1
|
Wei C, Vanhatalo A, Black MI, Rajaram R, Massey G, Jones AM. Dose-response relationship between dietary nitrate intake and nitric oxide congeners in various blood compartments and skeletal muscle: Differential effects on skeletal muscle torque and velocity. Free Radic Biol Med 2025; 229:520-533. [PMID: 39864759 DOI: 10.1016/j.freeradbiomed.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Plasma nitrate (NO3-) and nitrite (NO2-) increase in a dose-dependent manner following NO3- ingestion. To explore if the same dose-response relationship applies to other nitric oxide (NO) congeners in different blood compartments and skeletal muscle, as well as the subsequent physiological responses, we provided 11 healthy participants with NO3- depleted beetroot juice (placebo), and beetroot juice (BR) containing 6.4, 12.8 and 19.2 mmol NO3- in a randomised, crossover design. Blood and muscle samples were collected, and resting blood pressure (BP) was assessed, before and at 2.5-3 h post-ingestion. Muscle contractile function was assessed using a 5-min all-out maximal voluntary isometric knee extension test at 3.5 h post-ingestion. We found that plasma and skeletal muscle [NO3-], and whole blood S-nitrosothiols ([RSNOs]) increased dose-dependently, while plasma [NO2-] did not increase further with doses above 6.4 mmol NO3-. No significant increases in skeletal muscle [NO2-] were found following ingestion of any of these doses. Resting BP was only reduced after ingestion of 19.2 mmol NO3-. Mean peak torque and mean torque impulse during the first 10 muscle contractions were significantly enhanced following ingestion of both 12.8 mmol and 19.2 mmol NO3- compared to placebo, while the mean absolute rate of torque development (RTD) at 0-50 ms and 0-100 ms was significantly improved following ingestion of 6.4 mmol NO3- compared to placebo and 19.2 mmol NO3-. Significant correlations were found between changes in red blood cell [RSNOs] and changes in absolute RTD at 0-50 ms (rs = -0.70, P = 0.02) and 0-100 ms (rs = -0.84, P < 0.01) following the ingestion of 6.4 mmol NO3-. Our findings suggest that a high dose of 12.8 mmol NO3- is necessary to improve muscle contractile torque, while a lower dose of 6.4 mmol NO3- is sufficient to enhance muscle contractile velocity, at least for the type of exercise employed in the present study.
Collapse
Affiliation(s)
- Chenguang Wei
- University of Exeter, Medical School, Faculty of Health and Life Sciences, St Luke's Campus, Exeter, EX1 2LU, UK
| | - Anni Vanhatalo
- University of Exeter, Medical School, Faculty of Health and Life Sciences, St Luke's Campus, Exeter, EX1 2LU, UK
| | - Matthew I Black
- University of Exeter, Medical School, Faculty of Health and Life Sciences, St Luke's Campus, Exeter, EX1 2LU, UK
| | - Raghini Rajaram
- University of Exeter, Medical School, Faculty of Health and Life Sciences, St Luke's Campus, Exeter, EX1 2LU, UK
| | - Garry Massey
- University of Exeter, Medical School, Faculty of Health and Life Sciences, St Luke's Campus, Exeter, EX1 2LU, UK
| | - Andrew M Jones
- University of Exeter, Medical School, Faculty of Health and Life Sciences, St Luke's Campus, Exeter, EX1 2LU, UK.
| |
Collapse
|
2
|
Pagliaro P, Weber NC, Femminò S, Alloatti G, Penna C. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol 2024; 119:509-544. [PMID: 38878210 PMCID: PMC11319428 DOI: 10.1007/s00395-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy.
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science (ACS), Amsterdam, The Netherlands
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
3
|
Silva-Cunha M, Lacchini R, Tanus-Santos JE. Facilitating Nitrite-Derived S-Nitrosothiol Formation in the Upper Gastrointestinal Tract in the Therapy of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:691. [PMID: 38929130 PMCID: PMC11200996 DOI: 10.3390/antiox13060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often associated with impaired nitric oxide (NO) bioavailability, a critical pathophysiological alteration in CVDs and an important target for therapeutic interventions. Recent studies have revealed the potential of inorganic nitrite and nitrate as sources of NO, offering promising alternatives for managing various cardiovascular conditions. It is now becoming clear that taking advantage of enzymatic pathways involved in nitrite reduction to NO is very relevant in new therapeutics. However, recent studies have shown that nitrite may be bioactivated in the acidic gastric environment, where nitrite generates NO and a variety of S-nitrosating compounds that result in increased circulating S-nitrosothiol concentrations and S-nitrosation of tissue pharmacological targets. Moreover, transnitrosation reactions may further nitrosate other targets, resulting in improved cardiovascular function in patients with CVDs. In this review, we comprehensively address the mechanisms and relevant effects of nitrate and nitrite-stimulated gastric S-nitrosothiol formation that may promote S-nitrosation of pharmacological targets in various CVDs. Recently identified interfering factors that may inhibit these mechanisms and prevent the beneficial responses to nitrate and nitrite therapy were also taken into consideration.
Collapse
Affiliation(s)
- Mila Silva-Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil;
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| |
Collapse
|
4
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
5
|
Sapkota A, Mondal A, Chug MK, Brisbois EJ. Biomimetic catheter surface with dual action NO-releasing and generating properties for enhanced antimicrobial efficacy. J Biomed Mater Res A 2023; 111:1627-1641. [PMID: 37209058 PMCID: PMC10524361 DOI: 10.1002/jbm.a.37560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Infection of indwelling catheters is a common healthcare problem, resulting in higher morbidity and mortality. The vulnerable population reliant on catheters post-surgery for food and fluid intake, blood transfusion, or urinary incontinence or retention is susceptible to hospital-acquired infection originating from the very catheter. Bacterial adhesion on catheters can take place during the insertion or over time when catheters are used for an extended period. Nitric oxide-releasing materials have shown promise in exhibiting antibacterial properties without the risk of antibacterial resistance which can be an issue with conventional antibiotics. In this study, 1, 5, and 10 wt % selenium (Se) and 10 wt % S-nitrosoglutathione (GSNO)-incorporated catheters were prepared through a layer-by-layer dip-coating method to demonstrate NO-releasing and NO-generating capability of the catheters. The presence of Se on the catheter interface resulted in a 5 times higher NO flux in 10% Se-GSNO catheter through catalytic NO generation. A physiological level of NO release was observed from 10% Se-GSNO catheters for 5 d, along with an enhanced NO generation via the catalytic activity as Se was able to increase NO availability. The catheters were also found to be compatible and stable when subjected to sterilization and storage, even at room temperature. Additionally, the catheters showed a 97.02% and 93.24% reduction in the adhesion of clinically relevant strains of Escherichia coli and Staphylococcus aureus, respectively. Cytocompatibility testing of the catheter with 3T3 mouse fibroblast cells supports the material's biocompatibility. These findings from the study establish the proposed catheter as a prospective antibacterial material that can be translated into a clinical setting to combat catheter-related infections.
Collapse
Affiliation(s)
- Aasma Sapkota
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
6
|
Liu T, Schroeder H, Power GG, Blood AB. A physiologically relevant role for NO stored in vascular smooth muscle cells: A novel theory of vascular NO signaling. Redox Biol 2022; 53:102327. [PMID: 35605454 PMCID: PMC9126848 DOI: 10.1016/j.redox.2022.102327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/16/2023] Open
Abstract
S-nitrosothiols (SNO), dinitrosyl iron complexes (DNIC), and nitroglycerine (NTG) dilate vessels via activation of soluble guanylyl cyclase (sGC) in vascular smooth muscle cells. Although these compounds are often considered to be nitric oxide (NO) donors, attempts to ascribe their vasodilatory activity to NO-donating properties have failed. Even more puzzling, many of these compounds have vasodilatory potency comparable to or even greater than that of NO itself, despite low membrane permeability. This raises the question: How do these NO adducts activate cytosolic sGC when their NO moiety is still outside the cell? In this review, we classify these compounds as ‘nitrodilators’, defined by their potent NO-mimetic vasoactivities despite not releasing requisite amounts of free NO. We propose that nitrodilators activate sGC via a preformed nitrodilator-activated NO store (NANOS) found within the vascular smooth muscle cell. We reinterpret vascular NO handling in the framework of this NANOS paradigm, and describe the knowledge gaps and perspectives of this novel model.
Collapse
|
7
|
Ling P, Gao X, Zang X, Sun X, Gao F. Understanding the Performance of Metal-Organic Frameworks for Modulation of Nitric oxide Release from S-nitrosothiols. Chem Asian J 2022; 17:e202101358. [PMID: 35178879 DOI: 10.1002/asia.202101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/25/2022] [Indexed: 11/09/2022]
Abstract
S-Nitrosothiols (RSNOs) which were important intermediates in circulating reservoirs of nitric oxide (NO), transport and numerous NO signaling pathway plays intricate roles in the etiology of several pathologies. However, it is still a challenge to control release of NO from nitrosylated compounds under physiological pH. In this paper, for the first time, we report the catalytic activity and kinetic study for modulation of NO release from RSNOs by an array of metal-organic frameworks (MOFs) (M-MOF (M'); M = Zr, Cu; and M' = Cu, Pd, no metal) under physiological conditions via time-dependent absorbance spectra. The result showed that metal active site and the morphology and pore size of MOFs exhibited different activities toward RSNOs. The order of catalytic activity of these MOFs toward RSNOs is ordered in the decreasing sequence: Cu-MOF(Pd) ˃ Cu-MOF(Cu) ˃ Cu-MOF(no metal) ˃ Zr-MOF(Pd) ˃ Zr-MOF(Cu) ˃ Zr-MOF(no metal). In addition, Zr-MOF(Pd) was as model for cell experiment, demonstrated Zr-MOF(Pd) could react with RSNOs to generate NO in the complex environment of cell. Collectively, these findings establish a platform for MOFs-based, highly catalyze RSNOs in biological samples, a powerful tool for expanding the knowledge of the biology and chemistry of NO-mediated phenomena.
