Zhejiang Province China
| |
Collapse
|
31
|
Xie W, Ren M, Li L, Zhu Y, Chu Z, Zhu Z, Ruan Q, Lou W, Zhang H, Han Z, Huang X, Xiang W, Wang T, Yao P. Perinatal testosterone exposure potentiates vascular dysfunction by ERβ suppression in endothelial progenitor cells. PLoS One 2017; 12:e0182945. [PMID: 28809938 PMCID: PMC5557363 DOI: 10.1371/journal.pone.0182945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/27/2017] [Indexed: 12/04/2022] Open
Abstract
Recent clinical cohort study shows that testosterone therapy increases cardiovascular diseases in men with low testosterone levels, excessive circulating androgen levels may play a detrimental role in the vascular system, while the potential mechanism and effect of testosterone exposure on the vascular function in offspring is still unknown. Our preliminary results showed that perinatal testosterone exposure in mice induces estrogen receptor β (ERβ) suppression in endothelial progenitor cells (EPCs) in offspring but not mothers, while estradiol (E2) had no effect. Further investigation showed that ERβ suppression is due to perinatal testosterone exposure-induced epigenetic changes with altered DNA methylation on the ERβ promoter. During aging, EPCs with ERβ suppression mobilize to the vascular wall, differentiate into ERβ-suppressed mouse endothelial cells (MECs) with downregulated expression of SOD2 (mitochondrial superoxide dismutase) and ERRα (estrogen-related receptor α). This results in reactive oxygen species (ROS) generation and DNA damage, and the dysfunction of mitochondria and fatty acid metabolism, subsequently potentiating vascular dysfunction. Bone marrow transplantation of EPCs that overexpressed with either ERβ or a SIRT1 single mutant SIRT1-C152(D) that could modulate SIRT1 phosphorylation significantly ameliorated vascular dysfunction, while ERβ knockdown worsened the problem. We conclude that perinatal testosterone exposure potentiates vascular dysfunction through ERβ suppression in EPCs.
Collapse
Affiliation(s)
- Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, P.R.China
| | - Ling Li
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou, P.R.China
| | - Yin Zhu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Zhigang Chu
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
| | - Zhigang Zhu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
| | - Wenting Lou
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
| | - Haimou Zhang
- School of Life Sciences, Hubei University, Wuhan, P.R.China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, P.R.China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
| | - Wei Xiang
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou, P.R.China
| | - Tao Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, P.R.China
| | - Paul Yao
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan, P.R.China
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou, P.R.China
| |
Collapse
|
32
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
33
|
Kokai LE, Traktuev DO, Zhang L, Merfeld-Clauss S, DiBernardo G, Lu H, Marra KG, Donnenberg A, Donnenberg V, Meyer EM, Fodor PB, March KL, Rubin JP. Adipose Stem Cell Function Maintained with Age: An Intra-Subject Study of Long-Term Cryopreserved Cells. Aesthet Surg J 2017; 37:454-463. [PMID: 28364523 DOI: 10.1093/asj/sjw197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background The progressive decline in tissue mechanical strength that occurs with aging is hypothesized to be due to a loss of resident stem cell number and function. As such, there is concern regarding use of autologous adult stem cell therapy in older patients. To abrogate this, many patients elect to cryopreserve the adipose stromal-vascular fraction (SVF) of lipoaspirate, which contains resident adipose stem cells (ASC). However, it is not clear yet if there is any clinical benefit from banking cells at a younger age. Objectives We performed a comparative analysis of SVF composition and ASC function from cells obtained under GMP conditions from the same three patients with time gap of 7 to 12 years. Methods SVF, cryobanked under good manufacturing practice (GMP) conditions, was thawed and cell yield, viability, and cellular composition were assessed. In parallel, ASC proliferation and efficiency of tri-lineage differentiation were evaluated. Results The results showed no significant differences existed in cell yield and SVF subpopulation composition within the same patient between harvest procedures 7 to 12 years apart. Further, no change in proliferation rates of cultured ASCs was found, and expanded cells from all patients were capable of tri-lineage differentiation. Conclusions By harvesting fat from the same patient at two time points, we have shown that despite the natural human aging process, the prevalence and functional activity of ASCs in an adult mesenchymal stem cell, is highly preserved. Level of Evidence 5.
