1
|
Momot K, Krauz K, Czarzasta K, Tomaszewski J, Dobruch J, Żera T, Zarębiński M, Cudnoch-Jędrzejewska A, Wojciechowska M. Post-myocardial infarction heart failure and long-term high-fat diet: Cardiac endoplasmic reticulum stress and unfolded protein response in Sprague Dawley rat model. PLoS One 2024; 19:e0308833. [PMID: 39292720 PMCID: PMC11410228 DOI: 10.1371/journal.pone.0308833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) significantly contributes to the global mortality rate, often leading to heart failure (HF) due to left ventricular remodeling. Key factors in the pathomechanism of HF include nitrosative/oxidative stress, inflammation, and endoplasmic reticulum (ER) stress. Furthermore, while a high-fat diet (HFD) is known to exacerbate post-MI cardiac remodeling, its impact on these critical factors in the context of HF is not as well understood. AIMS This study aimed to assess the impact of post-MI HF and HFD on inflammation, nitro-oxidative stress, ER stress, and unfolded protein response (UPR). METHODS The study was performed on fragments of the left ventricle harvested from 30 male adult Sprague Dawley rats, which were divided into four groups based on diet (normal-fat vs. high-fat) and surgical procedure (sham operation vs. coronary artery ligation to induce MI). We assessed body weight, NT-proBNP levels, protein levels related to nitrosative/oxidative stress, ER stress, UPR, apoptosis, and nitric oxide synthases, through Western Blot and ELISA. RESULTS HFD and MI significantly influenced body weight and NT-proBNP concentrations. HFD elevated 3-nitrotyrosine and myeloperoxidase levels and altered nitric oxide synthase levels. HFD and MI significantly affected ER stress markers and activated or inhibited UPR pathways. CONCLUSIONS The study demonstrates significant impacts of post-MI HF and dietary fat content on cardiac function and stress markers in a rat model. The interaction between HFD and MI on UPR activation suggests the importance of dietary management in post-MI recovery and HF prevention.
Collapse
Affiliation(s)
- Karol Momot
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Kamil Krauz
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Tomaszewski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Dobruch
- Centre of Postgraduate Medical Education, Department of Urology, Warsaw, Poland
| | - Tymoteusz Żera
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Zarębiński
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, Grodzisk Mazowiecki, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Moore J, Ewoldt J, Venturini G, Pereira AC, Padilha K, Lawton M, Lin W, Goel R, Luptak I, Perissi V, Seidman CE, Seidman J, Chin MT, Chen C, Emili A. Multi-Omics Profiling of Hypertrophic Cardiomyopathy Reveals Altered Mechanisms in Mitochondrial Dynamics and Excitation-Contraction Coupling. Int J Mol Sci 2023; 24:4724. [PMID: 36902152 PMCID: PMC10002553 DOI: 10.3390/ijms24054724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Hypertrophic cardiomyopathy is one of the most common inherited cardiomyopathies and a leading cause of sudden cardiac death in young adults. Despite profound insights into the genetics, there is imperfect correlation between mutation and clinical prognosis, suggesting complex molecular cascades driving pathogenesis. To investigate this, we performed an integrated quantitative multi-omics (proteomic, phosphoproteomic, and metabolomic) analysis to illuminate the early and direct consequences of mutations in myosin heavy chain in engineered human induced pluripotent stem-cell-derived cardiomyocytes relative to late-stage disease using patient myectomies. We captured hundreds of differential features, which map to distinct molecular mechanisms modulating mitochondrial homeostasis at the earliest stages of pathobiology, as well as stage-specific metabolic and excitation-coupling maladaptation. Collectively, this study fills in gaps from previous studies by expanding knowledge of the initial responses to mutations that protect cells against the early stress prior to contractile dysfunction and overt disease.
Collapse
Affiliation(s)
- Jarrod Moore
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jourdan Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
| | | | | | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Matthew Lawton
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weiwei Lin
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Raghuveera Goel
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Valentina Perissi
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jonathan Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02145, USA
| | - Christopher Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
3
|
Shimada YJ, Raita Y, Liang LW, Maurer MS, Hasegawa K, Fifer MA, Reilly MP. Prediction of Major Adverse Cardiovascular Events in Patients With Hypertrophic Cardiomyopathy Using Proteomics Profiling. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003546. [PMID: 36252118 PMCID: PMC9771902 DOI: 10.1161/circgen.121.003546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 06/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy often causes major adverse cardiovascular events (MACE), for example, arrhythmias, stroke, heart failure, and sudden cardiac death. Currently, there are no models available to predict MACE. Furthermore, it remains unclear which signaling pathways mediate MACE. Therefore, we aimed to prospectively determine protein biomarkers that predict MACE in hypertrophic cardiomyopathy and to identify signaling pathways differentially regulated in patients who subsequently develop MACE. METHODS In this multi-centre prospective cohort study of patients with hypertrophic cardiomyopathy, we conducted plasma proteomics profiling of 4979 proteins upon enrollment. We developed a proteomics-based model to predict MACE using data from one institution (training set). We tested the predictive ability in independent samples from the other institution (test set) and performed time-to-event analysis. Additionally, we executed pathway analysis of predictive proteins using a false discovery rate threshold of <0.001. RESULTS The study included 245 patients (n=174 in the training set and n=71 in the test set). Using the proteomics-based model to predict MACE derived from the training set, the area under the receiver-operating-characteristic curve was 0.81 (95% CI, 0.68-0.93) in the test set. In the test set, the high-risk group determined by the proteomics-based predictive model had a significantly higher rate of developing MACE (hazard ratio, 13.6 [95% CI, 1.7-107]; P=0.01). The Ras-MAPK (mitogen-activated protein kinase) pathway was upregulated in patients who subsequently developed MACE (false discovery rate<1.0×10-7). Pathways involved in inflammation and fibrosis-for example, the TGF (transforming growth factor)-β pathway-were also upregulated. CONCLUSIONS This study serves as the first to demonstrate the ability of proteomics profiling to predict MACE in hypertrophic cardiomyopathy, exhibiting both novel (eg, Ras-MAPK) and known (eg, TGF-β) pathways differentially regulated in patients who subsequently experience MACE.
Collapse
Affiliation(s)
- Yuichi J. Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lusha W. Liang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Mathew S. Maurer
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael A. Fifer
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
4
|
Maron BA, Wang RS, Carnethon MR, Rowin EJ, Loscalzo J, Maron BJ, Maron MS. What Causes Hypertrophic Cardiomyopathy? Am J Cardiol 2022; 179:74-82. [PMID: 35843734 DOI: 10.1016/j.amjcard.2022.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 01/11/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a global and relatively common cause of patient morbidity and mortality and is among the first reported monogenic cardiac diseases. For 30 years, the basic etiology of HCM has been attributed largely to variants in individual genes encoding cardiac sarcomere proteins, with the implication that HCM is fundamentally a genetic disease. However, data from clinical and network medicine analyses, as well as contemporary genetic studies show that single gene variants do not fully explain the broad and diverse HCM clinical spectrum. These transformative advances place a new focus on possible novel interactions between acquired disease determinants and genetic context to produce complex HCM phenotypes, also offering a measure of caution against overemphasizing monogenics as the principal cause of this disease. These new perspectives in which HCM is not a uniformly genetic disease but likely explained by multifactorial etiology will also unavoidably impact how HCM is viewed by patients and families in the clinical practicing community going forward, including relevance to genetic counseling and access to healthcare insurance and psychosocial wellness.
Collapse
Affiliation(s)
- Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine and Harvard Medical School, Boston, Massachusetts.
| | - Rui-Sheng Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mercedes R Carnethon
- Division of Pulmonology and Critical Care, Feinberg School of Medicine, Chicago, Illinois
| | - Ethan J Rowin
- HCM Center, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine and Harvard Medical School, Boston, Massachusetts
| | - Barry J Maron
- HCM Center, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Martin S Maron
- HCM Center, Lahey Hospital and Medical Center, Burlington, Massachusetts
| |
Collapse
|
5
|
Tamargo J, Tamargo M, Caballero R. Hypertrophic cardiomyopathy: an up-to-date snapshot of the clinical drug development pipeline. Expert Opin Investig Drugs 2022; 31:1027-1052. [PMID: 36062808 DOI: 10.1080/13543784.2022.2113374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a complex cardiac disease with highly variable phenotypic expression and clinical course most often caused by sarcomeric gene mutations resulting in left ventricular hypertrophy, fibrosis, hypercontractility, and diastolic dysfunction. For almost 60 years, HCM has remained an orphan disease and still lacks a disease-specific treatment. AREAS COVERED This review summarizes recent preclinical and clinical trials with repurposed drugs and new emerging pharmacological and gene-based therapies for the treatment of HCM. EXPERT OPINION The off-label drugs routinely used alleviate symptoms but do not target the core pathophysiology of HCM or prevent or revert the phenotype. Recent advances in the genetics and pathophysiology of HCM led to the development of cardiac myosin adenosine triphosphatase inhibitors specifically directed to counteract the hypercontractility associated with HCM-causing mutations. Mavacamten, the first drug specifically developed for HCM successfully tested in a phase 3 trial, represents the major advance for the treatment of HCM. This opens new horizons for the development of novel drugs targeting HCM molecular substrates which hopefully modify the natural history of the disease. The role of current drugs in development and genetic-based approaches for the treatment of HCM are also discussed.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - María Tamargo
- Department of Cardiology, Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
6
|
Abstract
Hypertrophic cardiomyopathy (HCM), the most common inherited heart disease, is still orphan of a specific drug treatment. The erroneous consideration of HCM as a rare disease has hampered the design and conduct of large, randomized trials in the last 50 years, and most of the indications in the current guidelines are derived from small non-randomized studies, case series, or simply from the consensus of experts. Guideline-directed therapy of HCM includes non-selective drugs such as disopyramide, non-dihydropyridine calcium channel blockers, or β-adrenergic receptor blockers, mainly used in patients with symptomatic obstruction of the outflow tract. Following promising preclinical studies, several drugs acting on potential HCM-specific targets were tested in patients. Despite the huge efforts, none of these studies was able to change clinical practice for HCM patients, because tested drugs were proven to be scarcely effective or hardly tolerated in patients. However, novel compounds have been developed in recent years specifically for HCM, addressing myocardial hypercontractility and altered energetics in a direct manner, through allosteric inhibition of myosin. In this paper, we will critically review the use of different classes of drugs in HCM patients, starting from "old" established agents up to novel selective drugs that have been recently trialed in patients.
