1
|
Savly O, Pereira SS, Ladin P. Complete Transposition of the Great Arteries: 5-Year Experience From a Single Center. Echocardiography 2024; 41:e15940. [PMID: 39381900 DOI: 10.1111/echo.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Complete transposition of the great arteries (TGA) is the most common cause of cyanosis in the first week of life. Prenatal diagnosis helps with counseling, planning delivery, and postnatal management for resource-rich health services. In a resource-limited setting, postnatal diagnosis is the norm. This work examines cases of complete TGA in one center in Cambodia without prenatal testing. Twenty-four cases were studied over 5 years. Complex TGA was frequently seen. The majority had normal coronary anatomy and arterial switch operation (ASO) was performed in most cases with a favorable outcome.
Collapse
Affiliation(s)
- Oung Savly
- Paediatric Cardiology, Kantha Bopha Children's Hospital, Phnom Penh, Cambodia
| | - Sujith S Pereira
- Neonatal Unit, Homerton University Hospital, Homerton Healthcare NHS Foundation Trust, London, UK, United Kingdom
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | - Ponn Ladin
- Paediatric Cardiac Surgery, Kantha Bopha Children's Hospital, Phnom Penh, Cambodia
| |
Collapse
|
2
|
Mongiat M, Pascal G, Poletto E, Williams DM, Iozzo RV. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. PROTEOGLYCAN RESEARCH 2024; 2:e22. [PMID: 39184370 PMCID: PMC11340296 DOI: 10.1002/pgr2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024]
Abstract
Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Davion M. Williams
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Johnson BB, Cosson MV, Tsansizi LI, Holmes TL, Gilmore T, Hampton K, Song OR, Vo NTN, Nasir A, Chabronova A, Denning C, Peffers MJ, Merry CLR, Whitelock J, Troeberg L, Rushworth SA, Bernardo AS, Smith JGW. Perlecan (HSPG2) promotes structural, contractile, and metabolic development of human cardiomyocytes. Cell Rep 2024; 43:113668. [PMID: 38198277 DOI: 10.1016/j.celrep.2023.113668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/-) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/- hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure.
Collapse
Affiliation(s)
- Benjamin B Johnson
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Marie-Victoire Cosson
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Lorenza I Tsansizi
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Terri L Holmes
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Katherine Hampton
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ok-Ryul Song
- The Francis Crick Institute, London NW1 1AT, UK; High-Throughput Screening Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Nguyen T N Vo
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aishah Nasir
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alzbeta Chabronova
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Chris Denning
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Catherine L R Merry
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - John Whitelock
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Linda Troeberg
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andreia S Bernardo
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK.
| | - James G W Smith
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
4
|
Houyel L. Human Genetics of d-Transposition of Great Arteries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:671-681. [PMID: 38884741 DOI: 10.1007/978-3-031-44087-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Although several genes underlying occurrence of transposition of the great arteries have been found in the mouse, human genetics of the most frequent cyanotic congenital heart defect diagnosed in neonates is still largely unknown. Development of the outflow tract is a complex process which involves the major genes of cardiac development, acting on myocardial cells from the anterior second heart field, and on mesenchymal cells from endocardial cushions. These genes, coding for transcription factors, interact with each other, and their differential expression conditions the severity of the phenotype. A precise description of the anatomic phenotypes is mandatory to achieve a better comprehension of the complex mechanisms responsible for transposition of the great arteries.
Collapse
Affiliation(s)
- Lucile Houyel
- Department of Congenital and Pediatric Cardiology, Necker-Enfants Malades Hospital-M3C, APHP, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
5
|
Guadix JA, Ruiz-Villalba A, Pérez-Pomares JM. Congenital Coronary Blood Vessel Anomalies: Animal Models and the Integration of Developmental Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:817-831. [PMID: 38884751 DOI: 10.1007/978-3-031-44087-8_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Coronary blood vessels are in charge of sustaining cardiac homeostasis. It is thus logical that coronary congenital anomalies (CCA) directly or indirectly associate with multiple cardiac conditions, including sudden death. The coronary vascular system is a sophisticated, highly patterned anatomical entity, and therefore a wide range of congenital malformations of the coronary vasculature have been described. Despite the clinical interest of CCA, very few attempts have been made to relate specific embryonic developmental mechanisms to the congenital anomalies of these blood vessels. This is so because developmental data on the morphogenesis of the coronary vascular system derive from complex studies carried out in animals (mostly transgenic mice), and are not often accessible to the clinician, who, in turn, possesses essential information on the significance of CCA. During the last decade, advances in our understanding of normal embryonic development of coronary blood vessels have provided insight into the cellular and molecular mechanisms underlying coronary arteries anomalies. These findings are the base for our attempt to offer plausible embryological explanations to a variety of CCA as based on the analysis of multiple animal models for the study of cardiac embryogenesis, and present them in an organized manner, offering to the reader developmental mechanistic explanations for the pathogenesis of these anomalies.
Collapse
Affiliation(s)
- Juan Antonio Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - José M Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain.
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
6
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of d-Transposition of the Great Arteries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:683-696. [PMID: 38884742 DOI: 10.1007/978-3-031-44087-8_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
During normal cardiovascular development, the outflow tract becomes septated and rotates so that the separate aorta and pulmonary trunk are correctly aligned with the left and right ventricles, respectively. However, when this process goes wrong, the aorta and pulmonary trunk are incorrectly positioned, resulting in oxygenated blood being directly returned to the lungs, with deoxygenated blood being delivered to the systemic circulation. This is termed transposition of the great arteries (TGA). The precise etiology of TGA is not known, but the use of animal models has elucidated that genes involved in determination of the left- embryonic body axis play key roles. Other factors such as retinoic acid levels are also crucial. This chapter reviews the animal models presenting with TGA that have been generated by genetic manipulation or with exogenous agents.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle, UK
| | | |
Collapse
|
7
|
Restivo A, di Gioia C, Marino B, Putotto C. Transpositions of the great arteries versus aortic dextropositions. A review of some embryogenetic and morphological aspects. Anat Rec (Hoboken) 2023; 306:502-514. [PMID: 36426596 DOI: 10.1002/ar.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
This review examines and discusses the morphology and embryology of two main groups of conotruncal cardiac malformations: (a) transposition of the great arteries (complete transposition and incomplete/partial transposition namely double outlet right ventricle), and (b) aortic dextroposition defects (tetralogy of Fallot and Eisenmenger malformation). In both groups, persistent truncus arteriosus was included because maldevelopment of the neural crest cell supply to the outflow tract, contributing to the production of the persistent truncus arteriosus, is shared by both groups of malformations. The potentially important role of the proximal conal cushions in the rotatory sequence of the conotruncus is emphasized. Most importantly, this study emphasizes the differentiation between the double-outlet right ventricle, which is a partial or incomplete transposition of the great arteries, and the Eisenmenger malformation, which is an aortic dextroposition. Special emphasis is also given to the leftward shift of the conoventricular junction, which covers an important morphogenetic role in both aortic dextropositions and transposition defects as well as in normal development, and whose molecular genetic regulation seems to remain unclear at present. Emphasis is placed on the distinct and overlapping roles of Tbx1 and Pitx2 transcription factors in modulating the development of the cardiac outflow tract.