Collapse
Affiliation(s)
- Lauren E Kokai
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dmitry O Traktuev
- Division of Cardiology, Indiana School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Liyong Zhang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Hongyan Lu
- Division of Cardiology, Indiana School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Albert Donnenberg
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vera Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Michael Meyer
- Flow Cytometry Facility, University of Pittsburgh Cancer Center, Pittsburgh, PA, USA
| | - Peter B Fodor
- Plastic surgeon in private practice in Santa Monica, CA, USA
| | - Keith L March
- Division of Cardiology, Indiana School of Medicine, Indiana University, Indianapolis, IN, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Xu HL, Yu WZ, Lu CT, Li XK, Zhao YZ. Delivery of growth factor-based therapeutics in vascular diseases: Challenges and strategies. Biotechnol J 2017; 12. [PMID: 28296342 DOI: 10.1002/biot.201600243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
Abstract
Either cardiovascular or peripheral vascular diseases have become the major cause of morbidity and mortality worldwide. Recently, growth factors therapeutics, whatever administrated in form of exogenous growth factors or their relevant genes have been discovered to be an effective strategy for the prevention and therapy of vascular diseases, because of their promoting angiogenesis. Besides, as an alternative, stem cell-based therapy has been also developed in view of their paracrine-mediated effect or ability of differentiation toward angiogenesis-related cells under assistance of growth factors. Despite of being specific and potent, no matter growth factors or stem cells-based therapy, their full clinical transformation is limited from bench to bedside. In this review, the potential choices of therapeutic modes based on types of different growth factors or stem cells were firstly summarized for vascular diseases. The confronted various challenges such as lack of non-invasive delivery method, the physiochemical challenge, the short half-life time, and poor cell survival, were carefully analyzed for these therapeutic modes. Various strategies to overcome these limitations are put forward from the perspective of drug delivery. The expertised design of a suitable delivery form will undoubtedly provide valuable insight into their clinical application in the regenerative medicine.
Collapse
Affiliation(s)
- He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Wen-Ze Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China.,Collaborative Innovation Center of Biomedical Science by Wenzhou University & Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
35
|
Huang Q, Yang Z, Zhou JP, Luo Y. HMGB1 induces endothelial progenitor cells apoptosis via RAGE-dependent PERK/eIF2α pathway. Mol Cell Biochem 2017; 431:67-74. [PMID: 28251435 DOI: 10.1007/s11010-017-2976-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
Studies have demonstrated that the high-mobility group 1B protein (HMGB1) could regulate endothelial progenitor cell (EPC) homing, but the effect of HMGB1 on EPC apoptosis and associated mechanisms are still unclear. The aim of this study was to investigate the effects of HMGB1 on EPC apoptosis and the possible involvement of the endoplasmic reticulum (ER) stress pathway. EPC apoptosis was determined by flow cytometry. The expressions of PERK, eIF2α, and CHOP were detected by western blotting. Additionally, the effects of PERK shRNA on the biological behaviors of EPCs were assessed. Our results showed that incubation of EPCs with HMGB1 (0.1-1 μg/ml) for 12-48 h induced apoptosis as well as activated ER stress transducers, as assessed by up-regulating PERK protein expression and eIF2α phosphorylation in a dose or time-dependent manner. Moreover, HMGB1-mediated EPC apoptosis and CHOP expression were dramatically suppressed by PERK shRNA or a specific eIF2α inhibitor (salubrinal). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) markedly inhibited HMGB1-induced EPC apoptosis and ER stress marker protein (PERK, eIF2α, and CHOP) expression levels. Our novel findings suggest that HMGB1 triggered EPC apoptosis in a manner of RAGE-mediated activation of the PERK/eIF2α pathway.
Collapse
Affiliation(s)
- Qun Huang
- Department of Child Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Zhen Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Ji-Peng Zhou
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Xiangya Road 87#, Changsha, 410008, Hunan, China.
| | - Ying Luo
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Xiangya Road 87#, Changsha, 410008, Hunan, China.