Collapse
|
7
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
8
|
Reid A, Miller C, Farrant JP, Polturi R, Clark D, Ray S, Cooper G, Schmitt M. Copper chelation in patients with hypertrophic cardiomyopathy. Open Heart 2022; 9:openhrt-2021-001803. [PMID: 35169044 PMCID: PMC8852723 DOI: 10.1136/openhrt-2021-001803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Disturbances of copper (Cu) homeostasis can lead to hypertrophic cardiac phenotypes (eg, Wilson's disease). We previously identified abnormal Cu homeostasis in patients with hypertrophic cardiomyopathy (HCM) and, therefore, hypothesised that Cu2+-selective chelation with trientine dihydrochloride may slow or reverse disease progression in HCM. The aim of this study was, therefore to explore the clinical efficacy, safety and tolerability of trientine in HCM. METHODS In this medicines and healthcare products regulatory agency (MHRA) registered open-label pilot study, we treated 20 HCM patients with trientine for 6 months. Patients underwent a comprehensive assessment schedule including separate cardiac magnetic resonance imaging (CMR) and CMR 31P-spectroscopy at baseline and end of therapy. Predefined end points included changes in left ventricular mass (LVM), markers of LV fibrosis, markers of LV performance and myocardial energetics. Ten matched patients with HCM were studied as controls. RESULTS Trientine treatment was safe and tolerated. Trientine caused a substantial increase in urinary copper excretion (0.42±0.2 vs 2.02±1.0, p=0.001) without affecting serum copper concentrations. Treatment was associated with significant improvements in total atrial strain and global longitudinal LV strain using both Echo and CMR. LVM decreased significantly in the treatment arm compared with the control group (-4.2 g v 1.8 g, p=0.03). A strong trend towards an absolute decrease in LVM was observed in the treatment group (p=0.06). These changes were associated with a significant change in total myocardial volume driven by a significant reduction in extracellular matrix (ECM) volume (43.83±18.42 mL vs 41.49±16.89 mL, p=0.04) as opposed to pure cellular mass reduction and occurred against a background of significant ECM volume increase in the control group (44.59±16.50 mL vs 47.48±19.30 mL, p=0.02). A non-significant 10% increase in myocardial phosphocreatine/adenosine triphosphate (PCr/ATP) ratio with trientine therapy (1.27±0.44 vs 1.4±0.39) was noted. CONCLUSIONS Cu2+-selective chelation with trientine in a controlled environment is safe and a potential future therapeutic target. A phase 2b trial is now underway.
Collapse
Affiliation(s)
- Anna Reid
- Cardiovascular Division, Northwest Heart Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Christopher Miller
- Cardiovascular Division, Northwest Heart Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - John Peter Farrant
- Cardiovascular Division, Northwest Heart Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | | | - David Clark
- Cardiovascular Division, Northwest Heart Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Simon Ray
- Cardiovascular Division, Northwest Heart Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Garth Cooper
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, Centre for Advanced Discovery and Experimental Therapeutics (CADET), The University of Manchester, Manchester, UK
| | - Matthias Schmitt
- Cardiovascular Division, Northwest Heart Centre, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
9
|
Ion Channel Impairment and Myofilament Ca 2+ Sensitization: Two Parallel Mechanisms Underlying Arrhythmogenesis in Hypertrophic Cardiomyopathy. Cells 2021; 10:cells10102789. [PMID: 34685769 PMCID: PMC8534456 DOI: 10.3390/cells10102789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Life-threatening ventricular arrhythmias are the main clinical burden in patients with hypertrophic cardiomyopathy (HCM), and frequently occur in young patients with mild structural disease. While massive hypertrophy, fibrosis and microvascular ischemia are the main mechanisms underlying sustained reentry-based ventricular arrhythmias in advanced HCM, cardiomyocyte-based functional arrhythmogenic mechanisms are likely prevalent at earlier stages of the disease. In this review, we will describe studies conducted in human surgical samples from HCM patients, transgenic animal models and human cultured cell lines derived from induced pluripotent stem cells. Current pieces of evidence concur to attribute the increased risk of ventricular arrhythmias in early HCM to different cellular mechanisms. The increase of late sodium current and L-type calcium current is an early observation in HCM, which follows post-translation channel modifications and increases the occurrence of early and delayed afterdepolarizations. Increased myofilament Ca2+ sensitivity, commonly observed in HCM, may promote afterdepolarizations and reentry arrhythmias with direct mechanisms. Decrease of K+-currents due to transcriptional regulation occurs in the advanced disease and contributes to reducing the repolarization-reserve and increasing the early afterdepolarizations (EADs). The presented evidence supports the idea that patients with early-stage HCM should be considered and managed as subjects with an acquired channelopathy rather than with a structural cardiac disease.
Collapse
|
10
|
Sun J, Zhang C, Zhang Z. Atorvastatin attenuates cardiac hypertrophy through AMPK/miR-143-3p/Bcl2 axis. Arch Physiol Biochem 2021; 127:390-396. [PMID: 31353965 DOI: 10.1080/13813455.2019.1643377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Atorvastatin is employed as a lipid lowering agent and its heart protective effect has been recently reported as well. However, the mechanism of atorvastatin in attenuating cardiac hypertrophy and inhibiting cardiac failure is unclear. In our study, cardiac hypertrophy was induced in rats using transverse aortic constriction (TAC) method and in cardiomyocytes using angiotensin II (Ang II). Atorvastatin significantly suppressed TAC-induced heart weight increase and cardiomyocytes apoptosis in rats. At a molecular level, we found that miR-143-3p was significantly up-regulated, and the up-regulation could be inhibited by atorvastatin via activating AMPK pathway. Furthermore, it was validated that Bcl2 was one of the target genes of miR-143-3p. Taken together, the data indicated that miR-143-3p aggravated cardiac hypertrophy by inducing cardiomyocytes apoptosis through inhibiting Bcl2 expression. This study demonstrated the effects of atorvastatin in attenuating cardiac hypertrophy and inhibiting cardiac failure, which is depending on Bcl2 expression via miR-143-3p inhibition by AMPK activation.
Collapse
|
11
|
Coppini R, Santini L, Olivotto I, Ackerman MJ, Cerbai E. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy. Cardiovasc Res 2021; 116:1585-1599. [PMID: 32365196 DOI: 10.1093/cvr/cvaa124] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited monogenic disease with a prevalence of 1/500 in the general population, representing an important cause of arrhythmic sudden cardiac death (SCD), heart failure, and atrial fibrillation in the young. HCM is a global condition, diagnosed in >50 countries and in all continents. HCM affects people of both sexes and various ethnic and racial origins, with similar clinical course and phenotypic expression. The most unpredictable and devastating consequence of HCM is represented by arrhythmic SCD, most commonly caused by sustained ventricular tachycardia or ventricular fibrillation. Indeed, HCM represents one of the main causes of arrhythmic SCD in the young, with a marked preference for children and adults <30 years. SCD is most prevalent in patients with paediatric onset of HCM but may occur at any age. However, risk is substantially lower after 60 years, suggesting that the potential for ventricular tachyarrhythmias is mitigated by ageing. SCD had been linked originally to sports and vigorous activity in HCM patients. However, it is increasingly clear that the majority of events occurs at rest or during routine daily occupations, suggesting that triggers are far from consistent. In general, the pathophysiology of SCD in HCM remains unresolved. While the pathologic and physiologic substrates abound and have been described in detail, specific factors precipitating ventricular tachyarrhythmias are still unknown. SCD is a rare phenomenon in HCM cohorts (<1%/year) and attempts to identify patients at risk, while generating clinically useful algorithms for primary prevention, remain very inaccurate on an individual basis. One of the reasons for our limited understanding of these phenomena is that limited translational research exists in the field, while most efforts have focused on clinical markers of risk derived from pathology, instrumental patient evaluation, and imaging. Specifically, few studies conducted in animal models and human samples have focused on targeting the cellular mechanisms of arrhythmogenesis in HCM, despite potential implications for therapeutic innovation and SCD prevention. These studies found that altered intracellular Ca2+ homoeostasis and increased late Na+ current, leading to an increased likelihood of early and delayed after-depolarizations, contribute to generate arrhythmic events in diseased cardiomyocytes. As an array of novel experimental opportunities have emerged to investigate these mechanisms, including novel 'disease-in-the-dish' cellular models with patient-specific induced pluripotent stem cell-derived cardiomyocytes, important gaps in knowledge remain. Accordingly, the aim of the present review is to provide a contemporary reappraisal of the cellular basis of SCD-predisposing arrhythmias in patients with HCM and discuss the implications for risk stratification and management.
Collapse
Affiliation(s)
- Raffaele Coppini
- Department of Neurosciences, Psychiatry, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Lorenzo Santini
- Department of Neurosciences, Psychiatry, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Iacopo Olivotto
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla, 3 - 50134 Florence, Italy.,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, USA.,Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychiatry, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Laboratory of Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
12
|
Shimada YJ, Raita Y, Liang LW, Maurer MS, Hasegawa K, Fifer MA, Reilly MP. Comprehensive Proteomics Profiling Reveals Circulating Biomarkers of Hypertrophic Cardiomyopathy. Circ Heart Fail 2021; 14:e007849. [PMID: 34192899 DOI: 10.1161/circheartfailure.120.007849] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is caused by mutations in the genes coding for proteins essential in normal myocardial contraction. However, it remains unclear through which molecular pathways gene mutations mediate the development of HCM. The objectives were to determine plasma protein biomarkers of HCM and to reveal molecular pathways differentially regulated in HCM. METHODS We conducted a multicenter case-control study of cases with HCM and controls with hypertensive left ventricular hypertrophy. We performed plasma proteomics profiling of 1681 proteins. We performed a sparse partial least squares discriminant analysis to develop a proteomics-based discrimination model with data from 1 institution (ie, the training set). We tested the discriminative ability in independent samples from the other institution (ie, the test set). As an exploratory analysis, we executed pathway analysis of significantly dysregulated proteins. Pathways with false discovery rate <0.05 were declared positive. RESULTS The study included 266 cases and 167 controls (n=308 in the training set; n=125 in the test set). Using the proteomics-based model derived from the training set, the area under the receiver operating characteristic curve was 0.89 (95% CI, 0.83-0.94) in the test set. Pathway analysis revealed that the Ras-MAPK (mitogen-activated protein kinase) pathway, along with its upstream and downstream pathways, was upregulated in HCM. Pathways involved in inflammation and fibrosis-for example, the TGF (transforming growth factor)-β pathway-were also upregulated. CONCLUSIONS This study serves as the largest-scale investigation with the most comprehensive proteomics profiling in HCM, revealing circulating biomarkers and exhibiting both novel (eg, Ras-MAPK) and known (eg, TGF-β) pathways differentially regulated in HCM.
