1
|
Jiang X, Ly OT, Chen H, Zhang Z, Ibarra BA, Pavel MA, Brown GE, Sridhar A, Tofovic D, Swick A, Marszalek R, Vanoye CG, Navales F, George AL, Khetani SR, Rehman J, Gao Y, Darbar D, Saxena A. Transient titin-dependent ventricular defects during development lead to adult atrial arrhythmia and impaired contractility. iScience 2024; 27:110395. [PMID: 39100923 PMCID: PMC11296057 DOI: 10.1016/j.isci.2024.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Developmental causes of the most common arrhythmia, atrial fibrillation (AF), are poorly defined, with compensation potentially masking arrhythmic risk. Here, we delete 9 amino acids (Δ9) within a conserved domain of the giant protein titin's A-band in zebrafish and human-induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). We find that ttna Δ9/Δ9 zebrafish embryos' cardiac morphology is perturbed and accompanied by reduced functional output, but ventricular function recovers within days. Despite normal ventricular function, ttna Δ9/Δ9 adults exhibit AF and atrial myopathy, which are recapitulated in TTN Δ9/Δ9-hiPSC-aCMs. Additionally, action potential is shortened and slow delayed rectifier potassium current (I Ks) is increased due to aberrant atrial natriuretic peptide (ANP) levels. Strikingly, suppression of I Ks in both models prevents AF and improves atrial contractility. Thus, a small internal deletion in titin causes developmental abnormalities that increase the risk of AF via ion channel remodeling, with implications for patients who harbor disease-causing variants in sarcomeric proteins.
Collapse
Affiliation(s)
- Xinghang Jiang
- Department of Cell, Developmental, and Integrative Biology, UAB Heersink School of Medicine, Birmingham, AL 35233, USA
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Olivia T. Ly
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ziwei Zhang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Beatriz A. Ibarra
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Mahmud A. Pavel
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Grace E. Brown
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Physiology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - David Tofovic
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Medicine, Jesse Brown Veterans Administration, Chicago, IL 60612, USA
| | - Abigail Swick
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Richard Marszalek
- Department of Physiology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Fritz Navales
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Yu Gao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Medicine, Jesse Brown Veterans Administration, Chicago, IL 60612, USA
| | - Ankur Saxena
- Department of Cell, Developmental, and Integrative Biology, UAB Heersink School of Medicine, Birmingham, AL 35233, USA
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
- O'Neal Comprehensive Cancer Center, Birmingham, AL 35233, USA
| |
Collapse
|
2
|
Wada Y, Wang L, Hall LD, Yang T, Short LL, Solus JF, Glazer AM, Roden DM. The electrophysiologic effects of KCNQ1 extend beyond expression of IKs: evidence from genetic and pharmacologic block. Cardiovasc Res 2024; 120:735-744. [PMID: 38442735 PMCID: PMC11135641 DOI: 10.1093/cvr/cvae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
AIMS While variants in KCNQ1 are the commonest cause of the congenital long QT syndrome, we and others find only a small IKs in cardiomyocytes from human-induced pluripotent stem cells (iPSC-CMs) or human ventricular myocytes. METHODS AND RESULTS We studied population control iPSC-CMs and iPSC-CMs from a patient with Jervell and Lange-Nielsen (JLN) syndrome due to compound heterozygous loss-of-function (LOF) KCNQ1 variants. We compared the effects of pharmacologic IKs block to those of genetic KCNQ1 ablation, using JLN cells, cells homozygous for the KCNQ1 LOF allele G643S, or siRNAs reducing KCNQ1 expression. We also studied the effects of two blockers of IKr, the other major cardiac repolarizing current, in the setting of pharmacologic or genetic ablation of KCNQ1: moxifloxacin, associated with a very low risk of drug-induced long QT, and dofetilide, a high-risk drug. In control cells, a small IKs was readily recorded but the pharmacologic IKs block produced no change in action potential duration at 90% repolarization (APD90). In contrast, in cells with genetic ablation of KCNQ1 (JLN), baseline APD90 was markedly prolonged compared with control cells (469 ± 20 vs. 310 ± 16 ms). JLN cells displayed increased sensitivity to acute IKr block: the concentration (μM) of moxifloxacin required to prolong APD90 100 msec was 237.4 [median, interquartile range (IQR) 100.6-391.6, n = 7] in population cells vs. 23.7 (17.3-28.7, n = 11) in JLN cells. In control cells, chronic moxifloxacin exposure (300 μM) mildly prolonged APD90 (10%) and increased IKs, while chronic exposure to dofetilide (5 nM) produced greater prolongation (67%) and no increase in IKs. However, in the siRNA-treated cells, moxifloxacin did not increase IKs and markedly prolonged APD90. CONCLUSION Our data strongly suggest that KCNQ1 expression modulates baseline cardiac repolarization, and the response to IKr block, through mechanisms beyond simply generating IKs.
Collapse
Affiliation(s)
- Yuko Wada
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Lili Wang
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Lynn D Hall
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Tao Yang
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Laura L Short
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Joseph F Solus
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Andrew M Glazer
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
4
|
Sharma AK, Singh S, Bhat M, Gill K, Zaid M, Kumar S, Shakya A, Tantray J, Jose D, Gupta R, Yangzom T, Sharma RK, Sahu SK, Rathore G, Chandolia P, Singh M, Mishra A, Raj S, Gupta A, Agarwal M, Kifayat S, Gupta A, Gupta P, Vashist A, Vaibhav P, Kathuria N, Yadav V, Singh RP, Garg A. New drug discovery of cardiac anti-arrhythmic drugs: insights in animal models. Sci Rep 2023; 13:16420. [PMID: 37775650 PMCID: PMC10541452 DOI: 10.1038/s41598-023-41942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
- Ashish Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India.
| | - Shivam Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mehvish Bhat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Kartik Gill
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohammad Zaid
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anjali Shakya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Junaid Tantray
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Divyamol Jose
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rashmi Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Tsering Yangzom
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rajesh Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | | | - Gulshan Rathore
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Priyanka Chandolia
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Shobhit Raj
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Archita Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sumaiya Kifayat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anamika Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Prashant Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ankit Vashist
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Parth Vaibhav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Nancy Kathuria
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Vipin Yadav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Arun Garg
- MVN University, Palwal, Haryana, India
| |
Collapse
|
5
|
Kervadec A, Kezos J, Ni H, Yu M, Marchant J, Spiering S, Kannan S, Kwon C, Andersen P, Bodmer R, Grandi E, Ocorr K, Colas AR. Multiplatform modeling of atrial fibrillation identifies phospholamban as a central regulator of cardiac rhythm. Dis Model Mech 2023; 16:dmm049962. [PMID: 37293707 PMCID: PMC10387351 DOI: 10.1242/dmm.049962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Atrial fibrillation (AF) is a common and genetically inheritable form of cardiac arrhythmia; however, it is currently not known how these genetic predispositions contribute to the initiation and/or maintenance of AF-associated phenotypes. One major barrier to progress is the lack of experimental systems to investigate the effects of gene function on rhythm parameters in models with human atrial and whole-organ relevance. Here, we assembled a multi-model platform enabling high-throughput characterization of the effects of gene function on action potential duration and rhythm parameters using human induced pluripotent stem cell-derived atrial-like cardiomyocytes and a Drosophila heart model, and validation of the findings using computational models of human adult atrial myocytes and tissue. As proof of concept, we screened 20 AF-associated genes and identified phospholamban loss of function as a top conserved hit that shortens action potential duration and increases the incidence of arrhythmia phenotypes upon stress. Mechanistically, our study reveals that phospholamban regulates rhythm homeostasis by functionally interacting with L-type Ca2+ channels and NCX. In summary, our study illustrates how a multi-model system approach paves the way for the discovery and molecular delineation of gene regulatory networks controlling atrial rhythm with application to AF.
Collapse
Affiliation(s)
- Anaïs Kervadec
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - James Kezos
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Haibo Ni
- Department of Pharmacology, UC Davis, Davis, CA 95616, USA
| | - Michael Yu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - James Marchant
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sean Spiering
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Suraj Kannan
- Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Rolf Bodmer
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Karen Ocorr
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre R. Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Ezeani M, Prabhu S. PI3K(p110α) as a determinant and gene therapy for atrial enlargement in atrial fibrillation. Mol Cell Biochem 2023; 478:471-490. [PMID: 35900667 PMCID: PMC9938077 DOI: 10.1007/s11010-022-04526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is an irregular heart rhythm, characterised by chaotic atrial activation, which is promoted by remodelling. Once initiated, AF can also propagate the progression of itself in the so-called ''AF begets AF''. Several lines of investigation have shown that signalling molecules, including reactive oxygen species, angiotensin II, and phosphoinositide 3-kinases (PI3Ks), in presence or absence of cardiovascular disease risk factors, stabilise and promote AF maintenance. In particular, reduced cardiac-specific PI3K activity that is not associated with oncology is cardiotoxic and increases susceptibility to AF. Atrial-specific PI3K(p110α) transgene can cause pathological atrial enlargement. Highlighting the crucial importance of the p110α protein in a clinical problem that currently challenges the professional health care practice, in over forty (40) transgenic mouse models of AF (Table1), currently existing, of which some of the models are models of human genetic disorders, including PI3K(p110α) transgenic mouse model, over 70% of them reporting atrial size showed enlarged, greater atrial size. Individuals with minimal to severely dilated atria develop AF more likely. Left atrial diameter and volume stratification are an assessment for follow-up surveillance to detect AF. Gene therapy to reduce atrial size will be associated with a reduction in AF burden. In this overview, PI3K(p110α), a master regulator of organ size, was investigated in atrial enlargement and in physiological determinants that promote AF.