Collapse
Affiliation(s)
- Pinghua Ling
- Anhui Normal University, college of chemistry and materials, 189 Jiuhua South Road, 241002, wuhu, CHINA
| | - Xianping Gao
- Anhui Normal University, college of Chemistry and Materials Science, 189 Jiuhua South Road, Wuhu, CHINA
| | - Xiaona Zang
- Anhui Normal University, College of Chemistry and Materials Science, 189 Jiuhua South Road, Wuhu, CHINA
| | - Xinyu Sun
- Anhui Normal University, College of Chemistry and Materials Science, 189 Jiuhua South Road, Wuhu, CHINA
| | - Feng Gao
- Anhui Normal University, College of Chemistry and Materials Science, 189 Jiuhua South Road, Wuhu, CHINA
| |
Collapse
|
8
|
Tao W, Moore CE, Zhang S. Redox-Neutral S-nitrosation Mediated by a Dicopper Center. Angew Chem Int Ed Engl 2021; 60:15980-15987. [PMID: 33913605 DOI: 10.1002/anie.202102589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/18/2021] [Indexed: 11/08/2022]
Abstract
A redox-neutral S-nitrosation of thiol has been achieved at a dicopper(I,I) center. Treatment of dicopper (I,I) complex with excess NO. and thiol generates a dicopper (I,I) di-S-nitrosothiol complex [CuI CuI (RSNO)2 ]2+ or dicopper (I,I) mono-S-nitrosothiol complex [CuI CuI (RSNO)]2+ , which readily release RSNO in 88-94 % yield. The S-nitrosation proceeds by a mixed-valence [CuII CuIII (μ-O)(μ-NO)]2+ species, which deprotonates RS-H at the basic μ-O site and nitrosates RS- at the μ-NO site. The [CuII CuIII (μ-O)(μ-NO)]2+ complex is also competent for O-nitrosation of MeOH. A rare [CuII CuII (μ-NO)(OMe)]2+ intermediate was isolated and fully characterized, suggesting the S-nitrosation may proceed through the intermediary of analogous [CuII CuII (μ-NO)(SR)]2+ species. This redox- and proton-neutral S-nitrosation process is the first functional model of ceruloplasmin in mediating S-nitrosation of external thiols, with implications for biological copper sites in the interconversion of NO. /RSNO.
Collapse
Affiliation(s)
- Wenjie Tao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
9
|
Tao W, Moore CE, Zhang S. Redox‐Neutral
S
‐nitrosation Mediated by a Dicopper Center. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenjie Tao
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Curtis E. Moore
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
10
|
Abu-Alghayth M, Vanhatalo A, Wylie LJ, McDonagh ST, Thompson C, Kadach S, Kerr P, Smallwood MJ, Jones AM, Winyard PG. S-nitrosothiols, and other products of nitrate metabolism, are increased in multiple human blood compartments following ingestion of beetroot juice. Redox Biol 2021; 43:101974. [PMID: 33940546 PMCID: PMC8111767 DOI: 10.1016/j.redox.2021.101974] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022] Open
Abstract
Ingested inorganic nitrate (NO3⁻) has multiple effects in the human body including vasodilation, inhibition of platelet aggregation, and improved skeletal muscle function. The functional effects of oral NO3⁻ involve the in vivo reduction of NO3⁻ to nitrite (NO2⁻) and thence to nitric oxide (NO). However, the potential involvement of S-nitrosothiol (RSNO) formation is unclear. We hypothesised that the RSNO concentration ([RSNO]) in red blood cells (RBCs) and plasma is increased by NO3⁻-rich beetroot juice ingestion. In healthy human volunteers, we tested the effect of dietary supplementation with NO3⁻-rich beetroot juice (BR) or NO3⁻-depleted beetroot juice (placebo; PL) on [RSNO], [NO3⁻] and [NO2⁻] in RBCs, whole blood and plasma, as measured by ozone-based chemiluminescence. The median basal [RSNO] in plasma samples (n = 22) was 10 (5–13) nM (interquartile range in brackets). In comparison, the median values for basal [RSNO] in the corresponding RBC preparations (n = 19) and whole blood samples (n = 19) were higher (p < 0.001) than in plasma, being 40 (30–60) nM and 35 (25–80) nM, respectively. The median RBC [RSNO] in a separate cohort of healthy subjects (n = 5) was increased to 110 (93–125) nM after ingesting BR (12.8 mmol NO3⁻) compared to a corresponding baseline value of 25 (21–31) nM (Mann-Whitney test, p < 0.01). The median plasma [RSNO] in another cohort of healthy subjects (n = 14) was increased almost ten-fold to 104 (58–151) nM after BR supplementation (7 × 6.4 mmol of NO3⁻ over two days, p < 0.01) compared to PL. In conclusion, RBC and plasma [RSNO] are increased by BR ingestion. In addition to NO2⁻, RSNO may be involved in dietary NO3⁻ metabolism/actions. Human ingestion of NO3⁻-rich beetroot juice caused increased plasma S-nitrosothiol levels compared with baseline. Beetroot juice ingestion also caused increased S-nitrosothiol and NO2⁻ levels in red blood cells compared with baseline. RSNO formation may contribute to the physiological effects of dietary NO3⁻.
Collapse
Affiliation(s)
- Mohammed Abu-Alghayth
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Sinead Tj McDonagh
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Christopher Thompson
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Stefan Kadach
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Paul Kerr
- Royal Devon and Exeter NHS Foundation Trust, Exeter, EX1 2PD, UK
| | - Miranda J Smallwood
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Paul G Winyard
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK.
| |
Collapse
|
11
|
Poptic AL, Zhang S. Iron(II/III) Halide Complexes Promote the Interconversion of Nitric Oxide and S-Nitrosothiols through Reversible Fe-S Interaction. Inorg Chem 2021; 60:5190-5197. [PMID: 33705121 DOI: 10.1021/acs.inorgchem.1c00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heme and non-heme iron in biology mediate the storage/release of NO• from S-nitrosothiols as a means to control the biological concentration of NO•. Despite their importance in many physiological processes, the mechanisms of N-S bond formation/cleavage at Fe centers have been controversial. Herein, we report the interconversion of NO• and S-nitrosothiols mediated by FeII/FeIII chloride complexes. The reaction of 2 equiv of S-nitrosothiol (Ph3CSNO) with [Cl6FeII2]2- results in facile release of NO• and formation of iron(III) halothiolate. Detailed spectroscopic studies, including in situ UV-vis, IR, and Mössbauer spectroscopy, support the interaction of the S atom with the FeII center. This is in contrast to the proposed mechanism of NO• release from the well-studied "red product" κ1-N bound S-nitrosothiol FeII complex, [(CN)5Fe(κ1-N-RSNO)]3-. Additionally, FeIII chloride can mediate NO• storage through the formation of S-nitrosothiols. Treatment of iron(III) halothiolate with 2 equiv of NO• regenerates Ph3CSNO with the FeII source trapped as the S = 3/2 {FeNO}7 species [Cl3FeNO]-, which is inert toward further coordination and activation of S-nitrosothiols. Our work demonstrates how labile iron can mediate the interconversion of NO•/thiolate and S-nitrosothiol, which has important implications toward how Nature manages the biological concentration of free NO•.
Collapse
Affiliation(s)
- Anna L Poptic
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Yang T, Zelikin AN, Chandrawati R. Enzyme Mimics for the Catalytic Generation of Nitric Oxide from Endogenous Prodrugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907635. [PMID: 32372556 DOI: 10.1002/smll.201907635] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The highly diverse biological roles of nitric oxide (NO) in both physiological and pathophysiological processes have prompted great interest in the use of NO as a therapeutic agent in various biomedical applications. NO can exert either protective or deleterious effects depending on its concentration and the location where it is delivered or generated. This double-edged attribute, together with the short half-life of NO in biological systems, poses a major challenge to the realization of the full therapeutic potential of this molecule. Controlled release strategies show an admirable degree of precision with regard to the spatiotemporal dosing of NO but are disadvantaged by the finite NO deliverable payload. In turn, enzyme-prodrug therapy techniques afford enhanced deliverable payload but are troubled by the inherent low stability of natural enzymes, as well as the requirement to control pharmacokinetics for the exogenous prodrugs. The past decade has seen the advent of a new paradigm in controlled delivery of NO, namely localized bioconversion of the endogenous prodrugs of NO, specifically by enzyme mimics. These early developments are presented, successes of this strategy are highlighted, and possible future work on this avenue of research is critically discussed.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Alexander N Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Hosseininasab V, McQuilken AC, Bakhoda A(G, Bertke JA, Timerghazin QK, Warren TH. Lewis Acid Coordination Redirects S‐Nitrosothiol Signaling Output. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Alison C. McQuilken
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| | | | - Jeffery A. Bertke
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| | - Qadir K. Timerghazin
- Department of Chemistry Marquette University P.O. Box 1881 Milwaukee WI 53201-1881 USA
| | - Timothy H. Warren
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| |
Collapse
|
14
|
Hosseininasab V, McQuilken AC, Bakhoda AG, Bertke JA, Timerghazin QK, Warren TH. Lewis Acid Coordination Redirects S-Nitrosothiol Signaling Output. Angew Chem Int Ed Engl 2020; 59:10854-10858. [PMID: 32090399 PMCID: PMC7385465 DOI: 10.1002/anie.202001450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 01/02/2023]
Abstract
S-Nitrosothiols (RSNOs) serve as air-stable reservoirs for nitric oxide in biology. While copper enzymes promote NO release from RSNOs by serving as Lewis acids for intramolecular electron-transfer, redox-innocent Lewis acids separate these two functions to reveal the effect of coordination on structure and reactivity. The synthetic Lewis acid B(C6 F5 )3 coordinates to the RSNO oxygen atom, leading to profound changes in the RSNO electronic structure and reactivity. Although RSNOs possess relatively negative reduction potentials, B(C6 F5 )3 coordination increases their reduction potential by over 1 V into the physiologically accessible +0.1 V vs. NHE. Outer-sphere chemical reduction gives the Lewis acid stabilized hyponitrite dianion trans-[LA-O-N=N-O-LA]2- [LA=B(C6 F5 )3 ], which releases N2 O upon acidification. Mechanistic and computational studies support initial reduction to the [RSNO-B(C6 F5 )3 ] radical anion, which is susceptible to N-N coupling prior to loss of RSSR.
