1
|
Carlisle SG, Albasha H, Michelena HI, Sabate-Rotes A, Bianco L, De Backer J, Mosquera LM, Yetman AT, Bissell MM, Andreassi MG, Foffa I, Hui DS, Caffarelli A, Kim YY, Guo D, Citro R, De Marco M, Tretter JT, McBride KL, Milewicz DM, Body SC, Prakash SK. Rare genomic copy number variants implicate new candidate genes for bicuspid aortic valve. PLoS One 2024; 19:e0304514. [PMID: 39240962 PMCID: PMC11379187 DOI: 10.1371/journal.pone.0304514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 09/08/2024] Open
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart defect, is a major cause of aortic valve disease requiring valve interventions and thoracic aortic aneurysms predisposing to acute aortic dissections. The spectrum of BAV ranges from early onset valve and aortic complications (EBAV) to sporadic late onset disease. Rare genomic copy number variants (CNVs) have previously been implicated in the development of BAV and thoracic aortic aneurysms. We determined the frequency and gene content of rare CNVs in EBAV probands (n = 272) using genome-wide SNP microarray analysis and three complementary CNV detection algorithms (cnvPartition, PennCNV, and QuantiSNP). Unselected control genotypes from the Database of Genotypes and Phenotypes were analyzed using identical methods. We filtered the data to select large genic CNVs that were detected by multiple algorithms. Findings were replicated in a BAV cohort with late onset sporadic disease (n = 5040). We identified 3 large and rare (< 1,1000 in controls) CNVs in EBAV probands. The burden of CNVs intersecting with genes known to cause BAV when mutated was increased in case-control analysis. CNVs intersecting with GATA4 and DSCAM were enriched in cases, recurrent in other datasets, and segregated with disease in families. In total, we identified potentially pathogenic CNVs in 9% of EBAV cases, implicating alterations of candidate genes at these loci in the pathogenesis of BAV.
Collapse
Affiliation(s)
- Steven G Carlisle
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Hasan Albasha
- University College Dublin School of Medicine, Dublin, Ireland
| | | | | | - Lisa Bianco
- Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | - Anji T Yetman
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | | | | | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dawn S Hui
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Anthony Caffarelli
- Hoag Memorial Hospital Presbyterian, Newport Beach, California, United States of America
| | - Yuli Y Kim
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dongchuan Guo
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Rodolfo Citro
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Kim L McBride
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Dianna M Milewicz
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Simon C Body
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Siddharth K Prakash
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
2
|
Kowalewska PM, Milkovich SL, Goldman D, Sandow SL, Ellis CG, Welsh DG. Capillary oxygen regulates demand-supply coupling by triggering connexin40-mediated conduction: Rethinking the metabolic hypothesis. Proc Natl Acad Sci U S A 2024; 121:e2303119121. [PMID: 38349880 PMCID: PMC10895355 DOI: 10.1073/pnas.2303119121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/21/2023] [Indexed: 02/15/2024] Open
Abstract
Coupling red blood cell (RBC) supply to O2 demand is an intricate process requiring O2 sensing, generation of a stimulus, and signal transduction that alters upstream arteriolar tone. Although actively debated, this process has been theorized to be induced by hypoxia and to involve activation of endothelial inwardly rectifying K+ channels (KIR) 2.1 by elevated extracellular K+ to trigger conducted hyperpolarization via connexin40 (Cx40) gap junctions to upstream resistors. This concept was tested in resting healthy skeletal muscle of Cx40-/- and endothelial KIR2.1-/- mice using state-of-the-art live animal imaging where the local tissue O2 environment was manipulated using a custom gas chamber. Second-by-second capillary RBC flow responses were recorded as O2 was altered. A stepwise drop in PO2 at the muscle surface increased RBC supply in capillaries of control animals while elevated O2 elicited the opposite response; capillaries were confirmed to express Cx40. The RBC flow responses were rapid and tightly coupled to O2; computer simulations did not support hypoxia as a driving factor. In contrast, RBC flow responses were significantly diminished in Cx40-/- mice. Endothelial KIR2.1-/- mice, on the other hand, reacted normally to O2 changes, even when the O2 challenge was targeted to a smaller area of tissue with fewer capillaries. Conclusively, microvascular O2 responses depend on coordinated electrical signaling via Cx40 gap junctions, and endothelial KIR2.1 channels do not initiate the event. These findings reconceptualize the paradigm of blood flow regulation in skeletal muscle and how O2 triggers this process in capillaries independent of extracellular K+.
Collapse
Affiliation(s)
- Paulina M. Kowalewska
- Robarts Research Institute, University of Western Ontario, London, ONN6A 5B7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ONN6A 5B7, Canada
| | | | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, ONN6A 5B7, Canada
| | - Shaun L. Sandow
- School of Health, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
- School of Clinical Medicine, University of Queensland, St. Lucia, QLD4072, Australia
| | - Christopher G. Ellis
- Robarts Research Institute, University of Western Ontario, London, ONN6A 5B7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ONN6A 5B7, Canada
| | - Donald G. Welsh
- Robarts Research Institute, University of Western Ontario, London, ONN6A 5B7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ONN6A 5B7, Canada
| |
Collapse
|
3
|
Dobreva G, Heineke J. Inter- and Intracellular Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:271-294. [PMID: 38884717 DOI: 10.1007/978-3-031-44087-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiovascular diseases, both congenital and acquired, are the leading cause of death worldwide, associated with significant health consequences and economic burden. Due to major advances in surgical procedures, most patients with congenital heart disease (CHD) survive into adulthood but suffer from previously unrecognized long-term consequences, such as early-onset heart failure. Therefore, understanding the molecular mechanisms resulting in heart defects and the lifelong complications due to hemodynamic overload are of utmost importance. Congenital heart disease arises in the first trimester of pregnancy, due to defects in the complex morphogenetic patterning of the heart. This process is coordinated through a complicated web of intercellular communication between the epicardium, the endocardium, and the myocardium. In the postnatal heart, similar crosstalk between cardiomyocytes, endothelial cells, and fibroblasts exists during pathological hemodynamic overload that emerges as a consequence of a congenital heart defect. Ultimately, communication between cells triggers the activation of intracellular signaling circuits, which allow fine coordination of cardiac development and function. Here, we review the inter- and intracellular signaling mechanisms in the heart as they were discovered mainly in genetically modified mice.
Collapse
Affiliation(s)
- Gergana Dobreva
- ECAS (European Center for Angioscience), Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
| | - Joerg Heineke
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
4
|
Carlisle SG, Albasha H, Michelena H, Sabate-Rotes A, Bianco L, De Backer J, Mosquera LM, Yetman AT, Bissell MM, Andreassi MG, Foffa I, Hui DS, Caffarelli A, Kim YY, Guo DC, Citro R, De Marco M, Tretter JT, McBride KL, Milewicz DM, Body SC, Prakash SK. Rare Genomic Copy Number Variants Implicate New Candidate Genes for Bicuspid Aortic Valve. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.23.23297397. [PMID: 37961530 PMCID: PMC10635161 DOI: 10.1101/2023.10.23.23297397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart defect, is a major cause of aortic valve disease requiring valve interventions and thoracic aortic aneurysms predisposing to acute aortic dissections. The spectrum of BAV ranges from early onset valve and aortic complications (EBAV) to sporadic late onset disease. Rare genomic copy number variants (CNVs) have previously been implicated in the development of BAV and thoracic aortic aneurysms. We determined the frequency and gene content of rare CNVs in EBAV probands (n = 272) using genome-wide SNP microarray analysis and three complementary CNV detection algorithms (cnvPartition, PennCNV, and QuantiSNP). Unselected control genotypes from the Database of Genotypes and Phenotypes were analyzed using identical methods. We filtered the data to select large genic CNVs that were detected by multiple algorithms. Findings were replicated in cohorts with late onset sporadic disease (n = 5040). We identified 34 large and rare (< 1:1000 in controls) CNVs in EBAV probands. The burden of CNVs intersecting with genes known to cause BAV when mutated was increased in case-control analysis. CNVs intersecting with GATA4 and DSCAM were enriched in cases, recurrent in other datasets, and segregated with disease in families. In total, we identified potentially pathogenic CNVs in 8% of EBAV cases, implicating alterations of candidate genes at these loci in the pathogenesis of BAV.