| |
Collapse
|
36
|
Zhu G, Wang J, Song M, Zhou F, Fu D, Ruan G, Bai Y, Yu Z, Zhang L, Zhu X, Huang L, Pang R, Pan X. Overexpression of Jagged1 Ameliorates Aged Rat-Derived Endothelial Progenitor Cell Functions and Improves Its Transfusion Efficiency for Rat Balloon-Induced Arterial Injury. Ann Vasc Surg 2017; 41:241-258. [PMID: 28163178 DOI: 10.1016/j.avsg.2016.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/03/2016] [Accepted: 10/17/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Endothelial progenitor cell (EPC) has significant age-dependent alterations in properties, but the role of Jagged1 in aging-induced decline of EPC functions remains unclear. METHODS 2- and 20-month old healthy male Sprague-Dawley rats were used in present study. Jagged1 gene transfection was performed in EPC isolated from aged (AEPC) and young rats (YEPC), respectively. Experiments were divided into 4 groups: (1) pIRES2-EGFP (PE) group, (2) PE-combined N-[N-(3, 5-difluoro-phenacetyl)-1- alany1]-S-phenyglycine t-butyl ester (DAPT) (PE + D) group, (3) pIRES2 EGFP-Jagged1 (PEJ) group, and (4) PEJ combined DAPT (PEJ + D) group. Notch molecules were detected by real-time quantitative polymerase chain reaction or Western blotting. CD34, CD133, CD45, and KDR markers were detected by flow cytometry. EPC migration and proliferation were detected with a modified Boyden chamber and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, respectively; the tube formation ability was assayed by in vitro angiogenesis kit; EPC transfusion after Jagged1 gene transfection was performed in rat carotid artery injury models. RESULTS Jagged1 gene transfection effectively activates notch-signaling pathway. Compared with PE groups, overexpression of Jagged1 significantly promoted AEPC functions including proliferation, migration, the tube formation ability, and cell differentiation, these effects could be reasonably diminished by DAPT. In vivo study demonstrated that Jagged1 overexpressing also significantly promoted AEPC homing to the vascular injury sites and decreases the neointima formation after vascular injury. CONCLUSIONS Overexpression of Jagged1 ameliorates aged rat-derived EPC functions and increases its transfusion efficiency for balloon-induced rat arterial injury.
Collapse
Affiliation(s)
- Guangxu Zhu
- Cell Biological Therapy Center, Cell Biological Medicine Integrated Engineering Laboratory of State and Region, Department of Clinical Laboratory, Kunming General Hospital of Chengdu Military Area Command of PLA, Kunming, Yunnan Province, People's Republic of China.
| | - Jinxiang Wang
- Cell Biological Therapy Center, Cell Biological Medicine Integrated Engineering Laboratory of State and Region, Department of Clinical Laboratory, Kunming General Hospital of Chengdu Military Area Command of PLA, Kunming, Yunnan Province, People's Republic of China
| | - Mingbao Song
- Cardiovascular Institute, Department of Cardiovascular Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Fang Zhou
- Cell Biological Therapy Center, Cell Biological Medicine Integrated Engineering Laboratory of State and Region, Department of Clinical Laboratory, Kunming General Hospital of Chengdu Military Area Command of PLA, Kunming, Yunnan Province, People's Republic of China; Department of Clinical Laboratory, PLA Kunming General Hospital Clinical College of Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Dagan Fu
- Cell Biological Therapy Center, Cell Biological Medicine Integrated Engineering Laboratory of State and Region, Department of Clinical Laboratory, Kunming General Hospital of Chengdu Military Area Command of PLA, Kunming, Yunnan Province, People's Republic of China
| | - Guangping Ruan
- Cell Biological Therapy Center, Cell Biological Medicine Integrated Engineering Laboratory of State and Region, Department of Clinical Laboratory, Kunming General Hospital of Chengdu Military Area Command of PLA, Kunming, Yunnan Province, People's Republic of China
| | - Yingying Bai
- Cell Biological Therapy Center, Cell Biological Medicine Integrated Engineering Laboratory of State and Region, Department of Clinical Laboratory, Kunming General Hospital of Chengdu Military Area Command of PLA, Kunming, Yunnan Province, People's Republic of China
| | - Zhengping Yu
- Institute of Biological Effect of Electromagnetic Radiation, Department of Occupational Health, School of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Leilei Zhang
- Cell Biological Therapy Center, Cell Biological Medicine Integrated Engineering Laboratory of State and Region, Department of Clinical Laboratory, Kunming General Hospital of Chengdu Military Area Command of PLA, Kunming, Yunnan Province, People's Republic of China
| | - Xiangqing Zhu
- Cell Biological Therapy Center, Cell Biological Medicine Integrated Engineering Laboratory of State and Region, Department of Clinical Laboratory, Kunming General Hospital of Chengdu Military Area Command of PLA, Kunming, Yunnan Province, People's Republic of China
| | - Lan Huang
- Cardiovascular Institute, Department of Cardiovascular Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Rongqing Pang
- Cell Biological Therapy Center, Cell Biological Medicine Integrated Engineering Laboratory of State and Region, Department of Clinical Laboratory, Kunming General Hospital of Chengdu Military Area Command of PLA, Kunming, Yunnan Province, People's Republic of China
| | - Xinghua Pan
- Cell Biological Therapy Center, Cell Biological Medicine Integrated Engineering Laboratory of State and Region, Department of Clinical Laboratory, Kunming General Hospital of Chengdu Military Area Command of PLA, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
37
|
Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, Zawadzki RJ, Werner JS, Nolta JA. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res 2017; 56:148-165. [PMID: 27784628 PMCID: PMC5237620 DOI: 10.1016/j.preteyeres.2016.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy.