Collapse
Affiliation(s)
| | - Alison C McQuilken
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC, 20057-1227, USA
| | - Abolghasem Gus Bakhoda
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC, 20057-1227, USA
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC, 20057-1227, USA
| | - Qadir K Timerghazin
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Timothy H Warren
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC, 20057-1227, USA
| |
Collapse
|
15
|
Cacanyiova S, Krskova K, Zorad S, Frimmel K, Drobna M, Valaskova Z, Misak A, Golas S, Breza J, Breza J, Berenyiova A. Arterial Hypertension and Plasma Glucose Modulate the Vasoactive Effects of Nitroso-Sulfide Coupled Signaling in Human Intrarenal Arteries. Molecules 2020; 25:E2886. [PMID: 32585916 PMCID: PMC7356001 DOI: 10.3390/molecules25122886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
We have investigated the vasoactive effects of the coupled nitro-sulfide signaling pathway in lobar arteries (LAs) isolated from the nephrectomized kidneys of cancer patients: normotensive patients (NT) and patients with arterial hypertension (AH). LAs of patients with AH revealed endothelial dysfunction, which was associated with an increased response to the exogenous NO donor, nitrosoglutathione (GSNO). The interaction of GSNO with the H2S donor triggered a specific vasoactive response. Unlike in normotensive patients, in patients with AH, the starting and returning of the vasorelaxation induced by the end-products of the H2S-GSNO interaction (S/GSNO) was significantly faster, however, without the potentiation of the maximum. Moreover, increasing glycemia shortened the time required to reach 50% of the maximum vasorelaxant response induced by S/GSNO products so modulating their final effect. Moreover, we found out that, unlike K+ channel activation, cGMP pathway and HNO as probable mediator could be involved in mechanisms of S/GSNO action. For the first time, we demonstrated the expression of genes coding H2S-producing enzymes in perivascular adipose tissue and we showed the localization of these enzymes in LAs of normotensive patients and in patients with AH. Our study confirmed that the heterogeneity of specific nitroso-sulfide vasoactive signaling exists depending on the occurrence of hypertension associated with increased plasma glucose level. Endogenous H2S and the end-products of the H2S-GSNO interaction could represent prospective pharmacological targets to modulate the vasoactive properties of human intrarenal arteries.
Collapse
Affiliation(s)
- Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| | - Katarina Krskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (K.K.); (S.Z.)
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (K.K.); (S.Z.)
| | - Karel Frimmel
- Institute for Heart Research, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia;
| | - Magdalena Drobna
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| | - Zuzana Valaskova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia;
| | - Samuel Golas
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| | - Jan Breza
- Department of Urology, Derer’s University Hospital, 833 05 Bratislava, Slovakia; (J.B.); (J.B.J.)
| | - Jan Breza
- Department of Urology, Derer’s University Hospital, 833 05 Bratislava, Slovakia; (J.B.); (J.B.J.)
| | - Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| |
Collapse
|
16
|
Investigation of S-Nitrosoglutathione in stroke: A systematic review and meta-analysis of literature in pre-clinical and clinical research. Exp Neurol 2020; 328:113262. [DOI: 10.1016/j.expneurol.2020.113262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/19/2020] [Accepted: 02/28/2020] [Indexed: 11/21/2022]
|
17
|
Andreadou I, Schulz R, Papapetropoulos A, Turan B, Ytrehus K, Ferdinandy P, Daiber A, Di Lisa F. The role of mitochondrial reactive oxygen species, NO and H 2 S in ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med 2020; 24:6510-6522. [PMID: 32383522 PMCID: PMC7299678 DOI: 10.1111/jcmm.15279] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/12/2022] Open
Abstract
Redox signalling in mitochondria plays an important role in myocardial ischaemia/reperfusion (I/R) injury and in cardioprotection. Reactive oxygen and nitrogen species (ROS/RNS) modify cellular structures and functions by means of covalent changes in proteins including among others S‐nitros(yl)ation by nitric oxide (NO) and its derivatives, and S‐sulphydration by hydrogen sulphide (H2S). Many enzymes are involved in the mitochondrial formation and handling of ROS, NO and H2S under physiological and pathological conditions. In particular, the balance between formation and removal of reactive species is impaired during I/R favouring their accumulation. Therefore, various interventions aimed at decreasing mitochondrial ROS accumulation have been developed and have shown cardioprotective effects in experimental settings. However, ROS, NO and H2S play also a role in endogenous cardioprotection, as in the case of ischaemic pre‐conditioning, so that preventing their increase might hamper self‐defence mechanisms. The aim of the present review was to provide a critical analysis of formation and role of reactive species, NO and H2S in mitochondria, with a special emphasis on mechanisms of injury and protection that determine the fate of hearts subjected to I/R. The elucidation of the signalling pathways of ROS, NO and H2S is likely to reveal novel molecular targets for cardioprotection that could be modulated by pharmacological agents to prevent I/R injury.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology 1, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
18
|
Bahadoran Z, Carlström M, Mirmiran P, Ghasemi A. Nitric oxide: To be or not to be an endocrine hormone? Acta Physiol (Oxf) 2020; 229:e13443. [PMID: 31944587 DOI: 10.1111/apha.13443] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO), a highly reactive gasotransmitter, is critical for a number of cellular processes and has multiple biological functions. Due to its limited lifetime and diffusion distance, NO has been mainly believed to act in autocrine/paracrine fashion. The increasingly recognized effects of pharmacologically delivered and endogenous NO at a distant site have changed the conventional wisdom and introduced NO as an endocrine signalling molecule. The notion is greatly supported by the detection of a number of NO adducts and their circulatory cycles, which in turn contribute to the transport and delivery of NO bioactivity, remote from the sites of its synthesis. The existence of endocrine sites of synthesis, negative feedback regulation of biosynthesis, integrated storage and transport systems, having an exclusive receptor, that is, soluble guanylyl cyclase (sGC), and organized circadian rhythmicity make NO something beyond a simple autocrine/paracrine signalling molecule that could qualify for being an endocrine signalling molecule. Here, we discuss hormonal features of NO from the classical endocrine point of view and review available knowledge supporting NO as a true endocrine hormone. This new insight can provide a new framework within which to reinterpret NO biology and its clinical applications.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
19
|
Mondal A, Douglass M, Hopkins SP, Singha P, Tran M, Handa H, Brisbois EJ. Multifunctional S-Nitroso- N-acetylpenicillamine-Incorporated Medical-Grade Polymer with Selenium Interface for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34652-34662. [PMID: 31483604 PMCID: PMC8007129 DOI: 10.1021/acsami.9b10610] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Modern crises in implantable or indwelling blood-contacting medical devices are mainly due to the dual problems of infection and thrombogenicity. There is a paucity of biomaterials that can address both problems simultaneously through a singular platform. Taking cues from the body's own defense mechanism against infection and blood clotting (thrombosis) via the endogenous gasotransmitter nitric oxide (NO), both of these issues are addressed through the development of a layered S-nitroso-N-acetylpenicillamine (SNAP)-doped polymer with a blended selenium (Se)-polymer interface. The unique capability of the SNAP-Se-1 polymer composites to explicitly release NO from the SNAP reservoir as well as generate NO via the incorporated Se is reported for the first time. The NO release from the SNAP-doped polymer increased substantially in the presence of the Se interface. The Se interface was able to generate NO in the presence of S-nitrosoglutathione (GSNO) and glutathione (GSH), demonstrating the capability of generating NO from endogenous S-nitrosothiols (RSNO). Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) traced distribution of elemental Se nanoparticles on the interface and the surface properties were evaluated by surface wettability and roughness. The SNAP-Se-1 efficiently inhibited the growth of bacteria and reduced platelet adhesion while showing minimal cytotoxicity, thus potentially eliminating the risks of systemic antibiotic and blood coagulation therapy. The SNAP-Se-1 exhibited antibacterial activity of ∼2.39 and ∼2.25 log reductions in the growth of clinically challenging adhered Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. SNAP-Se-1 also significantly reduced platelet adhesion by 85.5% compared to corresponding controls. A WST-8-based cell viability test performed on NIH 3T3 mouse fibroblast cells provided supporting evidence for the potential biocompatibility of the material in vitro. These results highlight the prospective utility of SNAP-Se-1 as a blood-contacting infection-resistant biomaterial in vitro which can be further tuned by application specificity.