Collapse
Affiliation(s)
- Steven G Carlisle
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hasan Albasha
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hector Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anna Sabate-Rotes
- Department of Pediatric Cardiology, Hospital Vall d'Hebron, Facultad de Medicina, Universidad Autònoma Barcelona, Barcelona, Spain
| | - Lisa Bianco
- Department of Pediatric Cardiology, Hospital Vall d'Hebron, Facultad de Medicina, Universidad Autònoma Barcelona, Barcelona, Spain
| | - Julie De Backer
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium; VASCERN HTAD European Reference Centre, Belgium; Department of Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium; Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | | | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, Nebraska
| | - Malenka M Bissell
- Deparmentt of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center San Antonio, Texas
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Philadelphia Adult Congenital Heart Center, The Children's Hospital of Philadelphia, Perelman Center for Advanced Medicine, Penn Medicine, Philadelphia, Pennsylvania
| | - Dong-Chuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Rodolfo Citro
- Cardio-Thoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kim L McBride
- Division of Human Genetics, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
5
|
Cai M, Guo N, Fu M, Chen Y, Liang B, Que Y, Ji Q, Huang H, Xu L, Lin N. Prenatal diagnosis of genetic aberrations in fetuses with pulmonary stenosis in southern China: a retrospective analysis. BMC Med Genomics 2023; 16:119. [PMID: 37248535 DOI: 10.1186/s12920-023-01548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The genetic etiology of congenital pulmonary stenosis (PS) in fetuses remains inadequately studied. We used karyotype analysis and chromosomal microarray analysis (CMA) to investigate the genetic aberrations associated with PS in human fetuses. METHODS A retrospective analysis was performed on 84 fetuses with congenital PS in southern China. Fetal amniotic fluid and umbilical cord blood samples were obtained for chromosomal karyotype analysis and CMA. RESULTS The rate of pathogenic copy number variation (CNV) was 15.5% (13/84) after karyotyping and CMA. An abnormal karyotype was detected in five cases (6.0%, 5/84) via karyotyping, whereas pathogenic CNVs were detected in 13 cases (15.5%, 13/84) via CMA. In addition to the five abnormal karyotypes detected using karyotype analysis, eight additional chromosomal microduplications and microdeletions were detected using CMA, comprising three cases of 22q11.21 microdeletion; two cases of 16p11.2 microdeletion; one case of simultaneous 18q23 microdeletion and 22q13.33 microduplication; one case of 15q24.1q24.2 microdeletion; and one case of 1q21.1q21.2 microduplication. The rate of pathogenic CNV occurrence was 11.5% in fetuses with isolated PS and 17.2% in fetuses with PS combined with other ultrasound abnormalities. This difference between the two experimental groups was statistically significant. Among 84 fetuses with PS, 39 pregnancies were terminated, and five were lost to follow-up. CONCLUSIONS CMA was not only conducive to detect PS-related pathogenic genomic abnormalities but also to accurately evaluate fetal prognosis in genetic counseling. The early detection of PS and genomic abnormalities will exerta positive impact on fetal intervention and the related prognosis of PS in perinatal infants.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Nan Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Meimei Fu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Yuqing Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Bin Liang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Yanting Que
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Qingqiang Ji
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| |
Collapse
|
6
|
Hu H, Geng Z, Zhang S, Xu Y, Wang Q, Chen S, Zhang B, Sun K, Lu Y. Rare copy number variation analysis identifies disease-related variants in atrioventricular septal defect patients. Front Genet 2023; 14:1075349. [PMID: 36816019 PMCID: PMC9936062 DOI: 10.3389/fgene.2023.1075349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Atrioventricular septal defect (AVSD) is a deleterious subtype of congenital heart diseases (CHD) characterized by atrioventricular canal defect. The pathogenic genetic changes of AVSD remain elusive, particularly for copy number variation (CNV), a large segment variation of the genome, which is one of the major forms of genetic variants resulting in congenital heart diseases. In the present study, we recruited 150 AVSD cases and 100 healthy subjects as controls for whole exome sequencing (WES). We identified total 4255 rare CNVs using exon Hidden Markov model (XHMM) and screened rare CNVs by eliminating common CNVs based on controls and Database of Genomic Variants (DGV). Each patient contained at least 9 CNVs, and the CNV burden was prominently presented in chromosomes 19,22,21&16. Small CNVs (<500 kb) were frequently observed. By leveraging gene-based burden test, we further identified 20 candidate AVSD-risk genes. Among them, DYRK1A, OBSCN and TTN were presented in the core disease network of CHD and highly and dynamically expressed in the heart during the development, which indicated they possessed the high potency to be AVSD-susceptible genes. These findings not only provided a roadmap for finally unveiling the genetic cause of AVSD, but also provided more resources and proofs for clinical genetics.
Collapse
Affiliation(s)
- Huan Hu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zilong Geng
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuejuan Xu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Bing Zhang, ; Kun Sun, ; Yanan Lu,
| | - Kun Sun
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Bing Zhang, ; Kun Sun, ; Yanan Lu,
| | - Yanan Lu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Bing Zhang, ; Kun Sun, ; Yanan Lu,
| |
Collapse
|
7
|
Matthaeus C, Jüttner R, Gotthardt M, Rathjen FG. The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency. Life (Basel) 2022; 13:14. [PMID: 36675963 PMCID: PMC9866089 DOI: 10.3390/life13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The IgCAM coxsackie-adenovirus receptor (CAR) is essential for embryonic heart development and electrical conduction in the mature heart. However, it is not well-understood how CAR exerts these effects at the cellular level. To address this question, we analyzed the spontaneous beating of cultured embryonic hearts and cardiomyocytes from wild type and CAR knockout (KO) embryos. Surprisingly, in the absence of the CAR, cultured cardiomyocytes showed increased frequencies of beating and calcium cycling. Increased beatings of heart organ cultures were also induced by the application of reagents that bind to the extracellular region of the CAR, such as the adenovirus fiber knob. However, the calcium cycling machinery, including calcium extrusion via SERCA2 and NCX, was not disrupted in CAR KO cells. In contrast, CAR KO cardiomyocytes displayed size increases but decreased in the total numbers of membrane-localized Cx43 clusters. This was accompanied by improved cell-cell coupling between CAR KO cells, as demonstrated by increased intercellular dye diffusion. Our data indicate that the CAR may modulate the localization and oligomerization of Cx43 at the plasma membrane, which could in turn influence electrical propagation between cardiomyocytes via gap junctions.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
- Laboratory of Cellular Biophysics, NHLBI, NIH, 50 South Drive, Building 50 RM 3312, Bethesda, MD 20892, USA
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| | - Michael Gotthardt
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| | - Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| |
Collapse
|
8
|
Connexin Mutations and Hereditary Diseases. Int J Mol Sci 2022; 23:ijms23084255. [PMID: 35457072 PMCID: PMC9027513 DOI: 10.3390/ijms23084255] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Inherited diseases caused by connexin mutations are found in multiple organs and include hereditary deafness, congenital cataract, congenital heart diseases, hereditary skin diseases, and X-linked Charcot–Marie–Tooth disease (CMT1X). A large number of knockout and knock-in animal models have been used to study the pathology and pathogenesis of diseases of different organs. Because the structures of different connexins are highly homologous and the functions of gap junctions formed by these connexins are similar, connexin-related hereditary diseases may share the same pathogenic mechanism. Here, we analyze the similarities and differences of the pathology and pathogenesis in animal models and find that connexin mutations in gap junction genes expressed in the ear, eye, heart, skin, and peripheral nerves can affect cellular proliferation and differentiation of corresponding organs. Additionally, some dominant mutations (e.g., Cx43 p.Gly60Ser, Cx32 p.Arg75Trp, Cx32 p.Asn175Asp, and Cx32 p.Arg142Trp) are identified as gain-of-function variants in vivo, which may play a vital role in the onset of dominant inherited diseases. Specifically, patients with these dominant mutations receive no benefits from gene therapy. Finally, the complete loss of gap junctional function or altered channel function including permeability (ions, adenosine triphosphate (ATP), Inositol 1,4,5-trisphosphate (IP3), Ca2+, glucose, miRNA) and electric activity are also identified in vivo or in vitro.
Collapse
|
9
|
Guo YH, Yang YQ. Atrial Fibrillation: Focus on Myocardial Connexins and Gap Junctions. BIOLOGY 2022; 11:489. [PMID: 35453689 PMCID: PMC9029470 DOI: 10.3390/biology11040489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Atrial fibrillation (AF) represents the most common type of clinical cardiac arrhythmia worldwide and contributes to substantial morbidity, mortality and socioeconomic burden. Aggregating evidence highlights the strong genetic basis of AF. In addition to chromosomal abnormalities, pathogenic mutations in over 50 genes have been causally linked to AF, of which the majority encode ion channels, cardiac structural proteins, transcription factors and gap junction channels. In the heart, gap junctions comprised of connexins (Cxs) form intercellular pathways responsible for electrical coupling and rapid coordinated action potential propagation between adjacent cardiomyocytes. Among the 21 isoforms of connexins already identified in the mammal genomes, 5 isoforms (Cx37, Cx40, Cx43, Cx45 and Cx46) are expressed in human heart. Abnormal electrical coupling between cardiomyocytes caused by structural remodeling of gap junction channels (alterations in connexin distribution and protein levels) has been associated with enhanced susceptibility to AF and recent studies have revealed multiple causative mutations or polymorphisms in 4 isoforms of connexins predisposing to AF. In this review, an overview of the genetics of AF is made, with a focus on the roles of mutant myocardial connexins and gap junctions in the pathogenesis of AF, to underscore the hypothesis that cardiac connexins are a major molecular target in the management of AF.
Collapse
Affiliation(s)
- Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China;
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China;
- Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Center Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
10
|
Array comparative genomic hybridisation results of non-syndromic children with the conotruncal heart anomaly. Cardiol Young 2022; 32:301-306. [PMID: 35045913 DOI: 10.1017/s104795112100473x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED The study aimed to show the chromosomal copy number variations responsible for the aetiology in patients with isolated conotruncal heart anomaly by array comparative genomic hybridisation and identify candidate genes causing conotruncal heart disease. A total of 37 patients, 17 male, and 20 female, with isolated conotruncal heart anomalies, were included in the study. No findings indicated any syndrome in terms of dysmorphology in the patients. RESULTS Copy number variations were detected in the array comparative genomic hybridisation analysis of five (13.5%) of 37 patients included in the study. Three candidate genes (PRDM16, HIST1H1E, GJA5) found in these deletion and duplication regions may be associated with the conotruncal cardiac anomaly. CONCLUSION CHDs can be encountered as the first and sometimes the single finding of many genetic disorders in children. It is thought that genetic tests, especially array comparative genomic hybridisation, may be beneficial for children with CHD since the diagnosis of genetic diseases in these patients as early as possible will help to prevent or reduce complications that may develop in the future. Also, it would be possible to detect candidate genes responsible for conotruncal cardiac anomalies with array comparative genomic hybridisation.
Collapse
|
11
|
Zhu L, Su X. Case Report: Neuroblastoma Breakpoint Family Genes Associate With 1q21 Copy Number Variation Disorders. Front Genet 2021; 12:728816. [PMID: 34646304 PMCID: PMC8504801 DOI: 10.3389/fgene.2021.728816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Microduplications and reciprocal microdeletions of chromosome 1q21. 1 and/or 1q21.2 have been linked to variable clinical features, but the underlying pathogenic gene(s) remain unclear. Here we report that distinct microduplications were detected on chromosome 1q21.2 (GRCh37/hg19) in a mother (255 kb in size) and her newborn daughter (443 kb in size), while the same paternal locus was wild-type. Although the two microduplications largely overlap in genomic sequence (183 kb overlapping), the mother showed no clinical phenotype while the daughter presented with several features that are commonly observed on 1q21 microduplication or microdeletion patients, including developmental delay, craniofacial dysmorphism, congenital heart disease and sensorineural hearing loss. NBPF15 and NBPF16, two involved genes that are exclusively duplicated in the proband, may be the cause of the clinical manifestations. This study supports an association between NBPF genes and 1q21 copy number variation disorders.