Collapse
Affiliation(s)
- Martin Ezeani
- NanoBiotechnology Laboratory, Central Clinical School, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.
| | - Sandeep Prabhu
- The Alfred, and Baker Heart and Diabetes Institute, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Trieu T, Mach P, Bunn K, Huang V, Huang J, Chow C, Nakano H, Fajardo VM, Touma M, Ren S, Wang Y, Nakano A. A novel murine model of atrial fibrillation by diphtheria toxin-induced injury. Front Physiol 2022; 13:977735. [PMID: 36388109 PMCID: PMC9659601 DOI: 10.3389/fphys.2022.977735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The treatment of atrial fibrillation (AF) continues to be a significant clinical challenge. While genome-wide association studies (GWAS) are beginning to identify AF susceptibility genes (Gudbjartsson et al., Nature, 2007, 448, 353-357; Choi et al., Circ. Res., 2020, 126, 200-209; van Ouwerkerk et al., Circ. Res., 2022, 127, 229-243), non-genetic risk factors including physical, chemical, and biological environments remain the major contributors to the development of AF. However, little is known regarding how non-genetic risk factors promote the pathogenesis of AF (Weiss et al., Heart Rhythm, 2016, 13, 1868-1877; Chakraborty et al., Heart Rhythm, 2020, 17, 1,398-1,404; Nattel et al., Circ. Res., 2020, 127, 51-72). This is, in part, due to the lack of a robust and reliable animal model induced by non-genetic factors. The currently available models using rapid pacing protocols fail to generate a stable AF phenotype in rodent models, often requiring additional genetic modifications that introduce potential sources of bias (Schüttler et al., Circ. Res., 2020, 127, 91-110). Here, we report a novel murine model of AF using an inducible and tissue-specific activation of diphtheria toxin (DT)-mediated cellular injury system. By the tissue-specific and inducible expression of human HB-EGF in atrial myocytes, we developed a reliable, robust and scalable murine model of AF that is triggered by a non-genetic inducer without the need for AF susceptibility gene mutations.
Collapse
Affiliation(s)
- Theresa Trieu
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Philbert Mach
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaitlyn Bunn
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Vincent Huang
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Huang
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christine Chow
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Haruko Nakano
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Viviana M. Fajardo
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marlin Touma
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shuxun Ren
- Departments of Anesthesiology, Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yibin Wang
- Departments of Anesthesiology, Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Blackwell DJ, Schmeckpeper J, Knollmann BC. Animal Models to Study Cardiac Arrhythmias. Circ Res 2022; 130:1926-1964. [PMID: 35679367 DOI: 10.1161/circresaha.122.320258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
9
|
Sen S, Hallee L, Lam CK. The Potential of Gamma Secretase as a Therapeutic Target for Cardiac Diseases. J Pers Med 2021; 11:jpm11121294. [PMID: 34945766 PMCID: PMC8703931 DOI: 10.3390/jpm11121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Heart diseases are some of the most common and pressing threats to human health worldwide. The American Heart Association and the National Institute of Health jointly work to annually update data on cardiac diseases. In 2018, 126.9 million Americans were reported as having some form of cardiac disorder, with an estimated direct and indirect total cost of USD 363.4 billion. This necessitates developing therapeutic interventions for heart diseases to improve human life expectancy and economic relief. In this review, we look into gamma-secretase as a potential therapeutic target for cardiac diseases. Gamma-secretase, an aspartyl protease enzyme, is responsible for the cleavage and activation of a number of substrates that are relevant to normal cardiac development and function as found in mutation studies. Some of these substrates are involved in downstream signaling processes and crosstalk with pathways relevant to heart diseases. Most of the substrates and signaling events we explored were found to be potentially beneficial to maintain cardiac function in diseased conditions. This review presents an updated overview of the current knowledge on gamma-secretase processing of cardiac-relevant substrates and seeks to understand if the modulation of gamma-secretase activity would be beneficial to combat cardiac diseases.
Collapse
Affiliation(s)
- Sujoita Sen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Logan Hallee
- Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Chi Keung Lam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Correspondence: ; Tel.: +1-302-831-3165
| |
Collapse
|
10
|
Watts M, Kolluru GK, Dherange P, Pardue S, Si M, Shen X, Trosclair K, Glawe J, Al-Yafeai Z, Iqbal M, Pearson BH, Hamilton KA, Orr AW, Glasscock E, Kevil CG, Dominic P. Decreased bioavailability of hydrogen sulfide links vascular endothelium and atrial remodeling in atrial fibrillation. Redox Biol 2020; 38:101817. [PMID: 33310503 PMCID: PMC7732878 DOI: 10.1016/j.redox.2020.101817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress drives the pathogenesis of atrial fibrillation (AF), the most common arrhythmia. In the cardiovascular system, cystathionine γ-lyase (CSE) serves as the primary enzyme producing hydrogen sulfide (H2S), a mammalian gasotransmitter that reduces oxidative stress. Using a case control study design in patients with and without AF and a mouse model of CSE knockout (CSE-KO), we evaluated the role of H2S in the etiology of AF. Patients with AF (n = 51) had significantly reduced plasma acid labile sulfide levels compared to patients without AF (n = 65). In addition, patients with persistent AF (n = 25) showed lower plasma free sulfide levels compared to patients with paroxysmal AF (n = 26). Consistent with an important role for H2S in AF, CSE-KO mice had decreased atrial sulfide levels, increased atrial superoxide levels, and enhanced propensity for induced persistent AF compared to wild type (WT) mice. Rescuing H2S signaling in CSE-KO mice by Diallyl trisulfide (DATS) supplementation or reconstitution with endothelial cell specific CSE over-expression significantly reduced atrial superoxide, increased sulfide levels, and lowered AF inducibility. Lastly, low H2S levels in CSE KO mice was associated with atrial electrical remodeling including longer effective refractory periods, slower conduction velocity, increased myocyte calcium sparks, and increased myocyte action potential duration that were reversed by DATS supplementation or endothelial CSE overexpression. Our findings demonstrate an important role of CSE and H2S bioavailability in regulating electrical remodeling and susceptibility to AF.
Collapse
Affiliation(s)
- Megan Watts
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Gopi K Kolluru
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Parinita Dherange
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Sibile Pardue
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Man Si
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States; The Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Xinggui Shen
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Krystle Trosclair
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States; The Department of Neurosurgery and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - John Glawe
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Zaki Al-Yafeai
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Mazen Iqbal
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Brenna H Pearson
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Kathryn A Hamilton
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - A Wayne Orr
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Edward Glasscock
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States; The Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Christopher G Kevil
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Paari Dominic
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States.
| |
Collapse
|
11
|
Abstract
Kv7 channels (Kv7.1-7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1-5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2-7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2-7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.
Collapse
Affiliation(s)
- Emely Thompson
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
12
|
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in humans and is a significant source of morbidity and mortality. Despite its prevalence, our mechanistic understanding is incomplete, the therapeutic options have limited efficacy, and are often fraught with risks. A better biological understanding of AF is needed to spearhead novel therapeutic avenues. Although "natural" AF is nearly nonexistent in most species, animal models have contributed significantly to our understanding of AF and some therapeutic options. However, the impediments of animal models are also apparent and stem largely from the differences in basic physiology as well as the complexities underlying human AF; these preclude the creation of a "perfect" animal model and have obviated the translation of animal findings. Herein, we review the vast array of AF models available, spanning the mouse heart (weighing 1/1000th of a human heart) to the horse heart (10× heavier than the human heart). We attempt to highlight the features of each model that bring value to our understanding of AF but also the shortcomings and pitfalls. Finally, we borrowed the concept of a SWOT analysis from the business community (which stands for strengths, weaknesses, opportunities, and threats) and applied this introspective type of analysis to animal models for AF. We identify unmet needs and stress that is in the context of rapidly advancing technologies, these present opportunities for the future use of animal models.
Collapse
Affiliation(s)
- Dominik Schüttler
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.).,Cardiac Arrhythmia Service, Division of Cardiology, Massachusetts General Hospital, Boston (A.B., W.J.H.)
| | - Stefan Kääb
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.)
| | - Kichang Lee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.)
| | - Philipp Tomsits
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - Sebastian Clauss
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - William J Hucker
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.).,Cardiac Arrhythmia Service, Division of Cardiology, Massachusetts General Hospital, Boston (A.B., W.J.H.)
