1
|
Liu X, Zhang Z, Aguirre T, Shipton ML, Fu L, Du J, Furkert D, Qi J, Chin AC, Riley AM, Liu T, Zhang X, Potter BVL, Fiedler D, Zhu Y, Fu C. Inhibiting IP6K1 confers atheroprotection by elevating circulating apolipoprotein A-I. Metabolism 2025; 163:156098. [PMID: 39643078 PMCID: PMC7617243 DOI: 10.1016/j.metabol.2024.156098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND AIMS Atherosclerotic cardiovascular diseases are the leading cause of death. Apolipoprotein A-I (apoA-I) mediates cholesterol efflux to lower the risks of atherosclerosis. Elevating circulating apoA-I is an effective strategy for atheroprotection. However, the regulatory mechanisms of apoA-I have been elusive. METHODS Protein-protein interactions were examined by co-immunoprecipitations. Chemical biology tools were used to determine the binding of 5PP-InsP5 to its target proteins and its roles in mediating protein-protein interactions. The mouse atherosclerotic model was generated by injecting AAV-PCSK9 and feeding a Western diet. Atherosclerotic plaques were determined by Oil Red O and H&E staining. RESULTS We show that blocking IP6K1 activity increases apoA-I production in hepatocytes. IP6K1 binds to apoA-I and via its product 5PP-InsP5 to induce apoA-I degradation, which requires ubiquitination factor E4A (UBE4A). Depleting 5PP-InsP5 by deleting IP6K1 or blocking IP6K1 activity disrupts the interaction between UBE4A and apoA-I, preventing apoA-I degradation, leading to increased production of apoA-I. Hepatocyte-specific deletion of IP6K1 elevates circulating apoA-I levels, which augments cholesterol efflux and lowers the burden of atherosclerosis. Mice with both apoA-I KO and hepatocyte-specific IP6K1 KO were generated to validate that IP6K1 deletion-induced atheroprotection requires apoA-I. CONCLUSIONS Our findings reveal a mechanism by which blocking IP6K1 boosts apoA-I production. Blocking IP6K1 represents a potential treatment strategy to elevate circulating apoA-I for atheroprotection.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Zixuan Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Megan L Shipton
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Lin Fu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jimin Du
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Ji Qi
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China.
| | - Chenglai Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
2
|
Abudukeremu A, Chen Q, Pan Z, Liu X, Huang T, Jiang Y, Li H, Sun R, Pan H, Wen K, Wang Y, Zheng M, Su Z, Zhang Y. Different association of HDL-C, apoA-I, and HDL-C/apoA-I with multiple outcomes in HFrEF patients. Int J Cardiol 2024; 422:132929. [PMID: 39722359 DOI: 10.1016/j.ijcard.2024.132929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/22/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND High-density lipoprotein-cholesterol (HDL-C) has been considered a cardioprotective factor for several decades. However, its association with outcomes in patients with heart failure with reduced ejection fraction (HFrEF) remains controversial. We aimed to investigate the association of HDL-C, apolipoprotein A-I (apoA-I), and the HDL-C/apoA-I ratio with multiple outcomes of HFrEF patients and establish prognostic models using machine learning methods. METHODS AND RESULTS This was a retrospective, single-center study. The associations between lipid levels and multiple outcomes were examined using logistic regression analysis. Prognostic models for multiple outcomes were further established using four machine learning methods. A total of 352 HFrEF patients were visited successfully. In the multivariable-adjusted logistic regression analysis, HDL-C did not show a significant association with any of the studied outcomes; apoA-I was marginally unassociated with all-cause rehospitalization (adjusted odds ratio [aOR] = 0.62, p = 0.063) but was significantly negatively associated with all-cause death (aOR = 0.53, p = 0.038), rehospitalization for cardiovascular or cerebrovascular disease (aOR = 0.43, p < 0.001), and rehospitalization for heart failure (aOR = 0.55, p = 0.024); apoA-I was also significantly positively associated with left ventricular ejection fraction (LVEF) improvement (aOR = 2.00, p = 0.039). Although several p-values were not statistically significant, both the first and third HDL-C/apoA-I groups showed an increased incidence rate for all adverse outcomes compared with the middle group and a decreased incidence rate for LVEF improvement. In the machine learning analysis, the support vector machine and extreme gradient boosting models demonstrated better predictive performance. For each outcome prognosis, apoA-I and logarithmic N-terminal pro-B-type natriuretic peptide were automatically selected. CONCLUSION Among HFrEF patients, apoA-I may be a better marker for predicting outcomes than HDL-C. Both low and high levels of HDL-C/apoA-I may indicate a poor prognosis of HFrEF patients.
Collapse
Affiliation(s)
- Ayiguli Abudukeremu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Foshan 528200, China
| | - Qiaofei Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Foshan 528200, China
| | - Zhanpeng Pan
- Oncology Department of Nansha, Guangzhou First People's Hospital, Guangzhou 510000, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Foshan 528200, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Tongsheng Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Yuan Jiang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Foshan 528200, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Hongwei Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Runlu Sun
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Hong Pan
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Kexin Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Yue Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Minglong Zheng
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Zizhuo Su
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Foshan 528200, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Foshan 528200, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| |
Collapse
|
3
|
Ono K. Twin Studies: Current Status and Future Directions. J Atheroscler Thromb 2024; 31:1515-1516. [PMID: 39048357 PMCID: PMC11537792 DOI: 10.5551/jat.ed268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Wei L, Laukkanen JA, Li Y, Chen X, Li G. Association of High apoB/apoA1 Ratio with Increased Erythrocytes, Platelet/Lymphocyte Ratio, D-dimer, Uric Acid and Cardiac Remodeling in Elderly Heart Failure Patients: A Retrospective Study. Int J Gen Med 2024; 17:2151-2161. [PMID: 38766597 PMCID: PMC11099934 DOI: 10.2147/ijgm.s465053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Background Previous studies have confirmed that high apolipoprotein B/apolipoprotein A1 (apoB/apoA1) ratio was associated with increased mortality from heart failure (HF). Furthermore, the association of plasma apoB/apoA1 ratio with clinical characteristics and adverse cardiac remodeling is still limited in chronic HF with mildly reduced ejection fraction (HFmrEF) elderly patients. Therefore, this study investigated the association of apoB/apoA1 ratio with clinical characteristics and adverse cardiac remodeling in chronic HFmrEF elderly patients. Methods A total of 587 Chinese elderly (≥65 years) with coronary heart disease (CHD), HFmrEF (EF 40-50%) and related blood biochemical data were collected retrospectively. The cross-sectional data of echocardiographic and blood parameters were compared between binary apoB/apoA1 groups. Results In the elderly CHD patients with chronic HFmrEF, the univariate correlation analysis showed that apoB/apoA1 was correlated with younger age, increased prevalence of type 2 diabetes, erythrocytes, platelet/lymphocyte ratio (PLR), D-dimer, fibrinogen, high sensitivity C-reactive protein and uric acid, and adverse cardiac remodeling (All P < 0.05). However, multivariate logistic binary regression analysis found that high apoB/apoA1 ratio (≥0.62) was independently correlated with younger age, increased erythrocytes, PLR, D-dimer and uric acid, and adverse cardiac remodeling (All P < 0.05). Conclusion In this retrospective study, the high apoB/apoA1 ratio is found to be associated with younger age, increased erythrocytes, PLR, D-dimer and uric acid, and adverse cardiac remodeling in Chinese CHD elderly with chronic HFmrEF.
Collapse
Affiliation(s)
- Linping Wei
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jari A Laukkanen
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, 70211, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70211, Finland
- Wellbeing Services County of Central Finland, Department of Medicine, Jyväskylä, 40620, Finland
| | - Yufeng Li
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xinrui Chen
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Gang Li
- Division of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
5
|
Li S, Xie X, Zeng X, Wang S, Lan J. Serum apolipoprotein B to apolipoprotein A-I ratio predicts mortality in patients with heart failure. ESC Heart Fail 2024; 11:99-111. [PMID: 37822135 PMCID: PMC10804159 DOI: 10.1002/ehf2.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
AIMS Apolipoproteins have been reported to be involved in many cardiovascular diseases. The aim of our study was to investigate the prognostic value of apolipoprotein B (ApoB) to apolipoprotein A-I (ApoA-I) ratio (ApoB/ApoA-I) in patients with heart failure (HF). METHODS AND RESULTS We randomly assigned 2400 HF patients into the training cohort (n = 1400) and the validation cohort (n = 1000). Using a receiver operating characteristic curve, we identified the optimal cut-off value of the ApoB/ApoA-I in the training cohort as 0.69, which was further validated in the validation cohort. A propensity score matching (PSM) analysis was conducted to eliminate the imbalance in the baseline characteristics of the high and low ApoB/ApoA-I group. A total of 2242 HF patients were generated in the PSM cohort. We also validated our results with an independent cohort (n = 838). Univariate and multivariate analyses were conducted to explore the independent prognostic value of ApoB/ApoA-I in the training cohort (n = 1400), the validation cohort (n = 1000), the PSM cohort (n = 2242), and the independent cohort (n = 838). Patients with high ApoB/ApoA-I ratio had significantly poorer prognosis compared with those with low ApoB/ApoA-I ratio in the training cohort, the validation cohort, the PSM cohort, and the independent cohort (P < 0.05). Multivariate analysis indicated that the ApoB/ApoA-I was an independent prognostic factor for HF in the training cohort [hazard ratio (HR) = 1.637, 95% confidence interval (CI) = 1.201-2.231, P = 0.002], the validation cohort (HR = 1.54, 95% CI = 1.051-2.257, P = 0.027), the PSM cohort (HR = 1.645, 95% CI = 1.273-2.125, P < 0.001), and the independent cohort (HR = 1.987, 95% CI = 1.251-3.155, P = 0.004). CONCLUSIONS Serum ApoB/ApoA-I ratio is an independent predictor for the prognosis of HF patients.