Collapse
Affiliation(s)
- Lijuan Zhu
- Children's Hospital of Fudan University Anhui Hospital, Hefei, China
| | - Xiaoji Su
- Children's Hospital of Fudan University Anhui Hospital, Hefei, China
| |
Collapse
|
12
|
Boengler K, Rohrbach S, Weissmann N, Schulz R. Importance of Cx43 for Right Ventricular Function. Int J Mol Sci 2021; 22:ijms22030987. [PMID: 33498172 PMCID: PMC7863922 DOI: 10.3390/ijms22030987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
In the heart, connexins form gap junctions, hemichannels, and are also present within mitochondria, with connexin 43 (Cx43) being the most prominent connexin in the ventricles. Whereas the role of Cx43 is well established for the healthy and diseased left ventricle, less is known about the importance of Cx43 for the development of right ventricular (RV) dysfunction. The present article focusses on the importance of Cx43 for the developing heart. Furthermore, we discuss the expression and localization of Cx43 in the diseased RV, i.e., in the tetralogy of Fallot and in pulmonary hypertension, in which the RV is affected, and RV hypertrophy and failure occur. We will also introduce other Cx molecules that are expressed in RV and surrounding tissues and have been reported to be involved in RV pathophysiology. Finally, we highlight therapeutic strategies aiming to improve RV function in pulmonary hypertension that are associated with alterations of Cx43 expression and function.
Collapse
|
13
|
Shi SS, Lin SB, Cai DL, Wen WR, Li RM. Discordance of cardiovascular abnormalities in a monozygotic twin pair carrying a class II 1q21.1 microdeletion. Taiwan J Obstet Gynecol 2020; 59:123-126. [PMID: 32039779 DOI: 10.1016/j.tjog.2019.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE We present the prenatal diagnosis of a class II 1q21.1 microdeletion in monozygotic (MZ) twins with discordant phenotypes. CASE REPORT A monochorionic diamniotic twin pair presented with discordant ultrasound anomalies; twin A had cardiovascular abnormalities, while twin B did not. No specific complications were noted in the twins during pregnancy. A single nucleotide polymorphism array revealed an identical class II 1q21.1 microdeletion inherited from a phenotypically normal mother and identified the twins as MZ. The deleted region encompassed both the proximal 1q21.1 thrombocytopenia absent radius syndrome region and the distal 1q21.1 recurrent microdeletion region. No other rare copy number variants (CNVs) were identified, and concordance was observed in the CNVs between the twins. CONCLUSION Discordant cardiovascular abnormalities may occur in MZ twins carrying the same class II 1q21.1 microdeletion. Further studies involving discordant MZ twins are needed to determine the modifying factors of the phenotypic heterogeneity of the microdeletion.
Collapse
Affiliation(s)
- Shan-Shan Shi
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Shao-Bin Lin
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dan-Lei Cai
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wang-Rong Wen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Rui-Man Li
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
14
|
Lalani SR. Other genomic disorders and congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:107-115. [DOI: 10.1002/ajmg.c.31762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Seema R. Lalani
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
| |
Collapse
|
15
|
The Functional Implications of Endothelial Gap Junctions and Cellular Mechanics in Vascular Angiogenesis. Cancers (Basel) 2019; 11:cancers11020237. [PMID: 30781714 PMCID: PMC6406946 DOI: 10.3390/cancers11020237] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, and morphology are modulated by pro-angiogenic and environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro studies have revealed that the gap junctions of endothelial cells also participate in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or -independent pathways, have been proposed. In particular, connexins might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during the angiogenic processes. Here, we review the implication for endothelial gap junctions and cellular mechanics in vascular angiogenesis.
Collapse
|
16
|
Egloff M, Hervé B, Quibel T, Jaillard S, Le Bouar G, Uguen K, Saliou AH, Valduga M, Perdriolle E, Coutton C, Coston AL, Coussement A, Anselem O, Missirian C, Bretelle F, Prieur F, Fanget C, Muti C, Jacquemot MC, Beneteau C, Le Vaillant C, Vekemans M, Salomon LJ, Vialard F, Malan V. Diagnostic yield of chromosomal microarray analysis in fetuses with isolated increased nuchal translucency: a French multicenter study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:715-721. [PMID: 29027723 DOI: 10.1002/uog.18928] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To determine the frequency and nature of copy number variants (CNVs) identified by chromosomal microarray analysis (CMA) in a large cohort of fetuses with isolated increased nuchal translucency thickness (NT) ≥ 3.5 mm. METHODS This was a retrospective, multicenter study, including 11 French hospitals, of data from the period between April 2012 and December 2015. In total, 720 fetuses were analyzed by rapid aneuploidy test and the fetuses identified as euploid underwent CMA. CNVs detected were evaluated for clinical significance and classified into five groups: pathogenic CNVs; benign CNVs; CNVs predisposing to neurodevelopmental disorders; variants of uncertain significance (VOUS); and CNVs not related to the phenotype (i.e. incidental findings). RESULTS In 121 (16.8%) fetuses, an aneuploidy involving chromosome 13, 18 or 21 was detected by rapid aneuploidy test and the remaining 599 fetuses were euploid. Among these, 53 (8.8%) had a CNV detected by CMA: 16/599 (2.7%) were considered to be pathogenic, including 11/599 (1.8%) that were cryptic (not visible by karyotyping); 7/599 (1.2%) were CNVs predisposing to neurodevelopmental disorders; and 8/599 (1.3%) were VOUS. Additionally, there was one (0.2%) CNV that was unrelated to the reason for referral diagnosis (i.e. an incidental finding) and the remaining 21 were benign CNVs, without clinical consequence. Interestingly, we identified five genomic imbalances of the 1q21.1 or 15q11.2 regions known to be associated with congenital heart defects. CONCLUSION Our study demonstrates the benefit of CMA in the etiological diagnosis of fetuses with isolated increased NT. It is worth noting that most (69%) of the detected pathogenic CNVs were cryptic. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M Egloff
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - B Hervé
- Unité de Cytogénétique, CHI de Poissy St Germain, Poissy, France
- EA7404-GIG, UFR des Sciences de la Santé Simone Veil, UVSQ, Montigny-le-Bretonneux, France
| | - T Quibel
- Service de Gynécologie Obstétrique, CHI de Poissy St Germain, Poissy, France
| | - S Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU de Rennes, Rennes, France
| | - G Le Bouar
- Département de Gynécologie Obstétrique et Reproduction Humaine, CHU de Rennes, Rennes, France
| | - K Uguen
- Laboratoire de Cytogénétique, Cytologie et Biologie de la Reproduction, CHRU, Brest, France
| | - A-H Saliou
- Centre Pluridisciplinaire de Diagnostic Prénatal, CHRU, Brest, France
| | - M Valduga
- Service de Génétique, CHRU Nancy-Brabois, Nancy, France
| | - E Perdriolle
- Service d'Obstétrique, CHRU Nancy-Brabois, Nancy, France
| | - C Coutton
- Laboratoire de Génétique Chromosomique, INSERM 1209, CNRS UMR 5309, CHU Grenoble Alpes, Institut Albert Bonniot, Université Grenoble Alpes, Grenoble, France
| | - A-L Coston
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Hôpital Couple Enfant, Université Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - A Coussement
- Laboratoire de Cytogénétique, Hôpital Cochin, APHP, Paris, France
| | - O Anselem
- Service de Gynécologie et Obstétrique de Port-Royal, Maternité Port-Royal, Groupe Hospitalier Cochin Broca Hôtel-Dieu, APHP, Paris, France
| | - C Missirian
- Département de Génétique Médicale, CHU Timone Enfants, APHM, Marseille, France
| | - F Bretelle
- Service de Gynécologie Obstétrique, CHU Nord, APHM, Marseille, France
| | - F Prieur
- Service de Génétique Clinique Chromosomique Moléculaire, CHU Saint-Etienne, Saint-Etienne, France
| | - C Fanget
- Service d'Obstétrique, CHU Saint-Etienne, Saint-Etienne, France
| | - C Muti
- Génétique Constitutionnelle, Laboratoire de Biologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - M-C Jacquemot
- Consultation de Diagnostic Prénatal, Service de Gynécologie Obstétrique, Centre Hospitalier de Versailles, Le Chesnay, France
| | - C Beneteau
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - C Le Vaillant
- Service de Gynécologie-Obstétrique, CHU de Nantes, Nantes, France
| | - M Vekemans
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - L J Salomon
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Service d'Obstétrique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - F Vialard
- Unité de Cytogénétique, CHI de Poissy St Germain, Poissy, France
- EA7404-GIG, UFR des Sciences de la Santé Simone Veil, UVSQ, Montigny-le-Bretonneux, France
| | - V Malan
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
17
|
Dailey-Schwartz AL, Tadros HJ, Azamian MS, Lalani SR, Morris SA, Allen HD, Kim JJ, Landstrom AP. Copy Number Variants of Undetermined Significance Are Not Associated with Worse Clinical Outcomes in Hypoplastic Left Heart Syndrome. J Pediatr 2018; 202:206-211.e2. [PMID: 30172441 PMCID: PMC6203622 DOI: 10.1016/j.jpeds.2018.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the prevalence, spectrum, and prognostic significance of copy number variants of undetermined significance (cnVUS) seen on chromosomal microarray (CMA) in neonates with hypoplastic left heart syndrome (HLHS). STUDY DESIGN Neonates with HLHS who presented to Texas Children's Hospital between June 2008 and December 2016 were identified. CMA results were abstracted and compared against copy number variations (CNVs) in ostensibly healthy individuals gathered from the literature. Findings were classified as normal, consistent with a known genetic disorder, or cnVUS. Survival was then compared using Kaplan-Meier analysis. Secondary outcomes included tracheostomy, feeding tube at discharge, cardiac arrest, and extracorporeal membrane oxygenation (ECMO). RESULTS Our study cohort comprised 105 neonates with HLHS, including 70 (66.7%) with normal CMA results, 9 (8.6%) with findings consistent with a known genetic disorder, and 26 (24.7%) with a cnVUS. Six of the 26 (23.0%) neonates with a cnVUS had a variant that localized to a specific region of the genome seen in the healthy control population. One-year survival was 84.0% in patients with a cnVUS, 68.3% in those with normal CMA results, and 33.3% in those with a known genetic disorder (P = .003). There were no significant differences in secondary outcomes among the groups, although notably ECMO was used in 15.7% of patients with normal CMA and was not used in those with cnVUS and abnormal results (P = .038). CONCLUSIONS Among children with HLHS, cnVUSs detected on CMA are common. The cnVUSs do not localize to specific regions of the genome, and are not associated with worse outcomes compared with normal CMA results.