Collapse
Affiliation(s)
- Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Sean P Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Martin Tran
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
- Corresponding Authors: Dr. Hitesh Handa, Assistant Professor, University of Georgia, 220 Riverbend Road, Athens, GA 30602, Telephone: (706) 542-8109, ; Dr. Elizabeth Brisbois, Assistant Professor, University of Central Florida, 12760 Pegasus Drive, Orlando, FL 32816, Telephone: (407) 266-7169,
| | - Elizabeth J Brisbois
- Department of Materials Science & Engineering, College of Engineering & Computer Science , University of Central Florida , Orlando , Florida 32816 , United States
- Corresponding Authors: Dr. Hitesh Handa, Assistant Professor, University of Georgia, 220 Riverbend Road, Athens, GA 30602, Telephone: (706) 542-8109, ; Dr. Elizabeth Brisbois, Assistant Professor, University of Central Florida, 12760 Pegasus Drive, Orlando, FL 32816, Telephone: (407) 266-7169,
| |
Collapse
|
20
|
Bonetti J, Zhou Y, Parent M, Clarot I, Yu H, Fries-Raeth I, Leroy P, Lartaud I, Gaucher C. Intestinal absorption of S-nitrosothiols: Permeability and transport mechanisms. Biochem Pharmacol 2018; 155:21-31. [PMID: 29935960 DOI: 10.1016/j.bcp.2018.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022]
Abstract
S-Nitrosothiols, a class of NO donors, demonstrate potential benefits for cardiovascular diseases. Drugs for such chronic diseases require long term administration preferentially through the oral route. However, the absorption of S-nitrosothiols by the intestine, which is the first limiting barrier for their vascular bioavailability, is rarely evaluated. Using an in vitro model of intestinal barrier, based on human cells, the present work aimed at elucidating the mechanisms of intestinal transport (passive or active, paracellular or transcellular pathway) and at predicting the absorption site of three S-nitrosothiols: S-nitrosoglutathione (GSNO), S-nitroso-N-acetyl-l-cysteine (NACNO) and S-nitroso-N-acetyl-d-penicillamine (SNAP). These S-nitrosothiols include different skeletons carrying the nitroso group, which confer different physico-chemical characteristics and biological activities (antioxidant and anti-inflammatory). According to the values of apparent permeability coefficient, the three S-nitrosothiols belong to the medium class of permeability. The evaluation of the bidirectional apparent permeability demonstrated a passive diffusion of the three S-nitrosothiols. GSNO and NACNO preferentially cross the intestinal barrier though the transcellular pathway, while SNAP followed both the trans- and paracellular pathways. Finally, the permeability of NACNO was favoured at pH 6.4, which is close to the pH of the jejunal part of the intestine. Through this study, we determined the absorption mechanisms of S-nitrosothiols and postulated that they can be administrated through the oral route.
Collapse
Affiliation(s)
| | - Yi Zhou
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France
| | | | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France
| | - Haiyan Yu
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France
| | | | - Pierre Leroy
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France
| | | | | |
Collapse
|
21
|
|
22
|
Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology. Biol Chem 2017; 398:1267-1293. [DOI: 10.1515/hsz-2017-0150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
AbstractDecades of chemical, biochemical and pathophysiological research have established the relevance of post-translational protein modifications induced by processes related to oxidative stress, with critical reflections on cellular signal transduction pathways. A great deal of the so-called ‘redox regulation’ of cell function is in fact mediated through reactions promoted by reactive oxygen and nitrogen species on more or less specific aminoacid residues in proteins, at various levels within the cell machinery. Modifications involving cysteine residues have received most attention, due to the critical roles they play in determining the structure/function correlates in proteins. The peculiar reactivity of these residues results in two major classes of modifications, with incorporation of NO moieties (S-nitrosation, leading to formation of proteinS-nitrosothiols) or binding of low molecular weight thiols (S-thionylation, i.e. in particularS-glutathionylation,S-cysteinylglycinylation andS-cysteinylation). A wide array of proteins have been thus analyzed in detail as far as their susceptibility to either modification or both, and the resulting functional changes have been described in a number of experimental settings. The present review aims to provide an update of available knowledge in the field, with a special focus on the respective (sometimes competing and antagonistic) roles played by proteinS-nitrosations andS-thionylations in biochemical and cellular processes specifically pertaining to pathogenesis of cardiovascular diseases.
Collapse
|
23
|
Kaakinen M, Reichelt ME, Ma Z, Ferguson C, Martel N, Porrello ER, Hudson JE, Thomas WG, Parton RG, Headrick JP. Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Res Cardiol 2017; 112:24. [PMID: 28343262 DOI: 10.1007/s00395-017-0613-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
Caveolae and associated cavin and caveolins may govern myocardial function, together with responses to mechanical and ischaemic stresses. Abnormalities in these proteins are also implicated in different cardiovascular disorders. However, specific roles of the cavin-1 protein in cardiac and coronary responses to mechanical/metabolic perturbation remain unclear. We characterised cardiovascular impacts of cavin-1 deficiency, comparing myocardial and coronary phenotypes and responses to stretch and ischaemia-reperfusion in hearts from cavin-1 +/+ and cavin-1 -/- mice. Caveolae and caveolins 1 and 3 were depleted in cavin-1 -/- hearts. Cardiac ejection properties in situ were modestly reduced in cavin-1 -/- mice. While peak contractile performance in ex vivo myocardium from cavin-1 -/- and cavin-1 +/+ mice was comparable, intrinsic beating rate, diastolic stiffness and Frank-Starling behaviour (stretch-dependent diastolic and systolic forces) were exaggerated in cavin-1 -/- hearts. Increases in stretch-dependent forces were countered by NOS inhibition (100 µM L-NAME), which exposed negative inotropy in cavin-1 -/- hearts, and were mimicked by 100 µM nitroprusside. In contrast, chronotropic differences appeared largely NOS-independent. Cavin-1 deletion also induced NOS-dependent coronary dilatation, ≥3-fold prolongation of reactive hyperaemic responses, and exaggerated pressure-dependence of coronary flow. Stretch-dependent efflux of lactate dehydrogenase and cardiac troponin I was increased and induction of brain natriuretic peptide and c-Fos inhibited in cavin-1 -/- hearts, while ERK1/2 phospho-activation was preserved. Post-ischaemic dysfunction and damage was also exaggerated in cavin-1 -/- hearts. Diverse effects of cavin-1 deletion reveal important roles in both NOS-dependent and -independent control of cardiac and coronary functions, together with governing sarcolemmal fragility and myocardial responses to stretch and ischaemia.
Collapse
Affiliation(s)
- Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.,Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Zhibin Ma
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Charles Ferguson
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nick Martel
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - John P Headrick
- School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
24
|
Bondonno CP, Croft KD, Hodgson JM. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health. Crit Rev Food Sci Nutr 2017; 56:2036-52. [PMID: 25976309 DOI: 10.1080/10408398.2013.811212] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Emerging evidence strongly suggests that dietary nitrate, derived in the diet primarily from vegetables, could contribute to cardiovascular health via effects on nitric oxide (NO) status. NO plays an essential role in cardiovascular health. It is produced via the classical L-arginine-NO-synthase pathway and the recently discovered enterosalivary nitrate-nitrite-NO pathway. The discovery of this alternate pathway has highlighted dietary nitrate as a candidate for the cardioprotective effect of a diet rich in fruit and vegetables. Clinical trials with dietary nitrate have observed improvements in blood pressure, endothelial function, ischemia-reperfusion injury, arterial stiffness, platelet function, and exercise performance with a concomitant augmentation of markers of NO status. While these results are indicative of cardiovascular benefits with dietary nitrate intake, there is still a lingering concern about nitrate in relation to methemoglobinemia, cancer, and cardiovascular disease. It is the purpose of this review to present an overview of NO and its critical role in cardiovascular health; to detail the observed vascular benefits of dietary nitrate intake through effects on NO status as well as to discuss the controversy surrounding the possible toxic effects of nitrate.
Collapse
Affiliation(s)
- Catherine P Bondonno
- a School of Medicine and Pharmacology, University of Western Australia , Perth , Australia
| | - Kevin D Croft
- a School of Medicine and Pharmacology, University of Western Australia , Perth , Australia
| | - Jonathan M Hodgson
- a School of Medicine and Pharmacology, University of Western Australia , Perth , Australia
| |
Collapse
|
25
|
Wu W, Perrin-Sarrado C, Ming H, Lartaud I, Maincent P, Hu XM, Sapin-Minet A, Gaucher C. Polymer nanocomposites enhance S-nitrosoglutathione intestinal absorption and promote the formation of releasable nitric oxide stores in rat aorta. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1795-1803. [DOI: 10.1016/j.nano.2016.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/08/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
|
26
|
Rychter M, Gaucher C, Boudier A, Leroy P, Lulek J. S -Nitrosothiols—NO donors regulating cardiovascular cell proliferation: Insight into intracellular pathway alterations. Int J Biochem Cell Biol 2016; 78:156-161. [DOI: 10.1016/j.biocel.2016.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/20/2023]
|
27
|
Assessment of vascular autonomic function using peripheral arterial tonometry. Heart Vessels 2016; 32:260-268. [DOI: 10.1007/s00380-016-0870-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/01/2016] [Indexed: 01/02/2023]
|
28
|
Jiang H, Polhemus DJ, Islam KN, Torregrossa AC, Li Z, Potts A, Lefer DJ, Bryan NS. Nebivolol Acts as a S-Nitrosoglutathione Reductase Inhibitor. J Cardiovasc Pharmacol Ther 2016; 21:478-85. [DOI: 10.1177/1074248415626300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/12/2015] [Indexed: 11/15/2022]
Abstract
Background and Purpose: Published data on nebivolol reveal selective β1 adrenergic selectively along with novel nitric oxide (NO)-dependent vasodilatory properties. However, the exact molecular mechanism is unknown. Protein S-nitrosylation constitutes a large part of the ubiquitous influence of NO on cellular signal transduction and is involved in a number of human diseases. More recently, protein denitrosylation has been shown to play a major role in controlling cellular S-nitrosylation (SNO). Several enzymes have been reported to catalyze the reduction of SNOs and are viewed as candidate denitrosylases. One of the first described is known as S-nitrosoglutathione reductase (GSNOR). Importantly, GSNOR has been shown to play a role in regulating SNO signaling downstream of the β-adrenergic receptor and is therefore operative in cellular signal transduction. Pharmacological inhibition or genetic deletion of GSNOR leads to enhanced vasodilation and characteristic of known effects of nebivolol. Structurally, nebivolol is similar to known inhibitors of GSNOR. Therefore, we hypothesize that some of the known effects of nebivolol may occur through this mechanism. Experimental Approach: Using cell culture systems, tissue organ bath, and intact animal models, we report that nebivolol treatment leads to a dose-dependent accumulation of nitrosothiols in cells, and this is associated with an enhanced vasodilation by S-nitrosoglutathione. Key Results: These data suggest a new mechanism of action of nebivolol that may explain in part the reported NO activity. Conclusions and Implications: Because exogenous mediators of protein SNO or denitrosylation can substantially affect the development or progression of disease, this may call for new utility of nebivolol.