Collapse
Affiliation(s)
- Susanna S Park
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Elad Moisseiev
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Gerhard Bauer
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Johnathon D Anderson
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Maria B Grant
- Department of Ophthalmology, Glick Eye Institute, Indiana University, Indianapolis, IN, USA.
| | - Azhar Zam
- UC Davis RISE Eye-Pod Small Animal Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA.
| | - Robert J Zawadzki
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA; UC Davis RISE Eye-Pod Small Animal Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA.
| | - John S Werner
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Jan A Nolta
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
38
|
Pierpaoli E, Moresi R, Orlando F, Malavolta M, Provinciali M. Effect of hyperglycemia on the number of CD117 + progenitor cells and their differentiation toward endothelial progenitor cells in young and old ages. Mech Ageing Dev 2016; 159:31-36. [PMID: 26876314 DOI: 10.1016/j.mad.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 01/13/2023]
Abstract
Dysfunction of endothelial progenitor cells (EPCs) has been reported either in aging or diabetes, though the influence of an "old" environment on numerical and functional changes of diabetes associated EPCs is not known. We evaluated the effect of both aging and early stage of streptozotocin-induced diabetes on the number of bone marrow-derived CD117+ progenitor cells, and on their differentiation in vitro toward EPCs. The phenotype of progenitor cells and the uptake of acetylated-low density lipoprotein (Ac-LDL) were evaluated after cell culture in VEGF, FGF-1, and IGF-1 supplemented medium. Hyperglycemia similarly reduced the number of CD117+ cells both in young and old mice. CD117+ cells from young mice differentiated better than those from old animals "in vitro", with a greater reduction of CD117+ cells and an higher increase of CD184+VEGFR-2+ cells. In diabetic mice, in vitro CD117+ cells differentiation was significantly reduced in young animals. Diabetes did not impact on the scarce differentiation of CD117+ cells from old mice. Hyperglycemia reduced the uptake of acLDL by EPCs greatly in young than in old mice. These findings indicate that part of the EPCs functional alterations induced by hyperglicemia in young mice are observed in normal aged mice.
Collapse
Affiliation(s)
- Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Raffaella Moresi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy.
| |
Collapse
|
39
|
Nelson TJ, Cantero Peral S. Stem Cell Therapy and Congenital Heart Disease. J Cardiovasc Dev Dis 2016; 3:jcdd3030024. [PMID: 29367570 PMCID: PMC5715673 DOI: 10.3390/jcdd3030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/07/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
For more than a decade, stem cell therapy has been the focus of intensive efforts for the treatment of adult heart disease, and now has promise for treating the pediatric population. On the basis of encouraging results in the adult field, the application of stem cell-based strategies in children with congenital heart disease (CHD) opens a new therapy paradigm. To date, the safety and efficacy of stem cell-based products to promote cardiac repair and recovery in dilated cardiomyopathy and structural heart disease in infants have been primarily demonstrated in scattered clinical case reports, and supported by a few relevant pre-clinical models. Recently the TICAP trial has shown the safety and feasibility of intracoronary infusion of autologous cardiosphere-derived cells in children with hypoplastic left heart syndrome. A focus on preemptive cardiac regeneration in the pediatric setting may offer new insights as to the timing of surgery, location of cell-based delivery, and type of cell-based regeneration that could further inform acquired cardiac disease applications. Here, we review the current knowledge on the field of stem cell therapy and tissue engineering in children with CHD, and discuss the gaps and future perspectives on cell-based strategies to treat patients with CHD.
Collapse
Affiliation(s)
- Timothy J Nelson
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
- Transplant Center, Mayo Clinic, Rochester, MN 55905, USA.