Collapse
Affiliation(s)
- Angelo Restivo
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy.,Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy
| | - Cira di Gioia
- Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy.,Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Thota LNR, Chignalia AZ. The role of the glypican and syndecan families of heparan sulfate proteoglycans in cardiovascular function and disease. Am J Physiol Cell Physiol 2022; 323:C1052-C1060. [PMID: 35993518 DOI: 10.1152/ajpcell.00018.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are proteoglycans formed by a core protein to which one or multiple heparan sulfate chains are covalently bound. They are ubiquitously expressed in cellular surfaces and can be found in the extracellular matrix and secretory vesicles. The cellular effects of HSPGs comprehend multiple functionalities that include 1) the interaction with other membrane surface proteins to act as a substrate for cellular migration, 2) acting as a binding site for circulating molecules, 3) to have a receptor role for proteases, 4) to act as a coreceptor that can provide finetuning of growth factor receptor activity threshold, and 5) to activate intracellular signaling pathways (Sarrazin S, Lamanna WC, Esko JD. Cold Spring Harb Perspect Biol 3: a004952, 2011). Among the different families of HSPGs, the syndecan and glypican families of HSPGs have gained increased attention in relation to their effects on cardiovascular cells and potential role in disease progression. In this review, we will summarize the effects of syndecan and glypican homologs on the different cardiovascular cell types and discuss their contribution to common processes found in cardiovascular diseases (inflammation, hypertrophy, and vascular remodeling) as well as their potential role in the development and progression of specific diseases including hypertension, heart failure, and atherosclerosis.
Collapse
Affiliation(s)
| | - Andreia Zago Chignalia
- Department of Anesthesiology, College of Medicine-Tucson, University of Arizona, Tucson, Arizona.,Department of Physiology, College of Medicine-Tucson, University of Arizona, Tucson, Arizona.,Department of Pharmacology and Toxicology, College of Pharmacy-Tucson, University of Arizona, Tucson, Arizona.,Sarver Heart Center, College of Medicine-Tucson, University of Arizona, Tucson, Arizona
| |
Collapse
|
9
|
Chen T, Song S, Jiang H, Lian H, Hu S. Single Cell Sequencing Reveals Mechanisms of Persistent Truncus Arteriosus Formation after PDGFRα and PDGFRβ Double Knockout in Cardiac Neural Crest Cells. Genes (Basel) 2022; 13:genes13101708. [PMID: 36292593 PMCID: PMC9601305 DOI: 10.3390/genes13101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Persistent truncus arteriosus (PTA) is an uncommon and complex congenital cardiac malformation accounting for about 1.2% of all congenital heart diseases (CHDs), which is caused by a deficiency in the embryonic heart outflow tract’s (OFT) septation and remodeling. PDGFRα and PDGFRβ double knockout (DKO) in cardiac neural crest cells (CNCCs) has been reported to cause PTA, but the underlying mechanisms remain unclear. Here, we constructed a PTA mouse model with PDGFRα and PDGFRβ double knockout in Pax3+ CNCCs and described the condensation failure into OFT septum of CNCC-derived cells due to disturbance of cell polarity in the DKO group. In addition, we further explored the mechanism with single-cell RNA sequencing. We found that two main cell differentiation trajectories into vascular smooth muscle cells (VSMCs) from cardiomyocytes (CMs) and mesenchymal cells (MSs), respectively, were interrupted in the DKO group. The process of CM differentiation into VSMC stagnated in a transitional CM I-like state, which contributed to the failure of OFT remodeling and muscular septum formation. On the other hand, a Penk+ transitional MS II cluster closely related to cell condensation into the OFT septum disappeared, which led to the OFT’s septation absence directly. In conclusion, the disturbance of CNCC-derived cells caused by PDGFRα and PDGFRβ knockout can lead to the OFT septation disorder and the occurrence of PTA.
Collapse
Affiliation(s)
- Tianyun Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Haobin Jiang
- Division of Thoracic Surgery, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou 310027, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
- Correspondence:
| |
Collapse
|
10
|
Arikawa-Hirasawa E. Impact of the Heparan Sulfate Proteoglycan Perlecan on Human Disease and Health. Am J Physiol Cell Physiol 2022; 322:C1117-C1122. [PMID: 35417267 DOI: 10.1152/ajpcell.00113.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Perlecan, a basement membrane-type heparan sulfate proteoglycan, is an important molecule in the functional diversity of organisms because of the diversity of its glycan chains and the multifunctionality of its core proteins. Human diseases associated with perlecan have been identified using gene-deficient mice. Two human diseases related to perlecan have been reported. One is Silverman-Handmaker type Dyssegmental Dysplasia, resulting from complete loss of function of the HSPG2 gene which encods perlecan core protein which maps to chromosome 1p36. The other is Schwartz-Jampel syndrome from partial loss of function of the HSPG2 gene. Subsequent in vivo and in vitrostudies have revealed the organ-specific functions of perlecan, suggesting its involvement in the pathogenesis of various human diseases. In this review, we discuss the role of perlecan in human diseases and summarize our knowledge about perlecan as a future therapeutic target to treat the related diseases and for healthy longevity.
Collapse
Affiliation(s)
- Eri Arikawa-Hirasawa
- Research Institute for Diseases of OldAge Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Henderson DJ, Eley L, Turner JE, Chaudhry B. Development of the Human Arterial Valves: Understanding Bicuspid Aortic Valve. Front Cardiovasc Med 2022; 8:802930. [PMID: 35155611 PMCID: PMC8829322 DOI: 10.3389/fcvm.2021.802930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Abnormalities in the arterial valves are some of the commonest congenital malformations, with bicuspid aortic valve (BAV) occurring in as many as 2% of the population. Despite this, most of what we understand about the development of the arterial (semilunar; aortic and pulmonary) valves is extrapolated from investigations of the atrioventricular valves in animal models, with surprisingly little specifically known about how the arterial valves develop in mouse, and even less in human. In this review, we summarise what is known about the development of the human arterial valve leaflets, comparing this to the mouse where appropriate.
Collapse
Affiliation(s)
- Deborah J. Henderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
12
|
Increased Risk of Aortic Dissection with Perlecan Deficiency. Int J Mol Sci 2021; 23:ijms23010315. [PMID: 35008739 PMCID: PMC8745340 DOI: 10.3390/ijms23010315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/22/2022] Open
Abstract
Perlecan (HSPG2), a basement membrane-type heparan sulfate proteoglycan, has been implicated in the development of aortic tissue. However, its role in the development and maintenance of the aortic wall remains unknown. Perlecan-deficient mice (Hspg2−/−-Tg: Perl KO) have been found to show a high frequency (15–35%) of aortic dissection (AD). Herein, an analysis of the aortic wall of Perl KO mice revealed that perlecan deficiency caused thinner and partially torn elastic lamina. Compared to the control aortic tissue, perlecan-deficient aortic tissue showed a significant decrease in desmosine content and an increase in soluble tropoelastin levels, implying the presence of immature elastic fibers in Perl KO mice. Furthermore, the reduced expression of the smooth muscle cell contractile proteins actin and myosin in perlecan-deficient aortic tissue may explain the risk of AD. This study showed that a deficiency in perlecan, which is localized along the elastic lamina and at the interface between elastin and fibrillin-1, increased the risk of AD, largely due to the immaturity of extracellular matrix in the aortic tissue. Overall, we proposed a new model of AD that considers the deficiency of extracellular molecule perlecan as a risk factor.
Collapse
|
13
|
Ontoria-Oviedo I, Földes G, Tejedor S, Panadero J, Kitani T, Vázquez A, Wu JC, Harding SE, Sepúlveda P. Modeling Transposition of the Great Arteries with Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms222413270. [PMID: 34948064 PMCID: PMC8705900 DOI: 10.3390/ijms222413270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
The dextro-transposition of the great arteries (d-TGA) is one of the most common congenital heart diseases. To identify biological processes that could be related to the development of d-TGA, we established induced pluripotent stem cell (iPSC) lines from two patients with d-TGA and from two healthy subjects (as controls) and differentiated them into endothelial cells (iPSC-ECs). iPSC-EC transcriptome profiling and bioinformatics analysis revealed differences in the expression level of genes involved in circulatory system and animal organ development. iPSC-ECs from patients with d-TGA showed impaired ability to develop tubular structures in an in vitro capillary-like tube formation assay, and interactome studies revealed downregulation of biological processes related to Notch signaling, circulatory system development and angiogenesis, pointing to alterations in vascular structure development. Our study provides an iPSC-based cellular model to investigate the etiology of d-TGA.
