1
|
Sánchez-Florentino ZA, Romero-Martínez BS, Flores-Soto E, Montaño LM, Sommer B, Valdés-Tovar M, Argueta J, Calixto E, Aquino-Gálvez A, Castillejos-López M, Serrano H, Gomez-Verjan JC, López-Riquelme GO, Benítez-King GA, Jaimez R, Solís-Chagoyán H. Altered PLCβ/IP 3/Ca 2+ Signaling Pathway Activated by GPRCs in Olfactory Neuronal Precursor Cells Derived from Patients Diagnosed with Schizophrenia. Biomedicines 2024; 12:2343. [PMID: 39457654 PMCID: PMC11504003 DOI: 10.3390/biomedicines12102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Schizophrenia (SZ) is a multifactorial chronic psychiatric disorder with a worldwide prevalence of 1%. Altered expression of PLCβ occurs in SZ patients, suggesting alterations in the PLCβ/IP3/Ca2+ signaling pathway. This cascade regulates critical cellular processes in all cell types, including the neuronal lineage; however, there is scarce evidence regarding the functionality of this transduction signaling in neuronal cells derived from SZ patients. Objective: We evaluated the functionality of the PLCβ/IP3/Ca2+ pathway in olfactory neuronal precursor cells (hONPCs) obtained from SZ patients. Methods: Cryopreserved hONPCs isolated from SZ patients and healthy subjects (HS) were thawed. The cellular types in subcultures were corroborated by immunodetection of the multipotency and lineage markers SOX-2, Musashi-1, nestin, and β-III tubulin. The PLCβ/IP3/Ca2+ pathway was activated by GPCR (Gq) ligands (ATP, UTP, serotonin, and epinephrine). In addition, PLCβ and IP3R were directly stimulated by perfusing cells with the activators m-3M3FBS and ADA, respectively. Cytosolic Ca2+ was measured by microfluorometry and by Ca2+ imaging. The amount and subcellular distribution of the PLCβ1 and PLCβ3 isoforms were evaluated by confocal immunofluorescence. IP3 concentration was measured by ELISA. Results: The results show that the increase of cytosolic Ca2+ triggered by GPCR ligands or directly through either PLCβ or IP3R activation was significantly lower in SZ-derived hONPCs, regarding HS-derived cells. Moreover, the relative amount of the PLCβ1 and PLCβ3 isoforms and IP3 production stimulated with m-3M3FBS were reduced in SZ-derived cells. Conclusions: Our results suggest an overall functional impairment in the PLCβ/IP3/Ca2+ signaling pathway in SZ-derived hONPCs.
Collapse
Affiliation(s)
- Zuly A. Sánchez-Florentino
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, CP, Mexico;
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico; (J.A.); (G.A.B.-K.)
| | - Bianca S. Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, CP, Mexico;
| | - Marcela Valdés-Tovar
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico;
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico; (J.A.); (G.A.B.-K.)
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico;
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, CP, Mexico;
| | - Manuel Castillejos-López
- Unidad de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, CP, Mexico;
| | - Héctor Serrano
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, CP, Mexico;
| | - Juan C. Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, CP, Mexico;
| | - Germán O. López-Riquelme
- Laboratorio de Socioneurobiologia, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, CP, Mexico;
| | - Gloria A. Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico; (J.A.); (G.A.B.-K.)
| | - Ruth Jaimez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurobiología Cognitiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, CP, Mexico
| |
Collapse
|
2
|
Vera E, Cornejo I, Henao JC, Tribiños F, Burgos J, Sepúlveda FV, Cid LP. Normal vision and development in mice with low functional expression of Kir7.1 in heterozygosis for a blindness-producing mutation inactivating the channel. Am J Physiol Cell Physiol 2024; 326:C1178-C1192. [PMID: 38406825 DOI: 10.1152/ajpcell.00597.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
K+ channel Kir7.1 expressed at the apical membrane of the retinal pigment epithelium (RPE) plays an essential role in retinal function. An isoleucine-to-threonine mutation at position 120 of the protein is responsible for blindness-causing vitreo-retinal dystrophy. We have studied the molecular mechanism of action of Kir7.1-I120T in vitro by heterologous expression and in vivo in CRISPR-generated knockin mice. Full-size Kir7.1-I120T reaches the plasma membrane but lacks any activity. Analysis of Kir7.1 and the I120T mutant in mixed transfection experiments, and that of tandem tetrameric constructs made by combining wild type (WT) and mutant protomers, leads us to conclude that they do not form heterotetramers in vitro. Homozygous I120T/I120T mice show cleft palate and tracheomalacia and do not survive beyond P0, whereas heterozygous WT/I120T develop normally. Membrane conductance of RPE cells isolated from WT/WT and heterozygous WT/I120T mice is dominated by Kir7.1 current. Using Rb+ as a charge carrier, we demonstrate that the Kir7.1 current of WT/I120T RPE cells corresponds to approximately 50% of that in cells from WT/WT animals, in direct proportion to WT gene dosage. This suggests a lack of compensatory effects or interference from the mutated allele product, an interpretation consistent with results obtained using WT/- hemizygous mouse. Electroretinography and behavioral tests also show normal vision in WT/I120T animals. The hypomorphic ion channel phenotype of heterozygous Kir7.1-I120T mutants is therefore compatible with normal development and retinal function. The lack of detrimental effect of this degree of functional deficit might explain the recessive nature of Kir7.1 mutations causing human eye disease.NEW & NOTEWORTHY Human retinal pigment epithelium K+ channel Kir7.1 is affected by generally recessive mutations leading to blindness. We investigate one such mutation, isoleucine-to-threonine at position 120, both in vitro and in vivo in knockin mice. The mutated channel is inactive and in heterozygosis gives a hypomorphic phenotype with normal retinal function. Mutant channels do not interfere with wild-type Kir7.1 channels which are expressed concomitantly without hindrance, providing an explanation for the recessive nature of the disease.
Collapse
Affiliation(s)
- Erwin Vera
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Isabel Cornejo
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Juan Carlos Henao
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Francisco V Sepúlveda
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - L Pablo Cid
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
3
|
Moise N, Weinberg SH. Emergent activity, heterogeneity, and robustness in a calcium feedback model of the sinoatrial node. Biophys J 2023; 122:1613-1632. [PMID: 36945778 PMCID: PMC10183324 DOI: 10.1016/j.bpj.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN activity emerges at an early point in life and maintains a steady rhythm for the lifetime of the organism. The ion channel composition and currents of SAN cells can be influenced by a variety of factors. Therefore, the emergent activity and long-term stability imply some form of dynamical feedback control of SAN activity. We adapt a recent feedback model-previously utilized to describe control of ion conductances in neurons-to a model of SAN cells and tissue. The model describes a minimal regulatory mechanism of ion channel conductances via feedback between intracellular calcium and an intrinsic target calcium level. By coupling a SAN cell to the calcium feedback model, we show that spontaneous electrical activity emerges from quiescence and is maintained at steady state. In a 2D SAN tissue model, spatial variability in intracellular calcium targets lead to significant, self-organized heterogeneous ion channel expression and calcium transients throughout the tissue. Furthermore, multiple pacemaking regions appear, which interact and lead to time-varying cycle length, demonstrating that variability in heart rate is an emergent property of the feedback model. Finally, we demonstrate that the SAN tissue is robust to the silencing of leading cells or ion channel knockouts. Thus, the calcium feedback model can reproduce and explain many fundamental emergent properties of activity in the SAN that have been observed experimentally based on a minimal description of intracellular calcium and ion channel regulatory networks.
Collapse
Affiliation(s)
- Nicolae Moise
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
4
|
Romero-Martínez BS, Sommer B, Solís-Chagoyán H, Calixto E, Aquino-Gálvez A, Jaimez R, Gomez-Verjan JC, González-Avila G, Flores-Soto E, Montaño LM. Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle. Int J Mol Sci 2023; 24:ijms24097879. [PMID: 37175587 PMCID: PMC10178541 DOI: 10.3390/ijms24097879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 05/15/2023] Open
Abstract
To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl-), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen's intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen's non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, Mexico
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City 14080, Mexico
| | - Ruth Jaimez
- Laboratorio de Estrógenos y Hemostasis, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México 10200, Mexico
| | - Georgina González-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Andrean D, Pedersen MG. Machine learning provides insight into models of heterogeneous electrical activity in human beta-cells. Math Biosci 2022; 354:108927. [PMID: 36332730 DOI: 10.1016/j.mbs.2022.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Understanding how heterogeneous cellular responses emerge from cell-to-cell variations in expression and function of subcellular components is of general interest. Here, we focus on human insulin-secreting beta-cells, which are believed to constitute a population in which heterogeneity is of physiological importance. We exploit recent single-cell electrophysiological data that allow biologically realistic population modeling of human beta-cells that accounts for cellular heterogeneity and correlation between ion channel parameters. To investigate how ion channels influence the dynamics of our updated mathematical model of human pancreatic beta-cells, we explore several machine learning techniques to determine which model parameters are important for determining the qualitative patterns of electrical activity of the model cells. As expected, K+ channels promote absence of activity, but once a cell is active, they increase the likelihood of having action potential firing. HERG channels were of great importance for determining cell behavior in most of the investigated scenarios. Fast bursting is influenced by the time scales of ion channel activation and, interestingly, by the type of Ca2+ channels coupled to BK channels in BK-CaV complexes. Slow, metabolically driven oscillations are promoted mostly by K(ATP) channels. In summary, combining population modeling with machine learning analysis provides insight into the model and generates new hypotheses to be investigated both experimentally, via simulations and through mathematical analysis.