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Susana Cantero Peral
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Stempien-Otero A, Helterline D, Plummer T, Farris S, Prouse A, Polissar N, Stanford D, Mokadam NA. Mechanisms of bone marrow-derived cell therapy in ischemic cardiomyopathy with left ventricular assist device bridge to transplant. J Am Coll Cardiol 2015; 65:1424-34. [PMID: 25857908 DOI: 10.1016/j.jacc.2015.01.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/22/2014] [Accepted: 01/27/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Clinical trials report improvements in function and perfusion with direct injection of bone marrow cells into the hearts of patients with ischemic cardiomyopathy. Preclinical data suggest these cells improve vascular density, which would be expected to decrease fibrosis and inflammation. OBJECTIVES The goal of this study was to test the hypothesis that bone marrow stem cells (CD34+) will improve histological measurements of vascularity, fibrosis, and inflammation in human subjects undergoing left ventricular assist device (LVAD) placement as a bridge to cardiac transplantation. METHODS Subjects with ischemic cardiomyopathy who were scheduled for placement of an LVAD as a bridge to transplantation underwent bone marrow aspiration the day before surgery; the bone marrow was processed into cell fractions (bone marrow mononuclear cells, CD34+, and CD34-). At LVAD implantation, all fractions and a saline control were injected epicardially into predetermined areas and each injection site marked. At the time of transplantation, injected areas were collected. Data were analyzed by paired Student t test comparing the effect of cell fractions injected within each subject. RESULTS Six subjects completed the study. There were no statistically significant differences in complications with the procedure versus control subjects. Histological analysis indicated that myocardium injected with CD34+ cells had decreased density of endothelial cells compared to saline-injected myocardium. There were no significant differences in fibrosis or inflammation between groups; however, density of activated fibroblasts was decreased in both CD34+ and CD34- injected areas. CONCLUSIONS Tissue analysis does not support the hypothesis that bone marrow-derived CD34+ cells promote increased vascular tissue in humans with ischemic cardiomyopathy via direct injection.
Collapse
Affiliation(s)
- April Stempien-Otero
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington.
| | - Deri Helterline
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Tabitha Plummer
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Stephen Farris
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Andrew Prouse
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Nayak Polissar
- The Mountain-Whisper-Light Statistics, Seattle, Washington
| | - Derek Stanford
- The Mountain-Whisper-Light Statistics, Seattle, Washington
| | - Nahush A Mokadam
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
41
|
Lan H, Wang Y, Yin T, Wang Y, Liu W, Zhang X, Yu Q, Wang Z, Wang G. Progress and prospects of endothelial progenitor cell therapy in coronary stent implantation. J Biomed Mater Res B Appl Biomater 2015; 104:1237-47. [PMID: 26059710 DOI: 10.1002/jbm.b.33398] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/20/2014] [Accepted: 02/16/2015] [Indexed: 01/04/2023]
Abstract
Drug-eluting stents (DES) have been widely used to treat coronary artery disease (CAD) since their clinical use has significantly reduced the occurrence of in-stent restenosis (ISR) as compared with the initially applied bare-metal stents (BMS). However, analyses of long-term clinical outcome have raised concerns about the serious safety problem of DES, such as ISR caused by late or very late thrombosis. Various studies showed that those complications were associated with vascular endothelial injury/dysfunction or endothelialization delaying. Recently, through biological characterization of endothelial progenitor cells (EPCs), mechanistic understanding of rapid re-endothelialization of the vascular injury sites after coronary stenting has become possible and is a new research hotspot in the prevention of ISR and late/very late stent thrombosis. It has been well recognized that the formation of a functional endothelial layer from EPCs requires a coordinated sequence of multistep and signaling events, which includes cell mobilization, adhesion, migration and finally the differentiation to vascular endothelial cells (VECs). In this review, we summarize and discuss the currently relevant information about EPCs, the mechanism of DES interfering with the natural vascular healing process in preventing or delaying the formation of a functional endothelial layer, and EPCs-mediated acceleration of re-endothelialization at vascular injury sites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1237-1247, 2016.
Collapse
Affiliation(s)
- Hualin Lan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yi Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Tieyin Yin
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Xiaojuan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Qinsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri
| | - Zhaoxu Wang
- Laboratory of Biomaterials and Tissue Engineering, National Institutes for Food and Drug Control, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| |
Collapse
|
42
|
Wang SS, Ren J. Aging as an essential modifier for the efficacy in mesenchymal stem cell therapy through an inositol phosphate 6 kinase-inositol pyrophosphate 7-dependent mechanism. Stem Cell Res Ther 2015; 5:43. [PMID: 25157976 PMCID: PMC4055085 DOI: 10.1186/scrt432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells originated from bone marrow and other adult tissues. MSCs are capable of differentiating into adipogenic, osteogenic, and chondrogenic lineages. Transplantation of bone marrow-derived MSCs has displayed some promise in the management against ischemic injuries such as myocardial infarction. Aging exhibited increased vulnerability of MSCs to hypoxic injury, higher inositol pyrophosphate 7 (IP7) levels, and decreased Akt phosphorylation. Inhibition of inositol hexakis phosphate kinases (IP6Ks) activates Akt signaling, decreases apoptosis, and modulates paracrine profiles in aged MSCs, and this greatly enhances the therapeutic efficacy of aged MSCs in the face of hypoxic injury.