| |
Collapse
|
13
|
Ragab AAY, Sitorus GDS, Brundel BBJJM, de Groot NMS. The Genetic Puzzle of Familial Atrial Fibrillation. Front Cardiovasc Med 2020; 7:14. [PMID: 32118049 PMCID: PMC7033574 DOI: 10.3389/fcvm.2020.00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Atrial fibrillation (AF) is the most common clinical tachyarrhythmia. In Europe, AF is expected to reach a prevalence of 18 million by 2060. This estimate will increase hospitalization for AF to 4 million and 120 million outpatient visits. Besides being an independent risk factor for mortality, AF is also associated with an increased risk of morbidities. Although there are many well-defined risk factors for developing AF, no identifiable risk factors or cardiac pathology is seen in up to 30% of the cases. The heritability of AF has been investigated in depth since the first report of familial atrial fibrillation (FAF) in 1936. Despite the limited value of animal models, the advances in molecular genetics enabled identification of many common and rare variants related to FAF. The importance of AF heritability originates from the high prevalence of lone AF and the lack of clear understanding of the underlying pathophysiology. A better understanding of FAF will facilitate early identification of people at high risk of developing FAF and subsequent development of more effective management options. In this review, we reviewed FAF epidemiological studies, identified common and rare variants, and discussed their clinical implications and contributions to developing new personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed A Y Ragab
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gustaf D S Sitorus
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bianca B J J M Brundel
- Department of Physiology, Institute for Cardiovascular Research, VU Medical Center, Amsterdam, Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
14
|
Qiao Y, Lipovsky C, Hicks S, Bhatnagar S, Li G, Khandekar A, Guzy R, Woo KV, Nichols CG, Efimov IR, Rentschler S. Transient Notch Activation Induces Long-Term Gene Expression Changes Leading to Sick Sinus Syndrome in Mice. Circ Res 2017; 121:549-563. [PMID: 28674041 DOI: 10.1161/circresaha.116.310396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE Notch signaling programs cardiac conduction during development, and in the adult ventricle, injury-induced Notch reactivation initiates global transcriptional and epigenetic changes. OBJECTIVE To determine whether Notch reactivation may stably alter atrial ion channel gene expression and arrhythmia inducibility. METHODS AND RESULTS To model an injury response and determine the effects of Notch signaling on atrial electrophysiology, we transiently activate Notch signaling within adult myocardium using a doxycycline-inducible genetic system (inducible Notch intracellular domain [iNICD]). Significant heart rate slowing and frequent sinus pauses are observed in iNICD mice when compared with controls. iNICD mice have structurally normal atria and preserved sinus node architecture, but expression of key transcriptional regulators of sinus node and atrial conduction, including Nkx2-5 (NK2 homeobox 5), Tbx3, and Tbx5 are dysregulated. To determine whether the induced electrical changes are stable, we transiently activated Notch followed by a prolonged washout period and observed that, in addition to decreased heart rate, atrial conduction velocity is persistently slower than control. Consistent with conduction slowing, genes encoding molecular determinants of atrial conduction velocity, including Scn5a (Nav1.5) and Gja5 (connexin 40), are persistently downregulated long after a transient Notch pulse. Consistent with the reduction in Scn5a transcript, Notch induces global changes in the atrial action potential, including a reduced dVm/dtmax. In addition, programmed electrical stimulation near the murine pulmonary vein demonstrates increased susceptibility to atrial arrhythmias in mice where Notch has been transiently activated. Taken together, these results suggest that transient Notch activation persistently alters ion channel gene expression and atrial electrophysiology and predisposes to an arrhythmogenic substrate. CONCLUSIONS Our data provide evidence that Notch signaling regulates transcription factor and ion channel gene expression within adult atrial myocardium. Notch reactivation induces electrical changes, resulting in sinus bradycardia, sinus pauses, and a susceptibility to atrial arrhythmias, which contribute to a phenotype resembling sick sinus syndrome.
Collapse
Affiliation(s)
- Yun Qiao
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Catherine Lipovsky
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Stephanie Hicks
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Somya Bhatnagar
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Gang Li
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Aditi Khandekar
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Robert Guzy
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Kel Vin Woo
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Colin G Nichols
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Igor R Efimov
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Stacey Rentschler
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.).
| |
Collapse
|
15
|
Regulation of human cardiac potassium channels by full-length KCNE3 and KCNE4. Sci Rep 2016; 6:38412. [PMID: 27922120 PMCID: PMC5138848 DOI: 10.1038/srep38412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022] Open
Abstract
Voltage-gated potassium (Kv) channels comprise pore-forming α subunits and a multiplicity of regulatory proteins, including the cardiac-expressed and cardiac arrhythmia-linked transmembrane KCNE subunits. After recently uncovering novel, N-terminally extended (L) KCNE3 and KCNE4 isoforms and detecting their transcripts in human atrium, reported here are their functional effects on human cardiac Kv channel α subunits expressed in Xenopus laevis oocytes. As previously reported for short isoforms KCNE3S and KCNE4S, KCNE3L inhibited hERG; KCNE4L inhibited Kv1.1; neither form regulated the HCN1 pacemaker channel. Unlike KCNE4S, KCNE4L was a potent inhibitor of Kv4.2 and Kv4.3; co-expression of cytosolic β subunit KChIP2, which regulates Kv4 channels in cardiac myocytes, partially relieved Kv4.3 but not Kv4.2 inhibition. Inhibition of Kv4.2 and Kv4.3 by KCNE3L was weaker, and its inhibition of Kv4.2 abolished by KChIP2. KCNE3L and KCNE4L also exhibited subunit-specific effects on Kv4 channel complex inactivation kinetics, voltage dependence and recovery. Further supporting the potential physiological significance of the robust functional effects of KCNE4L on Kv4 channels, KCNE4L protein was detected in human atrium, where it co-localized with Kv4.3. The findings establish functional effects of novel human cardiac-expressed KCNE isoforms and further contribute to our understanding of the potential mechanisms influencing cardiomyocyte repolarization.
Collapse
|
16
|
Abstract
Atrial fibrillation (AF) is an extremely prevalent arrhythmia that presents a wide range of therapeutic challenges. AF usually begins in a self-terminating paroxysmal form (pAF). With time, the AF pattern often evolves to become persistent (nonterminating within 7 days). Important differences exist between pAF and persistent AF in terms of clinical features, in particular the responsiveness to antiarrhythmic drugs and ablation therapy. AF mechanisms have been extensively reviewed, but few or no Reviews focus specifically on the pathophysiology of pAF. Accordingly, in this Review, we examine the available data on the electrophysiological basis for pAF occurrence and maintenance, as well as the molecular mechanisms forming the underlying substrate. We first consider the mechanistic insights that have been obtained from clinical studies in the electrophysiology laboratory, noninvasive observations, and genetic studies. We then discuss the information about underlying molecular mechanisms that has been obtained from experimental studies on animal models and patient samples. Finally, we discuss the data available from animal models with spontaneous AF presentation, their relationship to clinical findings, and their relevance to understanding the mechanisms underlying pAF. Our analysis then turns to potential factors governing cases of progression from pAF to persistent AF and the clinical implications of the basic mechanisms we review. We conclude by identifying and discussing questions that we consider particularly important to address through future research in this area.
Collapse
|
17
|
Pellman J, Sheikh F. Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr Physiol 2016; 5:649-65. [PMID: 25880508 DOI: 10.1002/cphy.c140047] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, affecting 1% to 2% of the general population. It is characterized by rapid and disorganized atrial activation leading to impaired atrial function, which can be diagnosed on an EKG by lack of a P-wave and irregular QRS complexes. AF is associated with increased morbidity and mortality and is a risk factor for embolic stroke and worsening heart failure. Current research on AF support and explore the hypothesis that initiation and maintenance of AF require pathophysiological remodeling of the atria, either specifically as in lone AF or secondary to other heart disease as in heart failure-associated AF. Remodeling in AF can be grouped into three categories that include: (i) electrical remodeling, which includes modulation of L-type Ca(2+) current, various K(+) currents and gap junction function; (ii) structural remodeling, which includes changes in tissues properties, size, and ultrastructure; and (iii) autonomic remodeling, including altered sympathovagal activity and hyperinnervation. Electrical, structural, and autonomic remodeling all contribute to creating an AF-prone substrate which is able to produce AF-associated electrical phenomena including a rapidly firing focus, complex multiple reentrant circuit or rotors. Although various remodeling events occur in AF, current AF therapies focus on ventricular rate and rhythm control strategies using pharmacotherapy and surgical interventions. Recent progress in the field has started to focus on the underlying substrate that drives and maintains AF (termed upstream therapies); however, much work is needed in this area. Here, we review current knowledge of AF mechanisms, therapies, and new areas of investigation.
Collapse
Affiliation(s)
- Jason Pellman
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
18
|
Agsten M, Hessler S, Lehnert S, Volk T, Rittger A, Hartmann S, Raab C, Kim DY, Groemer TW, Schwake M, Alzheimer C, Huth T. BACE1 modulates gating of KCNQ1 (Kv7.1) and cardiac delayed rectifier KCNQ1/KCNE1 (IKs). J Mol Cell Cardiol 2015; 89:335-48. [PMID: 26454161 DOI: 10.1016/j.yjmcc.2015.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/17/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
KCNQ1 (Kv7.1) proteins form a homotetrameric channel, which produces a voltage-dependent K(+) current. Co-assembly of KCNQ1 with the auxiliary β-subunit KCNE1 strongly up-regulates this current. In cardiac myocytes, KCNQ1/E1 complexes are thought to give rise to the delayed rectifier current IKs, which contributes to cardiac action potential repolarization. We report here that the type I membrane protein BACE1 (β-site APP-cleaving enzyme 1), which is best known for its detrimental role in Alzheimer's disease, but is also, as reported here, present in cardiac myocytes, serves as a novel interaction partner of KCNQ1. Using HEK293T cells as heterologous expression system to study the electrophysiological effects of BACE1 and KCNE1 on KCNQ1 in different combinations, our main findings were the following: (1) BACE1 slowed the inactivation of KCNQ1 current producing an increased initial response to depolarizing voltage steps. (2) Activation kinetics of KCNQ1/E1 currents were significantly slowed in the presence of co-expressed BACE1. (3) BACE1 impaired reconstituted cardiac IKs when cardiac action potentials were used as voltage commands, but interestingly augmented the IKs of ATP-deprived cells, suggesting that the effect of BACE1 depends on the metabolic state of the cell. (4) The electrophysiological effects of BACE1 on KCNQ1 reported here were independent of its enzymatic activity, as they were preserved when the proteolytically inactive variant BACE1 D289N was co-transfected in lieu of BACE1 or when BACE1-expressing cells were treated with the BACE1-inhibiting compound C3. (5) Co-immunoprecipitation and fluorescence recovery after photobleaching (FRAP) supported our hypothesis that BACE1 modifies the biophysical properties of IKs by physically interacting with KCNQ1 in a β-subunit-like fashion. Strongly underscoring the functional significance of this interaction, we detected BACE1 in human iPSC-derived cardiomyocytes and murine cardiac tissue and observed decreased IKs in atrial cardiomyocytes of BACE1-deficient mice.