Collapse
Affiliation(s)
- Shiyang Li
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
- Panzhihua Central Hospital affiliated to Dali UniversityYunnanChina
| | - Xiaoshuang Xie
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Xiaobin Zeng
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Shihai Wang
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Jianjun Lan
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| |
Collapse
|
6
|
Knapp M, Łukaszuk B, Lisowska A, Hirnle T, Górski J, Chabowski A, Mikłosz A. Multivessel Coronary Artery Disease Complicated by Diabetes Mellitus Has a Relatively Small Effect on Endothelial and Lipoprotein Lipases Expression in the Human Atrial Myocardium and Coronary Perivascular Adipose Tissue. Int J Mol Sci 2023; 24:13552. [PMID: 37686357 PMCID: PMC10487606 DOI: 10.3390/ijms241713552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Endothelial (EL) and lipoprotein (LPL) lipases are enzymes involved in lipoproteins metabolism and formation of atherosclerosis, a pathological feature of coronary artery disease (CAD). This paper examines the role of the lipases in the right atrial appendage (RAA) and coronary perivascular adipose tissue (PVAT) of patients with CAD alone or with accompanying diabetes. Additionally, correlation analysis for plasma concentration of the lipases, apolipoproteins (ApoA-ApoJ) and blood lipids (Chol, HDL-C, LDL-C, TAG) was performed. We observed that CAD had little effect on the lipases gene/protein levels in the RAA, while their transcript content was elevated in the PVAT of diabetic CAD patients. Interestingly, the RAA was characterized by higher expression of EL/LPL (EL: +1-fold for mRNA, +5-fold for protein; LPL: +2.8-fold for mRNA, +12-fold for protein) compared to PVAT. Furthermore, ApoA1 plasma concentration was decreased, whereas ApoC1 and ApoH were increased in the patients with CAD and/or diabetes. The concentrations of ApoC3 and ApoD were strongly positively correlated with TAG content in the blood, and the same was true for ApoB with respect to LDL-C and total cholesterol. Although plasma concentrations of EL/LPL were elevated in the patients with diabetes, CAD alone had little effect on blood, myocardial and perivascular fat expression of the lipases.
Collapse
Affiliation(s)
- Małgorzata Knapp
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (T.H.)
| | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (B.L.); (A.C.)
| | - Anna Lisowska
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (T.H.)
| | - Tomasz Hirnle
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (T.H.)
| | - Jan Górski
- Faculty of Health Sciences, University of Lomza, 18-400 Lomza, Poland;
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (B.L.); (A.C.)
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (B.L.); (A.C.)
| |
Collapse
|
7
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Lu Y, Qiu M, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Relationship between Cholesterol-Related Lipids and Severe Acute Pancreatitis: From Bench to Bedside. J Clin Med 2023; 12:jcm12051729. [PMID: 36902516 PMCID: PMC10003000 DOI: 10.3390/jcm12051729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is well known that hypercholesterolemia in the body has pro-inflammatory effects through the formation of inflammasomes and augmentation of TLR (Toll-like receptor) signaling, which gives rise to cardiovascular disease and neurodegenerative diseases. However, the interaction between cholesterol-related lipids and acute pancreatitis (AP) has not yet been summarized before. This hinders the consensus on the existence and clinical importance of cholesterol-associated AP. This review focuses on the possible interaction between AP and cholesterol-related lipids, which include total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and apolipoprotein (Apo) A1, from the bench to the bedside. With a higher serum level of total cholesterol, LDL-C is associated with the severity of AP, while the persistent inflammation of AP is allied with a decrease in serum levels of cholesterol-related lipids. Therefore, an interaction between cholesterol-related lipids and AP is postulated. Cholesterol-related lipids should be recommended as risk factors and early predictors for measuring the severity of AP. Cholesterol-lowering drugs may play a role in the treatment and prevention of AP with hypercholesterolemia.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yajing Lu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20–24, 51429 Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, 66539 Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: ; Tel./Fax: +86-0577-55579122
| |
Collapse
|
8
|
Kluck GE, Qian AS, Sakarya EH, Quach H, Deng YD, Trigatti BL. Apolipoprotein A1 Protects Against Necrotic Core Development in Atherosclerotic Plaques: PDZK1-Dependent High-Density Lipoprotein Suppression of Necroptosis in Macrophages. Arterioscler Thromb Vasc Biol 2023; 43:45-63. [PMID: 36353992 PMCID: PMC9762725 DOI: 10.1161/atvbaha.122.318062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic disease affecting artery wall and a major contributor to cardiovascular diseases. Large necrotic cores increase risk of plaque rupture leading to thrombus formation. Necrotic cores are rich in debris from dead macrophages. Programmed necrosis (necroptosis) contributes to necrotic core formation. HDL (high-density lipoprotein) exerts direct atheroprotective effects on different cells within atherosclerotic plaques. Some of these depend on the SR-B1 (scavenger receptor class B type I) and the adapter protein PDZK1 (postsynaptic density protein/Drosophila disc-large protein/Zonula occludens protein containing 1). However, a role for HDL in protecting against necroptosis and necrotic core formation in atherosclerosis is not completely understood. METHODS Low-density lipoprotein receptor-deficient mice engineered to express different amounts of ApoA1 (apolipoprotein A1), or to lack PDZK1 were fed a high fat diet for 10 weeks. Atherosclerotic plaque areas, necrotic cores, and key necroptosis mediators, RIPK3 (receptor interacting protein kinase 3), and MLKL (mixed lineage kinase domain-like protein) were characterized. Cultured macrophages were treated with HDL to determine its effects, as well as the roles of SR-B1, PDZK1, and the PI3K (phosphoinositide 3-kinase) signaling pathway on necroptotic cell death. RESULTS Genetic overexpression reduced, and ApoA1 knockout increased necrotic core formation and RIPK3 and MLKL within atherosclerotic plaques. Macrophages were protected against necroptosis by HDL and this protection required SR-B1, PDZK1, and PI3K/Akt pathway. PDZK1 knockout increased atherosclerosis in LDLRKO mice, increasing necrotic cores and phospho-MLKL; both of which were reversed by restoring PDZK1 in BM-derived cells. CONCLUSIONS Our findings demonstrate that HDL in vitro and ApoA1, in vivo, protect against necroptosis in macrophages and necrotic core formation in atherosclerosis, suggesting a pathway that could be a target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- George E.G. Kluck
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Alexander S. Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Emmanuel H. Sakarya
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Henry Quach
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Yak D. Deng
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| |
Collapse
|
9
|
Durrington PN, Bashir B, Soran H. Paraoxonase 1 and atherosclerosis. Front Cardiovasc Med 2023; 10:1065967. [PMID: 36873390 PMCID: PMC9977831 DOI: 10.3389/fcvm.2023.1065967] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Paraoxonase 1 (PON1), residing almost exclusively on HDL, was discovered because of its hydrolytic activity towards organophosphates. Subsequently, it was also found to hydrolyse a wide range of substrates, including lactones and lipid hydroperoxides. PON1 is critical for the capacity of HDL to protect LDL and outer cell membranes against harmful oxidative modification, but this activity depends on its location within the hydrophobic lipid domains of HDL. It does not prevent conjugated diene formation, but directs lipid peroxidation products derived from these to become harmless carboxylic acids rather than aldehydes which might adduct to apolipoprotein B. Serum PON1 is inversely related to the incidence of new atherosclerotic cardiovascular disease (ASCVD) events, particularly in diabetes and established ASCVD. Its serum activity is frequently discordant with that of HDL cholesterol. PON1 activity is diminished in dyslipidaemia, diabetes, and inflammatory disease. Polymorphisms, most notably Q192R, can affect activity towards some substrates, but not towards phenyl acetate. Gene ablation or over-expression of human PON1 in rodent models is associated with increased and decreased atherosclerosis susceptibility respectively. PON1 antioxidant activity is enhanced by apolipoprotein AI and lecithin:cholesterol acyl transferase and diminished by apolipoprotein AII, serum amyloid A, and myeloperoxidase. PON1 loses this activity when separated from its lipid environment. Information about its structure has been obtained from water soluble mutants created by directed evolution. Such recombinant PON1 may, however, lose the capacity to hydrolyse non-polar substrates. Whilst nutrition and pre-existing lipid modifying drugs can influence PON1 activity there is a cogent need for more specific PON1-raising medication to be developed.
Collapse
Affiliation(s)
- Paul N Durrington
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Bilal Bashir
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Handrean Soran
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
10
|
Bhale AS, Venkataraman K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed Pharmacother 2022; 154:113634. [PMID: 36063649 DOI: 10.1016/j.biopha.2022.113634] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a member of the Apolipoprotein family of proteins. It's a vital protein that helps in the production of high-density lipoprotein (HDL) particles, which are crucial for reverse cholesterol transport (RCT). It also has anti-inflammatory, anti-atherogenic, anti-apoptotic, and anti-thrombotic properties. These functions interact to give HDL particles their cardioprotective characteristics. ApoA1 has recently been investigated for its potential role in atherosclerosis, diabetes, neurological diseases, cancer, and certain infectious diseases. Since ApoA1's discovery, numerous mutations have been reported that affect its structural integrity and alter its function. Hence these insights have led to the development of clinically relevant peptides and synthetic reconstituted HDL (rHDL) that mimics the function of ApoA1. As a result, this review has aimed to provide an organized explanation of our understanding of the ApoA1 protein structure and its role in various essential pathways. Furthermore, we have comprehensively reviewed the important ApoA1 mutations (24 mutations) that are reported to be involved in various diseases. Finally, we've focused on the therapeutic potentials of some of the beneficial mutations, small peptides, and synthetic rHDL that are currently being researched or developed, since these will aid in the development of novel therapeutics in the future.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
11
|
Thomas SR, Zhang Y, Rye KA. The pleiotropic effects of high-density lipoproteins and apolipoprotein A-I. Best Pract Res Clin Endocrinol Metab 2022; 37:101689. [PMID: 36008277 DOI: 10.1016/j.beem.2022.101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The high density lipoprotein (HDL) fraction of human plasma consists of multiple subpopulations of spherical particles that are structurally uniform, but heterogeneous in terms of size, composition and function. Numerous epidemiological studies have established that an elevated high density lipoprotein cholesterol (HDL-C) level is associated with decreased cardiovascular risk. However, with several recent randomised clinical trials of HDL-C raising agents failing to reduce cardiovascular events, contemporary research is transitioning towards clinical development of the cardioprotective functions of HDLs and the identification of functions that can be exploited for treatment of other diseases. This review describes the origins of HDLs and the causes of their compositional and functional heterogeneity. It then summarises current knowledge of how cardioprotective and other functions of HDLs are regulated. The final section of the review summarises recent advances in the clinical development of HDL-targeted therapies.