Collapse
Affiliation(s)
- Daniele Andrean
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, I-35131 Padova, Italy
| | - Morten Gram Pedersen
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, I-35131 Padova, Italy.
| |
Collapse
|
6
|
Souza DS, Chignalia AZ, Carvalho-de-Souza JL. Modulation of cardiac voltage-activated K + currents by glypican 1 heparan sulfate proteoglycan. Life Sci 2022; 308:120916. [PMID: 36049528 PMCID: PMC11105158 DOI: 10.1016/j.lfs.2022.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Glypican 1 (Gpc1) is a heparan sulfate proteoglycan attached to the cell membrane via a glycosylphosphatidylinositol anchor, where it holds glycosaminoglycans nearby. We have recently shown that Gpc1 knockout (Gpc1-/-) mice feature decreased systemic blood pressure. To date, none has been reported regarding the role of Gpc1 on the electrical properties of the heart and specifically, in regard to a functional interaction between Gpc1 and voltage-gated K+ channels. METHODS We used echocardiography and in vivo (electrocardiographic recordings) and in vitro (patch clamping) electrophysiology to study mechanical and electric properties of mice hearts. We used RT-PCR to probe K+ channels' gene transcription in heart tissue. RESULTS Gpc1-/- hearts featured increased cardiac stroke volume and preserved ejection fraction. Gpc1-/- electrocardiograms showed longer QT intervals, abnormalities in the ST segment, and delayed T waves, corroborated by longer action potentials in isolated ventricular cardiomyocytes. In voltage-clamp, these cells showed decreased Ito and IK voltage-activated K+ current densities. Moreover, IK showed activation at less negative voltages, but a higher level of inactivation at a given membrane potential. Kcnh2 and Kcnq1 voltage-gated K+ channels subunits' transcripts were remarkably more abundant in heart tissues from Gpc1-/- mice, suggesting that Gpc1 may interfere in the steps between transcription and translation in these cases. CONCLUSION Our data reveals an unprecedented connection between Gpc1 and voltage-gated K+ channels expressed in the heart and this knowledge contributes to the understanding of the role of this HSPG in cardiac function which may play a role in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Diego Santos Souza
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Andreia Zago Chignalia
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; Department of Physiology, College of Medicine University of Arizona, Tucson, AZ 85724, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85724, USA
| | - Joao Luis Carvalho-de-Souza
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; Department of Physiology, College of Medicine University of Arizona, Tucson, AZ 85724, USA; Department of Ophthalmology and Visual Sciences, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
7
|
Absolute Quantification of Nav1.5 Expression by Targeted Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23084177. [PMID: 35456996 PMCID: PMC9028338 DOI: 10.3390/ijms23084177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Nav1.5 is the pore forming α-subunit of the cardiac voltage-gated sodium channel that initiates cardiac action potential and regulates the human heartbeat. A normal level of Nav1.5 is crucial to cardiac function and health. Over- or under-expression of Nav1.5 can cause various cardiac diseases ranging from short PR intervals to Brugada syndromes. An assay that can directly quantify the protein amount in biological samples would be a priori to accurately diagnose and treat Nav1.5-associated cardiac diseases. Due to its large size (>200 KD), multipass transmembrane domains (24 transmembrane passes), and heavy modifications, Nav1.5 poses special quantitation challenges. To date, only the relative quantities of this protein have been measured in biological samples. Here, we describe the first targeted and mass spectrometry (MS)-based quantitative assay that can provide the copy numbers of Nav1.5 in cells with a well-defined lower limit of quantification (LLOQ) and precision. Applying the developed assay, we successfully quantified transiently expressed Nav1.5 in as few as 1.5 million Chinese hamster ovary (CHO) cells. The obtained quantity was 3 ± 2 fmol on the column and 3 ± 2 × 104 copies/cell. To our knowledge, this is the first absolute quantity of Nav1.5 measured in a biological sample.
Collapse
|
8
|
Gaffke L, Szczudło Z, Podlacha M, Cyske Z, Rintz E, Mantej J, Krzelowska K, Węgrzyn G, Pierzynowska K. Impaired ion homeostasis as a possible associate factor in mucopolysaccharidosis pathogenesis: transcriptomic, cellular and animal studies. Metab Brain Dis 2022; 37:299-310. [PMID: 34928474 PMCID: PMC8784502 DOI: 10.1007/s11011-021-00892-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations resulting in deficiencies of lysosomal enzymes which lead to the accumulation of partially undegraded glycosaminoglycans (GAG). This phenomenon causes severe and chronic disturbances in the functioning of the organism, and leads to premature death. The metabolic defects affect also functions of the brain in most MPS types (except types IV, VI, and IX). The variety of symptoms, as well as the ineffectiveness of GAG-lowering therapies, question the early theory that GAG storage is the only cause of these diseases. As disorders of ion homeostasis increasingly turn out to be co-causes of the pathogenesis of various human diseases, the aim of this work was to determine the perturbations related to the maintenance of the ion balance at both the transcriptome and cellular levels in MPS. Transcriptomic studies, performed with fibroblasts derived from patients with all types/subtypes of MPS, showed extensive changes in the expression of genes involved in processes related to ion binding, transport and homeostasis. Detailed analysis of these data indicated specific changes in the expression of genes coding for proteins participating in the metabolism of Ca2+, Fe2+ and Zn2+. The results of tests carried out with the mouse MPS I model (Idua-/-) showed reductions in concentrations of these 3 ions in the liver and spleen. The results of these studies indicate for the first time ionic concentration disorders as possible factors influencing the course of MPS and show them as hypothetical, additional therapeutic targets for this rare disease.
Collapse
Affiliation(s)
- Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Zuzanna Szczudło
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Estera Rintz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Krzelowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
9
|
Liu M, Liu H, Parthiban P, Kang GJ, Shi G, Feng F, Zhou A, Gu L, Karnopp C, Tolkacheva EG, Dudley SC. Inhibition of the unfolded protein response reduces arrhythmic risk after myocardial infarction. J Clin Invest 2021; 131:e147836. [PMID: 34324437 DOI: 10.1172/jci147836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic cardiomyopathy is associated with an increased risk of sudden death, activation of the unfolded protein response (UPR), and reductions in multiple cardiac ion channels. When activated, the protein kinase-like ER kinase (PERK) branch of the UPR reduces protein translation and abundance. We hypothesized that PERK inhibition could prevent ion channel downregulation and reduce arrhythmic risk after myocardial infarct (MI). MI induced by coronary artery ligation resulted in mice exhibited reduced ion channel levels, ventricular tachycardia (VT), and prolonged corrected intervals between the Q and T waves of the ECGs (QTc). Protein levels of major cardiac ion channels were decreased. MI cardiomyocytes showed significantly prolonged action potential duration and decreased maximum upstroke velocity. Cardiac-specific PERK knockout (PERKKO) reduced electrical remodeling in response to MI with shortened QTc intervals, less VT episodes, and higher survival rates (P<0.05 vs. MI). Pharmacological PERK inhibition had similar effects. In conclusion, activated PERK during MI contributed to arrhythmic risk by downregulation of select cardiac ion channels. PERK inhibition prevented these changes and reduced arrhythmic risk. These results suggest that ion channel downregulation during MI is a fundamental arrhythmic mechanism and maintaining ion channel levels is antiarrhythmic.
Collapse
Affiliation(s)
- Man Liu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Hong Liu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Preethy Parthiban
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Gyeoung-Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Guangbin Shi
- Department of Medicine, Brown University, Providence, United States of America
| | - Feng Feng
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Anyu Zhou
- Department of Medicine, Brown University, Providence, United States of America
| | - Lianzhi Gu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Courtney Karnopp
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Samuel C Dudley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
10
|
Clenbuterol-sensitive delayed outward potassium currents in a cell model of spinal and bulbar muscular atrophy. Pflugers Arch 2021; 473:1213-1227. [PMID: 34021780 DOI: 10.1007/s00424-021-02559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. SBMA is characterized by selective dysfunction and degeneration of motor neurons in the brainstem and spinal cord through still unclear mechanisms in which ion channel modulation might play a central role as for other neurodegenerative diseases. The beta2-adrenergic agonist clenbuterol was observed to ameliorate the SBMA phenotype in mice and patient-derived myotubes. However, the underlying molecular mechanism has yet to be clarified. Here, we unveil that ionic current alterations induced by the expression of polyQ-expanded AR in motor neuron-derived MN-1 cells are attenuated by the administration of clenbuterol. Our combined electrophysiological and pharmacological approach allowed us to reveal that clenbuterol modifies delayed outward potassium currents. Overall, we demonstrated that the protection provided by clenbuterol restores the normal function through the modulation of KV2-type outward potassium currents, possibly contributing to the protective effect on motor neuron toxicity in SBMA.
Collapse
|
11
|
Abstract
During morphogenesis, cells communicate with each other to shape tissues and organs. Several lines of recent evidence indicate that ion channels play a key role in cellular signaling and tissue morphogenesis. However, little is known about the scope of specific ion-channel types that impinge upon developmental pathways. The Drosophila melanogaster wing is an excellent model in which to address this problem as wing vein patterning is acutely sensitive to changes in developmental pathways. We conducted a screen of 180 ion channels expressed in the wing using loss-of-function mutant and RNAi lines. Here we identify 44 candidates that significantly impacted development of the Drosophila melanogaster wing. Calcium, sodium, potassium, chloride, and ligand-gated cation channels were all identified in our screen, suggesting that a wide variety of ion channel types are important for development. Ion channels belonging to the pickpocket family, the ionotropic receptor family, and the bestrophin family were highly represented among the candidates of our screen. Seven new ion channels with human orthologs that have been implicated in human channelopathies were also identified. Many of the human orthologs of the channels identified in our screen are targets of common general anesthetics, anti-seizure and anti-hypertension drugs, as well as alcohol and nicotine. Our results confirm the importance of ion channels in morphogenesis and identify a number of ion channels that will provide the basis for future studies to understand the role of ion channels in development.