Collapse
Affiliation(s)
- Marianne Agsten
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabine Hessler
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sandra Lehnert
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tilmann Volk
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andrea Rittger
- Institute of Biochemistry, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Stephanie Hartmann
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Raab
- Institute of Biochemistry, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Teja W Groemer
- Department of Psychiatry and Psychotherapy, University Hospital, 91054 Erlangen, Germany
| | - Michael Schwake
- Institute of Biochemistry, Christian-Albrechts-Universität, 24098 Kiel, Germany; Biochemie III, Fakultät für Chemie, Universität Bielefeld, 33501 Bielefeld, Germany
| | - Christian Alzheimer
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tobias Huth
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
19
|
Abbott GW. KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation. Gene 2015; 576:1-13. [PMID: 26410412 DOI: 10.1016/j.gene.2015.09.059] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
The human KCNE gene family comprises five genes encoding single transmembrane-spanning ion channel regulatory subunits. The primary function of KCNE subunits appears to be regulation of voltage-gated potassium (Kv) channels, and the best-understood KCNE complexes are with the KCNQ1 Kv α subunit. Here, we review the often opposite effects of KCNE1 and KCNE3 on Kv channel biology, with an emphasis on regulation of KCNQ1. Slow-activating IKs channel complexes formed by KCNQ1 and KCNE1 are essential for human ventricular myocyte repolarization, while constitutively active KCNQ1-KCNE3 channels are important in the intestine. Inherited sequence variants in human KCNE1 and KCNE3 cause cardiac arrhythmias but by different mechanisms, and each is important for hearing in unique ways. Because of their contrasting effects on KCNQ1 function, KCNE1 and KCNE3 have proved invaluable tools in the mechanistic understanding of how channel gating can be manipulated, and each may also provide a window into novel insights and new therapeutic opportunities in K(+) channel pharmacology. Finally, findings from studies of Kcne1(-/-) and Kcne3(-/-) mouse lines serve to illustrate the complexity of KCNE biology and KCNE-linked disease states.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Pharmacology and Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA; 360 Medical Surge II, Dept. of Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
The KCNE2 K⁺ channel regulatory subunit: Ubiquitous influence, complex pathobiology. Gene 2015; 569:162-72. [PMID: 26123744 DOI: 10.1016/j.gene.2015.06.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 02/05/2023]
Abstract
The KCNE single-span transmembrane subunits are encoded by five-member gene families in the human and mouse genomes. Primarily recognized for co-assembling with and functionally regulating the voltage-gated potassium channels, the broad influence of KCNE subunits in mammalian physiology belies their small size. KCNE2 has been widely studied since we first discovered one of its roles in the heart and its association with inherited and acquired human Long QT syndrome. Since then, physiological analyses together with human and mouse genetics studies have uncovered a startling array of functions for KCNE2, in the heart, stomach, thyroid and choroid plexus. The other side of this coin is the variety of interconnected disease manifestations caused by KCNE2 disruption, involving both excitable cells such as cardiomyocytes, and non-excitable, polarized epithelia. Kcne2 deletion in mice has been particularly instrumental in illustrating the potential ramifications within a monogenic arrhythmia syndrome, with removal of one piece revealing the unexpected complexity of the puzzle. Here, we review current knowledge of the function and pathobiology of KCNE2.
Collapse
|
21
|
Heijman J, Voigt N, Nattel S, Dobrev D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res 2014; 114:1483-99. [PMID: 24763466 DOI: 10.1161/circresaha.114.302226] [Citation(s) in RCA: 478] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common clinically relevant arrhythmia and is associated with increased morbidity and mortality. The incidence of AF is expected to continue to rise with the aging of the population. AF is generally considered to be a progressive condition, occurring first in a paroxysmal form, then in persistent, and then long-standing persistent (chronic or permanent) forms. However, not all patients go through every phase, and the time spent in each can vary widely. Research over the past decades has identified a multitude of pathophysiological processes contributing to the initiation, maintenance, and progression of AF. However, many aspects of AF pathophysiology remain incompletely understood. In this review, we discuss the cellular and molecular electrophysiology of AF initiation, maintenance, and progression, predominantly based on recent data obtained in human tissue and animal models. The central role of Ca(2+)-handling abnormalities in both focal ectopic activity and AF substrate progression is discussed, along with the underlying molecular basis. We also deal with the ionic determinants that govern AF initiation and maintenance, as well as the structural remodeling that stabilizes AF-maintaining re-entrant mechanisms and finally makes the arrhythmia refractory to therapy. In addition, we highlight important gaps in our current understanding, particularly with respect to the translation of these concepts to the clinical setting. Ultimately, a comprehensive understanding of AF pathophysiology is expected to foster the development of improved pharmacological and nonpharmacological therapeutic approaches and to greatly improve clinical management.
Collapse
Affiliation(s)
- Jordi Heijman
- From the Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany (J.H., N.V., D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (S.N.); and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (S.N.)
| | | | | | | |
Collapse
|
22
|
Okumura S, Fujita T, Cai W, Jin M, Namekata I, Mototani Y, Jin H, Ohnuki Y, Tsuneoka Y, Kurotani R, Suita K, Kawakami Y, Hamaguchi S, Abe T, Kiyonari H, Tsunematsu T, Bai Y, Suzuki S, Hidaka Y, Umemura M, Ichikawa Y, Yokoyama U, Sato M, Ishikawa F, Izumi-Nakaseko H, Adachi-Akahane S, Tanaka H, Ishikawa Y. Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J Clin Invest 2014; 124:2785-801. [PMID: 24892712 DOI: 10.1172/jci64784] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PKA phosphorylates multiple molecules involved in calcium (Ca2+) handling in cardiac myocytes and is considered to be the predominant regulator of β-adrenergic receptor-mediated enhancement of cardiac contractility; however, recent identification of exchange protein activated by cAMP (EPAC), which is independently activated by cAMP, has challenged this paradigm. Mice lacking Epac1 (Epac1 KO) exhibited decreased cardiac contractility with reduced phospholamban (PLN) phosphorylation at serine-16, the major PKA-mediated phosphorylation site. In Epac1 KO mice, intracellular Ca2+ storage and the magnitude of Ca2+ movement were decreased; however, PKA expression remained unchanged, and activation of PKA with isoproterenol improved cardiac contractility. In contrast, direct activation of EPAC in cardiomyocytes led to increased PLN phosphorylation at serine-16, which was dependent on PLC and PKCε. Importantly, Epac1 deletion protected the heart from various stresses, while Epac2 deletion was not protective. Compared with WT mice, aortic banding induced a similar degree of cardiac hypertrophy in Epac1 KO; however, lack of Epac1 prevented subsequent cardiac dysfunction as a result of decreased cardiac myocyte apoptosis and fibrosis. Similarly, Epac1 KO animals showed resistance to isoproterenol- and aging-induced cardiomyopathy and attenuation of arrhythmogenic activity. These data support Epac1 as an important regulator of PKA-independent PLN phosphorylation and indicate that Epac1 regulates cardiac responsiveness to various stresses.
Collapse
|
23
|
Crump SM, Abbott GW. Arrhythmogenic KCNE gene variants: current knowledge and future challenges. Front Genet 2014; 5:3. [PMID: 24478792 PMCID: PMC3900874 DOI: 10.3389/fgene.2014.00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/04/2014] [Indexed: 11/13/2022] Open
Abstract
There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking, and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances.
Collapse
Affiliation(s)
- Shawn M Crump
- Bioelectricity Laboratory, Department of Pharmacology, Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Pharmacology, Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA, USA
| |
Collapse
|
24
|
Jia X, Zheng S, Xie X, Zhang Y, Wang W, Wang Z, Zhang Y, Wang J, Gao M, Hou Y. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model. PLoS One 2013; 8:e85639. [PMID: 24386485 PMCID: PMC3875574 DOI: 10.1371/journal.pone.0085639] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 12/05/2013] [Indexed: 01/08/2023] Open
Abstract
Background The potential mechanisms of microRNA-1 (miR-1) in the electrical remodeling of atrial fibrillation remain unclear. The purpose of this study was to evaluate the effects of miR-1 on the atrial effective refractory period (AERP) in a right atrial tachypacing model and to elucidate the potential mechanisms. Methods and Results QRT-PCR and western blot were used to detect the expression of the miR-1, KCNE1, and KCNB2 genes after 1-week of right atrial tachypacing in New Zealand white rabbits. The AERP was measured using a programmable multichannel stimulator, and atrial fibrillation was induced by burst stimulation invivo. The slowly activating delayed rectifier potassium current (IKs) and AERP in atrial cells were measured by whole cell patch clamp invitro. Right atrial tachypacing upregulated miR-1 expression and downregulated KCNE1 and KCNB2 in this study, while the AERP was decreased and the atrial IKs increased. The downregulation of KCNE1 and KCNB2 levels was greater when miR-1 was further upregulated through invivo lentiviral infection. Electrophysiological tests indicated a shorter AERP, a great increase in the IKs and a higher atrial fibrillation inducibility. In addition, similar results were found when the levels of KCNE1 and KCNB2 were downregulated by smallinterferingRNA while keeping miR-1 level unaltered. Conversely, knockdown of miR-1 by anti-miR-1 inhibitor oligonucleotides alleviated the downregulation of KCNE1 and KCNB2, the shortening of AERP, and the increase in the IKs. KCNE1 and KCNB2 as the target genes for miR-1 were confirmed by luciferase activity assay. Conclusions These results indicate that miR-1 accelerates right atrial tachypacing-induced AERP shortening by targeting potassium channel genes, which further suggests that miR-1 plays an important role in the electrical remodeling of atrial fibrillation and exhibits significant clinical relevance as a potential therapeutic target for atrial fibrillation.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohua Zheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Xinxing Xie
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yujiao Zhang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Weizong Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Zhongsu Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Zhang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Jiangrong Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Mei Gao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
25
|
Sachse CC, Kim YH, Agsten M, Huth T, Alzheimer C, Kovacs DM, Kim DY. BACE1 and presenilin/γ-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels. FASEB J 2013; 27:2458-67. [PMID: 23504710 DOI: 10.1096/fj.12-214056] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACE1 and presenilin (PS)/γ-secretase play a major role in Alzheimer's disease pathogenesis by regulating amyloid-β peptide generation. We recently showed that these secretases also regulate the processing of voltage-gated sodium channel auxiliary β-subunits and thereby modulate membrane excitability. Here, we report that KCNE1 and KCNE2, auxiliary subunits of voltage-gated potassium channels, undergo sequential cleavage mediated by either α-secretase and PS/γ-secretase or BACE1 and PS/γ-secretase in cells. Elevated α-secretase or BACE1 activities increased C-terminal fragment (CTF) levels of KCNE1 and 2 in human embryonic kidney (HEK293T) and rat neuroblastoma (B104) cells. KCNE-CTFs were then further processed by PS/γ-secretase to KCNE intracellular domains. These KCNE cleavages were specifically blocked by chemical inhibitors of the secretases in the same cell models. We also verified our results in mouse cardiomyocytes and cultured primary neurons. Endogenous KCNE1- and KCNE2-CTF levels increased by 2- to 4-fold on PS/γ-secretase inhibition or BACE1 overexpression in these cells. Furthermore, the elevated BACE1 activity increased KCNE1 processing and shifted KCNE1/KCNQ1 channel activation curve to more positive potentials in HEK cells. KCNE1/KCNQ1 channel is a cardiac potassium channel complex, and the positive shift would lead to a decrease in membrane repolarization during cardiac action potential. Together, these results clearly showed that KCNE1 and KCNE2 cleavages are regulated by BACE1 and PS/γ-secretase activities under physiological conditions. Our results also suggest a functional role of KCNE cleavage in regulating voltage-gated potassium channels.