Collapse
Affiliation(s)
| | - Hanna J Tadros
- Section of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | | | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Shaine A Morris
- Section of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Hugh D Allen
- Section of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jeffrey J Kim
- Section of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Andrew P Landstrom
- Section of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Division of Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC.
| |
Collapse
|
18
|
Kanthan A, Fahmy P, Rao R, Pouliopoulos J, Alexander IE, Thomas SP, Kizana E. Human Connexin40 Mutations Slow Conduction and Increase Propensity for Atrial Fibrillation. Heart Lung Circ 2018; 27:114-121. [PMID: 28457700 DOI: 10.1016/j.hlc.2017.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/20/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Patch clamping studies using non-cardiomyocytes revealed that the human connexin40 mutations P88S, G38D, and A96S are associated with reduced gap junction conductances compared to wild type connexin40 (wtCx40). Their effects within myocytes however are unclear. We aimed to characterise P88S, G38D, and A96S after expression in rat hearts and primary cardiomyocyte cultures. METHODS Adult Sprague-Dawley rat atria were transduced with a lentivector containing a transgene encoding wtCx40, P88S, G38D, A96S, or eGFP (n=6 per transgene). Electrophysiology studies (EPS) were performed just prior to and 7 days after surgery. Left atria were assessed for connexin expression, mRNA levels, inflammation and fibrosis. Primary cardiomyocyte cultures were also transduced with the abovementioned vectors (n=6 per transgene) and monolayer conduction velocities (CV) and protein expression were assessed at 96hours. RESULTS At day 7 EPS, P wave and induced atrial fibrillation (AF) durations were significantly longer in the mutant groups when compared to wtCx40 controls (p<0.05). There were no significant differences in inflammation, fibrosis, or heart to body weight ratios. Monolayer CV's were reduced in the A96S group compared to the wtCx40 group. While similar to wtCx40 controls, P88S velocities were reduced compared to eGFP controls. G38D monolayers possessed spontaneous fibrillatory activity and could not be paced. Immunofluorescence revealed that P88S and G38D reduced native connexin43 myocyte coupling while A96S appeared to co-localise with connexin43 in gap junctions. Connexin43 mRNA levels were similar between groups. CONCLUSIONS The A96S, G38D, and P88S Cx40 mutations slow conduction and increased the propensity for inducible AF.
Collapse
Affiliation(s)
- Ajita Kanthan
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Westmead Institute for Medical Research, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia.
| | - Peter Fahmy
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Westmead Institute for Medical Research, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Renuka Rao
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Westmead Institute for Medical Research, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Jim Pouliopoulos
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Westmead Institute for Medical Research, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Ian E Alexander
- The University of Sydney, Sydney, NSW, Australia; Childrens Medical Research Institute, Sydney, NSW, Australia
| | - Stuart P Thomas
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Westmead Institute for Medical Research, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Eddy Kizana
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Westmead Institute for Medical Research, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Nattel SN, Adrianzen L, Kessler EC, Andelfinger G, Dehaes M, Côté-Corriveau G, Trelles MP. Congenital Heart Disease and Neurodevelopment: Clinical Manifestations, Genetics, Mechanisms, and Implications. Can J Cardiol 2017; 33:1543-1555. [PMID: 29173597 DOI: 10.1016/j.cjca.2017.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022] Open
Abstract
Children with congenital heart disease (CHD) are at increased risk of neurodevelopmental disorders (NDDs) and psychiatric conditions. These include cognitive, adaptive, motor, speech, behavioural, and executive functioning deficits, as well as autism spectrum disorder and psychiatric conditions. Structural and functional neuroimaging have demonstrated brain abnormalities in young children with CHD before undergoing surgical repair, likely as a result of an in utero developmental insult. Surgical factors do not seem to play a significant role in neurodevelopmental outcomes. Specific genetic abnormalities, particularly copy number variants, have been increasingly implicated in both CHD and NDDs. Variations in genes involved in apolipoprotein E (APOE) production, the Wnt signalling pathway, and histone modification, as well as in the 1q21.1, 16p13.1-11, and 8p23.1 genetic loci, have been associated with CHD and NDDs and are important targets for future research. Understanding these associations is important for risk stratification, disease classification, improved screening, and pharmacologic management of individuals with CHD.
Collapse
Affiliation(s)
- Sarah N Nattel
- Department of Psychiatry, Albert Einstein College of Medicine and Seaver Autism Center at Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Laura Adrianzen
- Department of Psychiatry, Seaver Autism Center at Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Gregor Andelfinger
- Department of Pediatrics, University of Montreal and Ste-Justine Hospital University Centre, Montreal, Quebec, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology, and Nuclear Medicine, University of Montreal and Ste-Justine Hospital University Centre, Montreal, Quebec, Canada
| | - Gabriel Côté-Corriveau
- Department of Radiology, Radio-oncology, and Nuclear Medicine, University of Montreal and Ste-Justine Hospital University Centre, Montreal, Quebec, Canada
| | - M Pilar Trelles
- Department of Psychiatry, Seaver Autism Center at Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
20
|
Clinical application of SNP array analysis in fetuses with ventricular septal defects and normal karyotypes. Arch Gynecol Obstet 2017; 296:929-940. [DOI: 10.1007/s00404-017-4518-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
21
|
Mathews J, Levin M. Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form. Dev Neurobiol 2017; 77:643-673. [PMID: 27265625 PMCID: PMC10478170 DOI: 10.1002/dneu.22405] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
Gap junctions (GJs) are aqueous channels that allow cells to communicate via physiological signals directly. The role of gap junctional connectivity in determining single-cell functions has long been recognized. However, GJs have another important role: the regulation of large-scale anatomical pattern. GJs are not only versatile computational elements that allow cells to control which small molecule signals they receive and emit, but also establish connectivity patterns within large groups of cells. By dynamically regulating the topology of bioelectric networks in vivo, GJs underlie the ability of many tissues to implement complex morphogenesis. Here, a review of recent data on patterning roles of GJs in growth of the zebrafish fin, the establishment of left-right patterning, the developmental dysregulation known as cancer, and the control of large-scale head-tail polarity, and head shape in planarian regeneration has been reported. A perspective in which GJs are not only molecular features functioning in single cells, but also enable global neural-like dynamics in non-neural somatic tissues has been proposed. This view suggests a rich program of future work which capitalizes on the rapid advances in the biophysics of GJs to exploit GJ-mediated global dynamics for applications in birth defects, regenerative medicine, and morphogenetic bioengineering. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 643-673, 2017.
Collapse
Affiliation(s)
- Juanita Mathews
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - Michael Levin
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| |
Collapse
|
22
|
England J, Granados-Riveron J, Polo-Parada L, Kuriakose D, Moore C, Brook JD, Rutland CS, Setchfield K, Gell C, Ghosh TK, Bu'Lock F, Thornborough C, Ehler E, Loughna S. Tropomyosin 1: Multiple roles in the developing heart and in the formation of congenital heart defects. J Mol Cell Cardiol 2017; 106:1-13. [PMID: 28359939 PMCID: PMC5441184 DOI: 10.1016/j.yjmcc.2017.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/03/2022]
Abstract
Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. Mutations in these genes have been linked to congenital heart defects (CHDs), occurring in approximately 1 in 145 live births. To date, TPM1 has not been associated with isolated CHDs. Analysis of 380 CHD cases revealed three novel mutations in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and a polyadenylation signal site variant GATAAA/AATAAA. Analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. In addition, abnormal structural properties were found in hearts transfected with TPM1 carrying I130V and S229F mutations. Phenotypic analysis of TPM1 morpholino-treated embryos revealed roles for TPM1 in cardiac looping, atrial septation and ventricular trabeculae formation and increased apoptosis was seen within the heart. In addition, sarcomere assembly was affected and altered action potentials were exhibited. This study demonstrated that sarcomeric TPM1 plays vital roles in cardiogenesis and is a suitable candidate gene for screening individuals with isolated CHDs. Four mutations identified in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and GATAAA/AATAAA. In vitro analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. I130V and S229F mutations caused abnormal structural properties in the sarcomere. Reduced TPM1 expression during early cardiogenesis causes aberrant gross morphology. Apoptosis, sarcomere assembly and cardiac conduction were also affected.
Collapse
Affiliation(s)
| | - Javier Granados-Riveron
- Laboratory of Genomics, Genetics and Bioinformatics, Hospital Infantil de México Federico Gómez, Mexico
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, USA
| | | | | | - J David Brook
- School of Life Sciences, University of Nottingham, UK
| | - Catrin S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | | | | | | | - Frances Bu'Lock
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | | | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics, The Cardiovascular Division, King's College London, UK
| | | |
Collapse
|
23
|
Xie HM, Werner P, Stambolian D, Bailey-Wilson JE, Hakonarson H, White PS, Taylor DM, Goldmuntz E. Rare copy number variants in patients with congenital conotruncal heart defects. Birth Defects Res 2017; 109:271-295. [PMID: 28398664 PMCID: PMC5407323 DOI: 10.1002/bdra.23609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/22/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Previous studies using different cardiac phenotypes, technologies and designs suggest a burden of large, rare or de novo copy number variants (CNVs) in subjects with congenital heart defects. We sought to identify disease-related CNVs, candidate genes, and functional pathways in a large number of cases with conotruncal and related defects that carried no known genetic syndrome. METHODS Cases and control samples were divided into two cohorts and genotyped to assess each subject's CNV content. Analyses were performed to ascertain differences in overall CNV prevalence and to identify enrichment of specific genes and functional pathways in conotruncal cases relative to healthy controls. RESULTS Only findings present in both cohorts are presented. From 973 total conotruncal cases, a burden of rare CNVs was detected in both cohorts. Candidate genes from rare CNVs found in both cohorts were identified based on their association with cardiac development or disease, and/or their reported disruption in published studies. Functional and pathway analyses revealed significant enrichment of terms involved in either heart or early embryonic development. CONCLUSION Our study tested one of the largest cohorts specifically with cardiac conotruncal and related defects. These results confirm and extend previous findings that CNVs contribute to disease risk for congenital heart defects in general and conotruncal defects in particular. As disease heterogeneity renders identification of single recurrent genes or loci difficult, functional pathway and gene regulation network analyses appear to be more informative. Birth Defects Research 109:271-295, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongbo M Xie
- The Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Petra Werner
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Dwight Stambolian
- Department of Ophthalmology and Human Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joan E Bailey-Wilson
- Statistical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland
| | - Hakon Hakonarson
- The Center for Applied Genomics, Department of Pediatrics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S White
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Department of Biomedical Informatics, University of Cincinnati, Cincinnati, Ohio
| | - Deanne M Taylor
- The Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Liu L, Wang HD, Cui CY, Wu D, Li T, Fan TB, Peng BT, Zhang LZ, Wang CZ. Application of array-comparative genomic hybridization in tetralogy of Fallot. Medicine (Baltimore) 2016; 95:e5552. [PMID: 27930557 PMCID: PMC5266029 DOI: 10.1097/md.0000000000005552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To explore the underlying pathogenesis and provide references for genetic counseling and prenatal gene diagnosis, we analyzed the chromosome karyotypes and genome-wide copy number variations (CNVs) in 86 patients with tetralogy of Fallot (TOF) by G-banding karyotype analysis and array-comparative genomic hybridization (aCGH), respectively. And then quantitative polymerase chain reaction was used to validate these candidate CNVs. Based on their different properties, CNVs were categorized into benign CNVs, suspiciously pathogenic CNVs, and indefinite CNVs. Data analysis was based on public databases such as UCSC, DECIPHER, DGV, ISCA, and OMIM.The karyotype was normal in all the 86 patients with TOF. CNVs were detected in 11 patients by aCGH and quantitative polymerase chain reaction. Patient no. 0001, 0010, and 0029 had 2.52-Mb deletion in the chromosome 22q11.21 region; patient no. 0008 had both 595- and 428-kb duplications, respectively, in 12p12.3p12.2 and 14q23.2q23.3 regions; patient no. 0009 had 1.46-Mb duplication in the 1q21.1q21.2 region; patient no. 0016 had 513-kb duplication in the 1q42.13 region; patient no. 0024 had 292-kb duplication in the 16q11.2 region; patient no. 0026 had 270-kb duplication in the 16q24.1 region; patient no. 0028 had 222-kb deletion in the 7q31.1 region; patient no. 0033 had 1.73-Mb duplication in the 17q12 region; and patient no. 0061 had 5.79-Mb deletion in the 1p36.33p36.31 region.aCGH can accurately detect CNVs in the patients with TOF. This is conducive to genetic counseling and prenatal diagnosis for TOF and provides a new clue and theoretical basis for exploring the pathogenesis of congenital heart disease.