Collapse
Affiliation(s)
- Shane R Thomas
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Yunjia Zhang
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Kerry-Anne Rye
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Zhou M, Li R, Venkat P, Qian Y, Chopp M, Zacharek A, Landschoot-Ward J, Powell B, Jiang Q, Cui X. Post-Stroke Administration of L-4F Promotes Neurovascular and White Matter Remodeling in Type-2 Diabetic Stroke Mice. Front Neurol 2022; 13:863934. [PMID: 35572941 PMCID: PMC9100936 DOI: 10.3389/fneur.2022.863934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) exhibit a distinct and high risk of ischemic stroke with worse post-stroke neurovascular and white matter (WM) prognosis than the non-diabetic population. In the central nervous system, the ATP-binding cassette transporter member A 1 (ABCA1), a reverse cholesterol transporter that efflux cellular cholesterol, plays an important role in high-density lipoprotein (HDL) biogenesis and in maintaining neurovascular stability and WM integrity. Our previous study shows that L-4F, an economical apolipoprotein A member I (ApoA-I) mimetic peptide, has neuroprotective effects via alleviating neurovascular and WM impairments in the brain of db/db-T2DM stroke mice. To further investigate whether L-4F has neurorestorative benefits in the ischemic brain after stroke in T2DM and elucidate the underlying molecular mechanisms, we subjected middle-aged, brain-ABCA1 deficient (ABCA1-B/-B), and ABCA1-floxed (ABCA1fl/fl) T2DM control mice to distal middle cerebral artery occlusion. L-4F (16 mg/kg, subcutaneous) treatment was initiated 24 h after stroke and administered once daily for 21 days. Treatment of T2DM-stroke with L-4F improved neurological functional outcome, and decreased hemorrhage, mortality, and BBB leakage identified by decreased albumin infiltration and increased tight-junction and astrocyte end-feet densities, increased cerebral arteriole diameter and smooth muscle cell number, and increased WM density and oligodendrogenesis in the ischemic brain in both ABCA1-B/-B and ABCA1fl/fl T2DM-stroke mice compared with vehicle-control mice, respectively (p < 0.05, n = 9 or 21/group). The L-4F treatment reduced macrophage infiltration and neuroinflammation identified by decreases in ED-1, monocyte chemoattractant protein-1 (MCP-1), and toll-like receptor 4 (TLR4) expression, and increases in anti-inflammatory factor Insulin-like growth factor 1 (IGF-1) and its receptor IGF-1 receptor β (IGF-1Rβ) in the ischemic brain (p < 0.05, n = 6/group). These results suggest that post-stroke administration of L-4F may provide a restorative strategy for T2DM-stroke by promoting neurovascular and WM remodeling. Reducing neuroinflammation in the injured brain may contribute at least partially to the restorative effects of L-4F independent of the ABCA1 signaling pathway.
Collapse
Affiliation(s)
- Min Zhou
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Rongwen Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yu Qian
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
13
|
Battle S, Gogonea V, Willard B, Wang Z, Fu X, Huang Y, Graham LM, Cameron SJ, DiDonato JA, Crabb JW, Hazen SL. The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta. J Biol Chem 2022; 298:101832. [PMID: 35304099 PMCID: PMC9010765 DOI: 10.1016/j.jbc.2022.101832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an equilibrium mixture of cyanate (CNO−) and the reactive electrophile isocyanate. The second pathway involves myeloperoxidase (MPO)-catalyzed oxidation of thiocyanate (SCN−), yielding CNO− and isocyanate. Apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoprotein (HDL), is a known target for MPO-catalyzed modification in vivo, converting the cardioprotective lipoprotein into a proatherogenic and proapoptotic one. We hypothesized that monitoring site-specific carbamylation patterns of apoA-I recovered from human atherosclerotic aorta could provide insights into the chemical environment within the artery wall. To test this, we first mapped carbamyllysine obtained from in vitro carbamylation of apoA-I by both the urea-driven (nonenzymatic) and inflammatory-driven (enzymatic) pathways in lipid-poor and lipidated apoA-I (reconstituted HDL). Our results suggest that lysine residues within proximity of the known MPO-binding sites on HDL are preferentially targeted by the enzymatic (MPO) carbamylation pathway, whereas the nonenzymatic pathway leads to nearly uniform distribution of carbamylated lysine residues along the apoA-I polypeptide chain. Quantitative proteomic analyses of apoA-I from human aortic atheroma identified 16 of the 21 lysine residues as carbamylated and suggested that the majority of apoA-I carbamylation in vivo occurs on “lipid-poor” apoA-I forms via the nonenzymatic CNO− pathway. Monitoring patterns of apoA-I carbamylation recovered from arterial tissues can provide insights into both apoA-I structure and the chemical environment within human atheroma.
Collapse
Affiliation(s)
- Shawna Battle
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Belinda Willard
- Proteomics Shared Laboratory Resource, Cleveland Clinic, Cleveland, OH
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Ying Huang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Linda M Graham
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Scott J Cameron
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH; Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - John W Crabb
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Department of Chemistry, Cleveland State University, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
14
|
Davidson WS, Shah AS, Sexmith H, Gordon SM. The HDL Proteome Watch: Compilation of studies leads to new insights on HDL function. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159072. [PMID: 34800735 PMCID: PMC8715479 DOI: 10.1016/j.bbalip.2021.159072] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW High density lipoproteins (HDL) are a heterogeneous family of particles that contain distinct complements of proteins that define their function. Thus, it is important to accurately and sensitively identify proteins associated with HDL. Here we highlight the HDL Proteome Watch Database which tracks proteomics studies from different laboratories across the world. RECENT FINDINGS In 45 published reports, almost 1000 individual proteins have been detected in preparations of HDL. Of these, 251 have been identified in at least three different laboratories. The known functions of these consensus HDL proteins go well beyond traditionally recognized roles in lipid transport with many proteins pointing to HDL functions in innate immunity, inflammation, cell adhesion, hemostasis and protease regulation, and even vitamin and metal binding. SUMMARY The HDL proteome derived across multiple studies using various methodologies provides confidence in protein identifications that can offer interesting new insights into HDL function. We also point out significant issues that will require additional study going forward.
Collapse
Affiliation(s)
- W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, United States of America.
| | - Amy S Shah
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, United States of America.
| | - Hannah Sexmith
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, United States of America.
| | - Scott M Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| |
Collapse
|
15
|
HDL and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:119-127. [DOI: 10.1007/978-981-19-1592-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Fujimoto D, Otake H, Kawamori H, Toba T, Nagao M, Nakano S, Tanimura K, Takahashi Y, Fukuyama Y, Kakizaki S, Nakamura K, Harada A, Murakami K, Iino T, Toh R, Hirata KI. Cholesterol uptake capacity: A new measure of high-density lipoprotein functionality as a predictor of subsequent revascularization in patients undergoing percutaneous coronary intervention. Atherosclerosis 2022; 345:44-50. [DOI: 10.1016/j.atherosclerosis.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 12/28/2022]
|
17
|
Kajani S, Curley S, O'Reilly ME, Yin X, Dillon ET, Guo W, Nilaweera KN, Brennan L, Roche HM, McGillicuddy FC. Sodium salicylate rewires hepatic metabolic pathways in obesity and attenuates IL-1β secretion from adipose tissue - implications for obesity-impaired reverse cholesterol transport. Mol Metab 2021; 56:101425. [PMID: 34954383 PMCID: PMC8762459 DOI: 10.1016/j.molmet.2021.101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction High-fat diet (HFD)-induced obesity impairs clearance of cholesterol through the Reverse Cholesterol Transport (RCT) pathway, with downregulation in hepatic expression of cholesterol and bile acid transporters, namely ABCG5/8 and ABCB11, and reduced high-density lipoprotein (HDL) cholesterol efflux capacity (CEC). In the current study, we hypothesized that the development of hepatosteatosis, secondary to adipose-tissue dysfunction, contributes to obesity-impaired RCT and that such effects could be mitigated using the anti-inflammatory drug sodium salicylate (NaS). Materials and methods C57BL/6J mice, fed HFD ± NaS or low-fat diet (LFD) for 24 weeks, underwent glucose and insulin tolerance testing. The 3H-cholesterol movement from macrophage-to-feces was assessed in vivo. HDL-CEC was determined ex vivo. Cytokine secretion from adipose-derived stromal vascular fraction (SVF) cells was measured ex vivo. Liver and HDL proteins were determined by mass spectrometry and analyzed using Ingenuity Pathway Analysis. Results NaS delayed HFD-induced weight gain, abrogated priming of pro-IL-1β in SVFs, attenuated insulin resistance, and prevented steatohepatitis (ectopic fat accumulation in the liver). Prevention of hepatosteatosis coincided with increased expression of PPAR-alpha/beta-oxidation proteins with NaS and reduced expression of LXR/RXR-induced proteins including apolipoproteins. The latter effects were mirrored within the HDL proteome in circulation. Despite remarkable protection shown against steatosis, HFD-induced hypercholesterolemia and repression of the liver-to-bile cholesterol transporter, ABCG5/8, could not be rescued with NaS. Discussions and conclusions The cardiometabolic health benefits of NaS may be attributed to the reprogramming of hepatic metabolic pathways to increase fatty acid utilization in the settings of nutritional overabundance. Reduced hepatic cholesterol levels, coupled with reduced LXR/RXR-induced proteins, may underlie the lack of rescue of ABCG5/8 expression with NaS. This remarkable protection against HFD-induced hepatosteatosis did not translate to improvements in cholesterol homeostasis. Sodium salicylate (NaS) initially delays weight-gain in mice fed high-fat diet (HFD) - catch-up evident in weeks 12–24. NaS prevents HFD-induced insulin resistance, hepatosteatosis and pro-IL-1β priming in adipose tissue even upon weight-gain. Hepatic expression of proteins involved in beta oxidation, oxidative phosphorylation and TCA cycle upregulated with NaS. Hepatic expression of LXR/RXR proteins eg. apolipoproteins reduced with NaS; these effects were mirrored in HDL proteome. NaS failed to improve HFD-impaired Reverse Cholesterol Transport or hypercholesterolemia despite preventing hepatosteatosis.