Collapse
Affiliation(s)
- Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.T.); (A.V.)
- Correspondence: (I.O.-O.); (P.S.); Tel.: +34-96-1246632 (I.O.-O.); +34-96-1246635 (P.S.)
| | - Gabor Földes
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (G.F.); (S.E.H.)
- Heart and Vascular Center, Semmelweis University, H1122 Budapest, Hungary
| | - Sandra Tejedor
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.T.); (A.V.)
| | - Joaquín Panadero
- IGENOMIX S.L., Edificios Europark, Parque Tecnológico, 46980 Paterna, Spain;
| | - Tomoya Kitani
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; (T.K.); (J.C.W.)
| | - Alejandro Vázquez
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.T.); (A.V.)
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; (T.K.); (J.C.W.)
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (G.F.); (S.E.H.)
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.T.); (A.V.)
- Correspondence: (I.O.-O.); (P.S.); Tel.: +34-96-1246632 (I.O.-O.); +34-96-1246635 (P.S.)
| |
Collapse
|
14
|
Floy ME, Givens SE, Matthys OB, Mateyka TD, Kerr CM, Steinberg AB, Silva AC, Zhang J, Mei Y, Ogle BM, McDevitt TC, Kamp TJ, Palecek SP. Developmental lineage of human pluripotent stem cell-derived cardiac fibroblasts affects their functional phenotype. FASEB J 2021; 35:e21799. [PMID: 34339055 PMCID: PMC8349112 DOI: 10.1096/fj.202100523r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 01/24/2023]
Abstract
Cardiac fibroblasts (CFBs) support heart function by secreting extracellular matrix (ECM) and paracrine factors, respond to stress associated with injury and disease, and therefore are an increasingly important therapeutic target. We describe how developmental lineage of human pluripotent stem cell-derived CFBs, epicardial (EpiC-FB), and second heart field (SHF-FB) impacts transcriptional and functional properties. Both EpiC-FBs and SHF-FBs exhibited CFB transcriptional programs and improved calcium handling in human pluripotent stem cell-derived cardiac tissues. We identified differences including in composition of ECM synthesized, secretion of growth and differentiation factors, and myofibroblast activation potential, with EpiC-FBs exhibiting higher stress-induced activation potential akin to myofibroblasts and SHF-FBs demonstrating higher calcification and mineralization potential. These phenotypic differences suggest that EpiC-FBs have utility in modeling fibrotic diseases while SHF-FBs are a promising source of cells for regenerative therapies. This work directly contrasts regional and developmental specificity of CFBs and informs CFB in vitro model selection.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sophie E Givens
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Oriane B Matthys
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkley, CA, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Taylor D Mateyka
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Charles M Kerr
- Molecular Cell Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, USA
| | - Alexandra B Steinberg
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ana C Silva
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Jianhua Zhang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Mei
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Todd C McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Parrish PCR, Liu D, Knutsen RH, Billington CJ, Mecham RP, Fu YP, Kozel BA. Whole exome sequencing in patients with Williams-Beuren syndrome followed by disease modeling in mice points to four novel pathways that may modify stenosis risk. Hum Mol Genet 2021; 29:2035-2050. [PMID: 32412588 DOI: 10.1093/hmg/ddaa093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Supravalvular aortic stenosis (SVAS) is a narrowing of the aorta caused by elastin (ELN) haploinsufficiency. SVAS severity varies among patients with Williams-Beuren syndrome (WBS), a rare disorder that removes one copy of ELN and 25-27 other genes. Twenty percent of children with WBS require one or more invasive and often risky procedures to correct the defect while 30% have no appreciable stenosis, despite sharing the same basic genetic lesion. There is no known medical therapy. Consequently, identifying genes that modify SVAS offers the potential for novel modifier-based therapeutics. To improve statistical power in our rare-disease cohort (N = 104 exomes), we utilized extreme-phenotype cohorting, functional variant filtration and pathway-based analysis. Gene set enrichment analysis of exome-wide association data identified increased adaptive immune system variant burden among genes associated with SVAS severity. Additional enrichment, using only potentially pathogenic variants known to differ in frequency between the extreme phenotype subsets, identified significant association of SVAS severity with not only immune pathway genes, but also genes involved with the extracellular matrix, G protein-coupled receptor signaling and lipid metabolism using both SKAT-O and RQTest. Complementary studies in Eln+/-; Rag1-/- mice, which lack a functional adaptive immune system, showed improvement in cardiovascular features of ELN insufficiency. Similarly, studies in mixed background Eln+/- mice confirmed that variations in genes that increase elastic fiber deposition also had positive impact on aortic caliber. By using tools to improve statistical power in combination with orthogonal analyses in mice, we detected four main pathways that contribute to SVAS risk.
Collapse
Affiliation(s)
- Phoebe C R Parrish
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Delong Liu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Russell H Knutsen
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles J Billington
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yi-Ping Fu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
The role of basement membranes in cardiac biology and disease. Biosci Rep 2021; 41:229516. [PMID: 34382650 PMCID: PMC8390786 DOI: 10.1042/bsr20204185] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Basement membranes are highly specialised extracellular matrix structures that within the heart underlie endothelial cells and surround cardiomyocytes and vascular smooth muscle cells. They generate a dynamic and structurally supportive environment throughout cardiac development and maturation by providing physical anchorage to the underlying interstitium, structural support to the tissue, and by influencing cell behaviour and signalling. While this provides a strong link between basement membrane dysfunction and cardiac disease, the role of the basement membrane in cardiac biology remains under-researched and our understanding regarding the mechanistic interplay between basement membrane defects and their morphological and functional consequences remain important knowledge-gaps. In this review we bring together emerging understanding of basement membrane defects within the heart including in common cardiovascular pathologies such as contractile dysfunction and highlight some key questions that are now ready to be addressed.
Collapse
|
17
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
18
|
Abstract
The developing heart is formed of two tissue layers separated by an extracellular matrix (ECM) that provides chemical and physical signals to cardiac cells. While deposition of specific ECM components creates matrix diversity, the cardiac ECM is also dynamic, with modification and degradation playing important roles in ECM maturation and function. In this Review, we discuss the spatiotemporal changes in ECM composition during cardiac development that support distinct aspects of heart morphogenesis. We highlight conserved requirements for specific ECM components in human cardiac development, and discuss emerging evidence of a central role for the ECM in promoting heart regeneration.
Collapse
Affiliation(s)
| | - Emily S Noël
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
19
|
Del Monte-Nieto G, Fischer JW, Gorski DJ, Harvey RP, Kovacic JC. Basic Biology of Extracellular Matrix in the Cardiovascular System, Part 1/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2169-2188. [PMID: 32354384 DOI: 10.1016/j.jacc.2020.03.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 01/12/2023]
Abstract
The extracellular matrix (ECM) is the noncellular component of tissues in the cardiovascular system and other organs throughout the body. It is formed of filamentous proteins, proteoglycans, and glycosaminoglycans, which extensively interact and whose structure and dynamics are modified by cross-linking, bridging proteins, and cleavage by matrix degrading enzymes. The ECM serves important structural and regulatory roles in establishing tissue architecture and cellular function. The ECM of the developing heart has unique properties created by its emerging contractile nature; similarly, ECM lining blood vessels is highly elastic in order to sustain the basal and pulsatile forces imposed on their walls throughout life. In this part 1 of a 4-part JACC Focus Seminar, we focus on the role, function, and basic biology of the ECM in both heart development and in the adult.