Collapse
Affiliation(s)
- Carolyn C Sachse
- Neurobiology of Disease Laboratory, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Köhncke C, Lisewski U, Schleußner L, Gaertner C, Reichert S, Roepke TK. Isolation and Kv channel recordings in murine atrial and ventricular cardiomyocytes. J Vis Exp 2013:e50145. [PMID: 23524949 DOI: 10.3791/50145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
KCNE genes encode for a small family of Kv channel ancillary subunits that form heteromeric complexes with Kv channel alpha subunits to modify their functional properties. Mutations in KCNE genes have been found in patients with cardiac arrhythmias such as the long QT syndrome and/or atrial fibrillation. However, the precise molecular pathophysiology that leads to these diseases remains elusive. In previous studies the electrophysiological properties of the disease causing mutations in these genes have mostly been studied in heterologous expression systems and we cannot be sure if the reported effects can directly be translated into native cardiomyocytes. In our laboratory we therefore use a different approach. We directly study the effects of KCNE gene deletion in isolated cardiomyocytes from knockout mice by cellular electrophysiology - a unique technique that we describe in this issue of the Journal of Visualized Experiments. The hearts from genetically engineered KCNE mice are rapidly excised and mounted onto a Langendorff apparatus by aortic cannulation. Free Ca(2+) in the myocardium is bound by EGTA, and dissociation of cardiac myocytes is then achieved by retrograde perfusion of the coronary arteries with a specialized low Ca(2+) buffer containing collagenase. Atria, free right ventricular wall and the left ventricle can then be separated by microsurgical techniques. Calcium is then slowly added back to isolated cardiomyocytes in a multiple step comprising washing procedure. Atrial and ventricular cardiomyocytes of healthy appearance with no spontaneous contractions are then immediately subjected to electrophysiological analyses by patch clamp technique or other biochemical analyses within the first 6 hours following isolation.
Collapse
Affiliation(s)
- Clemens Köhncke
- Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbrück Center for Molecular Medicine
| | | | | | | | | | | |
Collapse
|
27
|
Abbott GW. KCNE genetics and pharmacogenomics in cardiac arrhythmias: much ado about nothing? Expert Rev Clin Pharmacol 2013; 6:49-60. [PMID: 23272793 PMCID: PMC4917007 DOI: 10.1586/ecp.12.76] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Voltage-gated ion channels respond to changes in membrane potential with conformational shifts that either facilitate or stem the movement of charged ions across the cell membrane. This controlled movement of ions is particularly important for the action potentials of excitable cells such as cardiac myocytes and therefore essential for timely beating of the heart. Inherited mutations in ion channel genes and in the genes encoding proteins that regulate them can cause lethal cardiac arrhythmias either by direct channel disruption or by altering interactions with therapeutic drugs, the best-understood example of both these scenarios being long QT syndrome (LQTS). Unsurprisingly, mutations in the genes encoding ion channel pore-forming α subunits underlie the large majority (~90%) of identified cases of inherited LQTS. Given that inherited LQTS is comparatively rare in itself (~0.04% of the US population), is pursuing study of the remaining known and unknown LQTS-associated genes subject to the law of diminishing returns? Here, with a particular focus on the KCNE family of single transmembrane domain K(+) channel ancillary subunits, the significance to cardiac pharmacogenetics of ion channel regulatory subunits is discussed.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Department of Pharmacology, Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW A substantial genetic contribution to the etiology of atrial fibrillation has emerged in the last decade, and has bolstered links between this arrhythmia and other forms of heart disease. In this article, we will summarize the work that has defined the inherited diathesis toward atrial fibrillation, outline the genetic studies to date, and characterize the roadblocks to a complete mechanistic understanding of this common arrhythmia. RECENT FINDINGS Clinical genetic work has demonstrated a large heritable contribution in atrial fibrillation, with studies in lone forms of the arrhythmia suggesting a traditional monogenic syndrome with reduced penetrance. Several Mendelian loci for typical forms of atrial fibrillation have been identified but the genes have not yet been cloned. Rare forms of familial atrial fibrillation are caused by mutations in potassium channel genes, and there are single families with mutations in a nuclear pore and a natriuretic peptide gene, respectively. Common loci with small effects are now being identified in genome-wide association (GWA) studies, including a locus on chromosome 4q25. These loci explain less than 10% of the inherited contribution to the arrhythmia, suggesting there are major contributions that have not yet been uncovered. SUMMARY Although great strides have been made in exploring the genetics of atrial fibrillation, the paroxysmal and asymptomatic nature of the phenotype challenges investigators as they seek the mechanistic basis of the arrhythmia.
Collapse
|
29
|
Riley G, Syeda F, Kirchhof P, Fabritz L. An introduction to murine models of atrial fibrillation. Front Physiol 2012; 3:296. [PMID: 22934047 PMCID: PMC3429067 DOI: 10.3389/fphys.2012.00296] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/08/2012] [Indexed: 01/28/2023] Open
Abstract
Understanding the mechanism of re-entrant arrhythmias in the past 30 years has allowed the development of almost curative therapies for many rhythm disturbances. The complex, polymorphic arrhythmias of atrial fibrillation (AF) and sudden death are, unfortunately, not yet well understood, and hence still in need of adequate therapy. AF contributes markedly to morbidity and mortality in aging Western populations. In the past decade, many genetically altered murine models have been described and characterized. Here, we review genetically altered murine models of AF; powerful tools that will enable a better understanding of the mechanisms of AF and the assessment of novel therapeutic interventions.
Collapse
Affiliation(s)
- Genna Riley
- Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, University of Birmingham Birmingham, UK
| | | | | | | |
Collapse
|
30
|
Heerdt PM, Kant R, Hu Z, Kanda VA, Christini DJ, Malhotra JK, Abbott GW. Transcriptomic analysis reveals atrial KCNE1 down-regulation following lung lobectomy. J Mol Cell Cardiol 2012; 53:350-3. [PMID: 22641150 DOI: 10.1016/j.yjmcc.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 01/30/2023]
Abstract
Lone atrial fibrillation (AF) is associated with various ion channel gene sequence variants, notably the common S38G loss-of-function polymorphism in the KCNE1 K(+) channel ancillary subunit gene. New-onset postoperative AF (POAF) generally occurs 48-72 h after major surgery, particularly following procedures within the chest, but its molecular bases remain poorly understood. To begin to address this gap in knowledge, we analyzed molecular changes in the left atrium (LA) in relation to simultaneous changes in hemodynamics, LA effective refractory period (ERP), and the capacity to sustain electrically-induced AF following left upper lung lobectomy in swine. Relative to control pigs (no previous surgery), 3 days after lobectomy higher values for mean pulmonary artery pressure (16 ± 1 vs 22 ± 2 mmHg; P=0.045) and pulmonary vascular resistance (273 ± 47 vs 481 ± 63 dyns/cm(5); P=0.025) were evident, whereas other hemodynamic variables were unchanged. LA ERP trended toward reduction in lobectomy animals (187 ± 16 vs 170 ± 20 ms, P>0.05). None of the lobectomy pigs developed spontaneous POAF as assessed by telemetric ECG. However, all lobectomy pigs, but none of the controls, were able to sustain AF induced by a 10s burst of rapid pacing for ≥ 30 s (P=0.0079), independent of LA ERP; AF was sustained ≥ 60s in 3/5 postoperative pigs versus 0/5 controls and correlated with a shorter ERP overall (P=0.023). Transcriptomic analysis of LA tissue revealed 23 up-regulated and 10 down-regulated transcripts (≥ 1.5-fold, P<0.05) in lobectomy pigs. Strikingly, of the latter, KCNE1 down-regulation showed the statistically strongest link to surgery (2.0-fold, P=0.009), recapitulated at the protein level with Western blotting (P=0.039), suggesting KCNE1 down-regulation as a possible common mechanistic factor in POAF and lone AF. Of the up-regulated transcripts, while Teneurin-2 was the strongest linked (1.5-fold change, P=0.001), DSCR5 showed the highest induction (2.7-fold, P=0.02); this and other hits will be targeted in future functional studies.