Collapse
|
12
|
Abstract
How a single fertilized egg develops into a complex multicellular organism is one of the great mysteries of life. Developmental biology textbooks describe cascades of ligands, receptors, kinases, and transcription factors that designate proliferation, migration, and ultimately fate of cells organized into a multicellular organism. Recently, it has become apparent that ion channels are integral to the process of developmental signaling. Ion channels provide bioelectric signals that must intersect with the known developmental signaling pathways. We review some evidence that bioelectric signaling contributes to bone morphogenetic protein signaling.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Trevor Isner
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
13
|
Ni H, Zhang H, Grandi E, Narayan SM, Giles WR. Transient outward K + current can strongly modulate action potential duration and initiate alternans in the human atrium. Am J Physiol Heart Circ Physiol 2019; 316:H527-H542. [PMID: 30576220 PMCID: PMC6415821 DOI: 10.1152/ajpheart.00251.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 01/14/2023]
Abstract
Efforts to identify the mechanisms for the initiation and maintenance of human atrial fibrillation (AF) often focus on changes in specific elements of the atrial "substrate," i.e., its electrophysiological properties and/or structural components. We used experimentally validated mathematical models of the human atrial myocyte action potential (AP), both at baseline in sinus rhythm (SR) and in the setting of chronic AF, to identify significant contributions of the Ca2+-independent transient outward K+ current ( Ito) to electrophysiological instability and arrhythmia initiation. First, we explored whether changes in the recovery or restitution of the AP duration (APD) and/or its dynamic stability (alternans) can be modulated by Ito. Recent reports have identified disease-dependent spatial differences in expression levels of the specific K+ channel α-subunits that underlie Ito in the left atrium. Therefore, we studied the functional consequences of this by deletion of 50% of native Ito (Kv4.3) and its replacement with Kv1.4. Interestingly, significant changes in the short-term stability of the human atrial AP waveform were revealed. Specifically, this K+ channel isoform switch produced discontinuities in the initial slope of the APD restitution curve and appearance of APD alternans. This pattern of in silico results resembles some of the changes observed in high-resolution clinical electrophysiological recordings. Important insights into mechanisms for these changes emerged from known biophysical properties (reactivation kinetics) of Kv1.4 versus those of Kv4.3. These results suggest new approaches for pharmacological management of AF, based on molecular properties of specific K+ isoforms and their changed expression during progressive disease. NEW & NOTEWORTHY Clinical studies identify oscillations (alternans) in action potential (AP) duration as a predictor for atrial fibrillation (AF). The abbreviated AP in AF also involves changes in K+ currents and early repolarization of the AP. Our simulations illustrate how substitution of Kv1.4 for the native current, Kv4.3, alters the AP waveform and enhances alternans. Knowledge of this "isoform switch" and related dynamics in the AF substrate may guide new approaches for detection and management of AF.
Collapse
Affiliation(s)
- Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Manchester , United Kingdom
- Department of Pharmacology, University of California , Davis, California
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Manchester , United Kingdom
| | - Eleonora Grandi
- Department of Pharmacology, University of California , Davis, California
| | - Sanjiv M Narayan
- Division of Cardiology, Cardiovascular Institute, Stanford University , Stanford, California
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
14
|
Asahi Y, Nomura F, Abe Y, Doi M, Sakakura T, Takasuna K, Yasuda K. Electrophysiological evaluation of pentamidine and 17-AAG in human stem cell-derived cardiomyocytes for safety assessment. Eur J Pharmacol 2019; 842:221-230. [DOI: 10.1016/j.ejphar.2018.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
15
|
Rees CM, Yang JH, Santolini M, Lusis AJ, Weiss JN, Karma A. The Ca 2+ transient as a feedback sensor controlling cardiomyocyte ionic conductances in mouse populations. eLife 2018; 7:36717. [PMID: 30251624 PMCID: PMC6205808 DOI: 10.7554/elife.36717] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Conductances of ion channels and transporters controlling cardiac excitation may vary in a population of subjects with different cardiac gene expression patterns. However, the amount of variability and its origin are not quantitatively known. We propose a new conceptual approach to predict this variability that consists of finding combinations of conductances generating a normal intracellular Ca2+ transient without any constraint on the action potential. Furthermore, we validate experimentally its predictions using the Hybrid Mouse Diversity Panel, a model system of genetically diverse mouse strains that allows us to quantify inter-subject versus intra-subject variability. The method predicts that conductances of inward Ca2+ and outward K+ currents compensate each other to generate a normal Ca2+ transient in good quantitative agreement with current measurements in ventricular myocytes from hearts of different isogenic strains. Our results suggest that a feedback mechanism sensing the aggregate Ca2+ transient of the heart suffices to regulate ionic conductances.
Collapse
Affiliation(s)
- Colin M Rees
- Physics Department, Northeastern University, Boston, United states.,Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, United States
| | - Jun-Hai Yang
- Department of Medicine (Cardiology), Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, United states.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Marc Santolini
- Physics Department, Northeastern University, Boston, United states.,Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, United States
| | - Aldons J Lusis
- Department of Medicine (Cardiology), Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, United states.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, United States.,Department of Microbiology, David Geffen School of Medicine, University of California, Los Angeles, United States.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - James N Weiss
- Department of Medicine (Cardiology), Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, United states.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Alain Karma
- Physics Department, Northeastern University, Boston, United states.,Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, United States
| |
Collapse
|
16
|
Abstract
Human heart failure is characterized by arrhythmogenic electrical remodeling consisting mostly of ion channel downregulations. Reversing these downregulations is a logical approach to antiarrhythmic therapy, but understanding the pathophysiological mechanisms of the reduced currents is crucial for finding the proper treatments. The unfolded protein response (UPR) is activated by endoplasmic reticulum (ER) stress and has been found to play pivotal roles in different diseases including neurodegenerative diseases, diabetes mellitus, and heart disease. Recently, the UPR is reported to regulate multiple cardiac ion channels, contributing to arrhythmias in heart disease. In this review, we will discuss which UPR modulators and effectors could be involved in regulation of cardiac ion channels in heart disease, and how the understanding of these regulating mechanisms may lead to new antiarrhythmic therapeutics that lack the proarrhythmic risk of current ion channel blocking therapies.
Collapse
Affiliation(s)
- Man Liu
- a Division of Cardiology, Department of Medicine, The Lillehei Heart Institute , University of Minnesota at Twin Cities , Minneapolis , USA
| | - Samuel C Dudley
- a Division of Cardiology, Department of Medicine, The Lillehei Heart Institute , University of Minnesota at Twin Cities , Minneapolis , USA
| |
Collapse
|
17
|
Ni H, Morotti S, Grandi E. A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research. Front Physiol 2018; 9:958. [PMID: 30079031 PMCID: PMC6062641 DOI: 10.3389/fphys.2018.00958] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
In cardiac electrophysiology, there exist many sources of inter- and intra-personal variability. These include variability in conditions and environment, and genotypic and molecular diversity, including differences in expression and behavior of ion channels and transporters, which lead to phenotypic diversity (e.g., variable integrated responses at the cell, tissue, and organ levels). These variabilities play an important role in progression of heart disease and arrhythmia syndromes and outcomes of therapeutic interventions. Yet, the traditional in silico framework for investigating cardiac arrhythmias is built upon a parameter/property-averaging approach that typically overlooks the physiological diversity. Inspired by work done in genetics and neuroscience, new modeling frameworks of cardiac electrophysiology have been recently developed that take advantage of modern computational capabilities and approaches, and account for the variance in the biological data they are intended to illuminate. In this review, we outline the recent advances in statistical and computational techniques that take into account physiological variability, and move beyond the traditional cardiac model-building scheme that involves averaging over samples from many individuals in the construction of a highly tuned composite model. We discuss how these advanced methods have harnessed the power of big (simulated) data to study the mechanisms of cardiac arrhythmias, with a special emphasis on atrial fibrillation, and improve the assessment of proarrhythmic risk and drug response. The challenges of using in silico approaches with variability are also addressed and future directions are proposed.
Collapse
Affiliation(s)
| | | | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
18
|
Bruyneel AAN, McKeithan WL, Feyen DAM, Mercola M. Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function. Curr Cardiol Rep 2018; 20:57. [DOI: 10.1007/s11886-018-1000-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Haverinen J, Hassinen M, Dash SN, Vornanen M. Expression of calcium channel transcripts in the zebrafish heart: dominance of T-type channels. ACTA ACUST UNITED AC 2018; 221:jeb.179226. [PMID: 29739832 DOI: 10.1242/jeb.179226] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Abstract
Calcium channels are necessary for cardiac excitation-contraction (E-C) coupling, but Ca2+ channel composition of fish hearts is still largely unknown. To this end, we determined transcript expression of Ca2+ channels in the heart of zebrafish (Danio rerio), a popular model species. Altogether, 18 Ca2+ channel α-subunit genes were expressed in both atrium and ventricle. Transcripts for 7 L-type (Cav1.1a, Cav1.1b, Cav1.2, Cav1.3a, Cav1.3b, Cav1.4a, Cav1.4b), 5 T-type (Cav3.1, Cav3.2a, Cav3.2b, Cav3.3a, Cav3.3b) and 6 P/Q-, N- and R-type (Cav2.1a, Cav2.1b, Cav2.2a, Cav2.2b, Cav2.3a, Cav2.3b) Ca2+ channels were expressed. In the ventricle, T-type channels formed 54.9%, L-type channels 41.1% and P/Q-, N- and R-type channels 4.0% of the Ca2+ channel transcripts. In the atrium, the relative expression of T-type and L-type Ca2+ channel transcripts was 64.1% and 33.8%, respectively (others accounted for 2.1%). Thus, at the transcript level, T-type Ca2+ channels are prevalent in zebrafish atrium and ventricle. At the functional level, peak densities of ventricular T-type (ICaT) and L-type (ICaL) Ca2+ current were 6.3±0.8 and 7.7±0.8 pA pF-1, respectively. ICaT mediated a sizeable sarcolemmal Ca2+ influx into ventricular myocytes: the increment in total cellular Ca2+ content via ICaT was 41.2±7.3 µmol l-1, which was 31.7% of the combined Ca2+ influx (129 µmol l-1) via ICaT and ICaL (88.5±20.5 µmol l-1). The diversity of expressed Ca2+ channel genes in zebrafish heart is high, but dominated by the members of the T-type subfamily. The large ventricular ICaT is likely to play a significant role in E-C coupling.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Surjya Narayan Dash
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland.,Neuroscience Center and Department of Anatomy, Faculty of Medicine, University of Helsinki, PO Box 63, 00014 Helsinki, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
20
|
Liu M, Shi G, Zhou A, Rupert CE, Coulombe KLK, Dudley SC. Activation of the unfolded protein response downregulates cardiac ion channels in human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2018; 117:62-71. [PMID: 29474817 DOI: 10.1016/j.yjmcc.2018.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/03/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
RATIONALE Heart failure is characterized by electrical remodeling that contributes to arrhythmic risk. The unfolded protein response (UPR) is active in heart failure and can decrease protein levels by increasing mRNA decay, accelerating protein degradation, and inhibiting protein translation. OBJECTIVE Therefore, we investigated whether the UPR downregulated cardiac ion channels that may contribute to arrhythmogenic electrical remodeling. METHODS Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to study cardiac ion channels. Action potentials (APs) and ion channel currents were measured by patch clamp recording. The mRNA and protein levels of channels and the UPR effectors were determined by quantitative RT-PCR and Western blotting. Tunicamycin (TM, 50 ng/mL and 5 μg/mL), GSK2606414 (GSK, 300 nmol/L), and 4μ8C (5 μmol/L) were utilized to activate the UPR, inhibit protein kinase-like ER kinase (PERK) and inositol-requiring protein-1 (IRE1), respectively. RESULTS TM-induced activation of the UPR caused significant prolongation of the AP duration (APD) and a reduction of the maximum upstroke velocity (dV/dtmax) of the AP phase 0 in both acute (20-24 h) and chronic treatment (6 days). These changes were explained by reductions in the sodium, L-type calcium, the transient outward and rapidly/slowly activating delayed rectifier potassium currents. Nav1.5, Cav1.2, Kv4.3, and KvLQT1 channels showed concomitant reductions in mRNA and protein levels under activated UPR. Inhibition of PERK or IRE1 shortened the APD and reinstated dV/dtmax. The PERK branch regulated Nav1.5, Kv4.3, hERG, and KvLQT1. The IRE1 branch regulated Nav1.5, hERG, KvLQT1, and Cav1.2. CONCLUSIONS Activated UPR downregulates all major cardiac ion currents and results in electrical remodeling in hiPSC-CMs. Both PERK and IRE1 branches downregulate Nav1.5, hERG, and KvLQT1. The PERK branch specifically downregulates Kv4.3, while the IRE1 branch downregulates Cav1.2. Therefore, the UPR contributed to electrical remodeling, and targeting the UPR might be anti-arrhythmic.