Collapse
Affiliation(s)
- Sarina Kajani
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Sean Curley
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Marcella E O'Reilly
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Xiaofei Yin
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | | | - Weili Guo
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Kanishka N Nilaweera
- Teagasc Food Research Centre; VistaMilk Research Centre, Moorepark, Fermoy, Ireland
| | - Lorraine Brennan
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Helen M Roche
- Diabetes Complications Research Centre; UCD Conway Institute; Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science; UCD Institute of Food and Health
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health.
| |
Collapse
|
18
|
Rashed ER, Abdel-Rafei MK, Thabet NM. Roles of Simvastatin and Sildenafil in Modulation of Cranial Irradiation-Induced Bystander Multiple Organs Injury in Rats. Inflammation 2021; 44:2554-2579. [PMID: 34420155 DOI: 10.1007/s10753-021-01524-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/16/2021] [Indexed: 01/11/2023]
Abstract
In radiobiology and radiation oncology fields, the observation of a phenomenon called radiation-induced bystander effect (RIBE) has introduced the prospect of remotely located tissues' affection. This phenomenon has been broadly developed to involve the concept of RIBE, which are relevant to the radiation-induced response of a distant tissue other than the irradiated one. The current study aimed at investigating each of the RIBE of cranial irradiation on oxidative and inflammatory status in different organs such as liver, kidney, heart, lung, and spleen. Being a vital target of the cholinergic anti-inflammatory response to an inflammatory stimulus, the splenic α-7-nicotinic acetylcholine receptor (α-7nAchR) was evaluated and the hepatic contents of thioredoxin, peroxisome proliferator-activated receptor-alpha and paraoxinase-1 (Trx/PPAR-α/PON) were also assessed as indicators for the liver oxidative stress and inflammatory responses. Being reported to act as antioxidant and anti-inflammatory agents, simvastatin (SV) and/or sildenafil (SD) were investigated for their effects against RIBE on these organs. These objectives were achieved via the biochemical assessments and the histopathological tissues examinations. Five experimental groups, one sham irradiated and four irradiated groups, were exposed to cranial irradiation at dose level of 25 Gy using an experimental irradiator with a Cobalt (Co60) source, RIBE, RIBE + SV (20 mg.(kg.bw)-1 day-1), RIBE + SD (75 mg.(kg.bw)-1 day-1), and RIBE + SV + SD. Cranial irradiation induced structural, biochemical, and functional dys-regulations in non-targeted organs. RIBE-induced organs' injuries have been significantly corrected by the administration of SV and/or SD. Our results suggest the possibility of a potentiated interaction between SV and SD in the modulation of the RIBE associated with head and neck radiotherapy.
Collapse
Affiliation(s)
- Engy Refaat Rashed
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Khairy Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Noura Magdy Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
19
|
Zanotti I, Potì F, Cuchel M. HDL and reverse cholesterol transport in humans and animals: Lessons from pre-clinical models and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159065. [PMID: 34637925 DOI: 10.1016/j.bbalip.2021.159065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The ability to accept cholesterol from cells and to promote reverse cholesterol transport (RCT) represents the best characterized antiatherogenic function of HDL. Studies carried out in animal models have unraveled the multiple mechanisms by which these lipoproteins drive cholesterol efflux from macrophages and cholesterol uptake to the liver. Moreover, the influence of HDL composition and the role of lipid transporters have been clarified by using suitable transgenic models or through experimental design employing pharmacological or nutritional interventions. Cholesterol efflux capacity (CEC), an in vitro assay developed to offer a measure of the first step of RCT, has been shown to associate with cardiovascular risk in several human cohorts, supporting the atheroprotective role of RCT in humans as well. However, negative data in other cohorts have raised concerns on the validity of this biomarker. In this review we will present the most relevant data documenting the role of HDL in RCT, as assessed in classical or innovative methodological approaches.
Collapse
Affiliation(s)
- Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesco Potì
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Stadler JT, Wadsack C, Marsche G. Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease. Biomedicines 2021; 9:biomedicines9040349. [PMID: 33808220 PMCID: PMC8067099 DOI: 10.3390/biomedicines9040349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol and other lipids carried by lipoproteins play an indispensable role in fetal development. Recent evidence suggests that maternally derived high-density lipoprotein (HDL) differs from fetal HDL with respect to its proteome, size, and function. Compared to the HDL of adults, fetal HDL is the major carrier of cholesterol and has a unique composition that implies other physiological functions. Fetal HDL is enriched in apolipoprotein E, which binds with high affinity to the low-density lipoprotein receptor. Thus, it appears that a primary function of fetal HDL is the transport of cholesterol to tissues as is accomplished by low-density lipoproteins in adults. The fetal HDL-associated bioactive sphingolipid sphingosine-1-phosphate shows strong vasoprotective effects at the fetoplacental vasculature. Moreover, lipoprotein-associated phospholipase A2 carried by fetal-HDL exerts anti-oxidative and athero-protective functions on the fetoplacental endothelium. Notably, the mass and activity of HDL-associated paraoxonase 1 are about 5-fold lower in the fetus, accompanied by an attenuation of anti-oxidative activity of fetal HDL. Cholesteryl ester transfer protein activity is reduced in fetal circulation despite similar amounts of the enzyme in maternal and fetal serum. This review summarizes the current knowledge on fetal HDL as a potential vasoprotective lipoprotein during fetal development. We also provide an overview of whether and how the protective functionalities of HDL are impaired in pregnancy-related syndromes such as pre-eclampsia or gestational diabetes mellitus.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| |
Collapse
|
21
|
Cochran BJ, Ong KL, Manandhar B, Rye KA. APOA1: a Protein with Multiple Therapeutic Functions. Curr Atheroscler Rep 2021; 23:11. [PMID: 33591433 DOI: 10.1007/s11883-021-00906-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF THE REVIEW Apolipoprotein (APO) A1, the main apolipoprotein of plasma high-density lipoproteins (HDLs), has several well documented cardioprotective functions. A number of additional potentially beneficial functions of APOA1 have recently been identified. This review is concerned with the therapeutic potential of all of these functions in multiple disease states. RECENT FINDINGS Knowledge of the beneficial functions of APOA1 in atherosclerosis, thrombosis, diabetes, cancer, and neurological disorders is increasing exponentially. These insights have led to the development of clinically relevant peptides and APOA1-containing, synthetic reconstituted HDL (rHDL) preparations that mimic the functions of full-length APOA1. APOA1 is a multifunctional apolipoprotein that has therapeutic potential in several diseases. Translation of this knowledge into the clinic is likely to be dependent on the efficacy and bioavailability of small peptides and synthetic rHDL preparations that are currently under investigation, or in development.
Collapse
Affiliation(s)
- Blake J Cochran
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Bikash Manandhar
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia.
| |
Collapse
|
22
|
Testosterone stimulates cholesterol clearance from human macrophages by activating LXRα. Life Sci 2021; 269:119040. [PMID: 33453241 DOI: 10.1016/j.lfs.2021.119040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/04/2023]
Abstract
AIMS Low testosterone in men is associated with increased cardiovascular events and mortality. Testosterone has beneficial effects on several cardiovascular risk factors including cholesterol, endothelial dysfunction and inflammation as key mediators of atherosclerosis. Although evidence suggests testosterone is anti-atherogenic, its mechanism of action is unknown. The present study investigates whether testosterone exerts anti-atherogenic effects by stimulating cholesterol clearance from macrophages via activation of liver X receptor (LXRα), a nuclear master regulator of cellular cholesterol homeostasis, lipid regulation, and inflammation. MAIN METHODS Using human monocyte THP-1 cells differentiated into macrophages, the effect of testosterone (1-10 nM) treatment (24-72 h) on the expression of LXRα and LXR- targets apolipoprotein E (APOE), ATP-binding cassette transporter A1 (ABCA1), sterol regulatory element-binding transcription factor 1 (SREBF1) and fatty acid synthase (FAS), was investigated via qPCR and western blotting, with or without androgen receptor blockade with flutamide or LXR antagonism with CPPSS-50. Cholesterol clearance was measured by monitoring fluorescent dehydroergosterol (DHE) cellular clearance and ABCA1 cellular translocation was observed via immunocytochemistry in testosterone treated macrophages. KEY FINDINGS Testosterone increased mRNA and protein expression of LXRα, APOE, ABCA1, SREBF1 and FAS. These effects were blocked by flutamide and independently by LXR antagonism with CPPSS-50. Furthermore testosterone stimulated cholesterol clearance from the macrophages and promoted the translocation of ABCA1 toward the cell membrane. SIGNIFICANCE Testosterone acts via androgen receptor-dependent pathways to stimulate LXRα and downstream targets to induce cholesterol clearance in human macrophages. This may, in part, explain the anti-atherogenic effects of testosterone frequently seen clinically.
Collapse
|
23
|
Altered HDL metabolism in metabolic disorders: insights into the therapeutic potential of HDL. Clin Sci (Lond) 2020; 133:2221-2235. [PMID: 31722013 DOI: 10.1042/cs20190873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Metabolic disorders are associated with an increased risk of cardiovascular disease (CVD), and are commonly characterized by a low plasma level of high-density lipoprotein cholesterol (HDL-C). Although cholesterol lowering medications reduce CVD risk in these patients, they often remain at increased risk of CVD. Therapeutic strategies that raise HDL-C levels and improve HDL function are a potential treatment option for reducing residual CVD risk in these individuals. Over the past decade, understanding of the metabolism and cardioprotective functions of HDLs has improved, with preclinical and clinical studies both indicating that the ability of HDLs to mediate reverse cholesterol transport, inhibit inflammation and reduce oxidation is impaired in metabolic disorders. These cardioprotective effects of HDLs are supported by the outcomes of epidemiological, cell and animal studies, but have not been confirmed in several recent clinical outcome trials of HDL-raising agents. Recent studies suggest that HDL function may be clinically more important than plasma levels of HDL-C. However, at least some of the cardioprotective functions of HDLs are lost in acute coronary syndrome and stable coronary artery disease patients. HDL dysfunction is also associated with metabolic abnormalities. This review is concerned with the impact of metabolic abnormalities, including dyslipidemia, obesity and Type 2 diabetes, on the metabolism and cardioprotective functions of HDLs.