Collapse
Affiliation(s)
- Gonzalo Del Monte-Nieto
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | - Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, University Hospital, Heinrich-Heine-University Düsseldorf, Germany.
| | - Daniel J Gorski
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Science, University of New South Wales, New South Wales, Australia.
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
20
|
Granath C, Noren H, Björck H, Simon N, Olesen K, Rodin S, Grinnemo KH, Österholm C. Characterization of Laminins in Healthy Human Aortic Valves and a Modified Decellularized Rat Scaffold. Biores Open Access 2020; 9:269-278. [PMID: 33376633 PMCID: PMC7757704 DOI: 10.1089/biores.2020.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 01/13/2023] Open
Abstract
Aortic valve stenosis is one of the most common cardiovascular diseases in western countries and can only be treated by replacement with a prosthetic valve. Tissue engineering is an emerging and promising treatment option, but in-depth knowledge about the microstructure of native heart valves is lacking, making the development of tissue-engineered heart valves challenging. Specifically, the basement membrane (BM) of heart valves remains incompletely characterized, and decellularization protocols that preserve BM components are necessary to advance the field. This study aims to characterize laminin isoforms expressed in healthy human aortic valves and establish a small animal decellularized aortic valve scaffold for future studies of the BM in tissue engineering. Laminin isoforms were assessed by immunohistochemistry with antibodies specific for individual α, β, and γ chains. The results indicated that LN-411, LN-421, LN-511, and LN-521 are expressed in human aortic valves (n = 3), forming a continuous monolayer in the endothelial BM, whereas sparsely found in the interstitium. Similar results were seen in rat aortic valves (n = 3). Retention of laminin and other BM components, concomitantly with effective removal of cells and residual DNA, was achieved through 3 h exposure to 1% sodium dodecyl sulfate and 30 min exposure to 1% Triton X-100, followed by nuclease processing in rat aortic valves (n = 3). Our results provide crucial data on the microenvironment of valvular cells relevant for research in both tissue engineering and heart valve biology. We also describe a decellularized rat aortic valve scaffold useful for mechanistic studies on the role of the BM in heart valve regeneration.
Collapse
Affiliation(s)
- Carl Granath
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hunter Noren
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida, USA
| | - Hanna Björck
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nancy Simon
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kim Olesen
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Bioscience, University of Skövde, Skövde, Sweden
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sergey Rodin
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Karl-Henrik Grinnemo
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Cecilia Österholm
- Division of Clinical Genetics, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Address correspondence to: Cecilia Österholm Corbascio, PhD, Division of Clinical Genetics, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, 171 64, Sweden
| |
Collapse
|
21
|
Chen CG, Iozzo RV. Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology. J Biol Chem 2020; 295:16797-16812. [PMID: 33020183 PMCID: PMC7864073 DOI: 10.1074/jbc.rev120.014391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved.
Collapse
Affiliation(s)
- Carolyn G Chen
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
22
|
New Concepts in the Development and Malformation of the Arterial Valves. J Cardiovasc Dev Dis 2020; 7:jcdd7040038. [PMID: 32987700 PMCID: PMC7712390 DOI: 10.3390/jcdd7040038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated.
Collapse
|
23
|
De Ita M, Cisneros B, Rosas-Vargas H. Genetics of Transposition of Great Arteries: Between Laterality Abnormality and Outflow Tract Defect. J Cardiovasc Transl Res 2020; 14:390-399. [PMID: 32734553 DOI: 10.1007/s12265-020-10064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Transposition of great arteries (TGA) is a complex congenital heart disease whose etiology is still unknown. This defect has been associated, at least in part, with genetic abnormalities involved in laterality establishment and heart outflow tract development, which suggest a genetic heterogeneity. In animal models, the evidence of association with certain genes is strong but, surprisingly, genetic anomalies of its human orthologues are found only in a low proportion of patients and in nonaffected subjects, so that the underlying causes remain as an unexplored field. Evidence related to TGA suggests different pathogenic mechanisms involved between patients with normal organ disposition and isomerism. This article reviews the most important genetic abnormalities related to TGA and contextualizes them into the mechanism of embryonic development, comparing them between humans and mice, to comprehend the evidence that could be relevant for genetic counseling. Graphical abstract.
Collapse
Affiliation(s)
- Marlon De Ita
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- 2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico.
| |
Collapse
|
24
|
Ma Z, Mao C, Jia Y, Fu Y, Kong W. Extracellular matrix dynamics in vascular remodeling. Am J Physiol Cell Physiol 2020; 319:C481-C499. [PMID: 32579472 DOI: 10.1152/ajpcell.00147.2020] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular remodeling is the adaptive response to various physiological and pathophysiological alterations that are closely related to aging and vascular diseases. Understanding the mechanistic regulation of vascular remodeling may be favorable for discovering potential therapeutic targets and strategies. The extracellular matrix (ECM), including matrix proteins and their degradative metalloproteases, serves as the main component of the microenvironment and exhibits dynamic changes during vascular remodeling. This process involves mainly the altered composition of matrix proteins, metalloprotease-mediated degradation, posttranslational modification of ECM proteins, and altered topographical features of the ECM. To date, adequate studies have demonstrated that ECM dynamics also play a critical role in vascular remodeling in various diseases. Here, we review these related studies, summarize how ECM dynamics control vascular remodeling, and further indicate potential diagnostic biomarkers and therapeutic targets in the ECM for corresponding vascular diseases.
Collapse
Affiliation(s)
- Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
25
|
Buijtendijk MF, Barnett P, van den Hoff MJ. Development of the human heart. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:7-22. [PMID: 32048790 PMCID: PMC7078965 DOI: 10.1002/ajmg.c.31778] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/01/2023]
Abstract
In 2014, an extensive review discussing the major steps of cardiac development focusing on growth, formation of primary and chamber myocardium and the development of the cardiac electrical system, was published. Molecular genetic lineage analyses have since furthered our insight in the developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Moreover, genetic, molecular and cell biological analyses have driven insights into the mechanisms underlying the development of the different cardiac components. Here, we build on our previous review and provide an insight into the molecular mechanistic revelations that have forwarded the field of cardiac development. Despite the enormous advances in our knowledge over the last decade, the development of congenital cardiac malformations remains poorly understood. The challenge for the next decade will be to evaluate the different developmental processes using newly developed molecular genetic techniques to further unveil the gene regulatory networks operational during normal and abnormal cardiac development.
Collapse
Affiliation(s)
| | - Phil Barnett
- Department of Medical BiologyAmsterdamUMC location AMCAmsterdamThe Netherlands
| | | |
Collapse
|
26
|
Sinner DI, Carey B, Zgherea D, Kaufman KM, Leesman L, Wood RE, Rutter MJ, de Alarcon A, Elluru RG, Harley JB, Whitsett JA, Trapnell BC. Complete Tracheal Ring Deformity. A Translational Genomics Approach to Pathogenesis. Am J Respir Crit Care Med 2019; 200:1267-1281. [PMID: 31215789 PMCID: PMC6857493 DOI: 10.1164/rccm.201809-1626oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Complete tracheal ring deformity (CTRD) is a rare congenital abnormality of unknown etiology characterized by circumferentially continuous or nearly continuous cartilaginous tracheal rings, variable degrees of tracheal stenosis and/or shortening, and/or pulmonary arterial sling anomaly.Objectives: To test the hypothesis that CTRD is caused by inherited or de novo mutations in genes required for normal tracheal development.Methods: CTRD and normal tracheal tissues were examined microscopically to define the tracheal abnormalities present in CTRD. Whole-exome sequencing was performed in children with CTRD and their biological parents ("trio analysis") to identify gene variants in patients with CTRD. Mutations were confirmed by Sanger sequencing, and their potential impact on structure and/or function of encoded proteins was examined using human gene mutation databases. Relevance was further examined by comparison with the effects of targeted deletion of murine homologs important to tracheal development in mice.Measurements and Main Results: The trachealis muscle was absent in all of five patients with CTRD. Exome analysis identified six de novo, three recessive, and multiple compound-heterozygous or rare hemizygous variants in children with CTRD. De novo variants were identified in SHH (Sonic Hedgehog), and inherited variants were identified in HSPG2 (perlecan), ROR2 (receptor tyrosine kinase-like orphan receptor 2), and WLS (Wntless), genes involved in morphogenetic pathways known to mediate tracheoesophageal development in mice.Conclusions: The results of the present study demonstrate that absence of the trachealis muscle is associated with CTRD. Variants predicted to cause disease were identified in genes encoding Hedgehog and Wnt signaling pathway molecules, which are critical to cartilage formation and normal upper airway development in mice.