Collapse
Affiliation(s)
- Man Liu
- Division of Cardiology, Dept. of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Guangbin Shi
- Division of Cardiology, Dept. of Medicine, The Warren Alpert School of Medicine, Brown University; Lifespan Cardiovascular Research Center, Providence, RI, United States
| | - Anyu Zhou
- Division of Cardiology, Dept. of Medicine, The Warren Alpert School of Medicine, Brown University; Lifespan Cardiovascular Research Center, Providence, RI, United States
| | - Cassady E Rupert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Samuel C Dudley
- Division of Cardiology, Dept. of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
21
|
Ovchinnikova E, Hoes M, Ustyantsev K, Bomer N, de Jong TV, van der Mei H, Berezikov E, van der Meer P. Modeling Human Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes. Stem Cell Reports 2018; 10:794-807. [PMID: 29456183 PMCID: PMC5918264 DOI: 10.1016/j.stemcr.2018.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy accompanies many forms of cardiovascular diseases. The mechanisms behind the development and regulation of cardiac hypertrophy in the human setting are poorly understood, which can be partially attributed to the lack of a human cardiomyocyte-based preclinical test system recapitulating features of diseased myocardium. The objective of our study is to determine whether human embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to mechanical stretch can be used as an adequate in vitro model for studying molecular mechanisms of cardiac hypertrophy. We show that hESC-CMs subjected to cyclic stretch, which mimics mechanical overload, exhibit essential features of a hypertrophic state on structural, functional, and gene expression levels. The presented hESC-CM stretch approach provides insight into molecular mechanisms behind mechanotransduction and cardiac hypertrophy and lays groundwork for the development of pharmacological approaches as well as for discovering potential circulating biomarkers of cardiac dysfunction.
Collapse
Affiliation(s)
- Ekaterina Ovchinnikova
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands; European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands
| | - Martijn Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands
| | - Kirill Ustyantsev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands
| | - Tristan V de Jong
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands
| | - Henny van der Mei
- University of Groningen, University Medical Center Groningen, Biomedical Engineering Department, Groningen, 9713AV, the Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands.
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands.
| |
Collapse
|
22
|
Yildirim V, Vadrevu S, Thompson B, Satin LS, Bertram R. Upregulation of an inward rectifying K+ channel can rescue slow Ca2+ oscillations in K(ATP) channel deficient pancreatic islets. PLoS Comput Biol 2017; 13:e1005686. [PMID: 28749940 PMCID: PMC5549769 DOI: 10.1371/journal.pcbi.1005686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/08/2017] [Accepted: 07/16/2017] [Indexed: 12/02/2022] Open
Abstract
Plasma insulin oscillations are known to have physiological importance in the regulation of blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instrumental in mediating pulsatile insulin secretion. Blocking K(ATP) channels pharmacologically depolarizes the β-cell plasma membrane and terminates islet oscillations. Surprisingly, when K(ATP) channels are genetically knocked out, oscillations in islet activity persist, and relatively normal blood glucose levels are maintained. Compensation must therefore occur to overcome the loss of K(ATP) channels in K(ATP) knockout mice. In a companion study, we demonstrated a substantial increase in Kir2.1 protein occurs in β-cells lacking K(ATP) because of SUR1 deletion. In this report, we demonstrate that β-cells of SUR1 null islets have an upregulated inward rectifying K+ current that helps to compensate for the loss of K(ATP) channels. This current is likely due to the increased expression of Kir2.1 channels. We used mathematical modeling to determine whether an ionic current having the biophysical characteristics of Kir2.1 is capable of rescuing oscillations that are similar in period to those of wild-type islets. By experimentally testing a key model prediction we suggest that Kir2.1 current upregulation is a likely mechanism for rescuing the oscillations seen in islets from mice deficient in K(ATP) channels. Pulsatile insulin secretion is important for the proper regulation of blood glucose, and disruption of this pulsatility is a hallmark of type II diabetes. An ion channel was discovered more than three decades ago that conveys the metabolic state of insulin-secreting β-cells to the plasma membrane because it is blocked by ATP and opened by ADP, and thereby controls the activity of these electrically-excitable cells on a rapid time scale according to the prevailing blood glucose level. In addition to setting the appropriate level of insulin secretion, K(ATP) channels play a key role in generating the oscillations in cellular activity that underlie insulin pulsatility. It is therefore surprising that oscillations in activity persist in islets in which the K(ATP) channels are genetically knocked out. In this combined modeling and experimental study, we demonstrate that the role played by K(ATP) current in wild-type β-cells can be taken over by an inward-rectifying K+ current which, we show here, is upregulated in β-cells from SUR1 knockout mice. This result helps to resolve a mystery in the field that has remained elusive for more than a decade, since the first studies showing oscillations in SUR1-/- islets.
Collapse
Affiliation(s)
- Vehpi Yildirim
- Department of Mathematics, Florida State University, Tallahassee, FL, United States of America
| | - Suryakiran Vadrevu
- Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Benjamin Thompson
- Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Leslie S. Satin
- Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Richard Bertram
- Department of Mathematics and Programs in Molecular Biophysics and Neuroscience, Florida State University, Tallahassee, FL, United States of America
- * E-mail:
| |
Collapse
|
23
|
Incardona JP. Molecular Mechanisms of Crude Oil Developmental Toxicity in Fish. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:19-32. [PMID: 28695261 DOI: 10.1007/s00244-017-0381-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/15/2017] [Indexed: 05/25/2023]
Abstract
With major oil spills in Korea, the United States, and China in the past decade, there has been a dramatic increase in the number of studies characterizing the developmental toxicity of crude oil and its associated polycyclic aromatic compounds (PACs). The use of model fish species with associated tools for genetic manipulation, combined with high throughput genomics techniques in nonmodel fish species, has led to significant advances in understanding the cellular and molecular bases of functional and morphological defects arising from embryonic exposure to crude oil. Following from the identification of the developing heart as the primary target of crude oil developmental toxicity, studies on individual PACs have revealed a diversity of cardiotoxic mechanisms. For some PACs that are strong agonists of the aryl hydrocarbon receptor (AHR), defects in heart development arise in an AHR-dependent manner, which has been shown for potent organochlorine agonists, such as dioxins. However, crude oil contains a much larger fraction of compounds that have been found to interfere directly with cardiomyocyte physiology in an AHR-independent manner. By comparing the cellular and molecular responses to AHR-independent and AHR-dependent toxicity, this review focuses on new insights into heart-specific pathways underlying both acute and secondary adverse outcomes to crude oil exposure during fish development.
Collapse
Affiliation(s)
- John P Incardona
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, 2725 Montlake Blvd. E., Seattle, WA, 98112, USA.
| |
Collapse
|
24
|
Luo L, Hu P, Miao C, Ma A, Wang T. Clenbuterol Attenuates hERG Channel by Promoting the Mature Channel Degradation. Int J Toxicol 2017; 36:314-324. [PMID: 28535735 DOI: 10.1177/1091581817710786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Clenbuterol, a β2-selective adrenergic receptor agonist, is illicitly used in weight loss and performance enhancement and animal production. Increasing evidence demonstrates that clenbuterol induces various kinds of arrhythmias and QTc interval prolongation. However, little is known about the underlying mechanism. Most drugs are associated with QTc prolongation through interfering with human ether-a-go-go-related gene (hERG) K+ channels. The present study aims to investigate the effects and underlying mechanisms of clenbuterol on the hERG channel. HEK 293 cells were transfected with wild type and Y652A or F656A mutants of the hERG channel and treated with clenbuterol. The hERG current was recorded using whole-cell patch-clamp technique, and protein level was evaluated by Western blot. We found that clenbuterol decreases the mature form of the hERG protein at the cell membrane in a concentration- and time-dependent manner, without affecting the immature form. Correspondingly, clenbuterol chronic treatment reduced hERG current to a greater extent compared to acute treatment. In the presence of Brefeldin A (BFA), which was used to block hERG channel trafficking to cell membrane, clenbuterol reduced hERG on plasma membrane to a greater extent than BFA alone. In addition, the hERG channel's drug binding sites mutant Y652A and F656A abolished clenbuterol-mediated hERG reduction and current blockade. In conclusion, clenbuterol reduces hERG channel expression and current by promoting the channel degradation. The effect of clenbuterol on the hERG channel is related to the drug-binding sites, Tyr-652 and Phe-656, located on the S6 domain. This biophysical mechanism may underlie clenbuterol-induced QTc prolongation or arrhythmia.