Collapse
|
43
|
Abstract
Very young mammals have an impressive cardiac regeneration capacity. In contrast, cardiac regeneration is very limited in adult humans. The hearts of young children have a higher regenerative capacity compared with adults, as, for example, seen after surgical correction of an anomalous left coronary artery arising from the pulmonary artery or in children with univentricular hearts, who present enormous morphological changes after volume unloading. In addition, the enormous regenerative potential of growing children's hearts is reflected in the spontaneous courses of children with severely deteriorated cardiac function (e.g., patients with dilated cardiomyopathy). The extent of this regenerative capacity and its time dependency remain to be elucidated in the future and should be exploited to improve the treatment of children with severe heart insufficiency.
Collapse
Affiliation(s)
- Stefan Rupp
- Pediatric Heart Center, University of Giessen and Marburg, Feulgenstrasse 12, 35390, Giessen, Germany,
| | | |
Collapse
|
44
|
Golpanian S, El-Khorazaty J, Mendizabal A, DiFede DL, Suncion VY, Karantalis V, Fishman JE, Ghersin E, Balkan W, Hare JM. Effect of aging on human mesenchymal stem cell therapy in ischemic cardiomyopathy patients. J Am Coll Cardiol 2015; 65:125-32. [PMID: 25593053 DOI: 10.1016/j.jacc.2014.10.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/21/2014] [Accepted: 10/14/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND The role of patient age in the efficacy of mesenchymal stem cell (MSC) therapy in ischemic cardiomyopathy (ICM) is controversial. OBJECTIVES This study sought to determine whether the therapeutic effect of culture-expanded MSCs persists, even in older subjects. METHODS Patients with ICM who received MSCs via transendocardial stem cell injection (TESI) as part of the TAC-HFT (Transendocardial Autologous Cells in Ischemic Heart Failure) (n = 19) and POSEIDON (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis) (n = 30) clinical trials were divided into 2 age groups: younger than 60 and 60 years of age and older. Functional capacity was measured by 6-min walk distance (6MWD) and quality of life using the Minnesota Living With Heart Failure Questionnaire (MLHFQ) score, measured at baseline, 6 months, and 1 year post-TESI. Various cardiac imaging parameters, including absolute scar size, were compared at baseline and 1 year post-TESI. RESULTS The mean 6MWD was similar at baseline and increased at 1 year post-TESI in both groups: 48.5 ± 14.6 m (p = 0.001) for the younger and 35.9 ± 18.3 m (p = 0.038) for the older participants (p = NS between groups). The older group exhibited a significant reduction in MLHFQ score (-7.04 ± 3.54; p = 0.022), whereas the younger than 60 age group had a borderline significant reduction (-11.22 ± 5.24; p = 0.058) from baseline (p = NS between groups). Although there were significant reductions in absolute scar size from baseline to 1 year post-TESI, the effect did not differ by age. CONCLUSIONS MSC therapy with TESI in ICM patients improves 6MWD and MLHFQ score and reduces myocardial infarction size. Importantly, older individuals did not have an impaired response to MSC therapy.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | - Darcy L DiFede
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Viky Y Suncion
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Vasileios Karantalis
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Joel E Fishman
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Eduard Ghersin
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
45
|
Abstract
Aging is marked by changes that affect organs and resident stem cell function. Shorting of telomeres, DNA damage, oxidative stress, deregulation of genes and proteins, impaired cell-cell communication, and an altered systemic environment cause the eventual demise of cells. At the same time, reparative activities also decline. It is intriguing to correlate aging with the decline of regenerative abilities. Animal models with strong regenerative capabilities imply that aging processes might not be affecting regeneration. In this review, we selectively present age-dependent changes in stem/progenitor cells that are vital for tissue homeostasis and repair. In addition, the aging effect on regeneration following injury in organs such as lung, skeletal muscle, heart, nervous system, cochlear hair, lens, and liver are discussed. These tissues are also known for diseases such as heart attack, stroke, cognitive impairment, cataract, and hearing loss that occur mostly during aging in humans. Conclusively, vertebrate regeneration declines with age with the loss of stem/progenitor cell function. Future studies on improving the function of stem cells, along with studies in fish and amphibians where regeneration does not decline with age, will undoubtedly provide insights into both processes.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA
| | - Joelle A Baddour
- Department of Chemical and Materials Engineering and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA
| | - Panagiotis A Tsonis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA.