Collapse
Affiliation(s)
- Debora I. Sinner
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | | | | | - K. M. Kaufman
- Center for Autoimmune Genomics and Etiology, and
- Department of Pediatrics and
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | | | - Michael J. Rutter
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Alessandro de Alarcon
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ravindhra G. Elluru
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, and
- Department of Pediatrics and
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Jeffrey A. Whitsett
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | - Bruce C. Trapnell
- Division of Neonatology
- Division of Pulmonary Biology
- Translational Pulmonary Science Center
- Department of Pediatrics and
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|
27
|
Cardiac Fibroblasts and the Extracellular Matrix in Regenerative and Nonregenerative Hearts. J Cardiovasc Dev Dis 2019; 6:jcdd6030029. [PMID: 31434209 PMCID: PMC6787677 DOI: 10.3390/jcdd6030029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
During the postnatal period in mammals, the heart undergoes significant remodeling and cardiac cells progressively lose their embryonic characteristics. At the same time, notable changes in the extracellular matrix (ECM) composition occur with a reduction in the components considered facilitators of cellular proliferation, including fibronectin and periostin, and an increase in collagen fiber organization. Not much is known about the postnatal cardiac fibroblast which is responsible for producing the majority of the ECM, but during the days after birth, mammalian hearts can regenerate after injury with only a transient scar formation. This phenomenon has also been described in adult urodeles and teleosts, but relatively little is known about their cardiac fibroblasts or ECM composition. Here, we review the pre-existing knowledge about cardiac fibroblasts and the ECM during the postnatal period in mammals as well as in regenerative environments.
Collapse
|
28
|
Versacci P, Pugnaloni F, Digilio MC, Putotto C, Unolt M, Calcagni G, Baban A, Marino B. Some Isolated Cardiac Malformations Can Be Related to Laterality Defects. J Cardiovasc Dev Dis 2018; 5:jcdd5020024. [PMID: 29724030 PMCID: PMC6023464 DOI: 10.3390/jcdd5020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Human beings are characterized by a left–right asymmetric arrangement of their internal organs, and the heart is the first organ to break symmetry in the developing embryo. Aberrations in normal left–right axis determination during embryogenesis lead to a wide spectrum of abnormal internal laterality phenotypes, including situs inversus and heterotaxy. In more than 90% of instances, the latter condition is accompanied by complex and severe cardiovascular malformations. Atrioventricular canal defect and transposition of the great arteries—which are particularly frequent in the setting of heterotaxy—are commonly found in situs solitus with or without genetic syndromes. Here, we review current data on morphogenesis of the heart in human beings and animal models, familial recurrence, and upstream genetic pathways of left–right determination in order to highlight how some isolated congenital heart diseases, very common in heterotaxy, even in the setting of situs solitus, may actually be considered in the pathogenetic field of laterality defects.
Collapse
Affiliation(s)
- Paolo Versacci
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Flaminia Pugnaloni
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Carolina Putotto
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marta Unolt
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Bruno Marino
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
29
|
Kugathasan K, Halford MM, Farlie PG, Bates D, Smith DP, Zhang YF, Roy JP, Macheda ML, Zhang D, Wilkinson JL, Kirby ML, Newgreen DF, Stacker SA. Deficiency of the Wnt receptor Ryk causes multiple cardiac and outflow tract defects. Growth Factors 2018; 36:58-68. [PMID: 30035654 DOI: 10.1080/08977194.2018.1491848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Ryk is a member of the receptor tyrosine kinase (RTK) family of proteins that control and regulate cellular processes. It is distinguished by binding Wnt ligands and having no detectable intrinsic protein tyrosine kinase activity suggesting Ryk is a pseudokinase. Here, we show an essential role for Ryk in directing morphogenetic events required for normal cardiac development through the examination of Ryk-deficient mice. We employed vascular corrosion casting, vascular perfusion with contrast dye, and immunohistochemistry to characterize cardiovascular and pharyngeal defects in Ryk-/- embryos. Ryk-/- mice exhibit a variety of malformations of the heart and outflow tract that resemble human congenital heart defects. This included stenosis and interruption of the aortic arch, ventriculoarterial malalignment, ventricular septal defects and abnormal pharyngeal arch artery remodelling. This study therefore defines a key intersection between a subset of growth factor receptors involved in planar cell polarity signalling, the Wnt family and mammalian cardiovascular development.
Collapse
Affiliation(s)
- Kumudhini Kugathasan
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Peter G Farlie
- d Craniofacial Development Laboratory , Murdoch Children's Research Institute , Parkville , Australia
| | - Damien Bates
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Darrin P Smith
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
| | - You Fang Zhang
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - James P Roy
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| | - Maria L Macheda
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Dong Zhang
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - James L Wilkinson
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Margaret L Kirby
- g The Neonatal Perinatal Research Institute, Division of Neonatology , Duke University Medical Center , Durham , NC , USA
| | - Donald F Newgreen
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Steven A Stacker
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| |
Collapse
|
30
|
Aghajanian H, Cho YK, Rizer NW, Wang Q, Li L, Degenhardt K, Jain R. Pdgfrα functions in endothelial-derived cells to regulate neural crest cells and the development of the great arteries. Dis Model Mech 2017; 10:1101-1108. [PMID: 28714851 PMCID: PMC5611965 DOI: 10.1242/dmm.029710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
Originating as a single vessel emerging from the embryonic heart, the truncus arteriosus must septate and remodel into the aorta and pulmonary artery to support postnatal life. Defective remodeling or septation leads to abnormalities collectively known as conotruncal defects, which are associated with significant mortality and morbidity. Multiple populations of cells must interact to coordinate outflow tract remodeling, and the cardiac neural crest has emerged as particularly important during this process. Abnormalities in the cardiac neural crest have been implicated in the pathogenesis of multiple conotruncal defects, including persistent truncus arteriosus, double outlet right ventricle and tetralogy of Fallot. However, the role of the neural crest in the pathogenesis of another conotruncal abnormality, transposition of the great arteries, is less well understood. In this report, we demonstrate an unexpected role of Pdgfra in endothelial cells and their derivatives during outflow tract development. Loss of Pdgfra in endothelium and endothelial-derived cells results in double outlet right ventricle and transposition of the great arteries. Our data suggest that loss of Pdgfra in endothelial-derived mesenchyme in the outflow tract endocardial cushions leads to a secondary defect in neural crest migration during development. Summary: Loss of Pdgfrα in endothelial-derived mesenchyme results in defective neural crest behavior and is associated with conotruncal defects including, surprisingly, transposition of the great arteries.