Collapse
Affiliation(s)
- Yuichi J Shimada
- Division of Cardiology, Department of Medicine (Y.J.S., L.W.L., M.S.M., M.P.R.), Columbia University Irving Medical Center, New York, NY.,Cardiology Division, Department of Medicine (Y.J.S., M.A.F.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Yoshihiko Raita
- Department of Emergency Medicine (Y.R., K.H.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lusha W Liang
- Division of Cardiology, Department of Medicine (Y.J.S., L.W.L., M.S.M., M.P.R.), Columbia University Irving Medical Center, New York, NY
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine (Y.J.S., L.W.L., M.S.M., M.P.R.), Columbia University Irving Medical Center, New York, NY
| | - Kohei Hasegawa
- Department of Emergency Medicine (Y.R., K.H.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael A Fifer
- Cardiology Division, Department of Medicine (Y.J.S., M.A.F.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine (Y.J.S., L.W.L., M.S.M., M.P.R.), Columbia University Irving Medical Center, New York, NY.,Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
13
|
Reid A, Blanke P, Bax JJ, Leipsic J. Multimodality imaging in valvular heart disease: how to use state-of-the-art technology in daily practice. Eur Heart J 2021; 42:1912-1925. [PMID: 33186469 DOI: 10.1093/eurheartj/ehaa768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Our understanding of the complexities of valvular heart disease (VHD) has evolved in recent years, primarily because of the increased use of multimodality imaging (MMI). Whilst echocardiography remains the primary imaging technique, the contemporary evaluation of patients with VHD requires comprehensive analysis of the mechanism of valvular dysfunction, accurate quantification of severity, and active exclusion extravalvular consequences. Furthermore, advances in surgical and percutaneous therapies have driven the need for meticulous multimodality imaging to aid in patient and procedural selection. Fundamental decision-making regarding whom, when, and how to treat patients with VHD has become more complex. There has been rapid technological advancement in MMI; many techniques are now available in routine clinical practice, and their integration into has the potential to truly individualize management strategies. This review provides an overview of the current evidence for the use of MMI in VHD, and how various techniques within each modality can be used practically to answer clinical conundrums.
Collapse
Affiliation(s)
- Anna Reid
- Department of Radiology and Cardiology, Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver V6Z1Y6, BC, Canada
| | - Philipp Blanke
- Department of Radiology and Cardiology, Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver V6Z1Y6, BC, Canada
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Jonathon Leipsic
- Department of Radiology and Cardiology, Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver V6Z1Y6, BC, Canada
| |
Collapse
|
14
|
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disease of the myocardium characterized by a hypertrophic left ventricle with a preserved or increased ejection fraction. Cardiac hypertrophy is often asymmetrical, which is associated with left ventricular outflow tract obstruction. Myocyte hypertrophy, disarray, and myocardial fibrosis constitute the histological features of HCM. HCM is a relatively benign disease but an important cause of sudden cardiac death in the young and heart failure in the elderly. Pathogenic variants (PVs) in genes encoding protein constituents of the sarcomeres are the main causes of HCM. PVs exhibit a gradient of effect sizes, as reflected in their penetrance and variable phenotypic expression of HCM. MYH7 and MYBPC3, encoding β-myosin heavy chain and myosin binding protein C, respectively, are the two most common causal genes and responsible for ≈40% of all HCM cases but a higher percentage of HCM in large families. PVs in genes encoding protein components of the thin filaments are responsible for ≈5% of the HCM cases. Whereas pathogenicity of the genetic variants in large families has been firmly established, ascertainment causality of the PVs in small families and sporadic cases is challenging. In the latter category, PVs are best considered as probabilistic determinants of HCM. Deciphering the genetic basis of HCM has enabled routine genetic testing and has partially elucidated the underpinning mechanism of HCM as increased number of the myosin molecules that are strongly bound to actin. The discoveries have led to the development of mavacamten that targets binding of the myosin molecule to actin filaments and imparts beneficial clinical effects. In the coming years, the yield of the genetic testing is expected to be improved and the so-called missing causal gene be identified. The advances are also expected to enable development of additional specific therapies and editing of the mutations in HCM.
Collapse
Affiliation(s)
- A J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston
| |
Collapse
|
15
|
Hornyik T, Rieder M, Castiglione A, Major P, Baczko I, Brunner M, Koren G, Odening KE. Transgenic rabbit models for cardiac disease research. Br J Pharmacol 2021; 179:938-957. [PMID: 33822374 DOI: 10.1111/bph.15484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
To study the pathophysiology of human cardiac diseases and to develop novel treatment strategies, complex interactions of cardiac cells on cellular, tissue and on level of the whole heart need to be considered. As in vitro cell-based models do not depict the complexity of the human heart, animal models are used to obtain insights that can be translated to human diseases. Mice are the most commonly used animals in cardiac research. However, differences in electrophysiological and mechanical cardiac function and a different composition of electrical and contractile proteins limit the transferability of the knowledge gained. Moreover, the small heart size and fast heart rate are major disadvantages. In contrast to rodents, electrophysiological, mechanical and structural cardiac characteristics of rabbits resemble the human heart more closely, making them particularly suitable as an animal model for cardiac disease research. In this review, various methodological approaches for the generation of transgenic rabbits for cardiac disease research, such as pronuclear microinjection, the sleeping beauty transposon system and novel genome-editing methods (ZFN and CRISPR/Cas9)will be discussed. In the second section, we will introduce the different currently available transgenic rabbit models for monogenic cardiac diseases (such as long QT syndrome, short-QT syndrome and hypertrophic cardiomyopathy) in detail, especially in regard to their utility to increase the understanding of pathophysiological disease mechanisms and novel treatment options.
Collapse
Affiliation(s)
- Tibor Hornyik
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marina Rieder
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Alessandro Castiglione
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Peter Major
- Institute for Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Michael Brunner
- Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Grune C, Zens C, Czapka A, Scheuer K, Thamm J, Hoeppener S, Jandt KD, Werz O, Neugebauer U, Fischer D. Sustainable preparation of anti-inflammatory atorvastatin PLGA nanoparticles. Int J Pharm 2021; 599:120404. [PMID: 33647413 DOI: 10.1016/j.ijpharm.2021.120404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
In the present study, the anti-inflammatory lipophilic drug atorvastatin was encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) using a sustainable method in comparison to the standard emulsion-diffusion-evaporation technique. For the sustainable method the organic solvent ethyl acetate was fully replaced by 400 g/mol poly(ethylene glycol) (PEG 400). Both techniques led to the formation of nanoparticles with comparable sizes of about 170 to 247 nm depending on the polymer type, with monomodal size distribution and negative zeta potential. All nanoparticles demonstrated a high biocompatibility in a shell-less hen's egg model and displayed an anti-inflammatory effect in human monocytes. The use of PEG 400 resulted in plasticizing effects and a lower crystallinity of the PLGA nanoparticles as determined by differential scanning calorimetry and Raman spectroscopy, which correlated with a faster drug release. Interestingly, the particles prepared by the sustainable method showed a crystallinity and drug release kinetics similar to nanoparticles made of PEG-PLGA using the standard method. Conclusively, the sustainable method is a fast and easy to perform technique suitable to prepare atorvastatin-loaded PLGA nanoparticles avoiding toxic and environmentally damaging drawbacks frequently associated with classical organic solvents.
Collapse
Affiliation(s)
- Christian Grune
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Clara Zens
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Anna Czapka
- Dept. of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Karl Scheuer
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Jana Thamm
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Oliver Werz
- Dept. of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Pharmaceutical Technology, Department for Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany.
| |
Collapse
|
17
|
Key Enzymes for the Mevalonate Pathway in the Cardiovascular System. J Cardiovasc Pharmacol 2021; 77:142-152. [PMID: 33538531 DOI: 10.1097/fjc.0000000000000952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Isoprenylation is an important post-transcriptional modification of small GTPases required for their activation and function. Isoprenoids, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate, are indispensable for isoprenylation by serving as donors of a prenyl moiety to small G proteins. In the human body, isoprenoids are mainly generated by the mevalonate pathway (also known as the cholesterol-synthesis pathway). The hydroxymethylglutaryl coenzyme A reductase catalyzes the first rate-limiting steps of the mevalonate pathway, and its inhibitor (statins) are widely used as lipid-lowering agents. In addition, the FPP synthase is also of critical importance for the regulation of the isoprenoids production, for which the inhibitor is mainly used in the treatment of osteoporosis. Synthetic FPP can be further used to generate geranylgeranyl pyrophosphate and cholesterol. Recent studies suggest a role for isoprenoids in the genesis and development of cardiovascular disorders, such as pathological cardiac hypertrophy, fibrosis, endothelial dysfunction, and fibrotic responses of smooth-muscle cells. Furthermore, statins and FPP synthase inhibitors have also been applied for the management of heart failure and other cardiovascular diseases rather than their clinical use for hyperlipidemia or bone diseases. In this review, we focus on the function of several critical enzymes, including hydroxymethylglutaryl coenzyme A reductase, FPP synthase, farnesyltransferase, and geranylgeranyltransferase in the mevalonate pathway which are involved in regulating the generation of isoprenoids and isoprenylation of small GTPases, and their pathophysiological role in the cardiovascular system. Moreover, we summarize recent research into applications of statins and the FPP synthase inhibitors to treat cardiovascular diseases, rather than for their traditional indications respectively.