Collapse
Affiliation(s)
- Paul M Heerdt
- Dept. of Anesthesiology, Weill Cornell Medical College, 1300 York Ave., New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Xiao J, Liang D, Chen YH. The genetics of atrial fibrillation: from the bench to the bedside. Annu Rev Genomics Hum Genet 2011; 12:73-96. [PMID: 21682648 DOI: 10.1146/annurev-genom-082410-101515] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atrial fibrillation (AF) has become a growing global epidemic and a financial burden for society. The past 10 years have seen significant advances in our understanding of the genetic aspects of AF: At least 2 chromosomal loci and 17 causal genes have been identified in familial AF, and an additional 7 common variants and single-nucleotide polymorphisms in 11 different genes have been indicated in nonfamilial AF. However, the current management strategies for AF are suboptimal. The integration of genetic information into clinical practice may aid the early identification of AF patients who are at risk as well as the characterization of molecular pathways that culminate in AF, with the eventual result of better treatment. Never before has such an opportunity arisen to advance our understanding of the biology of AF through the translation of genetics findings from the bench to the bedside.
Collapse
Affiliation(s)
- Junjie Xiao
- Key Laboratory of Arrhythmias, Ministry of Education, and Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | | | | |
Collapse
|
32
|
Zigel Y, Mor M, Tzvi E, Tsviling V, Gil O, Katz A, Etzion Y. A Surface ECG-Based Algorithm to Determine the Atrial Refractoriness of Rodents During Electrophysiological Study. Cardiovasc Eng Technol 2011. [DOI: 10.1007/s13239-011-0055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 2011; 91:265-325. [PMID: 21248168 DOI: 10.1152/physrev.00031.2009] [Citation(s) in RCA: 863] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia that can occur as the result of numerous different pathophysiological processes in the atria. Some aspects of the morphological and electrophysiological alterations promoting AF have been studied extensively in animal models. Atrial tachycardia or AF itself shortens atrial refractoriness and causes loss of atrial contractility. Aging, neurohumoral activation, and chronic atrial stretch due to structural heart disease activate a variety of signaling pathways leading to histological changes in the atria including myocyte hypertrophy, fibroblast proliferation, and complex alterations of the extracellular matrix including tissue fibrosis. These changes in electrical, contractile, and structural properties of the atria have been called "atrial remodeling." The resulting electrophysiological substrate is characterized by shortening of atrial refractoriness and reentrant wavelength or by local conduction heterogeneities caused by disruption of electrical interconnections between muscle bundles. Under these conditions, ectopic activity originating from the pulmonary veins or other sites is more likely to occur and to trigger longer episodes of AF. Many of these alterations also occur in patients with or at risk for AF, although the direct demonstration of these mechanisms is sometimes challenging. The diversity of etiological factors and electrophysiological mechanisms promoting AF in humans hampers the development of more effective therapy of AF. This review aims to give a translational overview on the biological basis of atrial remodeling and the proarrhythmic mechanisms involved in the fibrillation process. We pay attention to translation of pathophysiological insights gained from in vitro experiments and animal models to patients. Also, suggestions for future research objectives and therapeutical implications are discussed.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, University Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Workman AJ, Smith GL, Rankin AC. Mechanisms of termination and prevention of atrial fibrillation by drug therapy. Pharmacol Ther 2011; 131:221-41. [PMID: 21334377 DOI: 10.1016/j.pharmthera.2011.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/13/2023]
Abstract
Atrial fibrillation (AF) is a disorder of the rhythm of electrical activation of the cardiac atria. It is the most common cardiac arrhythmia, has multiple aetiologies, and increases the risk of death from stroke. Pharmacological therapy is the mainstay of treatment for AF, but currently available anti-arrhythmic drugs have limited efficacy and safety. An improved understanding of how anti-arrhythmic drugs affect the electrophysiological mechanisms of AF initiation and maintenance, in the setting of the different cardiac diseases that predispose to AF, is therefore required. A variety of animal models of AF has been developed, to represent and control the pathophysiological causes and risk factors of AF, and to permit the measurement of detailed and invasive parameters relating to the associated electrophysiological mechanisms of AF. The purpose of this review is to examine, consolidate and compare available relevant data on in-vivo electrophysiological mechanisms of AF suppression by currently approved and investigational anti-arrhythmic drugs in such models. These include the Vaughan Williams class I-IV drugs, namely Na(+) channel blockers, β-adrenoceptor antagonists, action potential prolonging drugs, and Ca(2+) channel blockers; the "upstream therapies", e.g., angiotensin converting enzyme inhibitors, statins and fish oils; and a variety of investigational drugs such as "atrial-selective" multiple ion channel blockers, gap junction-enhancers, and intracellular Ca(2+)-handling modulators. It is hoped that this will help to clarify the main electrophysiological mechanisms of action of different and related drug types in different disease settings, and the likely clinical significance and potential future exploitation of such mechanisms.
Collapse
Affiliation(s)
- A J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom.
| | | | | |
Collapse
|
35
|
Mahida S, Lubitz SA, Rienstra M, Milan DJ, Ellinor PT. Monogenic atrial fibrillation as pathophysiological paradigms. Cardiovasc Res 2010; 89:692-700. [PMID: 21123219 DOI: 10.1093/cvr/cvq381] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm abnormality and represents a major burden, both to patients and to health-care systems. In recent years, increasing evidence from population-based studies has demonstrated that AF is a heritable condition. Although familial forms of AF have been recognized for many years, they represent a rare subtype of the arrhythmia. However, despite their limited prevalence, the identification of mutations in monogenic AF kindreds has provided valuable insights into the molecular pathways underlying the arrhythmia and a framework for investigating AF encountered in the general population. In contrast to these rare families, the typical forms of AF occurring in the community are likely to be multigenic and have significant environmental influences. Recently, genome-wide association studies have uncovered common sequence variants that confer increased susceptibility to the arrhythmia. In the future, the elucidation of the genetic substrate underlying both familial and more typical forms of AF will hopefully lead to the development of novel diagnostic tools as well as more targeted rhythm control strategies. In this article, we will focus on monogenic forms of AF and also provide an overview of case-control association studies for AF.
Collapse
Affiliation(s)
- Saagar Mahida
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | |
Collapse
|
36
|
Dautova Y, Zhang Y, Grace AA, Huang CLH. Experimental Physiology -Research Paper: Atrial arrhythmogenic properties in wild-type andScn5a+/− murine hearts. Exp Physiol 2010; 95:994-1007. [DOI: 10.1113/expphysiol.2010.053868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Abstract
Since the first discovery of Kvbeta-subunits more than 15 years ago, many more ancillary Kv channel subunits were characterized, for example, KChIPs, KCNEs, and BKbeta-subunits. The ancillary subunits are often integral parts of native Kv channels, which, therefore, are mostly multiprotein complexes composed of voltage-sensing and pore-forming Kvalpha-subunits and of ancillary or beta-subunits. Apparently, Kv channels need the ancillary subunits to fulfill their many different cell physiological roles. This is reflected by the large structural diversity observed with ancillary subunit structures. They range from proteins with transmembrane segments and extracellular domains to purely cytoplasmic proteins. Ancillary subunits modulate Kv channel gating but can also have a great impact on channel assembly, on channel trafficking to and from the cellular surface, and on targeting Kv channels to different cellular compartments. The importance of the role of accessory subunits is further emphasized by the number of mutations that are associated in both humans and animals with diseases like hypertension, epilepsy, arrhythmogenesis, periodic paralysis, and hypothyroidism. Interestingly, several ancillary subunits have in vitro enzymatic activity; for example, Kvbeta-subunits are oxidoreductases, or modulate enzymatic activity, i.e., KChIP3 modulates presenilin activity. Thus different modes of beta-subunit association and of functional impact on Kv channels can be delineated, making it difficult to extract common principles underlying Kvalpha- and beta-subunit interactions. We critically review present knowledge on the physiological role of ancillary Kv channel subunits and their effects on Kv channel properties.
Collapse
Affiliation(s)
- Olaf Pongs
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
38
|
Mansén A, Tiselius C, Sand P, Fauconnier J, Westerblad H, Rydqvist B, Vennström B. Thyroid hormone receptor alpha can control action potential duration in mouse ventricular myocytes through the KCNE1 ion channel subunit. Acta Physiol (Oxf) 2010; 198:133-42. [PMID: 19832729 DOI: 10.1111/j.1748-1716.2009.02052.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The reduced heart rate and prolonged QT(end) duration in mice deficient in thyroid hormone receptor (TR) alpha1 may involve aberrant expression of the K(+) channel alpha-subunit KCNQ1 and its regulatory beta-subunit KCNE1. Here we focus on KCNE1 and study whether increased KCNE1 expression can explain changes in cardiac function observed in TRalpha1-deficient mice. METHODS TR-deficient, KCNE1-overexpressing and their respective wildtype (wt) mice were used. mRNA and protein expression were assessed with Northern and Western blot respectively. Telemetry was used to record electrocardiogram and temperature in freely moving mice. Patch-clamp was used to measure action potentials (APs) in isolated cardiomyocytes and ion currents in Chinese hamster ovary (CHO) cells. RESULTS KCNE1 was four to 10-fold overexpressed in mice deficient in TRalpha1. Overexpression of KCNE1 with a heart-specific promoter in transgenic mice resulted in a cardiac phenotype similar to that in TRalpha1-deficient mice, including a lower heart rate and prolonged QT(end) time. Cardiomyocytes from KCNE1-overexpressing mice displayed increased AP duration. CHO cells transfected with expression plasmids for KCNQ1 and KCNE1 showed an outward rectifying current that was maximal at equimolar plasmids for KCNQ1-KCNE1 and decreased at higher KCNE1 levels. CONCLUSION The bradycardia and prolonged QT(end) time in hypothyroid states can be explained by altered K(+) channel function due to decreased TRalpha1-dependent repression of KCNE1 expression.