Collapse
Affiliation(s)
- Haig Aghajanian
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Young Kuk Cho
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, 61186, South Korea
| | - Nicholas W Rizer
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qiaohong Wang
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Degenhardt
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Scuderi GJ, Butcher J. Naturally Engineered Maturation of Cardiomyocytes. Front Cell Dev Biol 2017; 5:50. [PMID: 28529939 PMCID: PMC5418234 DOI: 10.3389/fcell.2017.00050] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte maturation. This information can then be utilized to develop natural engineering approaches that can emulate this fetal microenvironment and thus make prominent progress in pluripotent stem cell-derived maturity toward a more clinically relevant model for cardiac regeneration.
Collapse
Affiliation(s)
- Gaetano J Scuderi
- Meinig School of Biomedical Engineering, Cornell UniversityIthaca, NY, USA
| | - Jonathan Butcher
- Meinig School of Biomedical Engineering, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
32
|
Karakikes I, Termglinchan V, Cepeda DA, Lee J, Diecke S, Hendel A, Itzhaki I, Ameen M, Shrestha R, Wu H, Ma N, Shao NY, Seeger T, Woo N, Wilson KD, Matsa E, Porteus MH, Sebastiano V, Wu JC. A Comprehensive TALEN-Based Knockout Library for Generating Human-Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases. Circ Res 2017; 120:1561-1571. [PMID: 28246128 DOI: 10.1161/circresaha.116.309948] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. OBJECTIVE The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. METHODS AND RESULTS By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout 88 human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene knockout. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the utility of the TALEN-mediated knockout technique, 6 individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a pathogenic mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes, we demonstrated that the knockout strategy ameliorates the dilated cardiomyopathy phenotype in vitro. In addition, we modeled the Holt-Oram syndrome in iPSC-cardiac myocytes in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. CONCLUSIONS Collectively, our study illustrates the powerful combination of iPSCs and genome editing technologies for understanding the biological function of genes, and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs, and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research.
Collapse
Affiliation(s)
- Ioannis Karakikes
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Vittavat Termglinchan
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Diana A Cepeda
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Jaecheol Lee
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Sebastian Diecke
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Ayal Hendel
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Ilanit Itzhaki
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Mohamed Ameen
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Haodi Wu
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Ning Ma
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Ning-Yi Shao
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Timon Seeger
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Nicole Woo
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Kitchener D Wilson
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Elena Matsa
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Matthew H Porteus
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.)
| | - Vittorio Sebastiano
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.).
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (I.K., V.T., J.L., S.D., I.I., M.A., R.S., H.W., N.M., N.-Y.S., T.S., N.W., K.D.W., E.M., J.C.W.), Department of Cardiothoracic Surgery (I.K.), Division of Cardiovascular Medicine, Department of Medicine (V.T., J.C.W.), CA; Institute of Stem Cell Biology and Regenerative Medicine (D.A.C., V.S., J.C.W.), Departments of Pediatrics (A.H., M.H.P.), Pathology (K.D.W.), and Obstetrics and Gynecology (V.S.), Stanford University School of Medicine, CA; Berlin Institute of Health, Germany (S.D.); and Max Delbrueck Center, Berlin, Germany (S.D.).
| |
Collapse
|
33
|
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Royal North Shore Hospital, The University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
34
|
Silk biomaterials functionalized with recombinant domain V of human perlecan modulate endothelial cell and platelet interactions for vascular applications. Colloids Surf B Biointerfaces 2016; 148:130-138. [DOI: 10.1016/j.colsurfb.2016.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 11/21/2022]
|
35
|
Gubbiotti MA, Neill T, Iozzo RV. A current view of perlecan in physiology and pathology: A mosaic of functions. Matrix Biol 2016; 57-58:285-298. [PMID: 27613501 DOI: 10.1016/j.matbio.2016.09.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 01/06/2023]
Abstract
Perlecan, a large basement membrane heparan sulfate proteoglycan, is expressed in a wide array of tissues where it regulates diverse cellular processes including bone formation, inflammation, cardiac development, and angiogenesis. Here we provide a contemporary review germane to the biology of perlecan encompassing its genetic regulation as well as an analysis of its modular protein structure as it pertains to function. As perlecan signaling from the extracellular matrix converges on master regulators of autophagy, including AMPK and mTOR, via a specific interaction with vascular endothelial growth factor receptor 2, we specifically focus on the mechanism of action of perlecan in autophagy and angiogenesis and contrast the role of endorepellin, the C-terminal fragment of perlecan, in these cellular and morphogenic events.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
36
|
Cohen MS, Eidem BW, Cetta F, Fogel MA, Frommelt PC, Ganame J, Han BK, Kimball TR, Johnson RK, Mertens L, Paridon SM, Powell AJ, Lopez L. Multimodality Imaging Guidelines of Patients with Transposition of the Great Arteries: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 2016; 29:571-621. [DOI: 10.1016/j.echo.2016.04.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Abstract
Heparan sulfate proteoglycans (HSPGs) have long been implicated in a wide range of cell-cell signaling and cell-matrix interactions, both in vitro and in vivo in invertebrate models. Although many of the genes that encode HSPG core proteins and the biosynthetic enzymes that generate and modify HSPG sugar chains have not yet been analyzed by genetics in vertebrates, recent studies have shown that HSPGs do indeed mediate a wide range of functions in early vertebrate development, for example during left-right patterning and in cardiovascular and neural development. Here, we provide a comprehensive overview of the various roles of HSPGs in these systems and explore the concept of an instructive heparan sulfate sugar code for modulating vertebrate development. Summary: This Review article examines the role of heparan sulfate proteoglycans in vertebrate development and explores the concept of an instructive 'sugar code' for modulating development.
Collapse
Affiliation(s)
- Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - H Joseph Yost
- University of Utah, Department of Neurobiology and Anatomy, Department of Pediatrics, Salt Lake City, UT 84132, USA
| |
Collapse
|
38
|
Poluzzi C, Iozzo RV, Schaefer L. Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev 2016; 97:156-73. [PMID: 26518982 DOI: 10.1016/j.addr.2015.10.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/17/2022]
Abstract
Traditional cancer therapy typically targets the tumor proper. However, newly-formed vasculature exerts a major role in cancer development and progression. Autophagy, as a biological mechanism for clearing damaged proteins and oxidative stress products released in the tumor milieu, could help in tumor resolution by rescuing cells undergoing modifications or inducing autophagic-cell death of tumor blood vessels. Cleaved fragments of extracellular matrix proteoglycans are emerging as key players in the modulation of angiogenesis and endothelial cell autophagy. An essential characteristic of cancer progression is the remodeling of the basement membrane and the release of processed forms of its constituents. Endostatin, generated from collagen XVIII, and endorepellin, the C-terminal segment of the large proteoglycan perlecan, possess a dual activity as modifiers of both angiogenesis and endothelial cell autophagy. Manipulation of these endogenously-processed forms, located in the basement membrane within tumors, could represent new therapeutic approaches for cancer eradication.