Collapse
|
18
|
Santini L, Palandri C, Nediani C, Cerbai E, Coppini R. Modelling genetic diseases for drug development: Hypertrophic cardiomyopathy. Pharmacol Res 2020; 160:105176. [DOI: 10.1016/j.phrs.2020.105176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
|
19
|
Williams EA, Russo V, Ceraso S, Gupta D, Barrett-Jolley R. Anti-arrhythmic properties of non-antiarrhythmic medications. Pharmacol Res 2020; 156:104762. [PMID: 32217149 PMCID: PMC7248574 DOI: 10.1016/j.phrs.2020.104762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Traditional anti-arrhythmic drugs are classified by the Vaughan-Williams classification scheme based on their mechanisms of action, which includes effects on receptors and/or ion channels. Some known anti-arrhythmic drugs do not perfectly fit into this classification scheme. Other medications/molecules with established non-anti-arrhythmic indications have shown anti-arrhythmic properties worth exploring. In this narrative review, we discuss the molecular mechanisms and evidence base for the anti-arrhythmic properties of traditional non-antiarrhythmic drugs such as inhibitors of the renin angiotensin system (RAS), statins and polyunsaturated fatty acids (PUFAs). In summary, RAS antagonists, statins and PUFAs are 'upstream target modulators' that appear to have anti-arrhythmic roles. RAS blockers prevent the downstream arrhythmogenic effects of angiotensin II - the main effector peptide of RAS - and the angiotensin type 1 receptor. Statins have pleiotropic effects including anti-inflammatory, immunomodulatory, modulation of autonomic nervous system, anti-proliferative and anti-oxidant actions which appear to underlie their anti-arrhythmic properties. PUFAs have the ability to alter ion channel function and prevent excessive accumulation of calcium ions in cardiac myocytes, which might explain their benefits in certain arrhythmic conditions. Clearly, whilst a number of anti-arrhythmic drugs exist, there is still a need for randomised trials to establish whether additional agents, including those already in clinical use, have significant anti-arrhythmic effects.
Collapse
Affiliation(s)
- Emmanuel Ato Williams
- Department of Cardiology, Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool, L14 3PE, United Kingdom; Institute of Aging and Chronic Disease, University of Liverpool, United Kingdom
| | - Vincenzo Russo
- Chair of Cardiology, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Sergio Ceraso
- Specialization Fellow in Cardiology, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli" - Monaldi Hospital, Naples, Italy
| | - Dhiraj Gupta
- Department of Cardiology, Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool, L14 3PE, United Kingdom
| | - Richard Barrett-Jolley
- Chair Neuropharmacology, Institute of Aging and Chronic Disease, University of Liverpool, United Kingdom.
| |
Collapse
|
20
|
Maltês S, Lopes LR. New perspectives in the pharmacological treatment of hypertrophic cardiomyopathy. Rev Port Cardiol 2020; 39:99-109. [PMID: 32245685 DOI: 10.1016/j.repc.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/17/2019] [Accepted: 03/10/2019] [Indexed: 10/24/2022] Open
Abstract
Hypertrophic cardiomyopathy is an inherited cardiac disease and a major cause of heart failure and sudden death. Even though it was described more than 50 years ago, sarcomeric hypertrophic cardiomyopathy still lacks a disease-specific treatment. The drugs routinely used alleviate symptoms but do not prevent or revert the phenotype. With recent advances in the knowledge about the genetics and pathophysiology of hypertrophic cardiomyopathy, new genetic and pharmacological approaches have been recently discovered and studied that, by influencing different pathways involved in this disease, have the potential to function as disease-modifying therapies. These promising new pharmacological and genetic therapies will be the focus of this review.
Collapse
Affiliation(s)
- Sérgio Maltês
- Clínica Universitária de Cardiologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Luis Rocha Lopes
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, Inglaterra; St. Bartholomew's Hospital, Barts Heart Centre, London, Inglaterra; Centro Cardiovascular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Maltês S, Lopes LR. New perspectives in the pharmacological treatment of hypertrophic cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2019.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
Tuohy CV, Kaul S, Song HK, Nazer B, Heitner SB. Hypertrophic cardiomyopathy: the future of treatment. Eur J Heart Fail 2020; 22:228-240. [PMID: 31919938 DOI: 10.1002/ejhf.1715] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/19/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a heterogeneous genetic disorder most often caused by sarcomeric mutations resulting in left ventricular hypertrophy, fibrosis, hypercontractility, and reduced compliance. It is the most common inherited monogenic cardiac condition, affecting 0.2% of the population. Whereas currently available therapies for HCM have been effective in reducing morbidity, there remain important unmet needs in the treatment of both the obstructive and non-obstructive phenotypes. Novel pharmacotherapies directly target the molecular underpinnings of HCM, while innovative procedural techniques may soon offer minimally-invasive alternatives to current septal reduction therapy. With the advent of embryonic gene editing, there now exists the potential to correct underlying genetic mutations that may result in disease. This article details the recent developments in the treatment of HCM including pharmacotherapy, septal reduction procedures, mitral valve manipulation, and gene-based therapies.
Collapse
Affiliation(s)
- C Vaughan Tuohy
- Oregon Health and Sciences University (OHSU), Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Portland, OR, USA
| | - Sanjiv Kaul
- Oregon Health and Sciences University (OHSU), Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Portland, OR, USA
| | - Howard K Song
- Oregon Health and Sciences University (OHSU), Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Portland, OR, USA
| | - Babak Nazer
- Oregon Health and Sciences University (OHSU), Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Portland, OR, USA
| | - Stephen B Heitner
- Oregon Health and Sciences University (OHSU), Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Portland, OR, USA
| |
Collapse
|
23
|
Spoladore R, Fragasso G, Pannone L, Slavich M, Margonato A. Pharmacotherapy for the treatment of obstructive hypertrophic cardiomyopathy. Expert Opin Pharmacother 2020; 21:233-242. [PMID: 31893930 DOI: 10.1080/14656566.2019.1702023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Hypertrophic cardiomyopathy (HCM) is one of the most common genetic heart diseases and represents a leading cause of sudden cardiac death as well as a prevalent cause of heart failure and stroke. HCM is characterized by a very complex pathophysiology, consisting of heterogeneous clinical manifestations and natural history. Left ventricular outflow tract (LVOT) obstruction has been considered the most knowable feature of HCM since the initial clinical descriptions of the disease.Areas covered: In this review, the authors discuss the most recent reports on the pharmacological treatment of obstructive HCM, mainly based on three different levels of intervention: control of symptoms, cardiac metabolism modulation and disease-modifying approaches, including genetic preventive therapies.Expert opinion: There are presently limited data supporting pharmacological interventions for this complex disease. However, an improved understanding of HCM pathophysiology will allow the development of novel treatment options. Two important key messages are to further study drugs with negative but limited previous results and to design new and larger trials for those molecules that have already produced positive results in HCM, especially for pressure gradients and symptoms control.
Collapse
Affiliation(s)
- R Spoladore
- Head - Referral ambulatory for Hypertrophy Cardiomyopathy, IRCCS San Raffaele University Hospital, Milan, Italy.,Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - G Fragasso
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy.,Head - Heart Failure Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - L Pannone
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - M Slavich
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - A Margonato
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
24
|
Gao J, Guo Y, Liu Y, Yan J, Zhou J, An X, Su P. Protective effect of FBXL10 in myocardial ischemia reperfusion injury via inhibiting endoplasmic reticulum stress. Respir Med 2019; 161:105852. [PMID: 32056726 DOI: 10.1016/j.rmed.2019.105852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the mechanism and effect of FBXL10 in myocardial ischemia reperfusion injury in vivo and in vitro. METHODS The myocardial ischemia reperfusion (I/R) model was established by 30 min of coronary occlusion followed by 2 h of reperfusion in rats. Western blot and TUNEL assay were used to measure the apoptosis during I/R. The expression levels of endoplasmic reticulum related proteins in myocardial tissues and H9c2 cells were detected by immunohistochemistry staining and immunofluorescence staining. Flow cytometry and CCK-8 were used to detect the apoptosis and viability of H9c2 cells. RESULTS The results revealed that FBXL10 significantly reduced myocardial infarction, improved the pathological morphology of myocardium, markedly reduced inflammatory response in the myocardial ischemia reperfusion rats. Moreover the expressions of endoplasmic reticulum stress key proteins were caused by I/R were suppressed significantly by FBXL10 treatment, including CHOP, GRP78, ATF4 and p-PERK. Additionally FBXL10 inhibited the expression of endoplasmic reticulum stress key proteins in H/R H9c2 cells. Furthermore, FBXL10 reduced the levels of apoptotic cells and inflammatory response compared with I/R and H/R group. CONCLUSION Taken together, we found that FBXL10 could attenuate I/R injury through inhibiting endoplasmic reticulum stress (ERs).
Collapse
Affiliation(s)
- Jie Gao
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital University of Medical Sciences, China
| | - Yulin Guo
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital University of Medical Sciences, China
| | - Yan Liu
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital University of Medical Sciences, China
| | - Jun Yan
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital University of Medical Sciences, China
| | - Jian Zhou
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital University of Medical Sciences, China
| | - Xiangguang An
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital University of Medical Sciences, China
| | - Pixiong Su
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital University of Medical Sciences, China.
| |
Collapse
|
25
|
Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M. Metabolic Alterations in Inherited Cardiomyopathies. J Clin Med 2019; 8:E2195. [PMID: 31842377 PMCID: PMC6947282 DOI: 10.3390/jcm8122195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The normal function of the heart relies on a series of complex metabolic processes orchestrating the proper generation and use of energy. In this context, mitochondria serve a crucial role as a platform for energy transduction by supplying ATP to the varying demand of cardiomyocytes, involving an intricate network of pathways regulating the metabolic flux of substrates. The failure of these processes results in structural and functional deficiencies of the cardiac muscle, including inherited cardiomyopathies. These genetic diseases are characterized by cardiac structural and functional anomalies in the absence of abnormal conditions that can explain the observed myocardial abnormality, and are frequently associated with heart failure. Since their original description, major advances have been achieved in the genetic and phenotype knowledge, highlighting the involvement of metabolic abnormalities in their pathogenesis. This review provides a brief overview of the role of mitochondria in the energy metabolism in the heart and focuses on metabolic abnormalities, mitochondrial dysfunction, and storage diseases associated with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Claudia Sacchetto
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
- Department of Biology, University of Padova, via Ugo Bassi 58B, 35121 Padova, Italy
| | - Vasco Sequeira
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Edoardo Bertero
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Jan Dudek
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Christoph Maack
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Martina Calore
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| |
Collapse
|
26
|
Sari M, Erkorkmaz U, Yazar H, Kocayigit I, Omar B, Alizade E, Aksoy MNM, Uslu A, Cakar GC, Pala S. Dynamic thiol/disulphide homeostasis in patients with hypertrophic cardiomyopathy. Herz 2019; 46:164-171. [PMID: 31820030 DOI: 10.1007/s00059-019-04853-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND In addition to the genetic complexity of hypertrophic cardiomyopathy (HCM), there must be other disease-modifying factors that contribute to its highly variable clinical and phenotypic expression. The authors aimed to investigate serum thiol/disulphide homeostasis as a proxy for oxidative stress using a novel automated assay in patients with HCM. METHODS This cross-sectional study was conducted on 119 patients with HCM and 52 without HCM. The methods used to measure dynamic thiol/disulphide homeostasis as calorimetric and duplex quantities were developed in 2014. RESULTS Median serum native thiol levels were significantly lower in patients with HCM than in those without (312.5 μmol/L [285-370 μmol/L] vs 421 μmol/L [349-469.5 μmol/L]; p < 0.001). Serum total thiol levels and disulphide levels were considerably lower than those in the control group ([844.68 ± 195.99 μmol/L vs 1158.92 ± 243.97 μmol/L; p < 0.001], [259.13 ± 65.66 μmol/L vs 375.02 ± 79.99 μmol/L; p < 0.001], respectively). Serum disulphide/native thiol ratios and disulphide/total thiol ratios were significantly lower in HCM patients than in controls (0.80 ± 0.09 vs 0.92 ± 0.05; p < 0.001 and 0.31 [0.30-0.32] vs 0.32 [0.32-0.33]; p < 0.001). Finally, reduced thiol ratios were higher and oxidized thiol ratios were significantly lower in patients with HCM than in controls. CONCLUSIONS Despite the fact that antioxidant capacity was impaired, the extracellular environment remained in a reducing state by keeping serum disulphide/native thiol ratios low. Therefore, the authors speculate that HCM may behave similarly to tumours with respect to serum thiol-disulphide levels.