Collapse
Affiliation(s)
- Lin Liu
- Department of Cardiovascular Ultrasound
| | | | | | - Dong Wu
- Institute of Medical Genetics
| | - Tao Li
- Institute of Medical Genetics
| | - Tai-Bing Fan
- Children's Heart Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital
| | - Bang-Tian Peng
- Children's Heart Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital
| | | | - Cheng-Zeng Wang
- Department of Ultrasound, Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou 450008, China
| |
Collapse
|
25
|
Greulich F, Trowe MO, Leffler A, Stoetzer C, Farin HF, Kispert A. Misexpression of Tbx18 in cardiac chambers of fetal mice interferes with chamber-specific developmental programs but does not induce a pacemaker-like gene signature. J Mol Cell Cardiol 2016; 97:140-9. [PMID: 27180262 DOI: 10.1016/j.yjmcc.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/13/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022]
Abstract
Initiation of cardiac excitation depends on a specialized group of cardiomyocytes at the venous pole of the heart, the sinoatrial node (SAN). The T-box transcription factor gene Tbx18 is expressed in the SAN myocardium and is required for formation of a large portion of the pacemaker. Previous studies suggested that Tbx18 is also sufficient to reprogram ventricular cardiomyocytes into SAN cells in rat, guinea-pig and pig hearts. To evaluate the consequences of misexpression of Tbx18 for imposing a nodal phenotype onto chamber myocardial cells in fetal mice, we used two independent conditional approaches with chamber-specific cre driver lines and an Hprt(Tbx18) misexpression allele. Myh6-Cre/+;Hprt(Tbx18/y) mice developed dilated atria with thickened walls, reduced right ventricles and septal defects that resulted in reduced embryonic and post-natal survival. Tagln-Cre/+;Hprt(Tbx18/y) mice exhibited slightly smaller hearts with rounded trabeculae that supported normal embryonic survival. Molecular analyses showed that the SAN gap junction and ion channel profile was not ectopically induced in chamber myocardium but the working myocardial gene program was partially inhibited in atria and ventricles of both misexpression models. Left atrial expression of Pitx2 was strongly repressed in Myh6-Cre/+;Hprt(Tbx18/y) embryos. We conclude that exclusion of Tbx18 expression from the developing atria and (right) ventricle is important to achieve normal cardiac left-right patterning and myocardial differentiation, and that Tbx18 is not sufficient to induce full SAN differentiation of chamber cardiomyocytes in fetal mice.
Collapse
Affiliation(s)
- Franziska Greulich
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Andreas Leffler
- Klinik für Anästhesiologie und Intensivmedizin, OE8050, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Carsten Stoetzer
- Klinik für Anästhesiologie und Intensivmedizin, OE8050, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Henner F Farin
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| |
Collapse
|
26
|
Sanchez-Castro M, Eldjouzi H, Charpentier E, Busson PF, Hauet Q, Lindenbaum P, Delasalle-Guyomarch B, Baudry A, Pichon O, Pascal C, Lefort B, Bajolle F, Pezard P, Schott JJ, Dina C, Redon R, Gournay V, Bonnet D, Le Caignec C. Search for Rare Copy-Number Variants in Congenital Heart Defects Identifies Novel Candidate Genes and a Potential Role for FOXC1 in Patients With Coarctation of the Aorta. ACTA ACUST UNITED AC 2016; 9:86-94. [DOI: 10.1161/circgenetics.115.001213] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022]
Abstract
Background—
Congenital heart defects are the most frequent malformations among newborns and a frequent cause of morbidity and mortality. Although genetic variation contributes to congenital heart defects, their precise molecular bases remain unknown in the majority of patients.
Methods and Results—
We analyzed, by high-resolution array comparative genomic hybridization, 316 children with sporadic, nonsyndromic congenital heart defects, including 76 coarctation of the aorta, 159 transposition of the great arteries, and 81 tetralogy of Fallot, as well as their unaffected parents. We identified by array comparative genomic hybridization, and validated by quantitative real-time polymerase chain reaction, 71 rare de novo (n=8) or inherited (n=63) copy-number variants (CNVs; 50 duplications and 21 deletions) in patients. We identified 113 candidate genes for congenital heart defects within these CNVs, including
BTRC
,
CHRNB3
,
CSRP2BP
,
ERBB2
,
ERMARD
,
GLIS3
,
PLN
,
PTPRJ
,
RLN3
, and
TCTE3
. No de novo CNVs were identified in patients with transposition of the great arteries in contrast to coarctation of the aorta and tetralogy of Fallot (
P
=0.002; Fisher exact test). A search for transcription factor binding sites showed that 93% of the rare CNVs identified in patients with coarctation of the aorta contained at least 1 gene with FOXC1-binding sites. This significant enrichment (
P
<0.0001; permutation test) was not observed for the CNVs identified in patients with transposition of the great arteries and tetralogy of Fallot. We hypothesize that these CNVs may alter the expression of genes regulated by FOXC1. Foxc1 belongs to the forkhead transcription factors family, which plays a critical role in cardiovascular development in mice.
Conclusions—
These data suggest that deregulation of
FOXC1
or its downstream genes play a major role in the pathogenesis of coarctation of the aorta in humans.
Collapse
|
27
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|
28
|
Digilio MC, Marino B. What Is New in Genetics of Congenital Heart Defects? Front Pediatr 2016; 4:120. [PMID: 27990414 PMCID: PMC5130977 DOI: 10.3389/fped.2016.00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/19/2016] [Indexed: 11/21/2022] Open
Abstract
Epidemiological studies, clinical observations, and advances in molecular genetics are contributing to the understanding of the etiology of congenital heart defects (CHDs). Several phenotype-genotype correlation studies have suggested that specific morphogenetic mechanisms put in motion by genes can result in a specific cardiac phenotype. The use of new technologies has increased the possibility of identification of new genes and chromosomal loci in syndromic and non-syndromic CHDs. There are a number of methods available for genetic research studies of CHDs, including cytogenetic analysis, linkage and association studies, copy number variation (CNV) and DNA micro-array analysis, and whole exome sequencing. The altered dosage of contiguous genes included inside CNVs can produce new syndromic CHDs, so that several different new genomic conditions have been identified. These include duplication 22q11.2 syndrome, distal 22q11.2 deletion syndrome, deletion and duplication 1q21.1, and deletion 1p36 syndrome. Molecular techniques such as whole exome sequencing have lead to the identification of new genes for monogenic syndromes with CHD, as for example in Adams-Oliver, Noonan, and Kabuki syndrome. The variable expressivity and reduced penetrance of CHDs in genetic syndromes is likely influenced by genetic factors, and several studies have been performed showing the involvement of modifier genes. It is not easy to define precisely the genetic defects underlying non-syndromic CHDs, due to the genetic and clinical heterogeneity of these malformations. Recent experimental studies have identified multiple CNVs contributing to non-syndromic CHD. The number of identified genes for non-syndromic CHDs is at this time limited, and each of the identified genes has been shown to be implicated only in a small proportion of CHD. The application of new technologies to specific cases of CHD and pedigrees with familial recurrence and filtering genes mapping in CNV regions can probably in the future add knowledge about new genes for non-syndromic CHDs.
Collapse
Affiliation(s)
| | - Bruno Marino
- Pediatric Cardiology, Department of Pediatrics, Sapienza University , Rome , Italy
| |
Collapse
|
29
|
Abstract
Congenital heart disease (CHD) is the most common type of birth defect. The advent of corrective cardiac surgery and the increase in knowledge concerning the longitudinal care of patients with CHD has led to a spectacular increase in life expectancy. Therefore, >90% of children with CHD, who survive the first year of life, will live into adulthood. The etiology of CHD is complex and is associated with both environmental and genetic causes. CHD is a genetically heterogeneous disease that is associated with long-recognized chromosomal abnormalities, as well as with mutation in numerous (developmental) genes. Nevertheless, the genetic factors underlying CHD have remained largely elusive, and it is important to realize that in the far majority of CHD patients no causal mutation or chromosomal abnormality is identified. However, new insights (alternative inheritance paradigms) and technology (next-generation sequencing) have become available that can greatly advance our understanding of the genetic factors that contribute to CHD; these will be discussed in this review. Moreover, we will focus on the discovery of regulatory regions of key (heart) developmental genes and the occurrence of variations and mutations within, in the setting of CHD.