Collapse
|
24
|
Pan Y, Zhang J, Wu TT, Hou XG, Yang Y, Ma X, Ma YT, Zheng YY, Xie X. Baseline white blood cell count-to-apolipoprotein A1 ratio as a novel predictor of long-term adverse outcomes in patients who underwent percutaneous coronary intervention: a retrospective cohort study. Lipids Health Dis 2020; 19:43. [PMID: 32178685 PMCID: PMC7075035 DOI: 10.1186/s12944-020-01206-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Background Previous studies suggested that baseline white blood cell count and apolipoprotein A1 levels were associated with clinical outcomes in patients with coronary heart disease (CAD) who underwent percutaneous coronary intervention (PCI). However, the ratio of baseline white blood cell count-to-apolipoprotein A1 level (WAR) and CAD after PCI have not been investigated. The present study investigated the effects of baseline WAR on long-term outcomes after PCI in patients with CAD. Methods A total of 6050 patients with CAD who underwent PCI were included in the study. Of these, 372 patients were excluded because no baseline white blood cell counts or apolipoprotein A1 (ApoA1) data was available or because of malignancies or other diseases. Finally, 5678 patients were enrolled in the present study and were divided into 3 groups according to WAR value: lower group - WAR< 5.25 (n = 1889); median group - 5.25 ≤ WAR≤7.15 (n = 1892); and higher group - WAR≥7.15 (n = 1897). The primary endpoint was long-term mortality, including all-cause mortality (ACM) and cardiac mortality (CM), after PCI. The average follow-up time was 35.9 ± 22.6 months. Results A total of 293 patients developed ACM, including 85 (4.5%) patients in the lower group, 90 (4.8%) patients in the median group, and 118 (6.2%) patients in the higher group. The risk of ACM, cardiac mortality (CM), major adverse cardiovascular and cerebrovascular events (MACCEs), and major adverse cardiovascular events (MACEs) increased 62.6% (hazard risk [HR] =1.626, 95%CI: 1.214–2.179, P = 0.001), 45.5% (HR = 1.455, 95%CI: 1.051–2.014, P = 0.024), 21.2% (HR = 1.212, 95%CI: 1.011–1.454, P = 0.038), and 23.8% (HR = 1.238, 95%CI: 1.025–1.495, P = 0.027), respectively, as determined by multivariate Cox regression analyses comparing the patients in the higher group to patients in the lower group. Patients with a WAR≥4.635 had 92.3, 81.3, 58.1 and 58.2% increased risks of ACM, CM, MACCEs and MACEs, respectively, compared to the patients with WAR< 4.635. Every 1 unit increase in WAR was associated with 3.4, 3.2, 2.0 and 2.2% increased risks of ACM, CM, MACCEs and MACEs, respectively, at the 10-year follow-up. Conclusion The present study indicated that baseline WAR is a novel and an independent predictor of adverse long-term outcomes in CAD patients who underwent PCI.
Collapse
Affiliation(s)
- Ying Pan
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Jian Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Ting-Ting Wu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Xian-Geng Hou
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Yi Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Ying-Ying Zheng
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
25
|
Li Y, Xu Y, Jadhav K, Zhu Y, Yin L, Zhang Y. Hepatic Forkhead Box Protein A3 Regulates ApoA-I (Apolipoprotein A-I) Expression, Cholesterol Efflux, and Atherogenesis. Arterioscler Thromb Vasc Biol 2019; 39:1574-1587. [PMID: 31291759 DOI: 10.1161/atvbaha.119.312610] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the role of hepatic FOXA3 (forkhead box A3) in lipid metabolism and atherosclerosis. Approach and Results: Hepatic FOXA3 expression was reduced in diabetic or high fat diet-fed mice or patients with nonalcoholic steatohepatitis. We then used adenoviruses to overexpress or knock down hepatic FOXA3 expression. Overexpression of FOXA3 in the liver increased hepatic ApoA-I (apolipoprotein A-I) expression, plasma HDL-C (high-density lipoprotein cholesterol) level, macrophage cholesterol efflux, and macrophage reverse cholesterol transport. In contrast, knockdown of hepatic FOXA3 expression had opposite effects. We further showed that FOXA3 directly bound to the promoter of the Apoa1 gene to regulate its transcription. Finally, AAV8 (adeno-associated virus serotype 8)-mediated overexpression of human FOXA3 in the hepatocytes of Apoe-/- (apolipoprotein E-deficient) mice raised plasma HDL-C levels and significantly reduced atherosclerotic lesions. CONCLUSIONS Hepatocyte FOXA3 protects against atherosclerosis by inducing ApoA-I and macrophage reverse cholesterol transport.
Collapse
Affiliation(s)
- Yuanyuan Li
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Yanyong Xu
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Kavita Jadhav
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Yingdong Zhu
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Liya Yin
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Yanqiao Zhang
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| |
Collapse
|
26
|
Faraj TA, Stover C, Erridge C. Dietary Toll-Like Receptor Stimulants Promote Hepatic Inflammation and Impair Reverse Cholesterol Transport in Mice via Macrophage-Dependent Interleukin-1 Production. Front Immunol 2019; 10:1404. [PMID: 31316501 PMCID: PMC6611433 DOI: 10.3389/fimmu.2019.01404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/04/2019] [Indexed: 01/21/2023] Open
Abstract
Background: The mechanisms connecting dietary intake of processed foods with systemic inflammatory markers and cardiovascular risk remain poorly defined. We sought to compare the abundance of pro-inflammatory stimulants of innate immune receptors in processed foods with those produced by the murine ileal and caecal microbiota, and to explore the impact of their ingestion on systemic inflammation and lipid metabolism in vivo. Methods and results: Calibrated receptor-dependent reporter assays revealed that many processed foods, particularly those based on minced meats, contain pro-inflammatory stimulants of Toll-like receptor (TLR)-2 and TLR4 at concentrations which greatly exceed those produced by the endogenous murine ileal microbiota. Chronic dietary supplementation with these stimulants, at concentrations relevant to those measured in the Western diet, promoted hepatic inflammation and reduced several markers of reverse cholesterol transport (RCT) in mice. Hepatocytes were found to be insensitive to TLR2- and TLR4-stimulants directly, but their secretion of functional cholesterol acceptors was impaired by interleukin (IL)-1β released by TLR-responsive hepatic macrophages. Hepatic macrophage priming by high-fat diet enhanced the impairment of RCT by ingested endotoxin, and this was reversed by macrophage depletion via clodronate liposome treatment, or genetic deficiency in the IL-1 receptor. Conclusion: These findings reveal an unexpected mechanism connecting processed food consumption with cardiovascular risk factors, and introduce the food microbiota as a potential target for therapeutic regulation of lipid metabolism.
Collapse
Affiliation(s)
- Tola A. Faraj
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
- Department of Pharmacognosy, Hawler Medical University, Erbil, Iraq
| | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Clett Erridge
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
27
|
Hu D, Li L, Li S, Wu M, Ge N, Cui Y, Lian Z, Song J, Chen H. Lymphatic system identification, pathophysiology and therapy in the cardiovascular diseases. J Mol Cell Cardiol 2019; 133:99-111. [PMID: 31181226 DOI: 10.1016/j.yjmcc.2019.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the closed, high-pressure and circular blood vascular circulation, the lymphatic system forms an open, low-pressure and unidirectional transit network from the extracellular space to the venous system. It plays a key role in regulating tissue fluid homeostasis, absorption of gastrointestinal lipids, and immune surveillance throughout the body. Despite the critical physiological functions of the lymphatic system, a complete understanding of the lymphatic vessels lags far behind that of the blood vasculatures due to the challenge of their visualization. During the last 20 years, discoveries of underlying genes responsible for lymphatic vessel biology, combined with state-of-the-art lymphatic function imaging and quantification techniques, have established the importance of the lymphatic vasculature in the pathogenesis of cardiovascular diseases including lymphedema, obesity and metabolic diseases, dyslipidemia, hypertension, inflammation, atherosclerosis and myocardial infraction. In this review, we highlight the most recent advances in the field of lymphatic vessel biology, with an emphasis on the new identification techniques of lymphatic system, pathophysiological mechanisms of atherosclerosis and myocardial infarction, and new therapeutic perspectives of lymphangiogenesis.
Collapse
Affiliation(s)
- Dan Hu
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Long Li
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Sufang Li
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Manyan Wu
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Nana Ge
- Department of Geriatrics, Beijing Renhe Hospital, Beijing, China
| | - Yuxia Cui
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Zheng Lian
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Junxian Song
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
28
|
Hsu YH, Toh JJ, Chang CT, Liu MY. Investigating apolipoproteins of human high-density lipoprotein by cyclodextrin-micellar electrokinetic chromatography. J Chromatogr A 2019; 1593:164-173. [PMID: 30738616 DOI: 10.1016/j.chroma.2019.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/01/2022]
Abstract
A cyclodextrin-micellar electrokinetic chromatography (CD-MEKC) method has been developed to determine the apolipoproteins (apos) of human high-density lipoprotein (HDL). The optimal CD-MEKC conditions included a separation buffer mixture of 5 mM sodium phosphate, 40 mM bile salts (50% sodium cholate and 50% sodium deoxycholate), 25 mM carboxymethyl-β-CD (CM-β-CD) and pH 7.0. The separation voltage was 15 kV, and the capillary temperature was 15℃. The CD-MEKC profiles of human HDL apolipoproteins showed good repeatability and sensitivity. Linear analysis has been performed for human apolipoprotein standards including apos AI, AII, CI, CII, CIII and E. Linear regression lines with coefficients of determination (R2) greater than 0.99 were obtained for apos AI, AII, CI, CII and E. The linear ranges for the six apolipoproteins were within 0.18-0.70 mg/mL, and the concentration limits of detection (LOD) were lower than 0.0617 mg/mL. Apos AI, AII, CI and CIII were identified and quantified in human HDL by comparing with apolipoprotein standards. Furthermore, the CD-MEKC profiles of uremic patients differed significantly from healthy subjects. The concentration ratios of apo AI/apo CIII were significantly lower for uremic patients than healthy subjects. This study demonstrated the feasibility of determining human HDL apolipoproteins by CD-MEKC. In the future, it might help monitor the progression of uremia and cardiovascular disease.
Collapse
Affiliation(s)
- Yun-Hsun Hsu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Jia-Jia Toh
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | | | - Mine-Yine Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan.
| |
Collapse
|
29
|
Morton AM, Furtado JD, Mendivil CO, Sacks FM. Dietary unsaturated fat increases HDL metabolic pathways involving apoE favorable to reverse cholesterol transport. JCI Insight 2019; 4:124620. [PMID: 30944249 DOI: 10.1172/jci.insight.124620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND HDL that contains apolipoprotein E (apoE) is a subspecies especially active in steps in reverse cholesterol transport, a process that brings cholesterol from peripheral cells to the liver. Here, we studied the effect of dietary unsaturated fat compared with carbohydrate on the metabolism of HDL containing apoE. METHODS We enrolled 9 adults who were overweight or obese and had below-average HDL-cholesterol in a crossover study of a high-fat diet, primarily unsaturated, and a low-fat, high-carbohydrate diet. A metabolic tracer study was performed after each diet period. RESULTS Dietary fat increased the secretion, metabolism, and clearance of HDL subspecies containing apoE. Dietary fat increased the rate of clearance of large cholesterol-rich HDL containing apoE and increased their conversion to small HDL containing apoE, indicating selective cholesterol ester delivery to the liver. The high-unsaturated-fat diet did not affect the metabolism of HDL lacking apoE. CONCLUSION HDL containing apoE is a diet-responsive metabolic pathway that renders HDL more biologically active in reverse cholesterol transport. This may be a mechanism by which unsaturated fat protects against coronary heart disease. Protein-based HDL subspecies such as HDL containing apoE may be used to identify additional atheroprotective treatment targets not evident in the total HDL-cholesterol measurement. TRIAL REGISTRATION ClinicalTrials.gov NCT01399632. FUNDING NIH and the National Center for Advancing Translational Science.