Collapse
Affiliation(s)
- Munevver Sari
- Department of Cardiology, University of Health Sciences, Kartal Kosuyolu Education and Research Hospital, Denizer street, 34865, Kartal/Istanbul, Turkey.
| | - Unal Erkorkmaz
- Department of Biostatistics, Faculty of Medicine, Sakarya University, 54290, Sakarya, Turkey
| | - Hayrullah Yazar
- Department of Biochemistry, Faculty of Medicine, Sakarya University, 54290, Sakarya, Turkey
| | - Ibrahim Kocayigit
- Department of Cardiology, Sakarya University Education and Research Hospital, 54290, Sakarya, Turkey
| | - Bahadir Omar
- Department of Cardiology, University of Health Sciences, Kartal Kosuyolu Education and Research Hospital, Denizer street, 34865, Kartal/Istanbul, Turkey
| | - Elnur Alizade
- Department of Cardiology, University of Health Sciences, Kartal Kosuyolu Education and Research Hospital, Denizer street, 34865, Kartal/Istanbul, Turkey
| | - M N Murat Aksoy
- Department of Cardiology, Sakarya University Education and Research Hospital, 54290, Sakarya, Turkey
| | - Abdulkadir Uslu
- Department of Cardiology, University of Health Sciences, Kartal Kosuyolu Education and Research Hospital, Denizer street, 34865, Kartal/Istanbul, Turkey
| | - Gozde Cakirsoy Cakar
- Department of Pathology, Sakarya University Education and Research Hospital, 54290, Sakarya, Turkey
| | - Selcuk Pala
- Department of Cardiology, University of Health Sciences, Kartal Kosuyolu Education and Research Hospital, Denizer street, 34865, Kartal/Istanbul, Turkey
| |
Collapse
|
27
|
Huoxue Qianyang decoction ameliorates cardiac remodeling in obese spontaneously hypertensive rats in association with ATF6-CHOP endoplasmic reticulum stress signaling pathway regulation. Biomed Pharmacother 2019; 121:109518. [PMID: 31689600 DOI: 10.1016/j.biopha.2019.109518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Endoplasmic reticulum (ER) stress is involved in hypertension related cardiac remodeling. We aimed to evaluate the effects of Huoxue Qianyang (HXQY) decoction on cardiac remodeling in obese spontaneously hypertensive rats (SHRs), and explore its impacts on the activating transcription factor 6 (ATF6)-C/EBP homologous protein (CHOP) ER stress signaling pathway. METHODS Twenty-seven obese SHRs were randomly divided into Obese SHR, Obese SHR + HXQY and Obese SHR + Valsartan groups, and treated with the indicated drugs for 8 weeks. Nine age-matched male SHRs were used as controls. Systolic blood pressure (SBP), body weight (BW), and the left ventricular mass index (LVMI) were measured weekly or at end point. Then, angiotensin II (Ang II), fasting glucose (FPG) and fasting insulin (FIN), total cholesterol (TC), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C) and triglyceride (TG) levels were evaluated with commercial kits. Apoptotic cardiomyocytes were detected by the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) method. The expression levels of GRP78, ATF6, PERK/pPERK and CHOP were assessed by quantitative PCR and Western blot. RESULTS Treatment with HXQY decoction resulted in significantly reduced SBP, BW, LVMI, Ang II, TC and LDL-C levels, as well as the homeostasis model assessment of insulin resistance (HOMA-IR) score in obese SHRs. Apoptosis in heart tissues of obese SHRs was significantly attenuated after HXQY decoction administration, paralleling reduced expression of GRP78, ATF6, PERK/pPERK and CHOP at both mRNA and protein levels. CONCLUSION Cardiac remodeling in obese SHRs is ameliorated by intervention with HXQY decoction in association with inhibited ATF6-CHOP ER stress signaling pathway.
Collapse
|
28
|
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and defined by unexplained isolated progressive myocardial hypertrophy, systolic and diastolic ventricular dysfunction, arrhythmias, sudden cardiac death and histopathologic changes, such as myocyte disarray and myocardial fibrosis. Mutations in genes encoding for proteins of the contractile apparatus of the cardiomyocyte, such as β-myosin heavy chain and myosin binding protein C, have been identified as cause of the disease. Disease is caused by altered biophysical properties of the cardiomyocyte, disturbed calcium handling, and abnormal cellular metabolism. Mutations in sarcomere genes can also activate other signaling pathways via transcriptional activation and can influence non-cardiac cells, such as fibroblasts. Additional environmental, genetic and epigenetic factors result in heterogeneous disease expression. The clinical course of the disease varies greatly with some patients presenting during childhood while others remain asymptomatic until late in life. Patients can present with either heart failure symptoms or the first symptom can be sudden death due to malignant ventricular arrhythmias. The morphological and pathological heterogeneity results in prognosis uncertainty and makes patient management challenging. Current standard therapeutic measures include the prevention of sudden death by prohibition of competitive sport participation and the implantation of cardioverter-defibrillators if indicated, as well as symptomatic heart failure therapies or cardiac transplantation. There exists no causal therapy for this monogenic autosomal-dominant inherited disorder, so that the focus of current management is on early identification of asymptomatic patients at risk through molecular diagnostic and clinical cascade screening of family members, optimal sudden death risk stratification, and timely initiation of preventative therapies to avoid disease progression to the irreversible adverse myocardial remodeling stage. Genetic diagnosis allowing identification of asymptomatic affected patients prior to clinical disease onset, new imaging technologies, and the establishment of international guidelines have optimized treatment and sudden death risk stratification lowering mortality dramatically within the last decade. However, a thorough understanding of underlying disease pathogenesis, regular clinical follow-up, family counseling, and preventative treatment is required to minimize morbidity and mortality of affected patients. This review summarizes current knowledge about molecular genetics and pathogenesis of HCM secondary to mutations in the sarcomere and provides an overview about current evidence and guidelines in clinical patient management. The overview will focus on clinical staging based on disease mechanism allowing timely initiation of preventative measures. An outlook about so far experimental treatments and potential for future therapies will be provided.
Collapse
Affiliation(s)
- Cordula Maria Wolf
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Technical University Munich, Munich, Germany
| |
Collapse
|
29
|
Wijnker PJ, Sequeira V, Kuster DW, van der Velden J. Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits. Antioxid Redox Signal 2019; 31:318-358. [PMID: 29490477 PMCID: PMC6602117 DOI: 10.1089/ars.2017.7236] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Significance: Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction, and myocardial disarray. Disease onset occurs between 20 and 50 years of age, thus affecting patients in the prime of their life. HCM is caused by mutations in sarcomere proteins, the contractile building blocks of the heart. Despite increased knowledge of causal mutations, the exact path from genetic defect leading to cardiomyopathy is complex and involves additional disease hits. Recent Advances: Laboratory-based studies indicate that HCM development not only depends on the primary sarcomere impairment caused by the mutation but also on secondary disease-related alterations in the heart. Here we propose a vicious mutation-induced disease cycle, in which a mutation-induced energy depletion alters cellular metabolism with increased mitochondrial work, which triggers secondary disease modifiers that will worsen disease and ultimately lead to end-stage HCM. Critical Issues: Evidence shows excessive cellular reactive oxygen species (ROS) in HCM patients and HCM animal models. Oxidative stress markers are increased in the heart (oxidized proteins, DNA, and lipids) and serum of HCM patients. In addition, increased mitochondrial ROS production and changes in endogenous antioxidants are reported in HCM. Mutant sarcomeric protein may drive excessive levels of cardiac ROS via changes in cardiac efficiency and metabolism, mitochondrial activation and/or dysfunction, impaired protein quality control, and microvascular dysfunction. Future Directions: Interventions restoring metabolism, mitochondrial function, and improved ROS balance may be promising therapeutic approaches. We discuss the effects of current HCM pharmacological therapies and potential future therapies to prevent and reverse HCM. Antioxid. Redox Signal. 31, 318-358.