Collapse
Affiliation(s)
- Hong Jiang
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - David J. Polhemus
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Kazi N. Islam
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Ashley C. Torregrossa
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Zhen Li
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Amy Potts
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - David J. Lefer
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Nathan S. Bryan
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
29
|
Abstract
Pulmonary hypertension is an uncommon, yet devastating, syndrome with a complex underlying pathobiology. Hypoxia, inflammation, and increased shear stress appear to be the primary pathogenic events; however, mechanisms by which these processes lead to pulmonary hypertension remain incompletely understood. The ultimate increase in pulmonary vascular resistance is attributed to remodelling of the walls of resistance vessels, which can lead to encroachment on and reduction of the vascular lumen. The number of blood vessels per unit of cross-sectional area in the hypertensive lung is also reduced, which can contribute to increased vascular resistance. Regardless of its etiology, endothelial dysfunction underlies pulmonary hypertension, one manifestation of which is the attenuated production of bioactive nitric oxide. Nitric oxide administration can exert beneficial effects at various stages of the disease. Here we review the known pathobiology of pulmonary hypertension, with a principal focus on endothelial nitric oxide, and also summarize the data on nitric oxide replacement therapy and other novel therapies that relate to nitric oxide as one approach to treatment.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine, University of Naples, Naples, Italy
| | | |
Collapse
|
30
|
Brisbois EJ, Major TC, Goudie MJ, Bartlett RH, Meyerhoff ME, Handa H. Improved hemocompatibility of silicone rubber extracorporeal tubing via solvent swelling-impregnation of S-nitroso-N-acetylpenicillamine (SNAP) and evaluation in rabbit thrombogenicity model. Acta Biomater 2016; 37:111-9. [PMID: 27095484 PMCID: PMC4870167 DOI: 10.1016/j.actbio.2016.04.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/01/2016] [Accepted: 04/13/2016] [Indexed: 01/13/2023]
Abstract
UNLABELLED Blood-contacting devices, including extracorporeal circulation (ECC) circuits, can suffer from complications due to platelet activation and thrombus formation. Development of nitric oxide (NO) releasing polymers is one method to improve hemocompatibility, taking advantage of the ability of low levels of NO to prevent platelet activation/adhesion. In this study a novel solvent swelling method is used to load the walls of silicone rubber tubing with the NO donor S-nitroso-N-acetylpenicillamine (SNAP). This SNAP-silicone rubber tubing exhibits an NO flux of ca. 1×10(-10)molcm(-2)min(-1), which mimics the range of NO release from the normal endothelium, which is stable for at least 4h. Images of the tubing before and after swelling, obtained via scanning electron microscopy, demonstrate that this swelling method has little effect on the surface properties of the tubing. The SNAP-loaded silicone rubber and silicone rubber control tubing are used to fabricate ECC circuits that are evaluated in a rabbit model of thrombogenicity. After 4h of blood flow, the SNAP-loaded silicone rubber circuits were able to preserve the blood platelet count at 64% of baseline (vs. 12% for silicone rubber control). A 67% reduction in the degree of thrombus formation within the thrombogenicity chamber was also observed. This study demonstrates the ability to improve the hemocompatibility of existing/commercial silicone rubber tubing via a simple solvent swelling-impregnation technique, which may also be applicable to other silicone-based blood-contacting devices. STATEMENT OF SIGNIFICANCE Localized nitric oxide (NO) release can be achieved from biomedical grade polymers doped with S-nitroso-N-acetylpenicillamine (SNAP). Despite the promising in vitro and in vivo biocompatibility results reported for these NO releasing polymers, many of these materials may face challenges in being translated to clinical applications, especially in the areas of polymer processing and manufacturing. In this study, we report a solvent swelling-impregnation technique to incorporate SNAP into extracorporeal circuit (ECC) tubing. These NO-releasing ECCs were able to attenuate the activation of platelets and maintain their functionality, while significantly reducing the extent of thrombus formation during 4h blood flow in the rabbit model of thrombogenicity.
Collapse
Affiliation(s)
| | - Terry C Major
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Marcus J Goudie
- Department of Biological Engineering, University of Georgia, Athens, GA, USA
| | | | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Hitesh Handa
- Department of Biological Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
31
|
A motif for reversible nitric oxide interactions in metalloenzymes. Nat Chem 2016; 8:663-9. [DOI: 10.1038/nchem.2502] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 03/11/2016] [Indexed: 01/12/2023]
|
32
|
Postprandial lipids accelerate and redirect nitric oxide consumption in plasma. Nitric Oxide 2016; 55-56:70-81. [PMID: 27021272 DOI: 10.1016/j.niox.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/03/2023]
Abstract
Nitric oxide (NO) and O2 are both three-to four-fold more soluble in biological lipids than in aqueous solutions. Their higher concentration within plasma lipids accelerates NO autoxidation to an extent that may be of importance to overall NO bioactivity. This study was undertaken to test the hypothesis that increased plasma lipids after a high-fat meal appreciably accelerate NO metabolism and alter the byproducts formed. We found that plasma collected from subjects after consumption of a single high-fat meal had a higher capacity for NO consumption and consumed NO more rapidly compared to fasting plasma. This increased NO consumption showed a direct correlation with plasma triglyceride concentrations (p = 0.006). The accelerated NO consumption in postprandial plasma was reversed by removal of the lipids from the plasma, was mimicked by the addition of hydrophobic micelles to aqueous buffer, and could not be explained by the presence of either free hemoglobin or ceruloplasmin. The products of NO consumption were shifted in postprandial plasma, with 55% more nitrite (n = 12, p = 0.002) but 50% less SNO (n = 12, p = 0.03) production compared to matched fasted plasma. Modeling calculations indicated that NO autoxidation was accelerated by about 48-fold in the presence of plasma lipids. We conclude that postprandial triglyceride-rich lipoproteins exert a significant influence on NO metabolism in plasma.
Collapse
|
33
|
Sani M, Sebai H, Refinetti R, Mondal M, Ghanem-Boughanmi N, Boughattas NA, Ben-Attia M. Effects of sodium nitroprusside on mouse erythrocyte catalase activity and malondialdehyde status. Drug Chem Toxicol 2016; 39:350-6. [PMID: 26738972 DOI: 10.3109/01480545.2015.1122032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There is controversy about the anti- or pro-oxidative effects of the nitric oxide (NO)-donor sodium nitroprusside (SNP). Hence, the activity of the antioxidant enzyme catalase (CAT) and the status of malondialdehyde (MDA) were investigated after a 2.5 mg/kg dose of SNP had been i.p. administered to different and comparable groups of mice (n = 48). The drug was administered at two different circadian times (1 and 13 h after light onset [HALO]). There were, irrespectively of sampling time, no significant differences in the means of CAT activity and MDA status between control and SNP-treated groups, no matter the treatment time. However, CAT activity was significantly (Student's t-test, p < 0.001) increased 1 h following SNP administration at 1 HALO, whereas the significant (p < 0.001) increase in the enzyme activity was found only 3 h after injection at 13 HALO. The drug dosing either at 1 or 13 HALO resulted in no significant differences of MDA status between control and treated groups regardless to the sampling time. Two-way analysis of variance (ANOVA) detected a significant (F0.05(7,88)= 5.3; p < 0.0006) interaction between sampling time and treatment in mice injected at 1 HALO, suggesting the influence of treatment on sampling-time-related changes in CAT activity. However, ANOVA validated no interaction between the two factors in mice treated at 13 HALO, illustrating that the sampling-time differences in enzyme activity were greater. Furthermore, two-way ANOVA revealed no interaction in the variation of MDA status in animals treated either at 1 or 13 HALO. This study indicates that SNP significantly affected the anti-oxidant system.