Collapse
Affiliation(s)
- Allyson M Morton
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jeremy D Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carlos O Mendivil
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Wang X, Liu X, Xie Z, Tian J, Huang X, Zhang R, Chen S, Hou J, Yu B. Small HDL subclass is associated with coronary plaque stability: An optical coherence tomography study in patients with coronary artery disease. J Clin Lipidol 2018; 13:326-334.e2. [PMID: 30665770 DOI: 10.1016/j.jacl.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND The role of high-density lipoprotein (HDL) subclasses in atherosclerotic diseases remains an open question. Previous clinical trials have attempted to explore the predictive effect of HDL subspecies on cardiovascular risk. However, no studies have assessed the connections between these subclasses and characteristics of plaque microstructure. OBJECTIVE To investigate the relationship of HDL subclasses and coronary plaque stability assessed by optical coherence tomography (OCT). METHODS Morphological characteristics of 160 nontarget lesions from 85 patients with coronary artery disease were assessed by OCT. HDL subclass profiles were analyzed using nondenaturing polyacrylamide gel electrophoresis. RESULTS The plasma levels of small HDL subclass (percentage or concentration) were found to be positively associated with fibrous cap thickness (r = 0.232, P = .007; r = 0.243, P = .005) and negatively with maximum lipid arc (r = -0.240, P = .005; r = -0.252, P = .003) and lipid core length (r = -0.350, P < .001; r = -0.367, P < .001). Multivariate logistic regression analysis showed the small HDL subclass (percentage or concentration) (odds ratio [OR]: 0.457, 95% confidence interval [CI]: 0.214-0.974, P = .043; OR: 0.438, 95% CI: 0.204-0.938, P = .034) to be an independent factor in predicting OCT-detected thin-cap fibroatheroma of nontarget lesions. CONCLUSION High levels of small HDL are associated with coronary nontarget plaque stability. Our findings suggest that the small HDL subtype might represent the atheroprotective activity of HDL.
Collapse
Affiliation(s)
- Xuedong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xinxin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xingtao Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Ruoxi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Shuyuan Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jingbo Hou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| |
Collapse
|
31
|
Ghosh GC, Bhadra R, Ghosh RK, Banerjee K, Gupta A. RVX 208: A novel BET protein inhibitor, role as an inducer of apo A-I/HDL and beyond. Cardiovasc Ther 2018; 35. [PMID: 28423226 DOI: 10.1111/1755-5922.12265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/17/2016] [Accepted: 04/13/2017] [Indexed: 12/28/2022] Open
Abstract
Low-density cholesterol (LDL) has been the prime target of currently available lipid-lowering therapies although current research is expanding the focus beyond LDL lowering and has included high-density cholesterol (HDL) also as the target. Bromo and extra-terminal (BET) proteins are implicated in the regulation of transcription of several regulatory genes and regulation of proinflammatory pathways. As atherosclerosis is an inflammatory pathway and studies showed that BET inhibition has a role in inhibiting inflammation, the concept of BET inhibition came in the field of atherosclerosis. RVX 208 is a novel, orally active, BET protein inhibitor and the only BET inhibitor currently available in the field of atherosclerosis. RVX 208 acts primarily by increasing apo A-I (apolipoprotein A-I) and HDL levels. RVX 208 has a novel action of increasing larger, more cardio-protective HDL particles. Post hoc analysis of Phase II trials also showed that RVX 208 reduced major adverse cardiovascular events (MACE) in treated patients, over and above that of apo A-I/HDL increasing action. This MACE reducing actions of RVX 208 were largely due to its novel anti-inflammatory actions. Currently, a phase III trial, BETonMACE, is recruiting patients to look for the effects of RVX 208 in patients with increased risk of atherosclerotic cardiovascular disease. So BET inhibitors act in multiple ways to inhibit and modulate atherosclerosis and would be an emerging and potential option in the management of multifactorial disease like coronary artery disease by inhibiting a single substrate. But we need long-term phase III trial data's to look for effects on real-world patients.
Collapse
Affiliation(s)
- Gopal C Ghosh
- Department of Cardiology, Christian Medical College, Vellore, India
| | - Rajarshi Bhadra
- Department of Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | - Raktim K Ghosh
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | | | - Anjan Gupta
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
32
|
Sayılan Özgün G, Özgün E, Tabakçıoğlu K, Süer Gökmen S, Eskiocak S, Çakır E. Caffeine Increases Apolipoprotein A-1 and Paraoxonase-1 but not Paraoxonase-3 Protein Levels in Human-Derived Liver (HepG2) Cells. Balkan Med J 2017; 34:534-539. [PMID: 29215336 PMCID: PMC5785658 DOI: 10.4274/balkanmedj.2016.1217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 are antioxidant and anti-atherosclerotic structural high-density lipoprotein proteins that are mainly synthesized by the liver. No study has ever been performed to specifically examine the effects of caffeine on paraoxonase enzymes and on liver apolipoprotein A-1 protein levels. Aims: To investigate the dose-dependent effects of caffeine on liver apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 protein levels. Study Design: In vitro experimental study. Methods: HepG2 cells were incubated with 0 (control), 10, 50 and 200 μM of caffeine for 24 hours. Cell viability was evaluated by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 protein levels were measured by western blotting. Results: We observed a significant increase on apolipoprotein A-1 and paraoxonase-1 protein levels in the cells incubated with 50 µM of caffeine and a significant increase on paraoxonase-1 protein level in the cells incubated with 200 µM of caffeine. Conclusion: Our study showed that caffeine does not change paraoxonase-3 protein level, but the higher doses used in our study do cause an increase in both apolipoprotein A-1 and paraoxonase-1 protein levels in liver cells.
Collapse
Affiliation(s)
- Gülben Sayılan Özgün
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| | - Eray Özgün
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| | - Kıymet Tabakçıoğlu
- Department of Medical Biology, Trakya University School of Medicine, Edirne, Turkey
| | - Selma Süer Gökmen
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| | - Sevgi Eskiocak
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| | - Erol Çakır
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
33
|
Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem 2017; 440:167-187. [PMID: 28828539 DOI: 10.1007/s11010-017-3165-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
Coronary artery disease, the leading cause of death in the developed and developing countries, is prevalent in diabetes mellitus with 68% cardiovascular disease (CVD)-related mortality. Epidemiological studies suggested inverse correlation between HDL and CVD occurrence. Therefore, low HDL concentration observed in diabetic patients compared to non-diabetic individuals was thought to be one of the primary causes of increased risks of CVD. Efforts to raise HDL level via CETP inhibitors, Torcetrapib and Dalcetrapib, turned out to be disappointing in outcome studies despite substantial increases in HDL-C, suggesting that factors beyond HDL concentration may be responsible for the increased risks of CVD. Therefore, recent studies have focused more on HDL function than on HDL levels. The metabolic environment in diabetes mellitus condition such as hyperglycemia-induced advanced glycation end products, oxidative stress, and inflammation promote HDL dysfunction leading to greater risks of CVD. This review discusses dysfunctional HDL as one of the mechanisms of increased CVD risks in diabetes mellitus through adversely affecting components that support HDL function in cholesterol efflux and LDL oxidation. The dampening of reverse cholesterol transport, a key process that removes cholesterol from lipid-laden macrophages in the arterial wall, leads to increased risks of CVD in diabetic patients. Therapeutic approaches to keep diabetes under control may benefit patients from developing CVD.
Collapse
|
34
|
Hoeke G, Nahon KJ, Bakker LEH, Norkauer SSC, Dinnes DLM, Kockx M, Lichtenstein L, Drettwan D, Reifel-Miller A, Coskun T, Pagel P, Romijn FPHTM, Cobbaert CM, Jazet IM, Martinez LO, Kritharides L, Berbée JFP, Boon MR, Rensen PCN. Short-term cooling increases serum triglycerides and small high-density lipoprotein levels in humans. J Clin Lipidol 2017. [PMID: 28625343 DOI: 10.1016/j.jacl.2017.04.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cold exposure and β3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. OBJECTIVE The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. METHODS Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by 1H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [3H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. RESULTS Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. CONCLUSIONS Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol.
Collapse
Affiliation(s)
- Geerte Hoeke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Kimberly J Nahon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Leontine E H Bakker
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Donna L M Dinnes
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia
| | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia
| | - Laeticia Lichtenstein
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse, France
| | | | - Anne Reifel-Miller
- Diabetes/Endocrine Department, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Tamer Coskun
- Diabetes/Endocrine Department, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | | | - Fred P H T M Romijn
- Deparment of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Christa M Cobbaert
- Deparment of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid M Jazet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Laurent O Martinez
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse, France
| | - Leonard Kritharides
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia; Department of Cardiology, Concord Repatriation General Hospital, University of Sydney, Sydney, Australia
| | - Jimmy F P Berbée
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Pastryk JE, Rusek M, Bełtowski J. Effects of antiretroviral treatment on paraoxonase 1 (PON1) activity in rats. Chem Biol Interact 2016; 259:407-412. [DOI: 10.1016/j.cbi.2016.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/30/2016] [Accepted: 06/29/2016] [Indexed: 11/28/2022]
|
36
|
Açai (Euterpe oleracea Mart.) Upregulates Paraoxonase 1 Gene Expression and Activity with Concomitant Reduction of Hepatic Steatosis in High-Fat Diet-Fed Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8379105. [PMID: 27642496 PMCID: PMC5014968 DOI: 10.1155/2016/8379105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Açai (Euterpe oleracea Mart.), a fruit from the Amazon region, has emerged as a promising source of polyphenols. Açai consumption has been increasing owing to ascribed health benefits and antioxidant properties; however, its effects on hepatic injury are limited. In this study, we evaluated the antioxidant effect of filtered açai pulp on the expression of paraoxonase (PON) isoforms and PON1 activity in rats with nonalcoholic fatty liver disease (NAFLD). The rats were fed a standard AIN-93M (control) diet or a high-fat (HF) diet containing 25% soy oil and 1% cholesterol with or without açai pulp (2 g/day) for 6 weeks. Our results show that açai pulp prevented low-density lipoprotein (LDL) oxidation, increased serum and hepatic PON1 activity, and upregulated the expression of PON1 and ApoA-I in the liver. In HF diet-fed rats, treatment with açai pulp attenuated liver damage, reducing fat infiltration and triglyceride (TG) content. In rats receiving açai, increased serum PON1 activity was correlated with a reduction in hepatic steatosis and hepatic injury. These findings suggest the use of açai as a potential therapy for liver injuries, supporting the idea that dietary antioxidants are a promising approach to enhance the defensive systems against oxidative stress.