Collapse
Affiliation(s)
- Ling Luo
- 1 Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peijing Hu
- 1 Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Changqing Miao
- 1 Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aiqun Ma
- 1 Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,2 Key Laboratory of Molecular Cardiology, Shaanxi, China.,3 Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tingzhong Wang
- 1 Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,2 Key Laboratory of Molecular Cardiology, Shaanxi, China.,3 Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Yildirim V, Bertram R. Calcium Oscillation Frequency-Sensitive Gene Regulation and Homeostatic Compensation in Pancreatic β-Cells. Bull Math Biol 2017; 79:1295-1324. [PMID: 28497293 DOI: 10.1007/s11538-017-0286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/27/2017] [Indexed: 02/03/2023]
Abstract
Pancreatic islet [Formula: see text]-cells are electrically excitable cells that secrete insulin in an oscillatory fashion when the blood glucose concentration is at a stimulatory level. Insulin oscillations are the result of cytosolic [Formula: see text] oscillations that accompany bursting electrical activity of [Formula: see text]-cells and are physiologically important. ATP-sensitive [Formula: see text] channels (K(ATP) channels) play the key role in setting the overall activity of the cell and in driving bursting, by coupling cell metabolism to the membrane potential. In humans, when there is a defect in K(ATP) channel function, [Formula: see text]-cells fail to respond appropriately to changes in the blood glucose level, and electrical and [Formula: see text] oscillations are lost. However, mice compensate for K(ATP) channel defects in islet [Formula: see text]-cells by employing alternative mechanisms to maintain electrical and [Formula: see text] oscillations. In a recent study, we showed that in mice islets in which K(ATP) channels are genetically knocked out another [Formula: see text] current, provided by inward-rectifying [Formula: see text] channels, is increased. With mathematical modeling, we demonstrated that a sufficient upregulation in these channels can account for the paradoxical electrical bursting and [Formula: see text] oscillations observed in these [Formula: see text]-cells. However, the question of determining the correct level of upregulation that is necessary for this compensation remained unanswered, and this question motivates the current study. [Formula: see text] is a well-known regulator of gene expression, and several examples have been shown of genes that are sensitive to the frequency of the [Formula: see text] signal. In this mathematical modeling study, we demonstrate that a [Formula: see text] oscillation frequency-sensitive gene transcription network can adjust the gene expression level of a compensating [Formula: see text] channel so as to rescue electrical bursting and [Formula: see text] oscillations in a model [Formula: see text]-cell in which the key K(ATP) current is removed. This is done without the prescription of a target [Formula: see text] level, but evolves naturally as a consequence of the feedback between the [Formula: see text]-dependent enzymes and the cell's electrical activity. More generally, the study indicates how [Formula: see text] can provide the link between gene expression and cellular electrical activity that promotes wild-type behavior in a cell following gene knockout.
Collapse
Affiliation(s)
- Vehpi Yildirim
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA
| | - Richard Bertram
- Department of Mathematics and Programs in Molecular Biophysics and Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
26
|
Klassen MP, Peters CJ, Zhou S, Williams HH, Jan LY, Jan YN. Age-dependent diastolic heart failure in an in vivo Drosophila model. eLife 2017; 6. [PMID: 28328397 PMCID: PMC5362267 DOI: 10.7554/elife.20851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/11/2017] [Indexed: 12/13/2022] Open
Abstract
While the signals and complexes that coordinate the heartbeat are well established, how the heart maintains its electromechanical rhythm over a lifetime remains an open question with significant implications to human health. Reasoning that this homeostatic challenge confronts all pulsatile organs, we developed a high resolution imaging and analysis toolset for measuring cardiac function in intact, unanesthetized Drosophila melanogaster. We demonstrate that, as in humans, normal aging primarily manifests as defects in relaxation (diastole) while preserving contractile performance. Using this approach, we discovered that a pair of two-pore potassium channel (K2P) subunits, largely dispensable early in life, are necessary for terminating contraction (systole) in aged animals, where their loss culminates in fibrillatory cardiac arrest. As the pumping function of its heart is acutely dispensable for survival, Drosophila represents a uniquely accessible model for understanding the signaling networks maintaining cardiac performance during normal aging.
Collapse
Affiliation(s)
- Matthew P Klassen
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Christian J Peters
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Shiwei Zhou
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Hannah H Williams
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Lily Yeh Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yuh Nung Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
27
|
Nagel R, Kirschbaum F, Tiedemann R. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:183-195. [DOI: 10.1007/s00359-017-1151-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
|
28
|
|
29
|
Chowdhury SK, Liu W, Zi M, Li Y, Wang S, Tsui H, Prehar S, Castro S, Zhang H, Ji Y, Zhang X, Xiao R, Zhang R, Lei M, Cyganek L, Guan K, Millar CB, Liao X, Jain MK, Boyett MR, Cartwright EJ, Shiels HA, Wang X. Stress-Activated Kinase Mitogen-Activated Kinase Kinase-7 Governs Epigenetics of Cardiac Repolarization for Arrhythmia Prevention. Circulation 2016; 135:683-699. [PMID: 27899394 DOI: 10.1161/circulationaha.116.022941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Krüppel-like factor-4. This complex leads to Krüppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Krüppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.
Collapse
Affiliation(s)
- Sanjoy K Chowdhury
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Wei Liu
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Min Zi
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Yatong Li
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Shunyao Wang
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Hoyee Tsui
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Sukhpal Prehar
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Simon Castro
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Henggui Zhang
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Yong Ji
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Xiuqin Zhang
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Ruiping Xiao
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Rongli Zhang
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Ming Lei
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Lukas Cyganek
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Kaomei Guan
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Catherine B Millar
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Xudong Liao
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Mukesh K Jain
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Mark R Boyett
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Elizabeth J Cartwright
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Holly A Shiels
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Xin Wang
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.).
| |
Collapse
|
30
|
McKinnon D, Rosati B. Transmural gradients in ion channel and auxiliary subunit expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:165-186. [PMID: 27702655 DOI: 10.1016/j.pbiomolbio.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Evolution has acted to shape the action potential in different regions of the heart in order to produce a maximally stable and efficient pump. This has been achieved by creating regional differences in ion channel expression levels within the heart as well as differences between equivalent cardiac tissues in different species. These region- and species-dependent differences in channel expression are established by regulatory evolution, evolution of the regulatory mechanisms that control channel expression levels. Ion channel auxiliary subunits are obvious targets for regulatory evolution, in order to change channel expression levels and/or modify channel function. This review focuses on the transmural gradients of ion channel expression in the heart and the role that regulation of auxiliary subunit expression plays in generating and shaping these gradients.
Collapse
Affiliation(s)
- David McKinnon
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Rosati
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
31
|
Gonnissen D, Qu Y, Langer K, Öztürk C, Zhao Y, Chen C, Seebohm G, Düfer M, Fuchs H, Galla HJ, Riehemann K. Comparison of cellular effects of starch-coated SPIONs and poly(lactic-co-glycolic acid) matrix nanoparticles on human monocytes. Int J Nanomedicine 2016; 11:5221-5236. [PMID: 27789942 PMCID: PMC5072557 DOI: 10.2147/ijn.s106540] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Within the last years, progress has been made in the knowledge of the properties of medically used nanoparticles and their toxic effects, but still, little is known about their influence on cellular processes of immune cells. The aim of our comparative study was to present the influence of two different nanoparticle types on subcellular processes of primary monocytes and the leukemic monocyte cell line MM6. We used core-shell starch-coated superparamagnetic iron oxide nanoparticles (SPIONs) and matrix poly(lactic-co-glycolic acid) (PLGA) nanoparticles for our experiments. In addition to typical biocompatibility testing like the detection of necrosis or secretion of interleukins (ILs), we investigated the impact of these nanoparticles on the actin cytoskeleton and the two voltage-gated potassium channels Kv1.3 and Kv7.1. Induction of necrosis was not seen for PLGA nanoparticles and SPIONs in primary monocytes and MM6 cells. Likewise, no alteration in secretion of IL-1β and IL-10 was detected under the same experimental conditions. In contrast, IL-6 secretion was exclusively downregulated in primary monocytes after contact with both nanoparticles. Two-electrode voltage clamp experiments revealed that both nanoparticles reduce currents of the aforementioned potassium channels. The two nanoparticles differed significantly in their impact on the actin cytoskeleton, demonstrated via atomic force microscopy elasticity measurement and phalloidin staining. While SPIONs led to the disruption of the respective cytoskeleton, PLGA did not show any influence in both experimental setups. The difference in the effects on ion channels and the actin cytoskeleton suggests that nanoparticles affect these subcellular components via different pathways. Our data indicate that the alteration of the cytoskeleton and the effect on ion channels are new parameters that describe the influence of nanoparticles on cells. The results are highly relevant for medical application and further evaluation of nanomaterial biosafety.