Collapse
Affiliation(s)
- A Mansén
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Nishida K, Michael G, Dobrev D, Nattel S. Animal models for atrial fibrillation: clinical insights and scientific opportunities. Europace 2009; 12:160-72. [PMID: 19875395 DOI: 10.1093/europace/eup328] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. A variety of animal models have been used to study the pathophysiology of AF, including molecular basis, ion-current determinants, anatomical features, and macroscopic mechanisms. In addition, animal models play a key role in the development of new therapeutic approaches, whether drug-based, molecular therapeutics, or device-related. This article discusses the various types of animal models that have been used for AF research, reviews the principle mechanisms governing atrial arrhythmias in each model, and provides some guidelines for model selection for various purposes.
Collapse
Affiliation(s)
- Kunihiro Nishida
- Department of Medicine, Montréal Heart Institute, Université de Montréal, Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
40
|
Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat Med 2009; 15:1186-94. [PMID: 19767733 PMCID: PMC2790327 DOI: 10.1038/nm.2029] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 08/19/2009] [Indexed: 01/22/2023]
Abstract
Thyroid dysfunction affects 1–4% of the population worldwide, causing defects including neurodevelopmental disorders, dwarfism and cardiac arrhythmia. Here, we show that KCNQ1 and KCNE2 form a TSH-stimulated, constitutively-active, thyrocyte K+ channel required for normal thyroid hormone biosynthesis. Targeted disruption of Kcne2 impaired thyroid iodide accumulation up to 8-fold, impaired maternal milk ejection and halved milk T4 content, causing hypothyroidism, 50% reduced litter size, dwarfism, alopecia, goiter, and cardiac abnormalities including hypertrophy, fibrosis, and reduced fractional shortening. The alopecia, dwarfism and cardiac abnormalities were alleviated by T3/T4 administration to pups, by supplementing dams with T4 pre- and postpartum, or by pre-weaning surrogacy with Kcne2+/+ dams; conversely these symptoms were elicited in Kcne2+/+ pups by surrogacy with Kcne2−/− dams. The data identify a critical thyrocyte K+ channel, provide a possible novel therapeutic avenue for thyroid disorders, and predict an endocrine component to some previously-identified KCNE2- and KCNQ1-linked human cardiac arrhythmias.
Collapse
|
41
|
Pretorius L, Du XJ, Woodcock EA, Kiriazis H, Lin RCY, Marasco S, Medcalf RL, Ming Z, Head GA, Tan JW, Cemerlang N, Sadoshima J, Shioi T, Izumo S, Lukoshkova EV, Dart AM, Jennings GL, McMullen JR. Reduced phosphoinositide 3-kinase (p110alpha) activation increases the susceptibility to atrial fibrillation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:998-1009. [PMID: 19679877 DOI: 10.2353/ajpath.2009.090126] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia presenting at cardiology departments. A limited understanding of the molecular mechanisms responsible for the development of AF has hindered treatment strategies. The purpose of this study was to assess whether reduced activation of phosphoinositide 3-kinase (PI3K, p110alpha) makes the compromised heart susceptible to AF. Risk factors for AF, including aging, obesity, and diabetes, have been associated with insulin resistance that leads to depressed/defective PI3K signaling. However, to date, there has been no link between PI3K(p110alpha) and AF. To address this question, we crossed a cardiac-specific transgenic mouse model of dilated cardiomyopathy (DCM) with a cardiac-specific transgenic mouse expressing a dominant negative mutant of PI3K (dnPI3K; reduces PI3K activity). Adult ( approximately 4.5 months) double-transgenic (dnPI3K-DCM), single-transgenic (DCM-Tg, dnPI3K-Tg), and nontransgenic mice were subjected to morphological, functional/ECG, microarray, and biochemical analyses. dnPI3K-DCM mice developed AF and had depressed cardiac function as well as greater atrial enlargement and fibrosis than DCM-Tg mice. AF was not detected in other groups. Aged DCM-Tg mice ( approximately 15 months) with a similar phenotype to dnPI3K-DCM mice (4.5 months) did not develop AF, suggesting loss of PI3K activity directly contributed to the AF phenotype. Furthermore, increasing PI3K activity reduced atrial fibrosis and improved cardiac conduction in DCM-Tg mice. Finally, in atrial appendages from patients with AF, PI3K activation was lower compared with tissue from patients in sinus rhythm. These results suggest a link between PI3K(p110alpha) and AF.
Collapse
Affiliation(s)
- Lynette Pretorius
- Baker IDI Heart and Diabetes Institute, St. Kilda Rd. Central, Melbourne, Victoria 8008, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Regulation of the Kv2.1 potassium channel by MinK and MiRP1. J Membr Biol 2009; 228:1-14. [PMID: 19219384 DOI: 10.1007/s00232-009-9154-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 01/13/2009] [Indexed: 12/17/2022]
Abstract
Kv2.1 is a voltage-gated potassium (Kv) channel alpha-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single-transmembrane domain ancillary subunits that form complexes with Kv channel alpha-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N-MinK and S74L-MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1-Kv2.1 complexes, channels formed with M54T- or I57T-MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms.
Collapse
|
43
|
Dautova Y, Zhang Y, Sabir I, Grace AA, Huang CLH. Atrial arrhythmogenesis in wild-type and Scn5a+/delta murine hearts modelling LQT3 syndrome. Pflugers Arch 2009; 458:443-57. [PMID: 19184093 PMCID: PMC2691533 DOI: 10.1007/s00424-008-0633-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/25/2008] [Indexed: 01/02/2023]
Abstract
Long QT(3) (LQT3) syndrome is associated with abnormal repolarisation kinetics, prolonged action potential durations (APD) and QT intervals and may lead to life-threatening ventricular arrhythmias. However, there have been few physiological studies of its effects on atrial electrophysiology. Programmed electrical stimulation and burst pacing induced atrial arrhythmic episodes in 16 out of 16 (16/16) wild-type (WT) and 7/16 genetically modified Scn5a+/Δ (KPQ) Langendorff-perfused murine hearts modelling LQT3 (P < 0.001 for both), and in 14/16 WT and 1/16 KPQ hearts (P < 0.001 for both; Fisher’s exact test), respectively. The arrhythmogenic WT hearts had significantly larger positive critical intervals (CI), given by the difference between atrial effective refractory periods (AERPs) and action potential durations at 90% recovery (APD90), compared to KPQ hearts (8.1 and 3.2 ms, respectively, P < 0.001). Flecainide prevented atrial arrhythmias in all arrhythmogenic WT (P < 0.001) and KPQ hearts (P < 0.05). It prolonged the AERP to a larger extent than it did the APD90 in both WT and KPQ groups, giving negative CIs. Quinidine similarly exerted anti-arrhythmic effects, prolonged AERP over corresponding APD90 in both WT and KPQ groups. These findings, thus, demonstrate, for the first time, inhibitory effects of the KPQ mutation on atrial arrhythmogenesis and its modification by flecainide and quinidine. They attribute these findings to differences in the CI between WT and mutant hearts, in the presence or absence of these drugs. Thus, prolongation of APD90 over AERP gave positive CI values and increased atrial arrhythmogenicity whereas lengthening of AERP over APD90 reduced such CI values and produced the opposite effect.
Collapse
Affiliation(s)
- Yana Dautova
- Cardiovascular Biology Group, Physiological Laboratory, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
44
|
Tsai CT, Lai LP, Hwang JJ, Lin JL, Chiang FT. Molecular genetics of atrial fibrillation. J Am Coll Cardiol 2008; 52:241-50. [PMID: 18634977 DOI: 10.1016/j.jacc.2008.02.072] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/29/2008] [Accepted: 02/19/2008] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. There is genetic predisposition for the development of AF. Recently, by linkage analysis, several loci have been mapped for monogenetic AF, including 11p15.5, 21q22, 17q, 7q35-36, 5p13, 6q14-16, and 10q22. Some of these loci encode for subunits of potassium channels (KCNQ1, KCNE2, KCNJ2, and KCNH2 genes), and the remaining are yet unidentified. All of the known mutations are associated with a gain of function of repolarization potassium currents, resulting in a shortening of action potential duration and atrial refractory period, which facilitate multiple re-entrant circuits in AF. In addition to familial AF, common AF often occurs in association with acquired diseases such as hypertension, valvular heart disease, and heart failure. By genetic association study, some genetic variants or polymorphisms related to the mechanism of AF have been found to be associated with common AF, including genes encoding for subunits of potassium or sodium channels, sarcolipin gene, renin-angiotensin system gene, connexin-40 gene, endothelial nitric oxide synthase gene, and interleukin-10 gene. These observations suggest that genes related to ionic channels, calcium handling protein, fibrosis, conduction and inflammation play important roles in the pathogenesis of common AF. The complete elucidation of genetic loci for common AF is still in its infancy. However, the availability of genomewide scans with hundreds or thousands of polymorphisms has made it possible. However, challenges and pitfalls exist in association studies, and consideration of particular features of study design is necessary before making definite conclusions from these studies.