Collapse
Affiliation(s)
- Chiara Poluzzi
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Nakamura R, Nakamura F, Fukunaga S. Perlecan Diversely Regulates the Migration and Proliferation of Distinct Cell Types in vitro. Cells Tissues Organs 2015; 200:374-93. [PMID: 26562025 DOI: 10.1159/000440950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
Perlecan is a multifunctional component of the extracellular matrix. It shows different effects on distinct cell types, and therefore it is thought to show potential for therapies targeting multiple cell types. However, the full range of multifunctionality of perlecan remains to be elucidated. We cultured various cell types, which were derived from epithelial/endothelial, connective and muscle tissues, in the presence of either antiserum against perlecan or exogenous perlecan, and examined the effects of perlecan on cell migration and proliferation. Cell migration was determined using a scratch assay. Blocking of perlecan by anti-perlecan antiserum inhibited the migration of vascular endothelial cells (VECs) and bone marrow-derived mesenchymal stem cells, and exogenous perlecan added to the culture medium promoted the migration of these cell types. The migration of other cell types was inhibited or was not promoted by exogenous perlecan. Cell proliferation was measured using a water-soluble tetrazolium dye. When cells were cultured at low densities, perlecan blocking inhibited the proliferation of VECs, and exogenous perlecan promoted the proliferation of keratinocytes. In contrast, the proliferation of fibroblasts, pre-adipocytes and vascular smooth muscle cells cultured at low densities was inhibited by exogenous perlecan. When cells were cultured at high densities, perlecan blocking promoted the proliferation of most cell types, with the exception of skeletal system-derived cells (chondrocytes and osteoblasts), which were inhibited by exogenous perlecan. Our results provide an overview of the multiple functions of perlecan in various cell types, and implicate a potential role of perlecan to inhibit undesirable activities, such as fibrosis, obesity and intimal hyperplasia.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Laboratory of Animal By-Product Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
40
|
Tran-Lundmark K, Tannenberg P, Rauch BH, Ekstrand J, Tran PK, Hedin U, Kinsella MG. Perlecan Heparan Sulfate Is Required for the Inhibition of Smooth Muscle Cell Proliferation by All-trans-Retinoic Acid. J Cell Physiol 2015; 230:482-7. [PMID: 25078760 DOI: 10.1002/jcp.24731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
Smooth muscle cell (SMC) proliferation is a key process in stabilization of atherosclerotic plaques, and during restenosis after interventions. A clearer understanding of SMC growth regulation is therefore needed to design specific anti-proliferative therapies. Retinoic acid has been shown to inhibit proliferation of SMCs both in vitro and in vivo and to affect the expression of extracellular matrix molecules. To explore the mechanisms behind the growth inhibitory activity of retinoic acid, we hypothesized that retinoids may induce the expression of perlecan, a large heparan sulfate proteoglycan with anti-proliferative properties. Perlecan expression and accumulation was induced in murine SMC cultures by all-trans-retinoic acid (AtRA). Moreover, the growth inhibitory effect of AtRA on wild-type cells was greatly diminished in SMCs from transgenic mice expressing heparan sulfate-deficient perlecan, indicating that the inhibition is perlecan heparan sulfate-dependent. In addition, AtRA influenced activation and phosphorylation of PTEN and Akt differently in wild-type and mutant SMCs, consistent with previous studies of perlecan-dependent SMC growth inhibition. We demonstrate that AtRA regulates perlecan expression in SMCs and that the inhibition of SMC proliferation by AtRA is, at least in part, secondary to an increased expression of perlecan and dependent upon its heparan sulfate-chains.
Collapse
Affiliation(s)
- Karin Tran-Lundmark
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Philip Tannenberg
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Bernhard H Rauch
- Institute of Pharmacology, Center of Drug Absorption and Transport, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Johan Ekstrand
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Phan-Kiet Tran
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
41
|
Abstract
Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes.
Collapse
Affiliation(s)
- Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daryl A Scott
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
42
|
Zhang R, Cao P, Yang Z, Wang Z, Wu JL, Chen Y, Pan Y. Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling. PLoS One 2015; 10:e0136518. [PMID: 26295701 PMCID: PMC4546591 DOI: 10.1371/journal.pone.0136518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 08/05/2015] [Indexed: 11/19/2022] Open
Abstract
Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing Ext1 hypomorphic mutant and conditional knockout mice. Outflow tract alignment is sensitive to the dosage of Ext1. Deletion of Ext1 in the mesoderm induces a cardiac phenotype similar to that of a mutant with conditional deletion of UDP-glucose dehydrogenase, a key enzyme responsible for synthesis of all glycosaminoglycans. The outflow tract defect in conditional Ext1 knockout(Ext1f/f:Mesp1Cre) mice is attributable to the reduced contribution of second heart field and neural crest cells. Ext1 deletion leads to downregulation of FGF signaling in the pharyngeal mesoderm. Exogenous FGF8 ameliorates the defects in the outflow tract and pharyngeal explants. In addition, Ext1 expression in second heart field and neural crest cells is required for outflow tract remodeling. Our results collectively indicate that Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate modulates FGF signaling during early heart development.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Peijuan Cao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Zhenzhen Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Jiu-Lin Wu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
- * E-mail: (YC); (YP)
| | - Yi Pan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
- * E-mail: (YC); (YP)
| |
Collapse
|
43
|
Chang YT, Tseng CN, Tannenberg P, Eriksson L, Yuan K, de Jesus Perez VA, Lundberg J, Lengquist M, Botusan IR, Catrina SB, Tran PK, Hedin U, Tran-Lundmark K. Perlecan heparan sulfate deficiency impairs pulmonary vascular development and attenuates hypoxic pulmonary hypertension. Cardiovasc Res 2015; 107:20-31. [PMID: 25952902 DOI: 10.1093/cvr/cvv143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/01/2015] [Indexed: 12/21/2022] Open
Abstract
AIMS Excessive vascular cell proliferation is an important component of pulmonary hypertension (PH). Perlecan is the major heparan sulfate (HS) proteoglycan in the vascular extracellular matrix. It binds growth factors, including FGF2, and either restricts or promotes cell proliferation. In this study, we have explored the effects of perlecan HS deficiency on pulmonary vascular development and in hypoxia-induced PH. METHODS AND RESULTS In normoxia, Hspg2(Δ3/Δ3) mice, deficient in perlecan HS, had reduced pericytes and muscularization of intra-acinar vessels. Pulmonary angiography revealed a peripheral perfusion defect. Despite these abnormalities, right ventricular systolic pressure (RVSP) and myocardial mass remained normal. After 4 weeks of hypoxia, increases in the proportion of muscularized vessels, RVSP, and right ventricular hypertrophy were significantly less in Hspg2(Δ3/Δ3) compared with wild type. The early phase of hypoxia induced a significantly lower increase in fibroblast growth factor receptor-1 (FGFR1) protein level and receptor phosphorylation, and reduced pulmonary artery smooth muscle cell (PASMC) proliferation in Hspg2(Δ3/Δ3). At 4 weeks, FGF2 mRNA and protein were also significantly reduced in Hspg2(Δ3/Δ3) lungs. Ligand and carbohydrate engagement assay showed that perlecan HS is required for HS-FGF2-FGFR1 ternary complex formation. In vitro, proliferation assays showed that PASMC proliferation is reduced by selective FGFR1 inhibition. PASMC adhesion to fibronectin was higher in Hspg2(Δ3/Δ3) compared with wild type. CONCLUSIONS Perlecan HS chains are important for normal vascular arborization and recruitment of pericytes to pulmonary vessels. Perlecan HS deficiency also attenuates hypoxia-induced PH, where the underlying mechanisms involve impaired FGF2/FGFR1 interaction, inhibition of PASMC growth, and altered cell-matrix interactions.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Chi-Nan Tseng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Philip Tannenberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Linnéa Eriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Johan Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Phan-Kiet Tran
- Department of Cardiothoracic Surgery, Uppsala University, Uppsala, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Karin Tran-Lundmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 824] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
45
|
Nonaka R, Iesaki T, de Vega S, Daida H, Okada T, Sasaki T, Arikawa-Hirasawa E. Perlecan deficiency causes endothelial dysfunction by reducing the expression of endothelial nitric oxide synthase. Physiol Rep 2015; 3:3/1/e12272. [PMID: 25626871 PMCID: PMC4387761 DOI: 10.14814/phy2.12272] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Perlecan is a major heparan sulfate proteoglycan found in the subendothelial extracellular matrix of the vascular wall. The aim of this study was to investigate the role of perlecan in the regulation of vascular tone. A previously developed conditional perlecan‐deficient mouse model was used to measure changes in the isometric force of isolated aortic rings. The vessels were first precontracted with phenylephrine, and then treated with increasing concentrations of vasorelaxants. Endothelium‐dependent relaxation, elicited by acetylcholine, was significantly reduced in the perlecan‐deficient aortas, whereas endothelium‐independent relaxation caused by the exogenous nitric oxide donor sodium nitroprusside remained well preserved. The expression of the endothelial nitric oxide synthase (eNOS) gene, detected by real‐time polymerase chain reaction, was significantly decreased in the perlecan‐deficient aortas. The expression of eNOS protein detected using Western blotting was also significantly decreased in the perlecan‐deficient aortas. We examined the role of perlecan in eNOS gene expression by creating perlecan knockdown human aortic endothelial cells using small interfering RNA (siRNA) for perlecan. Perlecan gene expression was significantly reduced in the perlecan siRNA‐treated cells, resulting in a significant decrease in eNOS gene expression. Perlecan deficiency induced endothelial dysfunction, as indicated by a reduction in endothelium‐dependent relaxation due, at least partly, to a reduction in eNOS expression. These findings suggest that perlecan plays a role in the activation of eNOS gene expression during normal growth processes. Perlecan deficiency induced endothelial dysfunction at least partly, to a reduction in eNOS expression. These findings suggest that perlecan plays a role in the activation of the eNOS expression during normal growth processes.