Collapse
Affiliation(s)
- Dominik Gonnissen
- Center for Nanotechnology, Institute of Physics, University of Münster, Münster, Germany
| | - Ying Qu
- Center for Nanotechnology, Institute of Physics, University of Münster, Münster, Germany; National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Münster
| | | | - Yuliang Zhao
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chunying Chen
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster
| | - Martina Düfer
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry
| | - Harald Fuchs
- Center for Nanotechnology, Institute of Physics, University of Münster, Münster, Germany
| | - Hans-Joachim Galla
- Department of Cell Biology/Biophysics, Institute of Biochemistry, University of Münster, Münster, Germany
| | - Kristina Riehemann
- Center for Nanotechnology, Institute of Physics, University of Münster, Münster, Germany
| |
Collapse
|
32
|
Chahal AA, Somers VK. Ion Channel Remodeling-A Potential Mechanism Linking Sleep Apnea and Sudden Cardiac Death. J Am Heart Assoc 2016; 5:JAHA.116.004195. [PMID: 27543309 PMCID: PMC5015316 DOI: 10.1161/jaha.116.004195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anwar Ahmed Chahal
- Cardiovascular Diseases, Mayo Clinic, Rochester, MN Mayo Graduate School, Rochester, MN Specialty Registrar, Cardiology and Internal Medicine, London Deanery, University College London Partners, London, UK
| | | |
Collapse
|
33
|
Sørhus E, Incardona JP, Karlsen Ø, Linbo T, Sørensen L, Nordtug T, van der Meeren T, Thorsen A, Thorbjørnsen M, Jentoft S, Edvardsen RB, Meier S. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development. Sci Rep 2016; 6:31058. [PMID: 27506155 PMCID: PMC4979050 DOI: 10.1038/srep31058] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022] Open
Abstract
Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7-7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - John P. Incardona
- Northwest Fisheries Science Center (NOAA), 2725 Montlake Blvd. East, Seattle, WA 98112-2097, USA
| | - Ørjan Karlsen
- Institute of Marine Research (IMR), Austevoll Research Station, and Hjort Centre for Marine Ecosystem Dynamics, NO-5392 Storebø, Norway
| | - Tiffany Linbo
- Northwest Fisheries Science Center (NOAA), 2725 Montlake Blvd. East, Seattle, WA 98112-2097, USA
| | - Lisbet Sørensen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
- University of Bergen, P.O. Box 7800, NO-5020 Bergen, Norway
| | - Trond Nordtug
- SINTEF Materials and Chemistry, P.O. Box 4760, Sluppen, NO-7465 Trondheim, Norway
| | - Terje van der Meeren
- Institute of Marine Research (IMR), Austevoll Research Station, and Hjort Centre for Marine Ecosystem Dynamics, NO-5392 Storebø, Norway
| | - Anders Thorsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
- Department of Natural Sciences, University of Agder, NO-4604 Kristiansand, Norway
| | - Rolf B. Edvardsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Sonnich Meier
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| |
Collapse
|
34
|
Sørhus E, Incardona JP, Furmanek T, Jentoft S, Meier S, Edvardsen RB. Developmental transcriptomics in Atlantic haddock: Illuminating pattern formation and organogenesis in non-model vertebrates. Dev Biol 2016; 411:301-313. [DOI: 10.1016/j.ydbio.2016.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 01/19/2023]
|
35
|
Muszkiewicz A, Britton OJ, Gemmell P, Passini E, Sánchez C, Zhou X, Carusi A, Quinn TA, Burrage K, Bueno-Orovio A, Rodriguez B. Variability in cardiac electrophysiology: Using experimentally-calibrated populations of models to move beyond the single virtual physiological human paradigm. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:115-27. [PMID: 26701222 PMCID: PMC4821179 DOI: 10.1016/j.pbiomolbio.2015.12.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2015] [Accepted: 12/02/2015] [Indexed: 01/13/2023]
Abstract
Physiological variability manifests itself via differences in physiological function between individuals of the same species, and has crucial implications in disease progression and treatment. Despite its importance, physiological variability has traditionally been ignored in experimental and computational investigations due to averaging over samples from multiple individuals. Recently, modelling frameworks have been devised for studying mechanisms underlying physiological variability in cardiac electrophysiology and pro-arrhythmic risk under a variety of conditions and for several animal species as well as human. One such methodology exploits populations of cardiac cell models constrained with experimental data, or experimentally-calibrated populations of models. In this review, we outline the considerations behind constructing an experimentally-calibrated population of models and review the studies that have employed this approach to investigate variability in cardiac electrophysiology in physiological and pathological conditions, as well as under drug action. We also describe the methodology and compare it with alternative approaches for studying variability in cardiac electrophysiology, including cell-specific modelling approaches, sensitivity-analysis based methods, and populations-of-models frameworks that do not consider the experimental calibration step. We conclude with an outlook for the future, predicting the potential of new methodologies for patient-specific modelling extending beyond the single virtual physiological human paradigm.
Collapse
Affiliation(s)
- Anna Muszkiewicz
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Oliver J Britton
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Philip Gemmell
- Clyde Biosciences Ltd, West Medical Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Carlos Sánchez
- Center for Computational Medicine in Cardiology (CCMC), Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Xin Zhou
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
| | | | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kevin Burrage
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom; Mathematical Sciences, Queensland University of Technology, Queensland 4072, Australia; ACEMS, ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Queensland 4072, Australia
| | - Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom.
| |
Collapse
|
36
|
Edmunds RC, Gill JA, Baldwin DH, Linbo TL, French BL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz J, Hoenig R, Benetti D, Grosell M, Scholz NL, Incardona JP. Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi. Sci Rep 2015; 5:17326. [PMID: 26658479 PMCID: PMC4674699 DOI: 10.1038/srep17326] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/12/2015] [Indexed: 12/23/2022] Open
Abstract
Crude oils from distinct geological sources worldwide are toxic to developing fish hearts. When oil spills occur in fish spawning habitats, natural resource injury assessments often rely on conventional morphometric analyses of heart form and function. The extent to which visible indicators correspond to molecular markers for cardiovascular stress is unknown for pelagic predators from the Gulf of Mexico. Here we exposed mahi (Coryphaena hippurus) embryos to field-collected crude oil samples from the 2010 Deepwater Horizon disaster. We compared visible heart defects (edema, abnormal looping, reduced contractility) to changes in expression of cardiac-specific genes that are diagnostic of heart failure in humans or associated with loss-of-function zebrafish cardiac mutants. Mahi exposed to crude oil during embryogenesis displayed typical symptoms of cardiogenic syndrome as larvae. Contractility, looping, and circulatory defects were evident, but larval mahi did not exhibit downstream craniofacial and body axis abnormalities. A gradation of oil exposures yielded concentration-responsive changes in morphometric and molecular responses, with relative sensitivity being influenced by age. Our findings suggest that 1) morphometric analyses of cardiac function are more sensitive to proximal effects of crude oil-derived chemicals on the developing heart, and 2) molecular indicators reveal a longer-term adverse shift in cardiogenesis trajectory.
Collapse
Affiliation(s)
- Richard C Edmunds
- National Research Council Associate Program, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - J A Gill
- Frank Orth and Associates, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - David H Baldwin
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - Tiffany L Linbo
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - Barbara L French
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - Tanya L Brown
- Frank Orth and Associates, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - Andrew J Esbaugh
- Department of Marine Science, University of Texas, Marine Science Institute, 750 Channel View Dr., Port Aransas, TX 78373 USA
| | - Edward M Mager
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149 USA
| | - John Stieglitz
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149 USA
| | - Ron Hoenig
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149 USA
| | - Daniel Benetti
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149 USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149 USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| |
Collapse
|
37
|
Kim M, McKinnon D, MacCarthy T, Rosati B, McKinnon D. Regulatory evolution and voltage-gated ion channel expression in squid axon: selection-mutation balance and fitness cliffs. PLoS One 2015; 10:e0120785. [PMID: 25875483 PMCID: PMC4395378 DOI: 10.1371/journal.pone.0120785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/27/2015] [Indexed: 11/23/2022] Open
Abstract
It has been suggested that optimization of either axonal conduction velocity or the energy efficiency of action potential conduction predominates in the selection of voltage-gated sodium conductance levels in the squid axon. A population genetics model of channel gene regulatory function was used to examine the role of these and other evolutionary forces on the selection of both sodium and potassium channel expression levels. In this model, the accumulating effects of mutations result in degradation of gene regulatory function, causing channel gene expression to fall to near-zero in the absence of positive selection. In the presence of positive selection, channel expression levels fall to the lowest values consistent with the selection criteria, thereby establishing a selection-mutation balance. Within the parameter space of sodium and potassium conductance values, the physiological performance of the squid axon model showed marked discontinuities associated with conduction failure and excitability. These discontinuities in physiological function may produce fitness cliffs. A fitness cliff associated with conduction failure, combined with the effects of phenotypic noise, can account for the selection of sodium conductance levels, without considering either conduction velocity or metabolic cost. A fitness cliff associated with a transition in axonal excitability, combined with phenotypic noise, can explain the selection of potassium channel expression levels. The results suggest that voltage-gated ion channel expression will fall to low levels, consistent with key functional constraints, even in the absence of positive selection for energy efficiency. Channel expression levels and individual variation in channel expression within the population can be explained by regulatory evolution in combination with genetic variation in regulatory function and phenotypic noise, without resorting to more complex mechanisms, such as activity-dependent homeostasis. Only a relatively small region of the large, nominally isofunctional parameter space for channel expression will normally be occupied, because of the effects of mutation.
Collapse
Affiliation(s)
- Min Kim
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| | - Don McKinnon
- Institute of Molecular Cardiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Barbara Rosati
- Institute of Molecular Cardiology, Stony Brook University, Stony Brook, New York, United States of America; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States of America
| | - David McKinnon
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, New York, United States of America; The Department of Research, Veterans Affairs Medical Center, Northport, New York, United States of America
| |
Collapse
|
38
|
Odagiri F, Inoue H, Sugihara M, Suzuki T, Murayama T, Shioya T, Konishi M, Nakazato Y, Daida H, Sakurai T, Morimoto S, Kurebayashi N. Effects of candesartan on electrical remodeling in the hearts of inherited dilated cardiomyopathy model mice. PLoS One 2014; 9:e101838. [PMID: 25000405 PMCID: PMC4084897 DOI: 10.1371/journal.pone.0101838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 06/12/2014] [Indexed: 12/20/2022] Open
Abstract
Inherited dilated cardiomyopathy (DCM) is characterized by dilatation and dysfunction of the ventricles, and often results in sudden death or heart failure (HF). Although angiotensin receptor blockers (ARBs) have been used for the treatment of HF, little is known about the effects on postulated electrical remodeling that occurs in inherited DCM. The aim of this study was to examine the effects of candesartan, one of the ARBs, on cardiac function and electrical remodeling in the hearts of inherited DCM model mice (TNNT2 ΔK210). DCM mice were treated with candesartan in drinking water for 2 months from 1 month of age. Control, non-treated DCM mice showed an enlargement of the heart with prolongation of QRS and QT intervals, and died at t1/2 of 70 days. Candesartan dramatically extended the lifespan of DCM mice, suppressed cardiac dilatation, and improved the functional parameters of the myocardium. It also greatly suppressed prolongation of QRS and QT intervals and action potential duration (APD) in the left ventricular myocardium and occurrence of ventricular arrhythmia. Expression analysis revealed that down-regulation of Kv4.2 (Ito channel protein), KChIP2 (auxiliary subunit of Kv4.2), and Kv1.5 (IKur channel protein) in DCM was partially reversed by candesartan administration. Interestingly, non-treated DCM heart had both normal-sized myocytes with moderately decreased Ito and IKur and enlarged cells with greatly reduced K+ currents (Ito, IKur IK1 and Iss). Treatment with candesartan completely abrogated the emergence of the enlarged cells but did not reverse the Ito, and IKur in normal-sized cells in DCM hearts. Our results indicate that candesartan treatment suppresses structural remodeling to prevent severe electrical remodeling in inherited DCM.