| |
Collapse
|
46
|
Scioli MG, Bielli A, Arcuri G, Ferlosio A, Orlandi A. Ageing and microvasculature. Vasc Cell 2014; 6:19. [PMID: 25243060 PMCID: PMC4169693 DOI: 10.1186/2045-824x-6-19] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022] Open
Abstract
A decline in the function of the microvasculature occurs with ageing. An impairment of endothelial properties represents a main aspect of age-related microvascular alterations. Endothelial dysfunction manifests itself through a reduced angiogenic capacity, an aberrant expression of adhesion molecules and an impaired vasodilatory function. Increased expression of adhesion molecules amplifies the interaction with circulating factors and inflammatory cells. The latter occurs in both conduit arteries and resistance arterioles. Age-related impaired function also associates with phenotypic alterations of microvascular cells, such as endothelial cells, smooth muscle cells and pericytes. Age-related morphological changes are in most of cases organ-specific and include microvascular wall thickening and collagen deposition that affect the basement membrane, with the consequent perivascular fibrosis. Data from experimental models indicate that decreased nitric oxide (NO) bioavailability, caused by impaired eNOS activity and NO inactivation, is one of the causes responsible for age-related microvascular endothelial dysfunction. Consequently, vasodilatory responses decline with age in coronary, skeletal, cerebral and vascular beds. Several therapeutic attempts have been suggested to improve microvascular function in age-related end-organ failure, and include the classic anti-atherosclerotic and anti-ischemic treatments, and also new innovative strategies. Change of life style, antioxidant regimens and anti-inflammatory treatments gave the most promising results. Research efforts should persist to fully elucidate the biomolecular basis of age-related microvascular dysfunction in order to better support new therapeutic strategies aimed to improve quality of life and to reduce morbidity and mortality among the elderly patients.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Alessandra Bielli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Gaetano Arcuri
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Amedeo Ferlosio
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| |
Collapse
|
47
|
Loss of Sirt3 limits bone marrow cell-mediated angiogenesis and cardiac repair in post-myocardial infarction. PLoS One 2014; 9:e107011. [PMID: 25192254 PMCID: PMC4156371 DOI: 10.1371/journal.pone.0107011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/07/2014] [Indexed: 12/22/2022] Open
Abstract
Sirtuin-3 (Sirt3) has a critical role in the regulation of human aging and reactive oxygen species (ROS) formation. A recent study has identified Sirt3 as an essential regulator of stem cell aging. This study investigated whether Sirt3 is necessary for bone marrow cell (BMC)-mediated cardiac repair in post-myocardial infarction (MI). In vitro, BMC-derived endothelial progenitor cells (EPCs) from wild type (WT) and Sirt3KO mice were cultured. EPC angiogenesis, ROS formation and apoptosis were assessed. In vivo, WT and Sirt3 KO mice were subjected to MI and BMCs from WT and Sirt3 KO mice were injected into ischemic area immediately. The expression of VEGF and VEGFR2 was reduced in Sirt3KO-EPCs. Angiogenic capacities and colony formation were significantly impaired in Sirt3KO-EPCs compared to WT-EPCs. Loss of Sirt3 further enhanced ROS formation and apoptosis in EPCs. Overexpression of Sirt3 or treatment with NADPH oxidase inhibitor apocynin (Apo, 200 and 400 microM) rescued these abnormalities. In post-MI mice, BMC treatment increased number of Sca1+/c-kit+ cells; enhanced VEGF expression and angiogenesis whereas Sirt3KO-BMC treatment had little effects. BMC treatment also attenuated NADPH oxidase subunits p47phox and gp91phox expression, and significantly reduced ROS formation, apoptosis, fibrosis and hypertrophy in post-MI mice. Sirt3KO-BMC treatment did not display these beneficial effects. In contrast, Sirt3KO mice treated with BMCs from WT mice attenuated myocardial apoptosis, fibrosis and improved cardiac function. Our data demonstrate that Sirt3 is essential for BMC therapy; and loss of Sirt3 limits BMC-mediated angiogenesis and cardiac repair in post-MI.