Collapse
Affiliation(s)
- Paul J.M. Wijnker
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Vasco Sequeira
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
30
|
Sequeira V, Bertero E, Maack C. Energetic drain driving hypertrophic cardiomyopathy. FEBS Lett 2019; 593:1616-1626. [PMID: 31209876 DOI: 10.1002/1873-3468.13496] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common form of hereditary cardiomyopathy and is mainly caused by mutations of genes encoding cardiac sarcomeric proteins. HCM is characterized by hypertrophy of the left ventricle, frequently involving the septum, that is not explained solely by loading conditions. HCM has a heterogeneous clinical profile, but diastolic dysfunction and ventricular arrhythmias represent two dominant features of the disease. Preclinical evidence indicates that the enhanced Calcium (Ca2+ ) sensitivity of the myofilaments plays a key role in the pathophysiology of HCM. Notably, this is not always a direct consequence of sarcomeric mutations, but can also result from secondary mutation-driven alterations. Here, we review experimental and clinical evidence indicating that increased myofilament Ca2+ sensitivity lies upstream of numerous cellular derangements which potentially contribute to the progression of HCM toward heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| | - Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| |
Collapse
|
31
|
Bhattacharya M, Lu DY, Kudchadkar SM, Greenland GV, Lingamaneni P, Corona-Villalobos CP, Guan Y, Marine JE, Olgin JE, Zimmerman S, Abraham TP, Shatkay H, Abraham MR. Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model). Am J Cardiol 2019; 123:1681-1689. [PMID: 30952382 DOI: 10.1016/j.amjcard.2019.02.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 01/19/2023]
Abstract
Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We assessed whether data-driven machine learning methods that consider a wider range of variables can effectively identify HC patients with ventricular arrhythmias (VAr) that lead to SCD. We scanned the electronic health records of 711 HC patients for sustained ventricular tachycardia or ventricular fibrillation. Patients with ventricular tachycardia or ventricular fibrillation (n = 61) were tagged as VAr cases and the remaining (n = 650) as non-VAr. The 2-sample ttest and information gain criterion were used to identify the most informative clinical variables that distinguish VAr from non-VAr; patient records were reduced to include only these variables. Data imbalance stemming from low number of VAr cases was addressed by applying a combination of over- and undersampling strategies. We trained and tested multiple classifiers under this sampling approach, showing effective classification. We evaluated 93 clinical variables, of which 22 proved predictive of VAr. The ensemble of logistic regression and naïve Bayes classifiers, trained based on these 22 variables and corrected for data imbalance, was most effective in separating VAr from non-VAr cases (sensitivity = 0.73, specificity = 0.76, C-index = 0.83). Our method (HCM-VAr-Risk Model) identified 12 new predictors of VAr, in addition to 10 established SCD predictors. In conclusion, this is the first application of machine learning for identifying HC patients with VAr, using clinical attributes. Our model demonstrates good performance (C-index) compared with currently employed SCD prediction algorithms, while addressing imbalance inherent in clinical data.
Collapse
Affiliation(s)
- Moumita Bhattacharya
- Department of Computer and Information Sciences, Computational Biomedicine Lab, University of Delaware, Newark, Delaware
| | - Dai-Yin Lu
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland; Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Shibani M Kudchadkar
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland
| | - Gabriela Villarreal Greenland
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland; Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, California
| | - Prasanth Lingamaneni
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland
| | - Celia P Corona-Villalobos
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland; Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Yufan Guan
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland
| | - Joseph E Marine
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland
| | - Jeffrey E Olgin
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, California
| | - Stefan Zimmerman
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Theodore P Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland; Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, California
| | - Hagit Shatkay
- Department of Computer and Information Sciences, Computational Biomedicine Lab, University of Delaware, Newark, Delaware; Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland.
| | - Maria Roselle Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland; Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, California.
| |
Collapse
|
32
|
Coppini R, Ferrantini C, Cerbai E. Novel pharmacological approaches for paediatric hypertrophic cardiomyopathy. PROGRESS IN PEDIATRIC CARDIOLOGY 2018. [DOI: 10.1016/j.ppedcard.2018.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Yu B, Liu D, Zhang H, Xie D, Nie W, Shi K, Yang P. Anti-hypertrophy effect of atorvastatin on myocardium depends on AMPK activation-induced miR-143-3p suppression via Foxo1. Biomed Pharmacother 2018; 106:1390-1395. [PMID: 30119211 DOI: 10.1016/j.biopha.2018.07.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 11/18/2022] Open
Abstract
Left ventricular hypertrophy (LVH) is a pathological characteristic shared by distinct heart disorders. Atorvastatin is employed as a lipid lowering agent and its heart protection effect has been recently reported as well. Thus, the current study attempted to validate the anti-hypertrophy effect of atorvastatin as well as the associated mechanism. Hypertrophic feature was induced in rats using transverse aortic constriction (TAC) method and in cardiomyocytes using angiotensin II (Ang II). Then the animals and cells were treated with atorvastatin and the effect on cardiac weight and structure as well as cell viability, surface area, and apoptosis was assessed. The mechanism associated with the anti-hypertrophy effect of atorvastatin was further explored by focusing on the AMPK/Foxo1/miR-143-3p axis. The results showed that the administration of atorvastatin significantly suppressed TAC-induced heart weight increase and attenuated cardiac structure deteriorations in rats. In in vitro assays, atorvastatin increased cell viability, and reduced cell surface area and apoptosis in Ang II-treated H9c2 cells. At molecular level, atorvastatin activated AMPK, which further promoted Foxo1 activation and suppressed miR-143-3p level. The key role of AMPK during atorvastatin treatment was further validated by subjecting Ang II-treated H9c2 cells to co-incubation of atorvastatin and Compound C, which blocked the pro-survival and anti-hypertrophy effect of atorvastatin on H9c2 cells. The findings outlined in the current study confirmed the anti-hypertrophy effect of atorvastatin and provided a preliminary explanation on the mechanism associated with the treatment: the protective effect of atorvastatin on myocardium against hypertrophy depended on miR-143-3p inhibition via AMPK and Foxo1 activation.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Angiotensin II/toxicity
- Animals
- Apoptosis/drug effects
- Atorvastatin/pharmacology
- Cell Line
- Cell Survival/drug effects
- Disease Models, Animal
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Nerve Tissue Proteins/metabolism
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Bo Yu
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Dongna Liu
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Hongli Zhang
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Di Xie
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Wei Nie
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Kaiyao Shi
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Ping Yang
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
34
|
|
35
|
Alves ML, Warren CM, Simon JN, Gaffin RD, Montminy EM, Wieczorek DF, Solaro RJ, Wolska BM. Early sensitization of myofilaments to Ca2+ prevents genetically linked dilated cardiomyopathy in mice. Cardiovasc Res 2018; 113:915-925. [PMID: 28379313 DOI: 10.1093/cvr/cvx068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Background Dilated cardiomoypathies (DCM) are a heterogeneous group of inherited and acquired diseases characterized by decreased contractility and enlargement of cardiac chambers and a major cause of morbidity and mortality. Mice with Glu54Lys mutation in α-tropomyosin (Tm54) demonstrate typical DCM phenotype with reduced myofilament Ca2+ sensitivity. We tested the hypothesis that early sensitization of the myofilaments to Ca2+ in DCM can prevent the DCM phenotype. Methods and results To sensitize Tm54 myofilaments, we used a genetic approach and crossbred Tm54 mice with mice expressing slow skeletal troponin I (ssTnI) that sensitizes myofilaments to Ca2+. Four groups of mice were used: non-transgenic (NTG), Tm54, ssTnI and Tm54/ssTnI (DTG). Systolic function was significantly reduced in the Tm54 mice compared to NTG, but restored in DTG mice. Tm54 mice also showed increased diastolic LV dimensions and HW/BW ratios, when compared to NTG, which were improved in the DTG group. β-myosin heavy chain expression was increased in the Tm54 animals compared to NTG and was partially restored in DTG group. Analysis by 2D-DIGE indicated a significant decrease in two phosphorylated spots of cardiac troponin I (cTnI) in the DTG animals compared to NTG and Tm54. Analysis by 2D-DIGE also indicated no significant changes in troponin T, regulatory light chain, myosin binding protein C and tropomyosin phosphorylation. Conclusion Our data indicate that decreased myofilament Ca2+ sensitivity is an essential element in the pathophysiology of thin filament linked DCM. Sensitization of myofilaments to Ca2+ in the early stage of DCM may be a useful therapeutic strategy in thin filament linked DCM.
Collapse
Affiliation(s)
- Marco L Alves
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA.,Center for Research in Echocardiography and Cardiology, Heart Institute, University of Sao Paulo, Avenida Dr. Eneas de Carvalho Aguiar 44, 05403-900, Sao Paulo, Brazil
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Jillian N Simon
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Robert D Gaffin
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Eric M Montminy
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Beata M Wolska
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA.,Department of Medicine, Division of Cardiology, University of Illinois, 840 S Wood St. (M/C 715), Chicago, IL 60612, USA
| |
Collapse
|
36
|
Strand LN, Young RL, Bertoni AG, Bluemke DA, Burke GL, Lima JA, Sotoodehnia N, Psaty BM, McClelland RL, Heckbert SR, Delaney JA. New statin use and left ventricular structure: Estimating long-term associations in the Multi-Ethnic Study of Atherosclerosis (MESA). Pharmacoepidemiol Drug Saf 2018; 27:570-580. [PMID: 29380457 PMCID: PMC5984180 DOI: 10.1002/pds.4389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Only small and short-term studies have evaluated statins in relation to changes in heart structure. We estimated the association between new statin use and 10-year remodeling of the left ventricle. METHODS The Multi-Ethnic Study of Atherosclerosis collected data on statin use over approximately 10 years, conducting cardiac magnetic resonance (CMR) imaging at baseline and the 10-year exam. Participants were free of baseline cardiovascular disease, and we excluded users of statins at baseline. Statin initiation was defined as a report of current use at any of the 4 subsequent exams. Primary outcomes were the change in left ventricular mass index (LVMI; % predicted by height, weight, and sex) and mass-to-volume ratio. Associations were estimated in a propensity score-matched analysis. RESULTS A total of 3113 participants (53% female; 40% European-American, 25% African-American, 22% Hispanic-American, and 13% Chinese-American) were eligible; 2431 returned for follow-up CMR imaging after a median of 9.4 years. Statin therapy (moderate dose, 76%) was started by 36% of participants (N = 872). We excluded 42 participants with incident myocardial infarction. Compared with nonuse, statin use was associated with less 10-year progression in LVMI (-2.35 percentage points; 95% CI, -4.24 to -0.47; P = .01) and mass-to-volume ratio (-0.03 absolute difference; 95% CI, -0.07 to -0.00; P = .02); effects were small in magnitude. A dose response was observed: Higher statin dose was associated with less LVMI progression. CONCLUSIONS In contrast to previous small studies, we found very modest associations between statin use and indices of left ventricular remodeling over 10 years in this prospective study of a diverse cohort.