Collapse
Affiliation(s)
- Risa Nonaka
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takafumi Iesaki
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susana de Vega
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takako Sasaki
- Department of Biochemistry, Faculty of Medicine, Oita University, Oita, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
Lord MS, Farrugia BL, Rnjak-Kovacina J, Whitelock JM. Current serological possibilities for the diagnosis of arthritis with special focus on proteins and proteoglycans from the extracellular matrix. Expert Rev Mol Diagn 2015; 15:77-95. [PMID: 25382274 DOI: 10.1586/14737159.2015.979158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
This review discusses our current understanding of how the expression and turnover of components of the cartilage extracellular matrix (ECM) have been investigated, both as molecular markers of arthritis and as indicators of disease progression. The cartilage ECM proteome is well studied; it contains proteoglycans (aggrecan, perlecan and inter-α-trypsin inhibitor), collagens and glycoproteins (cartilage oligomeric matrix protein, fibronectin and lubricin) that provide the structural and functional changes in arthritis. However, the changes that occur in the carbohydrate structures, including glycosaminoglycans, with disease are less well studied. Investigations of the cartilage ECM proteome have revealed many potential biomarkers of arthritis. However, a clinical diagnostic or multiplex assay is yet to be realized due to issues with specificity to the pathology of arthritis. The future search for clinical biomarkers of arthritis is likely to involve both protein and carbohydrate markers of the ECM through the application of glycoproteomics.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
47
|
Gittenberger-de Groot AC, Calkoen EE, Poelmann RE, Bartelings MM, Jongbloed MRM. Morphogenesis and molecular considerations on congenital cardiac septal defects. Ann Med 2014; 46:640-52. [PMID: 25307363 DOI: 10.3109/07853890.2014.959557] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The primary unseptated heart tube undergoes extensive remodeling including septation at the atrial, atrioventricular, ventricular, and ventriculo-arterial level. Alignment and fusion of the septal components is required to ensure full septation of the heart. Deficiencies lead to septal defects at various levels. Addition of myocardium and mesenchymal tissues from the second heart field (SHF) to the primary heart tube, as well as a population of neural crest cells, provides the necessary cellular players. Surprisingly, the study of the molecular background of these defects does not show a great diversity of responsible transcription factors and downstream gene pathways. Epigenetic modulation and mutations high up in several transcription factor pathways (e.g. NODAL and GATA4) may lead to defects at all levels. Disturbance of modulating pathways, involving primarily the SHF-derived cell populations and the genes expressed therein, results at the arterial pole (e.g. TBX1) in a spectrum of ventricular septal defects located at the level of the outflow tract. At the venous pole (e.g. TBX5), it can explain a variety of atrial septal defects. The various defects can occur as isolated anomalies or within families. In this review developmental, morphological, genetic, as well as epigenetic aspects of septal defects are discussed.
Collapse
|
48
|
Perlecan Heparan Sulfate Proteoglycan Is a Critical Determinant of Angiogenesis in Response to Mouse Hind-Limb Ischemia. Can J Cardiol 2014; 30:1444-51. [DOI: 10.1016/j.cjca.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022] Open
|
49
|
Clowes C, Boylan MGS, Ridge LA, Barnes E, Wright JA, Hentges KE. The functional diversity of essential genes required for mammalian cardiac development. Genesis 2014; 52:713-37. [PMID: 24866031 PMCID: PMC4141749 DOI: 10.1002/dvg.22794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Genes required for an organism to develop to maturity (for which no other gene can compensate) are considered essential. The continuing functional annotation of the mouse genome has enabled the identification of many essential genes required for specific developmental processes including cardiac development. Patterns are now emerging regarding the functional nature of genes required at specific points throughout gestation. Essential genes required for development beyond cardiac progenitor cell migration and induction include a small and functionally homogenous group encoding transcription factors, ligands and receptors. Actions of core cardiogenic transcription factors from the Gata, Nkx, Mef, Hand, and Tbx families trigger a marked expansion in the functional diversity of essential genes from midgestation onwards. As the embryo grows in size and complexity, genes required to maintain a functional heartbeat and to provide muscular strength and regulate blood flow are well represented. These essential genes regulate further specialization and polarization of cell types along with proliferative, migratory, adhesive, contractile, and structural processes. The identification of patterns regarding the functional nature of essential genes across numerous developmental systems may aid prediction of further essential genes and those important to development and/or progression of disease. genesis 52:713–737, 2014.
Collapse
Affiliation(s)
- Christopher Clowes
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Poluzzi C, Casulli J, Goyal A, Mercer TJ, Neill T, Iozzo RV. Endorepellin evokes autophagy in endothelial cells. J Biol Chem 2014; 289:16114-28. [PMID: 24737315 DOI: 10.1074/jbc.m114.556530] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, possesses angiostatic activity via dual receptor antagonism, through concurrent binding to the α2β1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2). Here, we discovered that soluble endorepellin induced autophagy in endothelial cells by modulating the expression of Beclin 1, LC3, and p62, three established autophagic markers. Moreover, endorepellin evoked expression of the imprinted tumor suppressor gene Peg3 and its co-localization with Beclin 1 and LC3 in autophagosomes, suggesting a major role for this gene in endothelial cell autophagy. Mechanistically, endorepellin induced autophagy by down-regulating VEGFR2 via the two LG1/2 domains, whereas the C-terminal LG3 domain, the portion responsible for binding the α2β1 integrin, was ineffective. Endorepellin also induced transcriptional activity of the BECN1 promoter in endothelial cells, and the VEGFR2-specific tyrosine kinase inhibitor, SU5416, blocked this effect. Finally, we found a correlation between endorepellin-evoked inhibition of capillary morphogenesis and enhanced autophagy. Thus, we have identified a new role for this endogenous angiostatic fragment in inducing autophagy through a VEGFR2-dependent but α2β1 integrin-independent pathway. This novel mechanism specifically targets endothelial cells and could represent a promising new strategy to potentiate the angiostatic effect of endorepellin and perhaps other angiostatic matrix proteins.
Collapse
Affiliation(s)
- Chiara Poluzzi
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Joshua Casulli
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Atul Goyal
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Thomas J Mercer
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Thomas Neill
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|