Collapse
|
48
|
Tang Y, Jacobi A, Vater C, Zou X, Stiehler M. Salvianolic acid B protects human endothelial progenitor cells against oxidative stress-mediated dysfunction by modulating Akt/mTOR/4EBP1, p38 MAPK/ATF2, and ERK1/2 signaling pathways. Biochem Pharmacol 2014; 90:34-49. [PMID: 24780446 DOI: 10.1016/j.bcp.2014.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/01/2022]
Abstract
The vascular endothelium is specifically sensitive to oxidative stress, and this is one of the mechanisms that causes widespread endothelial dysfunction in most cardiovascular diseases and disorders. Protection against reactive oxygen species (ROS)-mediated oxidative damage via antioxidant mechanisms is essential for tissue maintenance and shows therapeutic potential for patients suffering from cardiovascular and metabolic disorders. Salvianolic acid B (SalB), a natural bioactive component known from Traditional Chinese Medicine, has been reported to exert cellular protection in various types of cells. However, the underlying mechanisms involved are not fully understood. Here, we showed that SalB significantly promoted the migratory and tube formation abilities of human bone marrow derived-endothelial progenitor cells (BM-EPCs) in vitro, and substantially abrogated hydrogen peroxide (H2O2)-induced cell damage. SalB down-regulated Nox4 and eNOS, as well as nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase expression upon H2O2 induction that in turn prevents oxidative-induced endothelial dysfunction. Moreover, SalB suppressed the Bax/Bcl-xL ratio and caspase-3 activation after H2O2 induction. Furthermore, our results provide mechanistic evidence that activation of the mTOR/p70S6K/4EBP1 pathways is required for both SalB-mediated angiogenic and protective effects against oxidative stress-induced cell injury in BM-EPCs. Suppression of MKK3/6-p38 MAPK-ATF2 and ERK1/2 signaling pathways by SalB significantly protected BM-EPCs against cell injury caused by oxidative stress via reduction of intracellular ROS levels and apoptosis. Taken together, by providing a mechanistic insight into the modulation of redox states in BM-EPCs by SalB, we suggest that SalB has a strong potential of being a new proangiogenic and cytoprotective therapeutic agent with applications in the field of endothelial injury-mediated vascular diseases.
Collapse
Affiliation(s)
- Yubo Tang
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Centre for Orthopaedics and Trauma Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany; Department of Pharmacy, the First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China.
| | - Angela Jacobi
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Centre for Orthopaedics and Trauma Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany.
| | - Corina Vater
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Centre for Orthopaedics and Trauma Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany.
| | - Xuenong Zou
- Department of Spinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China.
| | - Maik Stiehler
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Centre for Orthopaedics and Trauma Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
49
|
The rejuvenation of aged stem cells for cardiac repair. Can J Cardiol 2014; 30:1299-306. [PMID: 25092405 DOI: 10.1016/j.cjca.2014.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 01/11/2023] Open
Abstract
Rejuvenation is one of the greatest challenges of modern science. Aging affects every tissue and organ in the body, leading to a deterioration of normal function and inhibition of repair mechanisms. Cell therapy has received much attention for its potential to regenerate organs, but in the context of cardiac repair, the initial clinical trials in aged patients did not replicate the dramatic benefits recorded in preclinical studies with young animals. The benefits of autologous cell therapy are reduced in the elderly, the largest target group for regenerative medicine. Adult stem cell functionality decreases with age which impairs tissue regeneration. In this review we discuss the age-related changes in stem cell function, with particular attention to stem cell therapy in heart disease. We also focus on possible mechanisms of adult stem cell aging and targets for rejuvenation strategies to reverse the aging process. We provide useful insights on how to apply this knowledge to advance cellular therapies for heart disease.
Collapse
|
50
|
Wang S, Zhou Y, Andreyev O, Hoyt RF, Singh A, Hunt T, Horvath KA. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia. Exp Cell Res 2014; 323:56-65. [PMID: 24583397 DOI: 10.1016/j.yexcr.2014.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/25/2014] [Accepted: 02/16/2014] [Indexed: 11/29/2022]
Abstract
Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative (RT)PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions.
Collapse
Affiliation(s)
- Suna Wang
- Cellular Biology Section, Cardiothoracic Surgery Research Program, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yifu Zhou
- Cellular Biology Section, Cardiothoracic Surgery Research Program, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oleg Andreyev
- Cellular Biology Section, Cardiothoracic Surgery Research Program, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert F Hoyt
- Cellular Biology Section, Cardiothoracic Surgery Research Program, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avneesh Singh
- Cellular Biology Section, Cardiothoracic Surgery Research Program, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy Hunt
- Cellular Biology Section, Cardiothoracic Surgery Research Program, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keith A Horvath
- Cellular Biology Section, Cardiothoracic Surgery Research Program, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|