Collapse
Affiliation(s)
| | - Rebekah L Young
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Alain G Bertoni
- Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David A Bluemke
- National Institutes of Health Clinical Center, Bethesda, MD, USA
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Gregory L Burke
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joao A Lima
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Cardiology, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Robyn L McClelland
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Joseph A Delaney
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Limongelli G, Bossone E, Elliott PM, Day SM. On the Road from Gene to Therapy in Inherited Cardiomyopathies. Heart Fail Clin 2018. [DOI: 10.1016/j.hfc.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Marian AJ, Tan Y, Li L, Chang J, Syrris P, Hessabi M, Rahbar MH, Willerson JT, Cheong BY, Liu CY, Kleiman NS, Bluemke DA, Nagueh SF. Hypertrophy Regression With N-Acetylcysteine in Hypertrophic Cardiomyopathy (HALT-HCM): A Randomized, Placebo-Controlled, Double-Blind Pilot Study. Circ Res 2018. [PMID: 29540445 DOI: 10.1161/circresaha.117.312647] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE Hypertrophic cardiomyopathy (HCM) is a genetic paradigm of cardiac hypertrophy. Cardiac hypertrophy and interstitial fibrosis are important risk factors for sudden death and morbidity in HCM. Oxidative stress is implicated in the pathogenesis of cardiac hypertrophy and fibrosis. Treatment with antioxidant N-acetylcysteine (NAC) reverses cardiac hypertrophy and fibrosis in animal models of HCM. OBJECTIVE To determine effect sizes of NAC on indices of cardiac hypertrophy and fibrosis in patients with established HCM. METHODS AND RESULTS HALT-HCM (Hypertrophy Regression With N-Acetylcysteine in Hypertrophic Cardiomyopathy) is a double-blind, randomized, sex-matched, placebo-controlled single-center pilot study in patients with HCM. Patients with HCM, who had a left ventricular wall thickness of ≥15 mm, were randomized either to a placebo or to NAC (1:2 ratio, respectively). NAC was titrated ≤2.4 g per day. Clinical evaluation, blood chemistry, and 6-minute walk test were performed every 3 months, and electrocardiography, echocardiography, and cardiac magnetic resonance imaging, the latter whenever not contraindicated, before and after 12 months of treatment. Eighty-five of 232 screened patients met the eligibility criteria, 42 agreed to participate; 29 were randomized to NAC and 13 to placebo groups. Demographic, echocardiographic, and cardiac magnetic resonance imaging phenotypes at the baseline between the 2 groups were similar. WSE in 38 patients identified a spectrum of 42 pathogenic variants in genes implicated in HCM in 26 participants. Twenty-four patients in the NAC group and 11 in the placebo group completed the study. Six severe adverse events occurred in the NAC group but were considered unrelated to NAC. The effect sizes of NAC on the clinical phenotype, echocardiographic, and cardiac magnetic resonance imaging indices of cardiac hypertrophy, function, and extent of late gadolinium enhancement-a surrogate for fibrosis-were small. CONCLUSIONS Treatment with NAC for 12 months had small effect sizes on indices of cardiac hypertrophy or fibrosis. The small sample size of the HALT-HCM study hinders from making firm conclusions about efficacy of NAC in HCM. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01537926.
Collapse
Affiliation(s)
- Ali J Marian
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.).
| | - Yanli Tan
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - Lili Li
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - Jeffrey Chang
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - Petros Syrris
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - Manouchehr Hessabi
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - Mohammad H Rahbar
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - James T Willerson
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - Benjamin Y Cheong
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - Chia-Ying Liu
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - Neal S Kleiman
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - David A Bluemke
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| | - Sherif F Nagueh
- From the Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, Texas Heart Institute (A.J.M., Y.T., L.L., J.C., J.T.W., B.Y.C.), Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences (M.H., M.H.R.), Department of Epidemiology, Human Genetics, and Environmental Sciences (M.H.R.), Division of Clinical and Translational Sciences (M.H.R.), and Department of Internal Medicine, University of Texas Health Science Center, Houston (M.H.R.); Institute of Cardiovascular Science, University College London, United Kingdom (P.S.); Department of Radiology, Johns Hopkins Hospital, Baltimore, MD (C.-Y.L.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison (D.A.B.); and Department of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX (N.S.K., S.F.N.)
| |
Collapse
|
39
|
Abstract
Cardiomyopathies are diseases of the myocardium, often genetically determined, associated with heterogeneous phenotypes and clinical manifestations. Despite significant progress in the understanding of these conditions, available treatments mostly target late complications, whereas approaches that promise to interfere with the primary mechanisms and natural history are just beginning to surface. The last decade has witnessed the establishment of large international cardiomyopathy registries, paralleled by advances in cardiac imaging and genetic testing, deeper understanding of the pathophysiology and growing involvement by the pharmaceutical industry. As a result, the number of molecular interventions under scrutiny is increasing sharply.
Collapse
|
40
|
Dong W, Guan F, Zhang X, Gao S, Liu N, Chen W, Zhang L, Lu D. Dhcr24 activates the PI3K/Akt/HKII pathway and protects against dilated cardiomyopathy in mice. Animal Model Exp Med 2018; 1:40-52. [PMID: 30891546 PMCID: PMC6354314 DOI: 10.1002/ame2.12007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/16/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND 24-dehydrocholesterol reductase (Dhcr24) catalyzes the last step of cholesterol biosynthesis, which is required for normal development and anti-apoptotic activities of tissues. We found that Dhcr24 expression decreased in the cTnTR 141W dilated cardiomyopathy (DCM) transgenic mice. Therefore, we tested whether rescued expression of Dhcr24 could prevent the development of DCM and its possible mechanism. METHODS Heart tissue specific transgenic overexpression mice of Dhcr24 was generated, then was crossed to cTnTR 141W mouse to obtain the double transgenic mouse (DTG). The phenotypes were demonstrated by the survival, cardiac geometry and function analysis, as well as microstructural and ultrastructural observations based on echocardiography and histology examination. The pathway and apoptosis were analysed by western blotting and TUNEL assay in vivo and in vitro. RESULTS We find that Dhcr24 decreased in hearts tissues of cTnTR 141W and LMNAE 82K DCM mice. The transgenic overexpression of Dhcr24 significantly improves DCM phenotypes in cTnTR 141W mice, and activates PI3K/Akt/HKII pathway, followed by a reduction of the translocation of Bax and release of cytochrome c, caspase-9 and caspase-3 activation and myocyte apoptosis. Knockdown the expression of Dhcr24 reduces the activation of PI3K/Akt/HKII pathway and inhibition of the mitochondrial-dependent apoptosis. The anti-apoptotic effect of Dhcr24 could be completely removed by the inhibition of PI3K pathway and partly removed by the HKII inhibitor in H9c2 cell line. CONCLUSION Compensatory expression of Dhcr24 protect against DCM through activated PI3K/Akt/HKII pathway and reduce Bax translocation. This is the first investigation for the molecular mechanism of Dhcr24 participate in development of DCM.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Fei‐fei Guan
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Shan Gao
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Ning Liu
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Wei Chen
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Lian‐feng Zhang
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Dan Lu
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| |
Collapse
|
41
|
Karmouch J, Zhou QQ, Miyake CY, Lombardi R, Kretzschmar K, Bannier-Hélaouët M, Clevers H, Wehrens XHT, Willerson JT, Marian AJ. Distinct Cellular Basis for Early Cardiac Arrhythmias, the Cardinal Manifestation of Arrhythmogenic Cardiomyopathy, and the Skin Phenotype of Cardiocutaneous Syndromes. Circ Res 2017; 121:1346-1359. [PMID: 29018034 PMCID: PMC5722680 DOI: 10.1161/circresaha.117.311876] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Arrhythmogenic cardiomyopathy is caused primarily by mutations in genes encoding desmosome proteins. Ventricular arrhythmias are the cardinal and typically early manifestations, whereas myocardial fibroadiposis is the pathological hallmark. Homozygous DSP (desmoplakin) and JUP (junction protein plakoglobin) mutations are responsible for a subset of patients with arrhythmogenic cardiomyopathy who exhibit cardiac arrhythmias and dysfunction, palmoplanter keratosis, and hair abnormalities (cardiocutaneous syndromes). OBJECTIVE To determine phenotypic consequences of deletion of Dsp in a subset of cells common to the heart and skin. METHODS AND RESULTS Expression of CSPG4 (chondroitin sulfate proteoglycan 4) was detected in epidermal keratinocytes and the cardiac conduction system. CSPG4pos cells constituted ≈5.6±3.3% of the nonmyocyte cells in the mouse heart. Inducible postnatal deletion of Dsp under the transcriptional control of the Cspg4 locus led to ventricular arrhythmias, atrial fibrillation, atrioventricular conduction defects, and death by 4 months of age. Cardiac arrhythmias occurred early and in the absence of cardiac dysfunction and excess cardiac fibroadipocytes, as in human arrhythmogenic cardiomyopathy. The mice exhibited palmoplantar keratosis and progressive alopecia, leading to alopecia totalis, associated with accelerated proliferation and impaired terminal differentiation of keratinocytes. The phenotype is similar to human cardiocutaneous syndromes caused by homozygous mutations in DSP. CONCLUSIONS Deletion of Dsp under the transcriptional regulation of the CSPG4 locus led to lethal cardiac arrhythmias in the absence of cardiac dysfunction or fibroadiposis, palmoplantar keratosis, and alopecia, resembling the human cardiocutaneous syndromes. The findings offer a cellular basis for early cardiac arrhythmias in patients with arrhythmogenic cardiomyopathy and cardiocutaneous syndromes.
Collapse
Affiliation(s)
- Jennifer Karmouch
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Qiong Q Zhou
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Christina Y Miyake
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Kai Kretzschmar
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Marie Bannier-Hélaouët
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Hans Clevers
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Xander H T Wehrens
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - James T Willerson
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.).
| |
Collapse
|
42
|
Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res 2017; 121:749-770. [PMID: 28912181 DOI: 10.1161/circresaha.117.311059] [Citation(s) in RCA: 775] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder that is characterized by left ventricular hypertrophy unexplained by secondary causes and a nondilated left ventricle with preserved or increased ejection fraction. It is commonly asymmetrical with the most severe hypertrophy involving the basal interventricular septum. Left ventricular outflow tract obstruction is present at rest in about one third of the patients and can be provoked in another third. The histological features of HCM include myocyte hypertrophy and disarray, as well as interstitial fibrosis. The hypertrophy is also frequently associated with left ventricular diastolic dysfunction. In the majority of patients, HCM has a relatively benign course. However, HCM is also an important cause of sudden cardiac death, particularly in adolescents and young adults. Nonsustained ventricular tachycardia, syncope, a family history of sudden cardiac death, and severe cardiac hypertrophy are major risk factors for sudden cardiac death. This complication can usually be averted by implantation of a cardioverter-defibrillator in appropriate high-risk patients. Atrial fibrillation is also a common complication and is not well tolerated. Mutations in over a dozen genes encoding sarcomere-associated proteins cause HCM. MYH7 and MYBPC3, encoding β-myosin heavy chain and myosin-binding protein C, respectively, are the 2 most common genes involved, together accounting for ≈50% of the HCM families. In ≈40% of HCM patients, the causal genes remain to be identified. Mutations in genes responsible for storage diseases also cause a phenotype resembling HCM (genocopy or phenocopy). The routine applications of genetic testing and preclinical identification of family members represents an important advance. The genetic discoveries have enhanced understanding of the molecular pathogenesis of HCM and have stimulated efforts designed to identify new therapeutic agents.