Collapse
|
30
|
Verhagen JMA, de Leeuw N, Papatsonis DNM, Grijseels EWM, de Krijger RR, Wessels MW. Phenotypic Variability Associated with a Large Recurrent 1q21.1 Microduplication in a Three-Generation Family. Mol Syndromol 2015; 6:71-6. [PMID: 26279651 DOI: 10.1159/000431274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 02/04/2023] Open
Abstract
Recurrent copy number variants of the q21.1 region of chromosome 1 have been associated with variable clinical features, including developmental delay, mild to moderate intellectual disability, psychiatric and behavioral problems, congenital heart malformations, and craniofacial abnormalities. A subset of individuals is clinically unaffected. We describe a unique 3-generation family with a large recurrent 1q21.1 microduplication (BP2-BP4). Our observations underline the incomplete penetrance and phenotypic variability of this rearrangement. We also confirm the association with congenital heart malformations, chronic depression, and anxiety. Furthermore, we report a broader range of dysmorphic features. The extreme phenotypic heterogeneity observed in this family suggests that additional factors modify the clinical phenotype.
Collapse
Affiliation(s)
- Judith M A Verhagen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Els W M Grijseels
- Department of Obstetrics and Gynecology, Amphia Hospital, Breda, The Netherlands
| | | | - Marja W Wessels
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Lahm H, Schön P, Doppler S, Dreßen M, Cleuziou J, Deutsch MA, Ewert P, Lange R, Krane M. Tetralogy of Fallot and Hypoplastic Left Heart Syndrome - Complex Clinical Phenotypes Meet Complex Genetic Networks. Curr Genomics 2015; 16:141-58. [PMID: 26069455 PMCID: PMC4460219 DOI: 10.2174/1389202916666150303232520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/06/2023] Open
Abstract
In many cases congenital heart disease (CHD) is represented by a complex phenotype and
an array of several functional and morphological cardiac disorders. These malformations will be
briefly summarized in the first part focusing on two severe CHD phenotypes, hypoplastic left heart
syndrome (HLHS) and tetralogy of Fallot (TOF). In most cases of CHD the genetic origin remains
largely unknown, though the complexity of the clinical picture strongly argues against a dysregulation which can be attributed
to a single candidate gene but rather suggests a multifaceted polygenetic origin with elaborate interactions. Consistent
with this idea, genome-wide approaches using whole exome sequencing, comparative sequence analysis of multiplex
families to identify de novo mutations and global technologies to identify single nucleotide polymorphisms, copy
number variants, dysregulation of the transcriptome and epigenetic variations have been conducted to obtain information
about genetic alterations and potential predispositions possibly linked to the occurrence of a CHD phenotype. In the second
part of this review we will summarize and discuss the available literature on identified genetic alterations linked to
TOF and HLHS.
Collapse
Affiliation(s)
- Harald Lahm
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Patric Schön
- Department of Paediatric Cardiology and Congenital Heart Defects, German Heart Center Munich, Technische Universität München, D-80636 Munich, Germany
| | - Stefanie Doppler
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Julie Cleuziou
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Marcus-André Deutsch
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Peter Ewert
- Department of Paediatric Cardiology and Congenital Heart Defects, German Heart Center Munich, Technische Universität München, D-80636 Munich, Germany; ; DZHK (German Center for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Rüdiger Lange
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany; ; DZHK (German Center for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany; ; DZHK (German Center for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
32
|
Nishii K, Shibata Y, Kobayashi Y. Connexin mutant embryonic stem cells and human diseases. World J Stem Cells 2014; 6:571-578. [PMID: 25426253 PMCID: PMC4178256 DOI: 10.4252/wjsc.v6.i5.571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.
Collapse
|
33
|
Aburawi EH, Aburawi HE, Bagnall KM, Bhuiyan ZA. Molecular insight into heart development and congenital heart disease: An update review from the Arab countries. Trends Cardiovasc Med 2014; 25:291-301. [PMID: 25541328 DOI: 10.1016/j.tcm.2014.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023]
Abstract
Congenital heart defect (CHD) has a major influence on affected individuals as well as on the supportive and associated environment such as the immediate family. Unfortunately, CHD is common worldwide with an incidence of approximately 1% and consequently is a major health concern. The Arab population has a high rate of consanguinity, fertility, birth, and annual population growth, in addition to a high incidence of diabetes mellitus and obesity. All these factors may lead to a higher incidence and prevalence of CHD within the Arab population than in the rest of the world, making CHD of even greater concern. Sadly, most Arab countries lack appropriate public health measures directed toward the control and prevention of congenital malformations and so the importance of CHD within the population remains unknown but is thought to be high. In approximately 85% of CHD patients, the multifactorial theory is considered as the pathologic basis. The genetic risk factors for CHD can be attributed to large chromosomal aberrations, copy number variations (CNV) of particular regions in the chromosome, and gene mutations in specific nuclear transcription pathways and in the genes that are involved in cardiac structure and development. The application of modern molecular biology techniques such as high-throughput nucleotide sequencing and chromosomal array and methylation array all have the potential to reveal more genetic defects linked to CHD. Exploring the genetic defects in CHD pathology will improve our knowledge and understanding about the diverse pathways involved and also about the progression of this disease. Ultimately, this will link to more efficient genetic diagnosis and development of novel preventive therapeutic strategies, as well as gene-targeted clinical management. This review summarizes our current understanding of the molecular basis of normal heart development and the pathophysiology of a wide range of CHD. The risk factors that might account for the high prevalence of CHD within the Arab population and the measures required to be undertaken for conducting research into CHD in Arab countries will also be discussed.
Collapse
Affiliation(s)
- Elhadi H Aburawi
- Department of Pediatrics, United Arab Emirates University, Al-Ain, UAE
| | - Hanan E Aburawi
- Department of Biology, Faculty of Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Keith M Bagnall
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Zahurul A Bhuiyan
- Laboratoire de Diagnostic Moléculaire, Service de Génétique Médicale, BH19_512, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, Lausanne CH-1011, Switzerland.
| |
Collapse
|
34
|
Seki A, Nishii K, Hagiwara N. Gap junctional regulation of pressure, fluid force, and electrical fields in the epigenetics of cardiac morphogenesis and remodeling. Life Sci 2014; 129:27-34. [PMID: 25447447 DOI: 10.1016/j.lfs.2014.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/16/2014] [Accepted: 10/29/2014] [Indexed: 01/25/2023]
Abstract
Epigenetic factors of pressure load, fluid force, and electrical fields that occur during cardiac contraction affect cardiac development, morphology, function, and pathogenesis. These factors are orchestrated by intercellular communication mediated by gap junctions, which synchronize action potentials and second messengers. Misregulation of the gap junction protein connexin (Cx) alters cardiogenesis, and can be a pathogenic factor causing cardiac conduction disturbance, fatal arrhythmia, and cardiac remodeling in disease states such as hypertension and ischemia. Changes in Cx expression can occur even when the DNA sequence of the Cx gene itself is unaltered. Posttranslational modifications might reduce arrhythmogenic substrates, improve cardiac function, and promote remodeling in a diseased heart. In this review, we discuss the epigenetic features of gap junctions that regulate cardiac morphology and remodeling. We further discuss potential clinical applications of current knowledge of the structure and function of gap junctions.
Collapse
Affiliation(s)
- Akiko Seki
- Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; Support Center for Women Health Care Professionals and Researchers, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Kiyomasa Nishii
- Department of Anatomy and Neurobiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
35
|
White PS, Xie HM, Werner P, Glessner J, Latney B, Hakonarson H, Goldmuntz E. Analysis of chromosomal structural variation in patients with congenital left-sided cardiac lesions. ACTA ACUST UNITED AC 2014; 100:951-64. [DOI: 10.1002/bdra.23279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter S. White
- The Center for Biomedical Informatics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pediatrics; Perelman School of Medicine, University of Pennsylvania; Philadelphia Pennsylvania
| | - Hongbo M. Xie
- The Center for Biomedical Informatics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Petra Werner
- The Division of Cardiology; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Joseph Glessner
- The Center for Applied Genomics, Department of Pediatrics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Brande Latney
- The Division of Cardiology; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Hakon Hakonarson
- Department of Pediatrics; Perelman School of Medicine, University of Pennsylvania; Philadelphia Pennsylvania
- The Center for Applied Genomics, Department of Pediatrics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Elizabeth Goldmuntz
- Department of Pediatrics; Perelman School of Medicine, University of Pennsylvania; Philadelphia Pennsylvania
- The Division of Cardiology; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| |
Collapse
|
36
|
Molica F, Meens MJP, Morel S, Kwak BR. Mutations in cardiovascular connexin genes. Biol Cell 2014; 106:269-93. [PMID: 24966059 DOI: 10.1111/boc.201400038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/25/2022]
Abstract
Connexins (Cxs) form a family of transmembrane proteins comprising 21 members in humans. Cxs differ in their expression patterns, biophysical properties and ability to combine into homomeric or heteromeric gap junction channels between neighbouring cells. The permeation of ions and small metabolites through gap junction channels or hemichannels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. Among others, Cx37, Cx40, Cx43, Cx45 and Cx47 are found in heart, blood and lymphatic vessels. Mutations or polymorphisms in the genes coding for these Cxs have not only been implicated in cardiovascular pathologies but also in a variety of other disorders. While mutations in Cx43 are mostly linked to oculodentodigital dysplasia, Cx47 mutations are associated with Pelizaeus-Merzbacher-like disease and lymphoedema. Cx40 mutations are principally linked to atrial fibrillation. Mutations in Cx37 have not yet been described, but polymorphisms in the Cx37 gene have been implicated in the development of arterial disease. This review addresses current knowledge on gene mutations in cardiovascular Cxs systematically and links them to alterations in channel properties and disease.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
37
|
Lalani SR, Belmont JW. Genetic basis of congenital cardiovascular malformations. Eur J Med Genet 2014; 57:402-13. [PMID: 24793338 DOI: 10.1016/j.ejmg.2014.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/16/2014] [Indexed: 01/14/2023]
Abstract
Cardiovascular malformations are a singularly important class of birth defects and due to dramatic improvements in medical and surgical care, there are now large numbers of adult survivors. The etiologies are complex, but there is strong evidence that genetic factors play a crucial role. Over the last 15 years there has been enormous progress in the discovery of causative genes for syndromic heart malformations and in rare families with Mendelian forms. The rapid characterization of genomic disorders as major contributors to congenital heart defects is also notable. The genes identified encode many transcription factors, chromatin regulators, growth factors and signal transduction proteins- all unified by their required roles in normal cardiac development. Genome-wide sequencing of the coding regions promises to elucidate genetic causation in several disorders affecting cardiac development. Such comprehensive studies evaluating both common and rare variants would be essential in characterizing gene-gene interactions, as well as in understanding the gene-environment interactions that increase susceptibility to congenital heart defects.