Collapse
Affiliation(s)
- Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
45
|
Abstract
The heart automaticity is a fundamental physiological function in higher organisms. The spontaneous activity is initiated by specialized populations of cardiac cells generating periodical electrical oscillations. The exact cascade of steps initiating the pacemaker cycle in automatic cells has not yet been entirely elucidated. Nevertheless, ion channels and intracellular Ca(2+) signaling are necessary for the proper setting of the pacemaker mechanism. Here, we review the current knowledge on the cellular mechanisms underlying the generation and regulation of cardiac automaticity. We discuss evidence on the functional role of different families of ion channels in cardiac pacemaking and review recent results obtained on genetically engineered mouse strains displaying dysfunction in heart automaticity. Beside ion channels, intracellular Ca(2+) release has been indicated as an important mechanism for promoting automaticity at rest as well as for acceleration of the heart rate under sympathetic nerve input. The potential links between the activity of ion channels and Ca(2+) release will be discussed with the aim to propose an integrated framework of the mechanism of automaticity.
Collapse
Affiliation(s)
- Matteo E Mangoni
- Institute of Functional Genomics, Department of Physiology, Centre National de la Recherche Scientifique UMR5203, INSERM U661, University of Montpellier I and II, Montpellier, France.
| | | |
Collapse
|
46
|
Etzion Y, Mor M, Shalev A, Dror S, Etzion O, Dagan A, Beharier O, Moran A, Katz A. New insights into the atrial electrophysiology of rodents using a novel modality: the miniature-bipolar hook electrode. Am J Physiol Heart Circ Physiol 2008; 295:H1460-9. [PMID: 18660446 DOI: 10.1152/ajpheart.00414.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies of atrial electrophysiology (EP) in rodents are challenging, and available data are sparse. Herein, we utilized a novel type of bipolar electrode to evaluate the atrial EP of rodents through small lateral thoracotomy. In anesthetized rats and mice, we attached two bipolar electrodes to the right atrium and a third to the right ventricle. This standard setup enabled high-resolution EP studies. Moreover, a permanent implantation procedure enabled EP studies in conscious freely moving rats. Atrial EP was evaluated in anesthetized rats, anesthetized mice (ICR and C57BL6 strains), and conscious rats. Signal resolution enabled atrial effective refractory period (AERP) measurements and first time evaluation of the failed 1:1 atrial capture, which was unexpectedly longer than the AERP recorded at near normal cycle length by 27.2+/-2.3% in rats (P<0.0001; n=35), 31.7+/-8.3% in ICR mice (P=0.0001; n=13), and 57.7+/-13.7% in C57BL6 mice (P=0.015; n=4). While AERP rate adaptation was noted when 10 S1s at near normal basic cycle lengths were followed by S2 at varying basic cycle length and S3 for AERP evaluation, such rate adaptation was absent using conventional S1S2 protocols. Atrial tachypacing in rats shortened the AERP values on a timescale of hours, but a reverse remodeling phase was noted thereafter. Comparison of left vs. right atrial pacing in rats was also feasible with the current technique, resulting in similar AERP values recorded in the low right atrium. In conclusion, our findings indicate that in vivo rate adaptation of the rodent atria is different than expected based on previous ex vivo recordings. In addition, atrial electrical remodeling of rats shows unique remodeling-reverse remodeling characteristics that are described here for the first time. Further understanding of these properties should help to determine the clinical relevance as well as limitations of atrial arrhythmia models in rodents.
Collapse
Affiliation(s)
- Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Soroka University Medical Center, Beer-Sheva, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lai YJ, Huang EYK, Yeh HI, Chen YL, Lin JJC, Lin CI. On the mechanisms of arrhythmias in the myocardium of mXinalpha-deficient murine left atrial-pulmonary veins. Life Sci 2008; 83:272-83. [PMID: 18644388 DOI: 10.1016/j.lfs.2008.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 05/21/2008] [Accepted: 06/15/2008] [Indexed: 12/13/2022]
Abstract
We have previously shown that left atrial-pulmonary vein tissue (LA-PV) can generate reentrant arrhythmias (atrial fibrillation, AF) in wild-type (mXinalpha+/+) but not in mXinalpha-null (mXinalpha-/-) mice. With the present experiments, we investigated the arrhythmogenic activity and the underlying mechanisms in mXinalpha+/+ vs. mXinalpha-/- LA-PV. Electrical activity and conduction velocity (CV) were recorded in LA-PV by means of a MED64 system. CV was significantly faster in mXinalpha+/+ than in mXinalpha-/- LA-PV and it was increased by 1 muM isoproterenol (ISO). AF could be induced by fast pacing in the mXinalpha+/+ but not in mXinalpha-/- LA-PV where automatic rhythms could occur. ISO increased the incidence of AF in Xinalpha+/+ whereas it increased that of automatic rhythms in mXinalpha-/- LA-PV. In LA-PV with the right atrium attached (RA-LA-PV), automatic rhythms occurred in all preparations. In mXinalpha+/+ RA-LA-PV simultaneously treated with ISO, strophanthidin and atropine, the incidence of the automatic rhythm was about the same, but AF increased significantly. In contrast, in mXinalpha-/- RA-LA-PV under the same condition, the automatic rhythm was markedly enhanced, but still no AF occurred. Conventional microelectrode techniques showed a longer APD(90) and a less negative maximum diastolic potential (MDP) in mXinalpha-/- than mXinalpha+/+ LA-PV tissues. Whole-cell current clamp experiments also showed a less negative MDP in mXinalpha-/- vs. mXinalpha+/+ LA-PV cardiomyocytes. The fact that AF could be induced by fast pacing under several conditions in mXinalpha+/+ but not in mXinalpha-/- LA-PV preparations appears to be due to a slower CV, a prolonged APD(90), a less negative MDP and possibly larger areas of conduction block in mXinalpha-/- myocardial cells. In contrast, the non-impairment of automatic and triggered rhythms in mXinalpha-/- preparations may be due to the fact that the mechanisms underlying these rhythms do not involve cell-to-cell conduction.
Collapse
Affiliation(s)
- Yu-Jun Lai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
London B. An Irregularly Irregular Inheritance⁎⁎Editorials published in the Journal of the American College of Cardiology reflect the views of the authors and do not necessarily represent the views of JACC or the American College of Cardiology. J Am Coll Cardiol 2008; 51:1090-1. [DOI: 10.1016/j.jacc.2007.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 11/27/2007] [Accepted: 12/02/2007] [Indexed: 11/26/2022]
|
49
|
Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation. Heart Rhythm 2008; 5:427-35. [PMID: 18313602 DOI: 10.1016/j.hrthm.2007.12.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 12/14/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common clinical arrhythmia and a major cause of cardiovascular morbidity and mortality. Among the gene defects previously associated with AF is a gain of function of the slowly activating delayed rectifier potassium current IKs, secondary to mutations in KCNQ1. Coexpression of KCNE5, the gene encoding the MiRP4 beta-subunit, has been shown to reduce IKs. OBJECTIVE The purpose of this study was to test the hypothesis that mutations in KCNE5 are associated with AF in a large cohort of patients with AF. METHODS One-hundred fifty-eight patients with AF were screened for mutations in the coding region of KCNE5. RESULTS A missense mutation involving substitution of a phenylalanine for leucine at position 65 (L65F) was identified in one patient. This patient did not have a history of familial AF, and neither KCNQ1 nor KCNE2 mutations were found. Transient transfection of Chinese hamster ovary (CHO) cells expressing IKs(KCNQ1+KCNE1) with KCNE5 suppressed the developing and tail currents of IKs in a concentration-dependent manner. Transient transfection with KCNE5-L65F failed to suppress IKs, yielding a current indistinguishable from that recorded in the absence of KCNE5. Developing currents recorded during a test pulse to +60 mV and tail currents recorded upon repolarization to -40 mV both showed a significant concentration-dependent gain of function in IKs with expression of KCNE5-L65F vs KCNE5-WT. CONCLUSION The results of this study suggest that a missense mutation in KCNE5 may be associated with nonfamilial or acquired forms of AF. The arrhythmogenic mechanism most likely is a gain of function of IKs.
Collapse
|
50
|
Sampson KJ, Terrenoire C, Cervantes DO, Kaba RA, Peters NS, Kass RS. Adrenergic regulation of a key cardiac potassium channel can contribute to atrial fibrillation: evidence from an I Ks transgenic mouse. J Physiol 2007; 586:627-37. [PMID: 18006587 DOI: 10.1113/jphysiol.2007.141333] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inherited gain-of-function mutations of genes coding for subunits of the heart slow potassium (I Ks) channel can cause familial atrial fibrillation (AF). Here we consider a potentially more prevalent mechanism and hypothesize that beta-adrenergic receptor (beta-AR)-mediated regulation of the I Ks channel, a natural gain-of-function pathway, can also lead to AF. Using a transgenic I Ks channel mouse model, we studied the role of the channel and its regulation by beta-AR stimulation on atrial arrhythmias. In vivo administration of isoprenaline (isoproterenol) predisposes I Ks channel transgenic mice but not wild-type (WT) littermates that lack I Ks to prolonged atrial arrhythmias. Patch-clamp analysis demonstrated expression and isoprenaline-mediated regulation of I Ks in atrial myocytes from transgenic but not WT littermates. Furthermore, computational modelling revealed that beta-AR stimulation-dependent accumulation of open I Ks channels accounts for the pro-arrhythmic substrate. Our results provide evidence that beta-AR-regulated I Ks channels can play a role in AF and imply that specific I Ks deregulation, perhaps through disruption of the I Ks macromolecular complex necessary for beta-AR-mediated I Ks channel regulation, may be a novel therapeutic strategy for treating this most common arrhythmia.
Collapse
Affiliation(s)
- Kevin J Sampson
- Department of Pharmacology, Columbia University Medical Center, 630 W 168th St, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|