Collapse
Affiliation(s)
- Mamane Sani
- a Département De Biologie, Faculté Des Sciences Et Techniques De Maradi , UMR Biosurveillance Et Toxicologie Environnementale , Maradi , Niger .,c Circadian Rhythm Laboratory , Boise State University , Boise , ID , USA
| | - Hichem Sebai
- b Département Des Sciences De La Vie , UR Ethnobotanie Et Stress Oxydant , Zarzouna , Tunisia
| | - Roberto Refinetti
- c Circadian Rhythm Laboratory , Boise State University , Boise , ID , USA
| | - Mohan Mondal
- d National Dairy Research Institute , Kalyani , West Bengal , India
| | - Néziha Ghanem-Boughanmi
- b Département Des Sciences De La Vie , UR Ethnobotanie Et Stress Oxydant , Zarzouna , Tunisia
| | - Naceur A Boughattas
- e Laboratoire De Pharmacologie, Faculté De Médecine , Monastir , Tunisia , and
| | - Mossadok Ben-Attia
- f Laboratoire De Biosurveillance De L'environnement, Faculté Des Sciences De Bizerte , Zarzouna , Tunisia
| |
Collapse
|
34
|
Abstract
Nitric oxide (NO) generated by endothelial cells to relax vascular smooth muscle is one of the most intensely studied molecules in the past 25 years. Much of what is known about NO regulation of NO is based on blockade of its generation and analysis of changes in vascular regulation. This approach has been useful to demonstrate the importance of NO in large scale forms of regulation but provides less information on the nuances of NO regulation. However, there is a growing body of studies on multiple types of in vivo measurement of NO in normal and pathological conditions. This discussion will focus on in vivo studies and how they are reshaping the understanding of NO's role in vascular resistance regulation and the pathologies of hypertension and diabetes mellitus. The role of microelectrode measurements in the measurement of [NO] will be considered because much of the controversy about what NO does and at what concentration depends upon the measurement methodology. For those studies where the technology has been tested and found to be well founded, the concept evolving is that the stresses imposed on the vasculature in the form of flow-mediated stimulation, chemicals within the tissue, and oxygen tension can cause rapid and large changes in the NO concentration to affect vascular regulation. All these functions are compromised in both animal and human forms of hypertension and diabetes mellitus due to altered regulation of endothelial cells and formation of oxidants that both damage endothelial cells and change the regulation of endothelial nitric oxide synthase.
Collapse
Affiliation(s)
- Harold Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, Indiana, Indiana, USA
| |
Collapse
|
35
|
Parent M, Boudier A, Perrin J, Vigneron C, Maincent P, Violle N, Bisson JF, Lartaud I, Dupuis F. In Situ Microparticles Loaded with S-Nitrosoglutathione Protect from Stroke. PLoS One 2015; 10:e0144659. [PMID: 26646285 PMCID: PMC4672927 DOI: 10.1371/journal.pone.0144659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
Treatment of stroke, especially during the first hours or days, is still lacking. S-nitrosoglutathione (GSNO), a cerebroprotective agent with short life time, may help if administered early with a sustain delivery while avoiding intensive reduction in blood pressure. We developed in situ forming implants (biocompatible biodegradable copolymer) and microparticles (same polymer and solvent emulsified with an external oily phase) of GSNO to lengthen its effects and allow cerebroprotection after a single subcutaneous administration to Wistar rats. Arterial pressure was recorded for 3 days (telemetry, n = 14), whole-blood platelet aggregation up to 13 days (aggregometry, n = 58), and neurological score, cerebral infarct size and edema volume for 2 days after obstruction of the middle cerebral artery by autologous blood clots (n = 30). GSNO-loaded formulations (30 mg/kg) induced a slighter and longer hypotension (-10 vs. -56 ± 6 mmHg mean arterial pressure, 18 h vs. 40 min) than free GSNO at the same dose. The change in pulse pressure (-50%) lasted even up to 42 h for microparticles. GSNO-loaded formulations (30 mg/kg) prevented the transient 24 h hyper-aggregability observed with free GSNO and 7.5 mg/kg-loaded formulations. When injected 2 h after stroke, GSNO-loaded microparticles (30 mg/kg) reduced neurological score at 24 (-62%) and 48 h (-75%) vs. empty microparticles and free GSNO 7.5 mg/kg and, compared to free GSNO, divided infarct size by 10 and edema volume by 8 at 48 h. Corresponding implants reduced infarct size and edema volume by 2.5 to 3 times. The longer (at least 2 days) but slight effects on arterial pressures show sustained delivery of GSNO-loaded formulations (30 mg/kg), which prevent transient platelet hyper-responsiveness and afford cerebroprotection against the consequences of stroke. In conclusion, in situ GSNO-loaded formulations are promising candidates for the treatment of stroke.
Collapse
Affiliation(s)
- Marianne Parent
- CITHÉFOR EA 3452, Faculty of Pharmacy, Université de Lorraine, Nancy, France
| | - Ariane Boudier
- CITHÉFOR EA 3452, Faculty of Pharmacy, Université de Lorraine, Nancy, France
| | - Julien Perrin
- INSERM U1116, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Claude Vigneron
- CITHÉFOR EA 3452, Faculty of Pharmacy, Université de Lorraine, Nancy, France
| | - Philippe Maincent
- CITHÉFOR EA 3452, Faculty of Pharmacy, Université de Lorraine, Nancy, France
| | - Nicolas Violle
- ETAP–Ethologie Appliquée, Research Centre in Pharmacology, Nutrition and Toxicology, Vandœuvre-lès-Nancy, France
| | - Jean-François Bisson
- ETAP–Ethologie Appliquée, Research Centre in Pharmacology, Nutrition and Toxicology, Vandœuvre-lès-Nancy, France
| | - Isabelle Lartaud
- CITHÉFOR EA 3452, Faculty of Pharmacy, Université de Lorraine, Nancy, France
| | - François Dupuis
- CITHÉFOR EA 3452, Faculty of Pharmacy, Université de Lorraine, Nancy, France
- * E-mail:
| |
Collapse
|
36
|
Thomas DD, Heinecke JL, Ridnour LA, Cheng RY, Kesarwala AH, Switzer CH, McVicar DW, Roberts DD, Glynn S, Fukuto JM, Wink DA, Miranda KM. Signaling and stress: The redox landscape in NOS2 biology. Free Radic Biol Med 2015; 87:204-25. [PMID: 26117324 PMCID: PMC4852151 DOI: 10.1016/j.freeradbiomed.2015.06.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) has a highly diverse range of biological functions from physiological signaling and maintenance of homeostasis to serving as an effector molecule in the immune system. However, deleterious as well as beneficial roles of NO have been reported. Many of the dichotomous effects of NO and derivative reactive nitrogen species (RNS) can be explained by invoking precise interactions with different targets as a result of concentration and temporal constraints. Endogenous concentrations of NO span five orders of magnitude, with levels near the high picomolar range typically occurring in short bursts as compared to sustained production of low micromolar levels of NO during immune response. This article provides an overview of the redox landscape as it relates to increasing NO concentrations, which incrementally govern physiological signaling, nitrosative signaling and nitrosative stress-related signaling. Physiological signaling by NO primarily occurs upon interaction with the heme protein soluble guanylyl cyclase. As NO concentrations rise, interactions with nonheme iron complexes as well as indirect modification of thiols can stimulate additional signaling processes. At the highest levels of NO, production of a broader range of RNS, which subsequently interact with more diverse targets, can lead to chemical stress. However, even under such conditions, there is evidence that stress-related signaling mechanisms are triggered to protect cells or even resolve the stress. This review therefore also addresses the fundamental reactions and kinetics that initiate signaling through NO-dependent pathways, including processes that lead to interconversion of RNS and interactions with molecular targets.
Collapse
Affiliation(s)
- Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Julie L Heinecke
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa A Ridnour
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Y Cheng
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aparna H Kesarwala
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher H Switzer
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel W McVicar
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - David D Roberts
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon Glynn
- Prostate Cancer Institute, NUI Galway, Ireland, USA
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA
| | - David A Wink
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Katrina M Miranda
- Department of Chemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA.
| |
Collapse
|
37
|
Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 2015; 22:1230-42. [PMID: 25330054 PMCID: PMC4410282 DOI: 10.1089/ars.2014.6158] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. RECENT ADVANCES Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. CRITICAL ISSUES Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. FUTURE DIRECTIONS Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance.
Collapse
Affiliation(s)
- Christian Heiss
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Duesseldorf , Duesseldorf, Germany
| | | | | |
Collapse
|
38
|
Bondonno CP, Croft KD, Ward N, Considine MJ, Hodgson JM. Dietary flavonoids and nitrate: effects on nitric oxide and vascular function. Nutr Rev 2015; 73:216-35. [PMID: 26024545 DOI: 10.1093/nutrit/nuu014] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence highlights dietary flavonoids and nitrate as candidates that may explain at least part of the cardioprotective effect of a fruit and vegetable diet. Nitric oxide plays a pivotal role in cardiovascular health. Components of a fruit and vegetable diet that are cardioprotective, in part through effects on nitric oxide status, could substantially reduce the cardiovascular risk profile of the general population with increased intake of such a diet. Epidemiological evidence suggests that dietary flavonoids and nitrate have a cardioprotective effect. Clinical trials with flavonoid- and nitrate-rich foods have shown benefits on measures of vascular health. While the molecular mechanisms by which flavonoids and nitrate are cardioprotective are not completely understood, recent evidence suggests both nonspecific and specific effects through nitric oxide pathways. This review presents an overview of nitric oxide and its key role in cardiovascular health and discusses the possible vascular benefits of flavonoids and nitrate, individually and in combination, through effects on nitric oxide status.