Collapse
|
37
|
The novel selective PPARα modulator (SPPARMα) pemafibrate improves dyslipidemia, enhances reverse cholesterol transport and decreases inflammation and atherosclerosis. Atherosclerosis 2016; 249:200-8. [DOI: 10.1016/j.atherosclerosis.2016.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/22/2022]
|
38
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
39
|
Dalla-Riva J, Lagerstedt JO, Petrlova J. Structural and Functional Analysis of the ApolipoproteinA-I A164S Variant. PLoS One 2015; 10:e0143915. [PMID: 26605794 PMCID: PMC4659549 DOI: 10.1371/journal.pone.0143915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 11/11/2015] [Indexed: 01/15/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) is the main protein involved in the formation of high-density lipoprotein (HDL), it is the principal mediator of the reverse cholesterol transfer (RCT) pathway and provides cardio-protection. In addition to functional wild-type apoA-I, several variants have been shown to associate with hereditary amyloidosis. In this study we have performed biophysical and biochemical analyses of the structure and functional properties of the A164S variant of apoA-I (1:500 in the Danish general population), which is the first known mutation of apoA-I that leads to an increased risk of ischaemic heart disease (IHD), myocardial infarction and mortality without associated low HDL cholesterol levels. Despite the fact that epidemiologically IHD is associated with low plasma levels of HDL, the A164S mutation is linked to normal plasma levels of lipids, HDL and apoA-I, suggesting impaired functionality of this variant. Using biophysical techniques (e.g., circular dichroism spectroscopy and electron microscopy) to determine secondary structure, stability and pro-amyloidogenic property of the lipid free A164S apoA-I variant, our observations suggest similarity in structural properties between apoA-I WT and apoA-I A164S. However, the A164S apoA-I variant exhibits lower binding affinity to lipids but forms similar sized HDL particles to those produced by WT.
Collapse
Affiliation(s)
| | - Jens O. Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| | - Jitka Petrlova
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Huang LH, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol 2015; 6:182. [PMID: 26388772 PMCID: PMC4557107 DOI: 10.3389/fphar.2015.00182] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
Reverse cholesterol transport (RCT) is the pathway for removal of peripheral tissue cholesterol and involves transport of cholesterol back to liver for excretion, starting from cellular cholesterol efflux facilitated by lipid-free apolipoprotein A1 (ApoA1) or other lipidated high-density lipoprotein (HDL) particles within the interstitial space. Extracellular cholesterol then is picked up and transported through the lymphatic vasculature before entering into bloodstream. There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux and RCT in ameliorating atherosclerosis, and recent data suggest that these processes may serve as better diagnostic biomarkers than plasma HDL levels. Hence, it is important to better understand the processes governing ApoA1 and HDL influx into peripheral tissues from the bloodstream, modification and facilitation of cellular cholesterol removal within the interstitial space, and transport through the lymphatic vasculature. New findings will complement therapeutic strategies for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| |
Collapse
|
41
|
Shen Y, Ding FH, Sun JT, Pu LJ, Zhang RY, Zhang Q, Chen QJ, Shen WF, Lu L. Association of elevated apoA-I glycation and reduced HDL-associated paraoxonase1, 3 activity, and their interaction with angiographic severity of coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2015; 14:52. [PMID: 25964115 PMCID: PMC4432963 DOI: 10.1186/s12933-015-0221-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/30/2015] [Indexed: 11/10/2022] Open
Abstract
Objective To investigate whether apolipoprotein A (apoA)-I glycation and paraoxonase (PON) activities are associated with the severity of coronary artery disease (CAD) in patients with type 2 diabetes mellitus (T2DM). Methods Relative intensity of apoA-I glycation and activities of high-density lipoprotein (HDL)-associated PON1 and PON3 were determined in 205 consecutive T2DM patients with stable angina with (n = 144) or without (n = 61) significant CAD (luminal diameter stenosis ≥ 70 %). The severity of CAD was expressed by number of diseased coronary arteries, extent index, and cumulative coronary stenosis score (CCSS). Results The relative intensity of apoA-I glycation was higher but the activities of HDL-associated PON1 and PON3 were lower in diabetic patients with significant CAD than in those without. The relative intensity of apoA-I glycation increased but the activities of HDL-associated PON1 and PON3 decreased stepwise from 1 - to 3 - vessel disease patients (P for trend < 0.001). After adjusting for possible confounding variables, the relative intensity of apoA-I glycation correlated positively, while the activities of HDL-associated PON1 and PON3 negatively, with extent index and CCSS, respectively. At high level of apoA-I glycation (8.70 ~ 12.50 %), low tertile of HDL-associated PON1 (7.03 ~ 38.97U/mL) and PON3 activities (7.11 ~ 22.30U/mL) was associated with a 1.97− and 2.49− fold increase of extent index and 1.73− and 2.68− fold increase of CCSS compared with high tertile of HDL-associated PON1 (57.85 ~ 154.82U/mL) and PON3 activities (39.63 ~ 124.10U/mL), respectively (all P < 0.01). Conclusions Elevated apoA-I glycation and decreased activities of HDL-associated PON1 and PON3, and their interaction are associated with the presence and severity of CAD in patients with T2DM. Electronic supplementary material The online version of this article (doi:10.1186/s12933-015-0221-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Feng Hua Ding
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Jia Teng Sun
- Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Li Jin Pu
- Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Rui Yan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Qi Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Qiu Jing Chen
- Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Wei Feng Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China. .,Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China. .,Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
42
|
Hu M, Yang YL, Ng CF, Lee CP, Lee VWY, Hanada H, Masuda D, Yamashita S, Tomlinson B. Effects of phenotypic and genotypic factors on the lipid responses to niacin in Chinese patients with dyslipidemia. Medicine (Baltimore) 2015; 94:e881. [PMID: 25997070 PMCID: PMC4602879 DOI: 10.1097/md.0000000000000881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes DGAT1 and DGAT2 catalyze the final step in triglycerides biosynthesis. This study examined the relationships of baseline phenotypes and the common polymorphisms in DGAT1 and DGAT2 with the lipid responses to niacin.Lipid responses in Chinese patients with dyslipidemia treated with the extended release (ER) niacin/laropiprant combination 1000/20 mg for 4 weeks and then 2000/40 mg for 8 weeks (n = 121, the primary study) or with ER niacin 1500 mg for at least 4 weeks (n = 68, the replication study) were analyzed according to genotypes of DGAT1 rs7003945 T>C and DGAT2 rs3060 T>C polymorphisms.Treatment with ER niacin improved all lipid parameters in both studies. Absolute and percentage changes in lipids were related to their baseline levels, particularly for low-density lipoprotein cholesterol (LDL-C). The DGAT2 rs3060 T>C polymorphism was associated with lower baseline LDL-C, apoB, high-density lipoprotein cholesterol (HDL-C), and apoAI in patients on statin therapy in the primary study. Subjects with the DGAT2 rs3060 T>C variant had less reduction in LDL-C in the primary study and smaller changes in triglyceride and HDL-C in the replication study but these associations became non-significant after adjusting for baseline lipid values. The DGAT1 rs7003945 T>C polymorphism was not related to lipid baseline values or changes in either study. Concomitant statin therapy and lower body weight were also associated with greater reduction in LDL-C.Baseline lipid levels were the main determinants of lipid responses especially for LDL-C. The DGAT2 rs3060 polymorphism might influence the lipid responses depending on baseline phenotype, but this association did not persist after adjustment for the baseline lipid levels.
Collapse
Affiliation(s)
- Miao Hu
- From the Department of Medicine and Therapeutics (MH, YLY, BT); Department of Surgery (CFN); School of Pharmacy, The Chinese University of Hong Kong, Hong Kong SAR (CPL, VWYL); Department of Medical Technology, Osaka University Hospital (HH); Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (DM, SY); and Diabetes Center, Second Xiangya Hospital, Institute of Metabolism and Endocrinology, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, Hunan, China (YLY)
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Berisha SZ, Brubaker G, Kasumov T, Hung KT, DiBello PM, Huang Y, Li L, Willard B, Pollard KA, Nagy LE, Hazen SL, Smith JD. HDL from apoA1 transgenic mice expressing the 4WF isoform is resistant to oxidative loss of function. J Lipid Res 2015; 56:653-664. [PMID: 25561462 DOI: 10.1194/jlr.m056754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HDL functions are impaired by myeloperoxidase (MPO), which selectively targets and oxidizes human apoA1. We previously found that the 4WF isoform of human apoA1, in which the four tryptophan residues are substituted with phenylalanine, is resistant to MPO-mediated loss of function. The purpose of this study was to generate 4WF apoA1 transgenic mice and compare functional properties of the 4WF and wild-type human apoA1 isoforms in vivo. Male mice had significantly higher plasma apoA1 levels than females for both isoforms of human apoA1, attributed to different production rates. With matched plasma apoA1 levels, 4WF transgenics had a trend for slightly less HDL-cholesterol versus human apoA1 transgenics. While 4WF transgenics had 31% less reverse cholesterol transport (RCT) to the plasma compartment, equivalent RCT to the liver and feces was observed. Plasma from both strains had similar ability to accept cholesterol and facilitate ex vivo cholesterol efflux from macrophages. Furthermore, we observed that 4WF transgenic HDL was partially (∼50%) protected from MPO-mediated loss of function while human apoA1 transgenic HDL lost all ABCA1-dependent cholesterol acceptor activity. In conclusion, the structure and function of HDL from 4WF transgenic mice was not different than HDL derived from human apoA1 transgenic mice.