Collapse
Affiliation(s)
- Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston (A.J.M.); Texas Heart Institute, Houston (A.J.M.); and TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.B.).
| | - Eugene Braunwald
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston (A.J.M.); Texas Heart Institute, Houston (A.J.M.); and TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.B.)
| |
Collapse
|
43
|
Zhao Y, Li Y, Ning X, Chen K, Zhang S. Association of angiotensin II receptor 1 and lectin-like oxidized low-density lipoprotein receptor-1 mediates the cardiac hypertrophy induced by oxidized low-density lipoprotein. Biochem Biophys Res Commun 2017; 490:55-61. [PMID: 28595908 DOI: 10.1016/j.bbrc.2017.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
Abstract
To date the molecular mechanism of cardiac hypertrophy has not been completely elucidated. Since oxidized low-density lipoprotein (ox-LDL) is considered a risk marker for early ventricular remodeling, we speculated that ox-LDL may be related to cardiac hypertrophy. We observed the significantly upregulation of plasma ox-LDL and hypertrophic responses, such as cardiomyocyte size and specific gene expressions in Apo E-/- mice fed with high fat diet, accompanied by the upregulation of AT1-R and lectin-like oxidized low-density protein receptor 1 (LOX-1). Ox-LDL treatment with neonatal rat cardiomyocyte for 24 h significantly induced similar hypertrophic responses and also upregulation of AT1-R and LOX-1. The analysis of co-immunoprecipitation and the bimolecular fluorescence complementation assay proved that LOX-1 and AT1-R could directly bind together in the presence of ox-LDL, suggesting a critical role of the association between LOX-1 and AT1-R in ox-LDL-induced cardiac hypertrophy. Furthermore, we found that the AT1-R blocker Losartan and LOX-1 neutralizing antibody through inhibiting AT1-R or LOX-1 could both decline ox-LDL-induced hypertrophic responses whereas angiotensin converting enzyme inhibitor Enalapril only partially inhibited the responses stimulated by ox-LDL. These findings suggested that ox-LDL could induce cardiac hypertrophy through the direct association of AT1-R and LOX-1.
Collapse
Affiliation(s)
- Yunzi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqiu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Ning
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keping Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Marian AJ, van Rooij E, Roberts R. Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders. J Am Coll Cardiol 2017; 68:2831-2849. [PMID: 28007145 DOI: 10.1016/j.jacc.2016.09.968] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023]
Abstract
This is the first of 2 review papers on genetics and genomics appearing as part of the series on "omics." Genomics pertains to all components of an organism's genes, whereas genetics involves analysis of a specific gene or genes in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper.
Collapse
Affiliation(s)
- Ali J Marian
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, and Texas Heart Institute, Houston, Texas.
| | - Eva van Rooij
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert Roberts
- University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
45
|
Chen Y, Yu S, Zhang N, Li Y, Chen S, Chang Y, Sun G, Sun Y. Atorvastatin prevents Angiotensin II induced myocardial hypertrophy in vitro via CCAAT/enhancer-binding protein β. Biochem Biophys Res Commun 2017; 486:423-430. [DOI: 10.1016/j.bbrc.2017.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 01/20/2023]
|
46
|
Liu Y, Wang Z, Xiao W. MicroRNA-26a protects against cardiac hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes. Mol Med Rep 2016; 14:2860-6. [PMID: 27485101 DOI: 10.3892/mmr.2016.5574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 07/12/2016] [Indexed: 11/05/2022] Open
Abstract
Pathological cardiac hypertrophy is characterized by deleterious changes developed in cardiovascular diseases, whereas microRNAs (miRNAs) are involved in the mediation of cardiac hypertrophy. To investigate the role of microRNA-26a (miR-26a) in regulating cardiac hypertrophy and its functioning mechanisms, overexpression and suppression of miR‑26a via its mimic and inhibitor in a transverse abdominal aortic constriction (TAAC)-induced rat model and in angiotensin II (Ang II)-induced cardiomyocytes (CMs) was performed. In the rat model, the heart weight (HW) compared with the body weight (BW), the CM area, and expression of the hypertrophy‑associated factors, atrial natriuretic factor (ANF) and β‑myosin heavy chain (β‑MHC), were assessed. In CMs, the protein synthesis rate was determined using a leucine incorporation assay. Mutation of the GATA‑binding protein 4 (GATA4) 3'‑untranslated region (UTR) and overexpression of GATA4 were performed to confirm whether GATA4 is the target of miR‑26a. The results indicated that miR-26a was significantly downregulated in the heart tissue of the rat model, as well as in Ang II‑induced CMs (P<0.05). The TAAC-induced rat model exhibited a higher HW/BW ratio, a larger CM area, and higher expression levels of ANF and β‑MHC. CMs, upon Ang II treatment, also demonstrated a larger CM area, higher levels of ANF and β‑MHC, as well as accelerated protein synthesis. miR‑26a was not able to regulate GATA4 with mutations in the 3'‑UTR, indicating that GATA4 was the direct target of miR‑26a. Overexpression of GATA4 abrogated the inhibitory functions of miR‑26a in cardiac hypertrophy. Taken together, the present study suggested an anti‑hypertrophic role of miR‑26a in cardiac hypertrophy, possibly via inhibition of GATA4. These findings may be useful in terms of facilitating cardiac treatment, with potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhiqian Wang
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Wenliang Xiao
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
47
|
The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:123-30. [DOI: 10.1016/j.pbiomolbio.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022]
|
48
|
Liu X, Zou C, Yu C, Xie R, Sui M, Mu S, Li L, Zhao S. Original Research: Atorvastatin prevents rat cardiomyocyte hypertrophy induced by parathyroid hormone 1-34 associated with the Ras-ERK signaling. Exp Biol Med (Maywood) 2016; 241:1745-50. [PMID: 27190264 DOI: 10.1177/1535370216649259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
We investigated the effects of atorvastatin (Ator) on cardiomyocyte hypertrophy (CMH) induced by rat parathyroid hormone 1-34 (PTH1-34) and Ras-extracellular signal regulated protein kinases 1/2 (ERK1/2) signaling. Rat cardiomyocytes were randomly divided into seven groups: normal controls (NC), PTH1-34 (10(-7) mol/L), Ator (10(-5) mol/L), farnesyl transferase inhibitors-276 (FTI-276, 4 × 10(-5) mol/L), PTH1-34 + Ator, PTH1-34 + FTI-276 and PTH1-34 + Ator + mevalonic acid (MVA, 10(-4) mol/L). After treatment, the hypertrophic responses of cardiomyocytes were assessed by measuring cell diameter, detecting protein synthesis, and single-cell protein content. The concentrations of hypertrophic markers such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured by ELISA. Protein expressions of ERK1/2, p-ERK1/2 and Ras were detected by western blotting. The results showed that compared with the PTH1-34 group, cellular diameter, 3H-leucine incorporation, single-cell protein content, ANP and BNP concentration decreased by 12.07 µm, 1622 cpm/well, 84.34 pg, 7.13 ng/L and 20.04 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were downregulated in PTH1-34 + Ator group (P < 0.05). Compared to the PTH1-34 + Ator group, the corresponding hypertrophic responses and hypertrophic markers increased by 4.95 µm, 750 cpm/well, 49.08 pg, 3.12 ng/L and 9.35 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were upregulated in the PTH1-34 + Ator + MVA group (P < 0.05). In conclusion, Ator prevents neonatal rat CMH induced by PTH1-34 and Ras-ERK signaling may be involved in this process.
Collapse
Affiliation(s)
- Xiaogang Liu
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chunbo Zou
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chengyuan Yu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Rujuan Xie
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Manshu Sui
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Suhong Mu
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Li Li
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shilei Zhao
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
49
|
Pleiotropic effects of statins: new therapeutic targets in drug design. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:695-712. [PMID: 27146293 DOI: 10.1007/s00210-016-1252-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
The HMG Co-enzyme inhibitors and new lipid-modifying agents expand their new therapeutic target options in the field of medical profession. Statins have been described as the most effective class of drugs to reduce serum cholesterol levels. Since the discovery of the first statin nearly 30 years ago, these drugs have become the main therapeutic approach to lower cholesterol levels. The present scientific research demonstrates numerous non-lipid modifiable effects of statins termed as pleiotropic effects of statins, which could be beneficial for the treatment of various devastating disorders. The most important positive effects of statins are anti-inflammatory, anti-proliferative, antioxidant, immunomodulatory, neuroprotective, anti-diabetes, and antithrombotic, improving endothelial dysfunction and attenuating vascular remodeling besides many others which are discussed under the scope of this review. In particular, inhibition of Rho and its downstream target, Rho-associated coiled-coil-containing protein kinase (ROCK), and their agonistic action on peroxisome proliferator-activated receptors (PPARs) can be viewed as the principle mechanisms underlying the pleiotropic effects of statins. With gradually increasing knowledge of new therapeutic targets of statins, their use has also been advocated in chronic inflammatory disorders for example rheumatoid arthritis (RA) and in systemic lupus erythematosus (SLE). In the scope of review, we highlight statins and their pleiotropic effects with reference to their harmful and beneficial effects as a novel approach for their use in the treatment of devastating disorders. Graphical abstract Pleiotropic effect of statins.
Collapse
|
50
|
Ammirati E, Contri R, Coppini R, Cecchi F, Frigerio M, Olivotto I. Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. Eur J Heart Fail 2016; 18:1106-18. [DOI: 10.1002/ejhf.541] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/07/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Enrico Ammirati
- De Gasperis Cardio Centre; ASST Grande Ospedale Metropolitano Niguarda; Milan Italy
| | - Rachele Contri
- Cardiothoracic and Vascular Department; Vita-Salute San Raffaele University; Milan Italy
| | - Raffaele Coppini
- Referral Centre for Cardiomyopathies; Careggi University Hospital; Florence Italy
| | - Franco Cecchi
- Referral Centre for Cardiomyopathies; Careggi University Hospital; Florence Italy
| | - Maria Frigerio
- De Gasperis Cardio Centre; ASST Grande Ospedale Metropolitano Niguarda; Milan Italy
| | - Iacopo Olivotto
- Referral Centre for Cardiomyopathies; Careggi University Hospital; Florence Italy
| |
Collapse
|