Collapse
Affiliation(s)
- Catherine P Bondonno
- C.P. Bondonno, K.D. Croft, N.C. Ward, and J.M. Hodgson are with the School of Medicine and Pharmacology, University of Western Australia, Perth Western Australia, Australia. M.J. Considine is with the School of Plant Biology, University of Western Australia, Perth Western Australia and the Department of Agriculture and Food Western Australia, Perth, Western Australia, Australia.
| | - Kevin D Croft
- C.P. Bondonno, K.D. Croft, N.C. Ward, and J.M. Hodgson are with the School of Medicine and Pharmacology, University of Western Australia, Perth Western Australia, Australia. M.J. Considine is with the School of Plant Biology, University of Western Australia, Perth Western Australia and the Department of Agriculture and Food Western Australia, Perth, Western Australia, Australia
| | - Natalie Ward
- C.P. Bondonno, K.D. Croft, N.C. Ward, and J.M. Hodgson are with the School of Medicine and Pharmacology, University of Western Australia, Perth Western Australia, Australia. M.J. Considine is with the School of Plant Biology, University of Western Australia, Perth Western Australia and the Department of Agriculture and Food Western Australia, Perth, Western Australia, Australia
| | - Michael J Considine
- C.P. Bondonno, K.D. Croft, N.C. Ward, and J.M. Hodgson are with the School of Medicine and Pharmacology, University of Western Australia, Perth Western Australia, Australia. M.J. Considine is with the School of Plant Biology, University of Western Australia, Perth Western Australia and the Department of Agriculture and Food Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- C.P. Bondonno, K.D. Croft, N.C. Ward, and J.M. Hodgson are with the School of Medicine and Pharmacology, University of Western Australia, Perth Western Australia, Australia. M.J. Considine is with the School of Plant Biology, University of Western Australia, Perth Western Australia and the Department of Agriculture and Food Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
39
|
Aldemir M, Keleş İ, Karalar M, Tecer E, Adalı F, Pektaş MB, Parlar Aİ, Darçın OT. Nebivolol compared with metoprolol for erectile function in males undergoing coronary artery bypass graft. Anatol J Cardiol 2015; 16:131-6. [PMID: 26467373 PMCID: PMC5336728 DOI: 10.5152/akd.2015.5936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate erectile function in males undergoing coronary artery bypass graft (CABG) while on two different adrenoceptor beta-blocker regimens, namely nebivolol and metoprolol. We hypothesize that the negative effects of cardiopulmonary bypass on erectile function may be possibly attenuated by preferring a vasodilating selective β1-blocker, nebivolol, to metoprolol as an anti-ischemic and antiarrhythmic agent in males undergoing CABG. METHODS This randomized, double-blind, prospective clinical study was conducted in patients scheduled for CABG surgery between February 2012 and June 2014. A total of 60 consecutive patients who met inclusion criteria were randomized and divided into the following two groups: N group, which received 5 mg of nebivolol orally for 2 weeks before surgery plus 12 weeks after surgery or M group, which received 50 mg of metoprolol orally for the same period. All patients were evaluated by the erectile function domain of the International Index of Erectile Function-5 (IIEF-5) at the time of admission (before starting the beta-blocker) and 3 months after surgery. RESULTS In the metoprolol group, the mean IIEF-5 score decreased significantly from a baseline of 15.2±5.8 to 12.9±5.8 (p<0.001), but in the nebivolol group, this difference was not significant (from a baseline 12.9±5.5 to 12.4±5.5, p=0.053). In all patients, the mean IIEF-5 score decreased significantly from a baseline of 14.0±5.7 to 12.6±5.6 (p<0.001). CONCLUSION Although erectile function in males undergoing CABG surgery decreases when metoprolol is used, nebivolol exerts protective effects on erectile function against the disruptive effects of cardiopulmonary bypass in patients undergoing CABG.
Collapse
Affiliation(s)
- Mustafa Aldemir
- Department of Cardiovascular Surgery, Faculty of Medicine, Afyon Kocatepe University; Afyonkarahisar-Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kemper KJ, Powell D, Helms CC, Kim-Shapiro DB. Loving-Kindness Meditation’s Effects on Nitric Oxide and Perceived Well-being: A Pilot Study in Experienced and Inexperienced Meditators. Explore (NY) 2015; 11:32-9. [DOI: 10.1016/j.explore.2014.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 01/16/2023]
|
41
|
Bondonno CP, Downey LA, Croft KD, Scholey A, Stough C, Yang X, Considine MJ, Ward NC, Puddey IB, Swinny E, Mubarak A, Hodgson JM. The acute effect of flavonoid-rich apples and nitrate-rich spinach on cognitive performance and mood in healthy men and women. Food Funct 2014; 5:849-58. [PMID: 24676365 DOI: 10.1039/c3fo60590f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Flavonoids and nitrate in a fruit and vegetable diet may be protective against cardiovascular disease and cognitive decline through effects on nitric oxide (NO) status. The circulating NO pool is increased via distinct pathways by dietary flavonoids and nitrate. Our aim was to investigate the acute effects of apples, rich in flavonoids, and spinach, rich in nitrate, independently and in combination on NO status, cognitive function and mood in a randomised, controlled, cross-over trial with healthy men and women (n = 30). The acute effects of four energy-matched treatments (control, apple, spinach and apple + spinach) were compared. Endpoints included plasma nitric oxide status (determined by measuring S-nitrosothiols + other nitroso species (RXNO)), plasma nitrate and nitrite, salivary nitrate and nitrite, urinary nitrate and nitrite as well as cognitive function (determined using the Cognitive Drug Research (CDR) computerized cognitive assessment battery) and mood. Relative to control, all treatments resulted in higher plasma RXNO. A significant increase in plasma nitrate and nitrite, salivary nitrate and nitrite as well as urinary nitrate and nitrite was observed with spinach and apple + spinach compared to control. No significant effect was observed on cognitive function or mood. In conclusion, flavonoid-rich apples and nitrate-rich spinach augmented NO status acutely with no concomitant improvements or deterioration in cognitive function and mood.
Collapse
Affiliation(s)
- Catherine P Bondonno
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Totzeck M, Schicho A, Stock P, Kelm M, Rassaf T, Hendgen-Cotta UB. Nitrite circumvents canonical cGMP signaling to enhance proliferation of myocyte precursor cells. Mol Cell Biochem 2014; 401:175-83. [PMID: 25501648 DOI: 10.1007/s11010-014-2305-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/10/2014] [Indexed: 01/12/2023]
Abstract
Skeletal muscle tissue has a remarkable high regenerative capacity. The underlying cellular events are governed by complex signaling processes, and the proliferation of skeletal myoblasts is a key initial event. The role of nitric oxide (NO) in cell cycle regulation is well-appreciated. Nitrite, an NO oxidation product, is a stable source for NO-like bioactivity particularly in cases when oxygen shortage compromises NO-synthases activity. Although numerous studies suggest that nitrite effects are largely related to NO-dependent signaling, emerging evidence also implicates that nitrite itself can activate protein pathways albeit under physiological, normoxic conditions. This includes a recently demonstrated cyclic guanosine monophosphate-(cGMP)-independent enhancement of endothelial cell proliferation. Whether nitrite itself has the potential to affect myoblast proliferation and metabolism with or without activation of the canonical NO/cGMP pathway to subsequently support muscle cell regeneration is not known. Here we show that nitrite increases proliferation and metabolic activity of murine cultured myoblasts dose-dependently. This effect is not abolished by the NO scavenger 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimida-zoline-1-oxyl-3 oxide and does not affect intracellular cGMP levels, implicating a cGMP-independent mechanism. Nitrite circumvents the rapamycin induced attenuation of myoblast proliferation and enhances mTOR activity. Our results provide evidence for a novel potential physiological and therapeutic approach of nitrite in skeletal muscle regeneration processes under normoxia independent of NO and cGMP.
Collapse
Affiliation(s)
- Matthias Totzeck
- Division of Cardiology, Pulmonology and Vascular Medicine, Department of Medicine, Medical Faculty, University Hospital Duesseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Almeida LEF, Kamimura S, Kenyon N, Khaibullina A, Wang L, de Souza Batista CM, Quezado ZMN. Validation of a method to directly and specifically measure nitrite in biological matrices. Nitric Oxide 2014; 45:54-64. [PMID: 25445633 DOI: 10.1016/j.niox.2014.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022]
Abstract
The bioactivity of nitric oxide (NO) is influenced by chemical species generated through reactions with proteins, lipids, metals, and its conversion to nitrite and nitrate. A better understanding of the functions played by each of these species could be achieved by developing selective assays able of distinguishing nitrite from other NO species. Nagababu and Rifkind developed a method using acetic and ascorbic acids to measure nitrite-derived NO in plasma. Here, we adapted, optimized, and validated this method to assay nitrite in tissues. The method yielded linear measurements over 1-300 pmol of nitrite and was validated for tissue preserved in a nitrite stabilization solution composed of potassium ferricyanide, N-ethylmaleimide and NP-40. When samples were processed with chloroform, but not with methanol, ethanol, acetic acid or acetonitrile, reliable and reproducible nitrite measurements in up to 20 sample replicates were obtained. The method's accuracy in tissue was ≈ 90% and in plasma 99.9%. In mice, during basal conditions, brain, heart, lung, liver, spleen and kidney cortex had similar nitrite levels. In addition, nitrite tissue levels were similar regardless of when organs were processed: immediately upon collection, kept in stabilization solution for later analysis or frozen and later processed. After ip nitrite injections, rapidly changing nitrite concentrations in tissue and plasma could be measured and were shown to change in significantly distinct patterns. This validated method could be valuable for investigations of nitrite biology in conditions such as sickle cell disease, cardiovascular disease, and diabetes, where nitrite is thought to play a role.