Collapse
Affiliation(s)
- Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
38
|
McCain ML, Desplantez T, Kléber AG. Engineering Cardiac Cell JunctionsIn Vitroto Study the Intercalated Disc. ACTA ACUST UNITED AC 2014; 21:181-91. [DOI: 10.3109/15419061.2014.905931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Warburton D, Ronemus M, Kline J, Jobanputra V, Williams I, Anyane-Yeboa K, Chung W, Yu L, Wong N, Awad D, Yu CY, Leotta A, Kendall J, Yamrom B, Lee YH, Wigler M, Levy D. The contribution of de novo and rare inherited copy number changes to congenital heart disease in an unselected sample of children with conotruncal defects or hypoplastic left heart disease. Hum Genet 2014; 133:11-27. [PMID: 23979609 PMCID: PMC3880624 DOI: 10.1007/s00439-013-1353-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/21/2013] [Indexed: 12/25/2022]
Abstract
Congenital heart disease (CHD) is the most common congenital malformation, with evidence of a strong genetic component. We analyzed data from 223 consecutively ascertained families, each consisting of at least one child affected by a conotruncal defect (CNT) or hypoplastic left heart disease (HLHS) and both parents. The NimbleGen HD2-2.1 comparative genomic hybridization platform was used to identify de novo and rare inherited copy number variants (CNVs). Excluding 10 cases with 22q11.2 DiGeorge deletions, we validated de novo CNVs in 8 % of 148 probands with CNTs, 12.7 % of 71 probands with HLHS and none in 4 probands with both. Only 2 % of control families showed a de novo CNV. We also identified a group of ultra-rare inherited CNVs that occurred de novo in our sample, contained a candidate gene for CHD, recurred in our sample or were present in an affected sibling. We confirmed the contribution to CHD of copy number changes in genes such as GATA4 and NODAL and identified several genes in novel recurrent CNVs that may point to novel CHD candidate loci. We also found CNVs previously associated with highly variable phenotypes and reduced penetrance, such as dup 1q21.1, dup 16p13.11, dup 15q11.2-13, dup 22q11.2, and del 2q23.1. We found that the presence of extra-cardiac anomalies was not related to the frequency of CNVs, and that there was no significant difference in CNV frequency or specificity between the probands with CNT and HLHS. In agreement with other series, we identified likely causal CNVs in 5.6 % of our total sample, half of which were de novo.
Collapse
Affiliation(s)
- Dorothy Warburton
- Departments of Pediatrics and Genetics and Development, Columbia University, New York, NY, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Engineered chromosome-based genetic mapping establishes a 3.7 Mb critical genomic region for Down syndrome-associated heart defects in mice. Hum Genet 2013; 133:743-53. [PMID: 24362460 DOI: 10.1007/s00439-013-1407-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/06/2013] [Indexed: 02/01/2023]
Abstract
Trisomy 21 (Down syndrome, DS) is the most common human genetic anomaly associated with heart defects. Based on evolutionary conservation, DS-associated heart defects have been modeled in mice. By generating and analyzing mouse mutants carrying different genomic rearrangements in human chromosome 21 (Hsa21) syntenic regions, we found the triplication of the Tiam1-Kcnj6 region on mouse chromosome 16 (Mmu16) resulted in DS-related cardiovascular abnormalities. In this study, we developed two tandem duplications spanning the Tiam1-Kcnj6 genomic region on Mmu16 using recombinase-mediated genome engineering, Dp(16)3Yey and Dp(16)4Yey, spanning the 2.1 Mb Tiam1-Il10rb and 3.7 Mb Ifnar1-Kcnj6 regions, respectively. We found that Dp(16)4Yey/+, but not Dp(16)3Yey/+, led to heart defects, suggesting the triplication of the Ifnar1-Kcnj6 region is sufficient to cause DS-associated heart defects. Our transcriptional analysis of Dp(16)4Yey/+ embryos showed that the Hsa21 gene orthologs located within the duplicated interval were expressed at the elevated levels, reflecting the consequences of the gene dosage alterations. Therefore, we have identified a 3.7 Mb genomic region, the smallest critical genomic region, for DS-associated heart defects, and our results should set the stage for the final step to establish the identities of the causal gene(s), whose elevated expression(s) directly underlie this major DS phenotype.
Collapse
|
41
|
Andersen TA, Troelsen KDLL, Larsen LA. Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 2013; 71:1327-52. [PMID: 23934094 PMCID: PMC3958813 DOI: 10.1007/s00018-013-1430-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.
Collapse
Affiliation(s)
- Troels Askhøj Andersen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | | | | |
Collapse
|
42
|
Verheule S, Kaese S. Connexin diversity in the heart: insights from transgenic mouse models. Front Pharmacol 2013; 4:81. [PMID: 23818881 PMCID: PMC3694209 DOI: 10.3389/fphar.2013.00081] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/04/2013] [Indexed: 11/13/2022] Open
Abstract
Cardiac conduction is mediated by gap junction channels that are formed by connexin (Cx) protein subunits. The connexin family of proteins consists of more than 20 members varying in their biophysical properties and ability to combine with other connexins into heteromeric gap junction channels. The mammalian heart shows regional differences both in connexin expression profile and in degree of electrical coupling. The latter reflects functional requirements for conduction velocity which needs to be low in the sinoatrial and atrioventricular nodes and high in the ventricular conduction system. Over the past 20 years knowledge of the biology of gap junction channels and their role in the genesis of cardiac arrhythmias has increased enormously. This review focuses on the insights gained from transgenic mouse models. The mouse heart expresses Cx30, 30.2, 37, 40, 43, 45, and 46. For these connexins a variety of knock-outs, heart-specific knock-outs, conditional knock-outs, double knock-outs, knock-ins and overexpressors has been studied. We discuss the cardiac phenotype in these models and compare Cx expression between mice and men. Mouse models have enhanced our understanding of (patho)-physiological implications of Cx diversity in the heart. In principle connexin-specific modulation of electrical coupling in the heart represents an interesting treatment strategy for cardiac arrhythmias and conduction disorders.
Collapse
Affiliation(s)
- Sander Verheule
- Department of Physiology, Faculty of Medicine, Maastricht University Maastricht, Netherlands
| | | |
Collapse
|
43
|
Salameh A, Blanke K, Daehnert I. Role of connexins in human congenital heart disease: the chicken and egg problem. Front Pharmacol 2013; 4:70. [PMID: 23760510 PMCID: PMC3669755 DOI: 10.3389/fphar.2013.00070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/15/2013] [Indexed: 01/15/2023] Open
Abstract
Inborn cardiac diseases are among the most frequent congenital anomalies and are the main cause of death in infants within the first year of age in industrialized countries when not adequately treated. They can be divided into simple and complex cardiac malformations. The former ones, for instance atrial and ventricular septal defects, valvular or subvalvular stenosis or insufficiency account for up to 80% of cardiac abnormalities. The latter ones, for example transposition of the great vessels, Tetralogy of Fallot or Shone’s anomaly often do not involve only the heart, but also the great vessels and although occurring less frequently, these severe cardiac malformations will become symptomatic within the first months of age and have a high risk of mortality if the patients remain untreated. In the last decade, there is increasing evidence that cardiac gap junction proteins, the connexins (Cx), might have an impact on cardiac anomalies. In the heart, mainly three of them (Cx40, Cx43, and Cx45) are differentially expressed with regard to temporal organogenesis and to their spatial distribution in the heart. These proteins, forming gap junction channels, are most important for a normal electrical conduction and coordinated synchronous heart muscle contraction and also for the normal embryonic development of the heart. Animal and also some human studies revealed that at least in some cardiac malformations alterations in certain gap junction proteins are present but until today no particular gap junction mutation could be assigned to a specific cardiac anomaly. As gap junctions have often been supposed to transmit growth and differentiation signals from cell to cell it is reasonable to assume that they are somehow involved in misdirected growth present in many inborn heart diseases playing a primary or contributory role. This review addresses the potentional role of gap junctions in the development of inborn heart anomalies like the conotruncal heart defects.
Collapse
Affiliation(s)
- Aida Salameh
- Clinic for Pediatric Cardiology, Heart Centre, University of Leipzig Leipzig, Germany
| | | | | |
Collapse
|
44
|
Chaston DJ, Baillie BK, Grayson TH, Courjaret RJ, Heisler JM, Lau KA, Machaca K, Nicholson BJ, Ashton A, Matthaei KI, Hill CE. Polymorphism in endothelial connexin40 enhances sensitivity to intraluminal pressure and increases arterial stiffness. Arterioscler Thromb Vasc Biol 2013; 33:962-70. [PMID: 23471232 DOI: 10.1161/atvbaha.112.300957] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To determine whether impairment of endothelial connexin40 (Cx40), an effect that can occur in hypertension and aging, contributes to the arterial dysfunction and stiffening in these conditions. APPROACH AND RESULTS A new transgenic mouse strain, expressing a mutant Cx40, (Cx40T202S), specifically in the vascular endothelium, has been developed and characterized. This mutation produces nonfunctional hemichannels, whereas gap junctions containing the mutant are electrically, but not chemically, patent. Mesenteric resistance arteries from Cx40T202S mice showed increased sensitivity of the myogenic response to intraluminal pressure in vitro, compared with wild-type mice, whereas transgenic mice overexpressing native Cx40 (Cx40Tg) showed reduced sensitivity. In control and Cx40Tg mice, the sensitivity to pressure of myogenic constriction was modulated by both NO and endothelium-derived hyperpolarization; however, the endothelium-derived hyperpolarization component was absent in Cx40T202S arteries. Analysis of passive mechanical properties revealed that arterial stiffness was enhanced in vessels from Cx40T202S mice, but not in wild-type or Cx40Tg mice. CONCLUSIONS Introduction of a mutant form of Cx40 in the endogenous endothelial Cx40 population prevents endothelium-derived hyperpolarization activation during myogenic constriction, enhancing sensitivity to intraluminal pressure and increasing arterial stiffness. We conclude that genetic polymorphisms in endothelial Cx40 can contribute to the pathogenesis of arterial disease.