Collapse
Affiliation(s)
- Stela Z Berisha
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Greg Brubaker
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Takhar Kasumov
- Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Kimberly T Hung
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Patricia M DiBello
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ying Huang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ling Li
- Department of Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Belinda Willard
- Department of Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Katherine A Pollard
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Jonathan D Smith
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195.
| |
Collapse
|
44
|
Sontag TJ, Chellan B, Bhanvadia CV, Getz GS, Reardon CA. Alginic acid cell entrapment: a novel method for measuring in vivo macrophage cholesterol homeostasis. J Lipid Res 2014; 56:470-83. [PMID: 25465389 DOI: 10.1194/jlr.d052985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophage conversion to atherosclerotic foam cells is partly due to the balance of uptake and efflux of cholesterol. Cholesterol efflux from cells by HDL and its apoproteins for subsequent hepatic elimination is known as reverse cholesterol transport. Numerous methods have been developed to measure in vivo macrophage cholesterol efflux. Most methods do not allow for macrophage recovery for analysis of changes in cellular cholesterol status. We describe a novel method for measuring cellular cholesterol balance using the in vivo entrapment of macrophages in alginate, which retains incorporated cells while being permeable to lipoproteins. Recipient mice were injected subcutaneously with CaCl2 forming a bubble into which a macrophage/alginate suspension was injected, entrapping the macrophages. Cells were recovered after 24 h. Cellular free and esterified cholesterol mass were determined enzymatically and normalized to cellular protein. Both normal and cholesterol loaded macrophages undergo measureable changes in cell cholesterol when injected into WT and apoA-I-, LDL-receptor-, or apoE-deficient mice. Cellular cholesterol balance is dependent on initial cellular cholesterol status, macrophage cholesterol transporter expression, and apolipoprotein deficiency. Alginate entrapment allows for the in vivo measurement of macrophage cholesterol homeostasis and is a novel platform for investigating the role of genetics and therapeutic interventions in atherogenesis.
Collapse
Affiliation(s)
| | - Bijoy Chellan
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL
| | | |
Collapse
|
45
|
Birner-Gruenberger R, Schittmayer M, Holzer M, Marsche G. Understanding high-density lipoprotein function in disease: recent advances in proteomics unravel the complexity of its composition and biology. Prog Lipid Res 2014; 56:36-46. [PMID: 25107698 DOI: 10.1016/j.plipres.2014.07.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
Although the epidemiology of high-density lipoprotein (HDL) cholesterol and cardiovascular risk has been consistent, pharmacologic interventions to increase HDL-cholesterol by delaying HDL catabolism did not translate into reduction in cardiovascular risk. HDL particles are small, protein-rich when compared to other plasma lipoprotein classes. Latest progresses in proteomics technology have dramatically increased our understanding of proteins carried by HDL. In addition to proteins with well-established functions in lipid transport, iron transport proteins, members of the complement pathway, and proteins involved in immune function and acute phase response were repeatedly identified on HDL particles. With the unraveling of the complexity of the HDL proteome, different laboratories have started to monitor its changes in various disease states. In addition, dynamic aspects of HDL subgroups are being discovered. These recent studies clearly illustrate the promise of HDL proteomics for deriving new biomarkers for disease diagnosis and to measure the effectiveness of current and future treatment regimens. This review summarizes recent advances in proteomics and lipidomics helping to understand HDL function in health and disease.
Collapse
Affiliation(s)
- Ruth Birner-Gruenberger
- Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed, Graz, Austria.
| | - Matthias Schittmayer
- Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed, Graz, Austria
| | - Michael Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
46
|
A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice. Atherosclerosis 2014; 236:91-100. [DOI: 10.1016/j.atherosclerosis.2014.06.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/29/2014] [Accepted: 06/16/2014] [Indexed: 01/12/2023]
|
47
|
Xu RY, Huang R, Xiao Y, Chen LF, Lin X, Fang Q, Yan XW. Attenuated macrophage cholesterol efflux function in patients with obstructive sleep apnea-hypopnea syndrome. Sleep Breath 2014; 19:369-75. [PMID: 25001295 DOI: 10.1007/s11325-014-1030-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/29/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Obstructive sleep apnea-hypopnea syndrome (OSAHS) is associated with premature atherosclerosis. However, the associated mechanism remains unknown. This study investigates the expression of adenosine triphosphate (ATP)-binding cassette transporter protein A1 (ABCA1) and cellular cholesterol efflux in cultured macrophages from OSAHS patients. METHODS Of the 18 subjects enrolled in this study, six subjects with apnea-hypopnea index (AHI) <5 were placed into the control group, and 12 subjects with AHI ≥5 were placed into the OSAHS group. Peripheral blood mononuclear cells (PBMCs) from each subject were isolated, purified, cultured, and differentiated into macrophages in vitro. ABCA1 mRNA and protein expression were evaluated by reverse transcription PCR and Western Blot, respectively. Both ABCA1-mediated and autologous serum induced cholesterol efflux were measured by isotopic cholesterol efflux assays. RESULTS The levels of AHI and high sensitivity C-reactive protein (hsCRP) were significantly higher in the OSAHS group than in the control group. ABCA1 mRNA and protein expressions in PBMCs-derived macrophages were significantly reduced in patients with OSAHS compared to that in controls (p < 0.05). Both ABCA1-mediated and autologous serum-induced cholesterol efflux were significantly lower in the OSAHS group than that in the control group (p = 0.033 and p = 0.01, respectively). Pearson's correlation analysis revealed a negative correlation between AHI and the mRNA (r = -0.7726, p = 0.0007) and protein (r = -0.8112, p = 0.0044) expression of ABCA1, a positive correlation between ABCA1-mediated cholesterol efflux and the minimum oxygen saturation (r = 0.7954, p < 0.0001), and a negative correlation between AHI and autologous serum induced cholesterol efflux (r = -0.7756, p = 0.0002). CONCLUSION ABCA1 expression and cellular cholesterol efflux in macrophages were significantly decreased in OSAHS patients, which closely correlated with the severity of disease. Our findings provide meaningful insights into the mechanism of atherogenesis in OSAHS patients.
Collapse
Affiliation(s)
- Rui-Yi Xu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Quantitation of human peptides and proteins via MS: review of analytically validated assays. Bioanalysis 2014; 6:1843-57. [DOI: 10.4155/bio.14.145] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since the development of monoclonal antibodies in the 1970s, antibody-based assays have been used for the quantitation of proteins and peptides and, today, they are the most widely used technology in routine laboratory medicine and bioanalysis. However, in the last couple of decades, liquid chromatography-mass spectrometry/mass spectrometry (LC–MS/MS) techniques have been adopted in the quantitation of small molecules, and more recently have made significant contributions in the quantitation of proteins and peptides. In this article, we will review clinical MS-based assays for endogenous peptides, proteins, and therapeutic antibodies, for which validated methods exist. We will also cover the measurement of protein turnover and the unique solutions that MS can offer in this field.
Collapse
|
49
|
Cine N, Baykal AT, Sunnetci D, Canturk Z, Serhatli M, Savli H. Identification of ApoA1, HPX and POTEE genes by omic analysis in breast cancer. Oncol Rep 2014; 32:1078-86. [PMID: 24969553 DOI: 10.3892/or.2014.3277] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is the most common cancer among women and accounts for 23% of all female types of cancers. It is well recognized that breast cancer represents a heterogeneous group of tumors, and the molecular events involved in the progression to cancer remain undetermined. Moreover, available prognostic and predictive markers are not sufficient for the accurate determination of the risk for many breast cancer patients. Thus, it is necessary to discover new molecular markers for accurate prediction of clinical outcome and individualized therapy. In the present study, we performed omics-based whole-genome trancriptomic and whole proteomic profiling with network and pathway analyses of breast tumors to identify gene expression patterns related to clinical outcome. A total of 20 samples from tumors and 14 normal appearing breast tissues were analyzed using both gene expression microarrays and LC-MS/MS. We identified 585 downregulated and 413 upregulated genes by gene expression microarrays. Among these genes, HPX, POTEE and ApoA1 were the most significant genes correlated with the proteomic profile. Our data revealed that these identified genes are closely related to breast cancer and may be involved in robust detection of disease progression.
Collapse
Affiliation(s)
- Naci Cine
- Department of Medical Genetics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Deniz Sunnetci
- Department of Medical Genetics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Zafer Canturk
- Department of General Surgery, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Muge Serhatli
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TUBITAK, Kocaeli, Turkey
| | - Hakan Savli
- Department of Medical Genetics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
50
|
Breevoort SR, Angdisen J, Schulman IG. Macrophage-independent regulation of reverse cholesterol transport by liver X receptors. Arterioscler Thromb Vasc Biol 2014; 34:1650-60. [PMID: 24947527 DOI: 10.1161/atvbaha.114.303383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The ability of high-density lipoprotein (HDL) particles to accept cholesterol from peripheral cells, such as lipid-laden macrophages, and to transport cholesterol to the liver for catabolism and excretion in a process termed reverse cholesterol transport (RCT) is thought to underlie the beneficial cardiovascular effects of elevated HDL. The liver X receptors (LXRs; LXRα and LXRβ) regulate RCT by controlling the efflux of cholesterol from macrophages to HDL and the excretion, catabolism, and absorption of cholesterol in the liver and intestine. Importantly, treatment with LXR agonists increases RCT and decreases atherosclerosis in animal models. Nevertheless, LXRs are expressed in multiple tissues involved in RCT, and their tissue-specific contributions to RCT are still not well defined. APPROACH AND RESULTS Using tissue-specific LXR deletions together with in vitro and in vivo assays of cholesterol efflux and fecal cholesterol excretion, we demonstrate that macrophage LXR activity is neither necessary nor sufficient for LXR agonist-stimulated RCT. In contrast, the ability of LXR agonists primarily acting in the intestine to increase HDL mass and HDL function seems to underlie the ability of LXR agonists to stimulate RCT in vivo. CONCLUSIONS We demonstrate that activation of LXR in macrophages makes little or no contribution to LXR agonist-stimulated RCT. Unexpectedly, our studies suggest that the ability of macrophages to efflux cholesterol to HDL in vivo is not regulated by macrophage activity but is primarily determined by the quantity and functional activity of HDL.
Collapse
Affiliation(s)
- Sarah R Breevoort
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Jerry Angdisen
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Ira G Schulman
- From the Department of Pharmacology, University of Virginia, Charlottesville.
| |
Collapse
|