Collapse
Affiliation(s)
- Luis E F Almeida
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Sayuri Kamimura
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Nicholas Kenyon
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Alfia Khaibullina
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | | | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
44
|
Specific inhibitory effects of the NO donor MAHMA/NONOate on human platelets. Eur J Pharmacol 2014; 735:169-76. [PMID: 24780647 DOI: 10.1016/j.ejphar.2014.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/30/2023]
Abstract
Nitric oxide (NO) is a physiological inhibitor of platelet function and has vaso-dilating effects. Therefore, synthesized NO releasing agents are used e.g. in cardiovascular medicine. The aim of this study was to characterise specific effects of the short living agent MAHMA/NONOate, a NO donor of the diazeniumdiolate class, on human platelets. Whole blood was obtained from healthy volunteers. In washed human platelets, the MAHMA/NONOate induced phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) and cyclic nucleotide production were studied by Western Blot and by enzyme immunoassay kits. Agonist induced aggregation was measured in platelet rich plasma. Paired Student׳s t-test was used for statistical analysis. MAHMA/NONOate significantly stimulated platelet VASP phosphorylation in a concentration dependent manner and increased intracellular cGMP, but not cAMP levels, transiently. ODQ, a specific inhibitor of the soluble guanylyl cyclase, completely prevented VASP phosphorylation induced by low MAHMA/NONOate concentrations (5nM-15nM). The effects of higher concentrations (30-200nM) were only partially inhibited by ODQ. MAHMA/NONOate reduced platelet aggregation induced by low doses of agonists (2µM ADP, 0.5µg/mL collagen, 5µM TRAP-6) in a concentration dependent manner. MAHMA/NONOate leads to a rapid and transient activation of platelet inhibitory systems, accompanied by decreased platelet aggregation induced by low dose agonists. At low MAHMA/NONOate concentrations, the effects are cGMP dependent and at higher concentrations additionally cGMP independent. The substance could be of interest for clinical situations requiring transient and subtotal inhibition of platelet function.
Collapse
|
45
|
Sindler AL, Devan AE, Fleenor BS, Seals DR. Inorganic nitrite supplementation for healthy arterial aging. J Appl Physiol (1985) 2014; 116:463-77. [PMID: 24408999 PMCID: PMC3949212 DOI: 10.1152/japplphysiol.01100.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/03/2014] [Indexed: 12/12/2022] Open
Abstract
Aging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO. Nitrite also acts as an independent signaling molecule, exerting many of the effects previously attributed to NO. Results of recent studies indicate that nitrite may be effective in the treatment of vascular aging. In old mice, short-term oral sodium nitrite supplementation reduces aortic pulse wave velocity, the gold-standard measure of large elastic artery stiffness, and ameliorates endothelial dysfunction, as indicated by normalization of NO-mediated endothelium-dependent dilation. These improvements in age-related vascular dysfunction with nitrite are mediated by reductions in oxidative stress and inflammation, and may be linked to increases in mitochondrial biogenesis and health. Increasing nitrite levels via dietary intake of nitrate appears to have similarly beneficial effects in many of the same physiological and clinical settings. Several clinical trials are being performed to determine the broad therapeutic potential of increasing nitrite bioavailability on human health and disease, including studies related to vascular aging. In summary, inorganic nitrite, as well as dietary nitrate supplementation, represents a promising therapy for treatment of arterial aging and prevention of age-associated CVD in humans.
Collapse
Affiliation(s)
- Amy L Sindler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | | | | | |
Collapse
|
46
|
Parent M, Boudier A, Dupuis F, Nouvel C, Sapin A, Lartaud I, Six JL, Leroy P, Maincent P. Are in situ formulations the keys for the therapeutic future of S-nitrosothiols? Eur J Pharm Biopharm 2013; 85:640-9. [DOI: 10.1016/j.ejpb.2013.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
|
47
|
Abstract
S-nitrosothiols (RSNO) are involved in post-translational modifications of many proteins analogous to protein phosphorylation. In addition, RSNO have many physiological roles similar to nitric oxide ((•)NO), which are presumably involving the release of (•)NO from the RSNO. However, the much longer life span in biological systems for RSNO than (•)NO suggests a dominant role for RSNO in mediating (•)NO bioactivity. RSNO are detected in plasma in low nanomolar levels in healthy human subjects. These RSNO are believed to be redirecting the (•)NO to the vasculature. However, the mechanism for the formation of RSNO in vivo has not been established. We have reviewed the reactions of (•)NO with oxygen, metalloproteins, and free radicals that can lead to the formation of RSNO and have evaluated the potential for each mechanism to provide a source for RSNO in vivo.
Collapse
Affiliation(s)
- Enika Nagababu
- Molecular Dynamics Section, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Rm No. 5B131, Baltimore, MD, 21224, USA,
| | | |
Collapse
|
48
|
Vrancken K, Schroeder HJ, Longo LD, Power GG, Blood AB. Role of ceruloplasmin in nitric oxide metabolism in plasma of humans and sheep: a comparison of adults and fetuses. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1401-10. [PMID: 24089378 DOI: 10.1152/ajpregu.00266.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) is metabolized in plasma, in part by the ferroxidase ceruloplasmin (Cp), to form nitrite and nitrosothiols (SNOs), which are proposed to mediate protective responses to hypoxia and ischemia. We hypothesized that NO metabolism would be attenuated in fetal plasma due to low Cp activity. We measured Cp concentrations and activity in plasma samples collected from adults and fetuses of humans and sheep. We then added NO ([NO]: 1.5 or 100 μM) to plasma and aqueous buffer and measured rates of NO disappearance and the production of nitrite and SNO. Cp concentrations in fetal plasma were <15% of adult levels. In aqueous buffer, 1.5 μM NO disappeared with a half-life of 347 ± 64 s (means ± SE) but in plasma of humans the half-life was 19 ± 2 s (adult) and 11 ± 1 s (fetus, P = 0.004) and in sheep it was 31 ± 3 s (adult) and 43 ± 5 s (fetus, P = 0.04). Cp activity was not correlated with the overall elimination half-life of NO or with the amount of SNO ([NO]: 100 μM) or nitrite ([NO]: 1.5 or 100 μM) produced but correlated with SNO yields at 1.5 μM [NO] (r = 0.92, P = 0.04). Our data demonstrate that Cp is not essential to the increased rate of metabolism of NO in plasma relative to aqueous buffers and that it is not essential to the production of nitrite from NO. Cp may be involved in the conversion of NO to SNO in plasma under near-physiological concentrations of NO.
Collapse
Affiliation(s)
- Kurt Vrancken
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, California; and
| | | | | | | | | |
Collapse
|
49
|
Ortiz D, Cabrales P, Briceño JC. Transport of nitric oxide by perfluorocarbon emulsion. Biotechnol Prog 2013; 29:1565-72. [PMID: 23966236 DOI: 10.1002/btpr.1797] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/13/2013] [Indexed: 12/27/2022]
Abstract
Perfluorocarbon (PFC) emulsions can transport and release various gases based on concentration gradients. The objective of this study was to determine the possibility of carrying and delivering exogenous nitric oxide (NO) into the circulation by simply loading PFC emulsion with NO prior infusion. PFC was equilibrated with room air (PFC) or 300 ppm NO (PFC-NO) at atmospheric pressure. Isotonic saline solution was used as a volume control (Saline). PFC and PFC-NO were infused at a dose of 3.5 mL/kg in the hamster window chamber model. Blood chemistry, and systemic and microvascular hemodynamic response were measured. Infusion of PFC preloaded with NO reduced blood pressure, induced microvascular vasodilation and increased capillary perfusion; although these changes lasted less than 30 min post infusion. On the other hand, infusion of PFC (without NO) produced vasoconstriction; however, the vasoconstriction was followed by vasodilatation at 30 min post infusion. Plasma nitrite and nitrate increased 15 min after infusion of NO preloaded PFC compared with PFC, 60 min after infusion nitrite and nitrate were not different, and 90 min after infusion plasma S-nitrosothiols increased in both groups. Infusion of NO preloaded PFC resulted in acute vascular relaxation, where as infusion of PFC (without NO) produced vasoconstriction, potentially due to NO sequestration by the PFC micelles. The late effects of PFC infusion are due to NO redistribution and plasma S-nitrosothiols. Gas solubility in PFC can provide a tool to modulate plasma vasoactive NO forms availability and improve microcirculatory function and promote increased blood flow.
Collapse
Affiliation(s)
- Daniel Ortiz
- Dept. of Bioengineering, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
50
|
Bohlen HG. Is the real in vivo nitric oxide concentration pico or nano molar? Influence of electrode size on unstirred layers and NO consumption. Microcirculation 2013; 20:30-41. [PMID: 22925222 DOI: 10.1111/micc.12003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/17/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE There is a debate if the [NO] required to influence vascular smooth muscle is below 50 nM or much higher. Electrodes with 30 μm and larger diameter report [NO] below 50 nM, whereas those with diameters of <10-12 μm report hundreds of nM. This study examined how size of electrodes influenced [NO] measurement due to NO consumption and unstirred layer issues. METHODS Electrodes were 2 mm disk, 30 μm × 2 mm carbon fiber, and single 7 μm diameter carbon fiber within open tip microelectrode, and exposed 7 μm carbon fiber of ~15 μm to 2 mm length. RESULTS All electrodes demonstrated linear calibrations with sufficient stirring. As stirring slowed, 30 μm and 2 mm electrodes reported much lower [NO] due to unstirred layers and high NO consumption. The three 7 μm microelectrodes had minor stirring issues. With limited stirring with NO present, 7 μm open tip microelectrodes advanced toward 30 μm and 2 mm electrodes experienced dramatically decreased current within 10-50 μm of the larger electrodes due to high NO consumption. None of the 7 μm microelectrodes interacted. CONCLUSIONS The data indicate large electrodes underestimate [NO] due to excessive NO consumption under conditions where unstirred layers are unavoidable and true microelectrodes are required for valid measurements.
Collapse
Affiliation(s)
- H Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, Indiana 46140, USA.
| |
Collapse
|