Collapse
Affiliation(s)
- Daniel J Chaston
- John Curtin School of Medical Research, The Australian National University, Bldg 131 Garran Rd, Acton Australian Capital Territory 0200 Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Digilio MC, Bernardini L, Consoli F, Lepri FR, Giuffrida MG, Baban A, Surace C, Ferese R, Angioni A, Novelli A, Marino B, De Luca A, Dallapiccola B. Congenital heart defects in recurrent reciprocal 1q21.1 deletion and duplication syndromes: Rare association with pulmonary valve stenosis. Eur J Med Genet 2013; 56:144-9. [DOI: 10.1016/j.ejmg.2012.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 12/11/2012] [Indexed: 11/28/2022]
|
46
|
Guida V, Ferese R, Rocchetti M, Bonetti M, Sarkozy A, Cecchetti S, Gelmetti V, Lepri F, Copetti M, Lamorte G, Cristina Digilio M, Marino B, Zaza A, den Hertog J, Dallapiccola B, De Luca A. A variant in the carboxyl-terminus of connexin 40 alters GAP junctions and increases risk for tetralogy of Fallot. Eur J Hum Genet 2013; 21:69-75. [PMID: 22713807 PMCID: PMC3533258 DOI: 10.1038/ejhg.2012.109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 12/29/2022] Open
Abstract
GJA5 gene (MIM no. 121013), localized at 1q21.1, encodes for the cardiac gap junction protein connexin 40. In humans, copy number variants of chromosome 1q21.1 have been associated with variable phenotypes comprising congenital heart disease (CHD), including isolated TOF. In mice, the deletion of Gja5 can cause a variety of complex CHDs, in particular of the cardiac outflow tract, corresponding to TOF in many cases. In the present study, we screened for mutations in the GJA5 gene 178 unrelated probands with isolated TOF. A heterozygous nucleotide change (c.793C>T) in exon 2 of the gene leading to the p.Pro265Ser variant at the carboxyl-terminus of the protein was found in two unrelated sporadic patients, one with classic anatomy and one with pulmonary atresia. This GJA5 missense substitution was not observed in 1568 ethnically-matched control chromosomes. Immunofluorescent staining and confocal microscopy revealed that cells expressing the mutant protein form sparse or no visible gap-junction plaques in the region of cell-cell contact. Moreover, analysis of the transfer of the gap junction permanent tracer lucifer yellow showed that cells expressing the mutant protein have a reduced rate of dye transfer compared with wild-type cells. Finally, use of a zebrafish model revealed that microinjection of the GJA5-p.Pro265Ser mutant disrupts overall morphology of the heart tube in the 37% (22/60) of embryos, compared with the 6% (4/66) of the GJA5 wild-type-injected embryos. These findings implicate GJA5 gene as a novel susceptibility gene for TOF.
Collapse
Affiliation(s)
- Valentina Guida
- Mendel Laboratory, Casa Sollievo della
Sofferenza Hospital, IRCCS, San Giovanni Rotondo,
Italy
| | - Rosangela Ferese
- Mendel Laboratory, Casa Sollievo della
Sofferenza Hospital, IRCCS, San Giovanni Rotondo,
Italy
- Department of Experimental Medicine,
‘Sapienza' University, Rome, Italy
| | - Marcella Rocchetti
- Biotechnology and Biosciences Department,
University of Milan-Bicocca, Milan, Italy
| | - Monica Bonetti
- Hubrecht Institute, KNAW and University
Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anna Sarkozy
- Mendel Laboratory, Casa Sollievo della
Sofferenza Hospital, IRCCS, San Giovanni Rotondo,
Italy
| | - Serena Cecchetti
- Section of Molecular and Cellular Imaging,
Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità,
Rome, Italy
| | - Vania Gelmetti
- Mendel Laboratory, Casa Sollievo della
Sofferenza Hospital, IRCCS, San Giovanni Rotondo,
Italy
| | - Francesca Lepri
- Medical Genetics, Cytogenetics and Pediatric
Cardiology, Bambino Gesù Children Hospital, IRCCS, Rome,
Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, Casa Sollievo della
Sofferenza Hospital, IRCCS, San Giovanni Rotondo,
Italy
| | - Giuseppe Lamorte
- Mendel Laboratory, Casa Sollievo della
Sofferenza Hospital, IRCCS, San Giovanni Rotondo,
Italy
| | - Maria Cristina Digilio
- Medical Genetics, Cytogenetics and Pediatric
Cardiology, Bambino Gesù Children Hospital, IRCCS, Rome,
Italy
| | - Bruno Marino
- Pediatric Cardiology, Department of
Pediatrics, ‘Sapienza' University, Rome,
Italy
- Eleonora Lorillard Spencer-Cenci
Foundation, Rome, Italy
| | - Antonio Zaza
- Biotechnology and Biosciences Department,
University of Milan-Bicocca, Milan, Italy
| | - Jeroen den Hertog
- Hubrecht Institute, KNAW and University
Medical Centre Utrecht, Utrecht, The Netherlands
- Institute Biology Leiden, Leiden
University, Leiden, The Netherlands
| | - Bruno Dallapiccola
- Medical Genetics, Cytogenetics and Pediatric
Cardiology, Bambino Gesù Children Hospital, IRCCS, Rome,
Italy
| | - Alessandro De Luca
- Mendel Laboratory, Casa Sollievo della
Sofferenza Hospital, IRCCS, San Giovanni Rotondo,
Italy
| |
Collapse
|
47
|
Affiliation(s)
- Jayant S Jainandunsing
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
48
|
Ramkisoensing AA, Pijnappels DA, Swildens J, Goumans MJ, Fibbe WE, Schalij MJ, de Vries AAF, Atsma DE. Gap junctional coupling with cardiomyocytes is necessary but not sufficient for cardiomyogenic differentiation of cocultured human mesenchymal stem cells. Stem Cells 2012; 30:1236-45. [PMID: 22438316 DOI: 10.1002/stem.1086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gap junctional coupling is important for functional integration of transplanted cells with host myocardium. However, the role of gap junctions in cardiomyogenic differentiation of transplanted cells has not been directly investigated. The objective of this work is to study the role of connexin43 (Cx43) in cardiomyogenic differentiation of human mesenchymal stem cells (hMSCs). Knockdown of Cx43 gene expression (Cx43↓) was established in naturally Cx43-rich fetal amniotic membrane (AM) hMSCs, while Cx43 was overexpressed (Cx43↑) in inherently Cx43-poor adult adipose tissue (AT) hMSCs. The hMSCs were exposed to cardiomyogenic stimuli by coincubation with neonatal rat ventricular cardiomyocytes (nrCMCs) for 10 days. Differentiation was assessed by immunostaining and whole-cell current clamping. To establish whether the effects of Cx43 knockdown could be rescued, Cx45 was overexpressed in Cx43↓ fetal AM hMSCs. Ten days after coincubation, not a single Cx43↓ fetal AM hMSC, control adult AT MSC, or Cx43↑ adult AT mesenchymal stem cell (MSC) expressed α-actinin, while control fetal AM hMSCs did (2.2% ± 0.4%, n = 5,000). Moreover, functional cardiomyogenic differentiation, based on action potential recordings, occurred only in control fetal AM hMSCs. Of interest, Cx45 overexpression in Cx43↓ fetal AM hMSCs restored their ability to undergo cardiomyogenesis (1.6% ± 0.4%, n = 2,500) in coculture with nrCMCs. Gap junctional coupling is required for differentiation of fetal AM hMSCs into functional CMCs after coincubation with nrCMCs. Heterocellular gap junctional coupling thus plays an important role in the transfer of cardiomyogenic signals from nrCMCs to fetal hMSCs but is not sufficient to induce cardiomyogenic differentiation in adult AT hMSCs.
Collapse
Affiliation(s)
- Arti A Ramkisoensing
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Genetic analysis of the TBX3 gene promoter in ventricular septal defects. Gene 2012; 512:185-8. [PMID: 23116943 DOI: 10.1016/j.gene.2012.10.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 12/11/2022]
Abstract
Congenital heart disease (CHD) is the most common birth defect in humans. Genetic causes and underlying molecular mechanisms for CHD remain largely unknown. T-box transcription factor 3 (TBX3) plays a critical role in the developing heart in a dose-dependent manner. TBX3 represses chamber myocardial gene expression. Mutations in TBX3 gene have been associated to ulnar-mammary syndrome with multiple developmental defects, including cardiac defects. We hypothesized that the sequence variants within TBX3 gene promoter that change TBX3 levels may mediate CHD development. In this study, TBX3 gene promoter was genetically analyzed in large cohorts of patients with ventricular septal defect (VSD) (n=325) and ethnic-matched healthy controls (n=359). Seven sequence variants, including two single-nucleotide polymorphisms (g.3863 C>T and g.4095G>T), three novel deletions (g.4433_4435del, g.4672_4675del and g.4820_4821del) and two novel insertions (g.3913_3914ins and g.4735_4736ins), were identified. Five of the seven variants were identified in VSD patients and controls with similar frequencies. Two other variants were found only in controls. These variants, which were observed in high frequencies, did not modify or interrupt the critical binding site for basic transcription factors. Taken together, these results suggested that the sequence variants within the TBX3 gene promoter did not contribute to VSD etiology.
Collapse
|
50
|
Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:917-22. [PMID: 23078978 DOI: 10.1016/j.bbamcr.2012.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 11/23/2022]
Abstract
The cardiac valves are targets of both congenital and acquired diseases. The formation of valves during embryogenesis (i.e., valvulogenesis) originates from endocardial cells lining the myocardium. These cells undergo an endothelial-mesenchymal transition, proliferate and migrate within an extracellular matrix. This leads to the formation of bilateral cardiac cushions in both the atrioventricular canal and the outflow tract. The embryonic origin of both the endocardium and prospective valve cells is still elusive. Endocardial and myocardial lineages are segregated early during embryogenesis and such a cell fate decision can be recapitulated in vitro by embryonic stem cells (ESC). Besides genetically modified mice and ex vivo heart explants, ESCs provide a cellular model to study the early steps of valve development and might constitute a human therapeutic cell source for decellularized tissue-engineered valves. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
|