Collapse
Affiliation(s)
- Fuminori Odagiri
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Masami Sugihara
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Suzuki
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takao Shioya
- Department of Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Masato Konishi
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Yuji Nakazato
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sachio Morimoto
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
39
|
Large conductance Ca2+-activated K+ channel (BKCa) α-subunit splice variants in resistance arteries from rat cerebral and skeletal muscle vasculature. PLoS One 2014; 9:e98863. [PMID: 24921651 PMCID: PMC4055454 DOI: 10.1371/journal.pone.0098863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Previous studies report functional differences in large conductance Ca2+ activated-K+ channels (BKCa) of smooth muscle cells (VSMC) from rat cerebral and cremaster muscle resistance arteries. The present studies aimed to determine if this complexity in BKCa activity may, in part, be due to splice variants in the pore-forming α-subunit. BKCa variants in the intracellular C terminus of the α-subunit, and their relative expression to total α-subunit, were examined by qPCR. Sequencing of RT-PCR products showed two α-subunit variants, ZERO and STREX, to be identical in cremaster and cerebral arteries. Levels of STREX mRNA expression were, however, significantly higher in cremaster VSMCs (28.9±4.2% of total α-BKCa) compared with cerebral vessels (16.5±0.9%). Further, a low level of BKCa SS4 α-subunit variant was seen in cerebral arteries, while undetectable in cremaster arteries. Protein biotinylation assays, in expression systems and arterial preparations, were used to determine whether differences in splice variant mRNA expression affect surface membrane/cytosolic location of the channel. In AD-293 and CHO-K1 cells, rat STREX was more likely to be located at the plasma membrane compared to ZERO, although the great majority of channel protein was in the membrane in both cases. Co-expression of β1-BKCa subunit with STREX or ZERO did not influence the dominant membrane expression of α-BKCa subunits, whereas in the absence of α-BKCa, a significant proportion of β1-subunit remained cytosolic. Biotinylation assays of cremaster and cerebral arteries showed that differences in STREX/ZERO expression do not alter membrane/cytosolic distribution of the channel under basal conditions. These data, however, revealed that the amount of α-BKCa in cerebral arteries is approximately 20X higher than in cremaster vessels. Thus, the data support the major functional differences in BKCa activity in cremaster, as compared to cerebral VSMCs, being related to total α-BKCa expression, regardless of differences in splice variant expression.
Collapse
|
40
|
Babcock JJ, Li M. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins. Acta Pharmacol Sin 2014; 35:11-23. [PMID: 24241348 PMCID: PMC3880479 DOI: 10.1038/aps.2013.142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/08/2013] [Indexed: 02/08/2023] Open
Abstract
The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.
Collapse
|
41
|
Zheng X, Valakh V, Diantonio A, Ben-Shahar Y. Natural antisense transcripts regulate the neuronal stress response and excitability. eLife 2014; 3:e01849. [PMID: 24642409 PMCID: PMC3953951 DOI: 10.7554/elife.01849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neurons regulate ionic fluxes across their plasma membrane to maintain their excitable properties under varying environmental conditions. However, the mechanisms that regulate ion channels abundance remain poorly understood. Here we show that pickpocket 29 (ppk29), a gene that encodes a Drosophila degenerin/epithelial sodium channel (DEG/ENaC), regulates neuronal excitability via a protein-independent mechanism. We demonstrate that the mRNA 3′UTR of ppk29 affects neuronal firing rates and associated heat-induced seizures by acting as a natural antisense transcript (NAT) that regulates the neuronal mRNA levels of seizure (sei), the Drosophila homolog of the human Ether-à-go-go Related Gene (hERG) potassium channel. We find that the regulatory impact of ppk29 mRNA on sei is independent of the sodium channel it encodes. Thus, our studies reveal a novel mRNA dependent mechanism for the regulation of neuronal excitability that is independent of protein-coding capacity. DOI:http://dx.doi.org/10.7554/eLife.01849.001 Neurons communicate with one another via electrical signals known as action potentials. These signals are generated when a stimulus causes sodium and potassium ion channels in the cell membrane to open, leading to an influx of sodium ions, followed by an efflux of potassium ions. Changes in temperature affect the rate at which ion channels open and close, and thus affect how easy it is for a stimulus to trigger an action potential. In response to a sudden rise in temperature, neurons must adjust the number of ion channels in their membranes to ensure that they do not become hyperexcitable, which could result in epilepsy. Now, Zheng et al. have revealed one possible mechanism for how neurons do this. In the fruit fly, Drosophila, a gene for a potassium channel is found on the same chromosomal location as a gene for a sodium channel, and some of the genetic elements that regulate the expression of these two genes even overlap. However, the genes are on opposite strands of the DNA double helix. This means that when the genes are transcribed to produce molecules of messenger RNA (mRNA), which is usually single stranded, some of the mRNA molecules will pair up to form double-stranded mRNA molecules. This is significant because such RNA ‘duplexes’ have been shown to inhibit the translation of conventional single-stranded mRNA molecules into proteins, or to lead to their complete degradation. Zheng et al. found that flies with mutations in the potassium channel gene display seizures in response to sudden changes in temperature. However, insects with mutations in the sodium channel gene are not affected because, surprisingly, they have a higher than expected number of potassium channels. It turns out that the mutant sodium channel mRNA molecules are unable to form RNA duplexes with potassium channel mRNA molecules: these duplexes would normally limit the number of potassium channels so, in their absence, the number of potassium channels increases, and this protects the flies from seizures. Zheng et al. also uncovered a novel mechanism by which mRNA molecules can regulate gene expression independent of their role as templates for proteins. Further work is required to determine whether this mechanism is also present in other organisms, including humans. DOI:http://dx.doi.org/10.7554/eLife.01849.002
Collapse
Affiliation(s)
- Xingguo Zheng
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | | | | | | |
Collapse
|
42
|
Abstract
Ion channel proteins are regulated by different types of posttranslational modifications. The focus of this review is the regulation of voltage-gated sodium channels (Navs) upon their ubiquitylation. The amiloride-sensitive epithelial sodium channel (ENaC) was the first ion channel shown to be regulated upon ubiquitylation. This modification results from the binding of ubiquitin ligase from the Nedd4 family to a protein-protein interaction domain, known as the PY motif, in the ENaC subunits. Many of the Navs have similar PY motifs, which have been demonstrated to be targets of Nedd4-dependent ubiquitylation, tagging them for internalization from the cell surface. The role of Nedd4-dependent regulation of the Nav membrane density in physiology and disease remains poorly understood. Two recent studies have provided evidence that Nedd4-2 is downregulated in dorsal root ganglion (DRG) neurons in both rat and mouse models of nerve injury-induced neuropathic pain. Using two different mouse models, one with a specific knockout of Nedd4-2 in sensory neurons and another where Nedd4-2 was overexpressed with the use of viral vectors, it was demonstrated that the neuropathy-linked neuronal hyperexcitability was the result of Nav1.7 and Nav1.8 overexpression due to Nedd4-2 downregulation. These studies provided the first in vivo evidence of the role of Nedd4-2-dependent regulation of Nav channels in a disease state. This ubiquitylation pathway may be involved in the development of symptoms and diseases linked to Nav-dependent hyperexcitability, such as pain, cardiac arrhythmias, epilepsy, migraine, and myotonias.
Collapse
Affiliation(s)
- Cédric J Laedermann
- Department of Clinical Research, University of Bern, Murtenstrasse, 35, 3010, Bern, Switzerland,
| | | | | |
Collapse
|
43
|
Groot-Kormelink PJ, Fawcett L, Wright PD, Gosling M, Kent TC. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates. BMC Immunol 2012; 13:57. [PMID: 23102269 PMCID: PMC3542584 DOI: 10.1186/1471-2172-13-57] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60) are frequently used to model macrophage function. METHODS The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR) and ion channel expression in alveolar macrophages and their widely used surrogates. RESULTS The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. CONCLUSIONS The data described in this report provides insight into the appropriate choice of cell models for investigating macrophage biology and highlights the importance of confirming experimental data in primary alveolar macrophages.
Collapse
Affiliation(s)
- Paul J Groot-Kormelink
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Horsham, RH12 5AB, UK
| | - Lindsay Fawcett
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Horsham, RH12 5AB, UK
| | - Paul D Wright
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Horsham, RH12 5AB, UK
| | - Martin Gosling
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Horsham, RH12 5AB, UK
| | - Toby C Kent
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Horsham, RH12 5AB, UK
| |
Collapse
|
44
|
Weiss JN, Karma A, MacLellan WR, Deng M, Rau CD, Rees CM, Wang J, Wisniewski N, Eskin E, Horvath S, Qu Z, Wang Y, Lusis AJ. "Good enough solutions" and the genetics of complex diseases. Circ Res 2012; 111:493-504. [PMID: 22859671 DOI: 10.1161/circresaha.112.269084] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this Emerging Science Review, we discuss a systems genetics strategy, which we call gene module association study (GMAS), as a novel approach complementing genome-wide association studies (GWAS), to understand complex diseases by focusing on how genes work together in groups rather than singly. The first step is to characterize phenotypic differences among a genetically diverse population. The second step is to use gene expression microarray (or other high-throughput) data from the population to construct gene coexpression networks. Coexpression analysis typically groups 20 000 genes into 20 to 30 modules containing tens to hundreds of genes, whose aggregate behavior can be represented by the module's "eigengene." The third step is to correlate expression patterns with phenotype, as in GWAS, only applied to eigengenes instead of single nucleotide polymorphisms. The goal of the GMAS approach is to identify groups of coregulated genes that explain complex traits from a systems perspective. From an evolutionary standpoint, we hypothesize that variability in eigengene patterns reflects the "good enough solution" concept, that biological systems are sufficiently complex so that many possible combinations of the same elements (in this case eigengenes) can produce an equivalent output, that is, a "good enough solution" to accomplish normal biological functions. However, when faced with environmental stresses, some "good enough solutions" adapt better than others, explaining individual variability to disease and drug susceptibility. If validated, GMAS may imply that common polygenic diseases are related as much to group interactions between normal genes, as to multiple gene mutations.
Collapse
Affiliation(s)
- James N Weiss
- Cardiovascular Research Laboratory and Atherosclerosis Research Unit, Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jindal HK, Merchant E, Balschi JA, Zhangand Y, Koren G. Proteomic analyses of transgenic LQT1 and LQT2 rabbit hearts elucidate an increase in expression and activity of energy producing enzymes. J Proteomics 2012; 75:5254-65. [PMID: 22796357 DOI: 10.1016/j.jprot.2012.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/04/2012] [Accepted: 06/11/2012] [Indexed: 01/22/2023]
Abstract
Various biochemical and genomic mechanisms are considered to be a hallmark of metabolic remodeling in the stressed heart, including the hypertrophied and failing heart. In this study, we used quantitative proteomic 2-D Fluorescence Difference In-Gel Electrophoresis (2-D DIGE) in conjunction with mass spectrometry to demonstrate differential protein expression in the hearts of transgenic rabbit models of Long QT Syndrome 1 (LQT1) and Long QT Syndrome 2 (LQT2) as compared to littermate controls (LMC). The results of our proteomic analysis revealed upregulation of key metabolic enzymes involved in all pathways associated with ATP generation, including creatine kinase in both LQT1 and LQT2 rabbit hearts. Additionally, the expression of lamin-A protein was increased in both LQT1 and LQT2 rabbit hearts as was the expression of mitochondrial aldehyde dehydrogenase and desmoplakin in LQT1 and LQT 2 rabbit hearts, respectively. Results of the proteomic analysis also demonstrated down regulation in the expression of protein disulfide-isomerase A3 precuorsor and dynamin-like 120 kDa protein (mitochondrial) in LQT1, and of alpha-actinin 2 in LQT2 rabbit hearts. Up regulation of the expression of the enzymes associated with ATP generation was substantiated by the results of selective enzyme assays in LQT1 and LQT2 hearts, as compared to LMC, which revealed increases in the activities of glycogen phosphorylase (+50%, +65%, respectively), lactate dehydrogenase (+25%, +25%) pyruvate dehydrogenase (+31%, +22%), and succinate dehydrogenase (+32%, +60%). The activity of cytochrome c-oxidase, a marker for the mitochondrial function was also found to be significantly elevated (+80%) in LQT1 rabbit hearts as compared with LMC. Western blot analysis in LQT1 and LQT2 hearts compared to LMC revealed an increase in the expression of very-long chain-specific acyl-CoA dehydrogenase (+35%, +33%), a rate-limiting enzymes in β-oxidation of fatty acids. Collectively, our results demonstrate similar increases in the expression and activities of key ATP-generating enzymes in LQT1 and LQT2 rabbit hearts, suggesting an increased demand, and in turn, increased energy supply across the entire metabolic pathway by virtue of the upregulation of enzymes involved in energy generation.
Collapse
Affiliation(s)
- Hitesh K Jindal
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, 1 Hoppin Street, West Coro-5, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
46
|
Sarkar AX, Christini DJ, Sobie EA. Exploiting mathematical models to illuminate electrophysiological variability between individuals. J Physiol 2012; 590:2555-67. [PMID: 22495591 DOI: 10.1113/jphysiol.2011.223313] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Across individuals within a population, several levels of variability are observed, from the differential expression of ion channels at the molecular level, to the various action potential morphologies observed at the cellular level, to divergent responses to drugs at the organismal level. However, the limited ability of experiments to probe complex interactions between components has hitherto hindered our understanding of the factors that cause a range of behaviours within a population. Variability is a challenging issue that is encountered in all physiological disciplines, but recent work suggests that novel methods for analysing mathematical models can assist in illuminating its causes. In this review, we discuss mathematical modelling studies in cardiac electrophysiology and neuroscience that have enhanced our understanding of variability in a number of key areas. Specifically, we discuss parameter sensitivity analysis techniques that may be applied to generate quantitative predictions based on considering behaviours within a population of models, thereby providing novel insight into variability. Our discussion focuses on four issues that have benefited from the utilization of these methods: (1) the comparison of different electrophysiological models of cardiac myocytes, (2) the determination of the individual contributions of different molecular changes in complex disease phenotypes, (3) the identification of the factors responsible for the variable response to drugs, and (4) the constraining of free parameters in electrophysiological models of heart cells. Together, the studies that we discuss suggest that rigorous analyses of mathematical models can generate quantitative predictions regarding how molecular-level variations contribute to functional differences between experimental samples. These strategies may be applicable not just in cardiac electrophysiology, but in a wide range of disciplines.
Collapse
Affiliation(s)
- Amrita X Sarkar
- Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
47
|
Evolution of CpG island promoter function underlies changes in KChIP2 potassium channel subunit gene expression in mammalian heart. Proc Natl Acad Sci U S A 2012; 109:1601-6. [PMID: 22307618 DOI: 10.1073/pnas.1114516109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Scaling of cardiac electrophysiology with body mass requires large changes in the ventricular action potential duration and heart rate in mammals. These changes in cellular electrophysiological function are produced by systematic and coordinated changes in the expression of multiple ion channel and transporter genes. Expression of one important potassium current, the transient outward current (I(to)), changes significantly during mammalian evolution. Changes in I(to) expression are determined, in part, by variation in the expression of an obligatory auxiliary subunit encoded by the KChIP2 gene. The KChIP2 gene is expressed in both cardiac myocytes and neurons and transcription in both cell types is initiated from the same CpG island promoter. Species-dependent variation of KChIP2 expression in heart is mediated by the evolution of the cis-regulatory function of this gene. Surprisingly, the major locus of evolutionary change for KChIP2 gene expression in heart lies within the CpG island core promoter. The results demonstrate that CpG island promoters are not simply permissive for gene expression but can also contribute to tissue-selective expression and, as such, can function as an important locus for the evolution of cis-regulatory function. More generally, evolution of the cis-regulatory function of voltage-gated ion channel genes appears to be an effective and efficient way to modify channel expression levels to optimize electrophysiological function.
Collapse
|
48
|
Atack TC, Stroud DM, Watanabe H, Yang T, Hall L, Hipkens SB, Lowe JS, Leake B, Magnuson MA, Yang P, Roden DM. Informatic and functional approaches to identifying a regulatory region for the cardiac sodium channel. Circ Res 2011; 109:38-46. [PMID: 21566215 DOI: 10.1161/circresaha.110.235630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RATIONALE Although multiple lines of evidence suggest that variable expression of the cardiac sodium channel gene SCN5A plays a role in susceptibility to arrhythmia, little is known about its transcriptional regulation. OBJECTIVE We used in silico and in vitro experiments to identify possible noncoding sequences important for transcriptional regulation of SCN5A. The results were extended to mice in which a putative regulatory region was deleted. METHODS AND RESULTS We identified 92 noncoding regions highly conserved (>70%) between human and mouse SCN5A orthologs. Three conserved noncoding sequences (CNS) showed significant (>5-fold) activity in luciferase assays. Further in vitro studies indicated one, CNS28 in intron 1, as a potential regulatory region. Using recombinase-mediated cassette exchange (RMCE), we generated mice in which a 435-base pair region encompassing CNS28 was removed. Animals homozygous for the deletion showed significant increases in SCN5A transcripts, Na(V)1.5 protein abundance, and sodium current measured in isolated ventricular myocytes. ECGs revealed a significantly shorter QRS (10.7±0.2 ms in controls versus 9.7±0.2 ms in knockouts), indicating more rapid ventricular conduction. In vitro analysis of CNS28 identified a short 3' segment within this region required for regulatory activity and including an E-box motif. Deletion of this segment reduced reporter activity to 3.6%±0.3% of baseline in CHO cells and 16%±3% in myocytes (both P<0.05), and mutation of individual sites in the E-box restored activity to 62%±4% and 57%±2% of baseline in CHO cells and myocytes, respectively (both P<0.05). CONCLUSIONS These findings establish that regulation of cardiac sodium channel expression modulates channel function in vivo, and identify a noncoding region underlying this regulation.
Collapse
Affiliation(s)
- Thomas C Atack
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rosati B, Yan Q, Lee MS, Liou SR, Ingalls B, Foell J, Kamp TJ, McKinnon D. Robust L-type calcium current expression following heterozygous knockout of the Cav1.2 gene in adult mouse heart. J Physiol 2011; 589:3275-88. [PMID: 21521762 DOI: 10.1113/jphysiol.2011.210237] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mechanisms that contribute to maintaining expression of functional ion channels at relatively constant levels following perturbations of channel biosynthesis are likely to contribute significantly to the stability of electrophysiological systems in some pathological conditions. In order to examine the robustness of L-type calcium current expression, the response to changes in Ca²⁺ channel Cav1.2 gene dosage was studied in adult mice. Using a cardiac-specific inducible Cre recombinase system, Cav1.2 mRNA was reduced to 11 ± 1% of control values in homozygous floxed mice and the mice died rapidly (11.9 ± 3 days) after induction of gene deletion. In these homozygous knockout mice, echocardiographic analysis showed that myocardial contractility was reduced to 14 ± 1% of control values shortly before death. For these mice, no effective compensatory changes in ion channel gene expression were triggered following deletion of both Cav1.2 alleles, despite the dramatic decay in cardiac function. In contrast to the homozygote knockout mice, following knockout of only one Cav1.2 allele, cardiac function remained unchanged, as did survival.Cav1.2mRNAexpression in the left ventricle of heterozygous knockout mice was reduced to 58 ± 3% of control values and there was a 21 ± 2% reduction in Cav1.2 protein expression. There was no significant reduction in L-type Ca²⁺ current density in these mice. The results are consistent with a model of L-type calcium channel biosynthesis in which there are one or more saturated steps, which act to buffer changes in both total Cav1.2 protein and L-type current expression.
Collapse
Affiliation(s)
- Barbara Rosati
- Department of Physiology and Biophysics, BST Room 124, Level 6, Stony Brook University, Stony Brook, NY 11794-8661, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network. J Theor Biol 2010; 266:723-38. [DOI: 10.1016/j.jtbi.2010.07.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
|