1
|
Kim JH, Thiruvengadam R. Hypertension in an ageing population: Diagnosis, mechanisms, collateral health risks, treatments, and clinical challenges. Ageing Res Rev 2024; 98:102344. [PMID: 38768716 DOI: 10.1016/j.arr.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Ageing population is considerably increasing worldwide, which is considered to reflect an improved quality of life. However, longevity in the human lifespan has increased the burden of late-life illnesses including cancer, neurodegeneration, and cardiovascular dysfunction. Of these, hypertension is the most common condition with huge health risks, with an increased prevalence among the elderly. In this review, we outline the current guidelines for defining hypertension and examine the detailed mechanisms underlying the relationship between hypertension and ageing-related outcomes, including sodium sensitivity, arterial stiffness, endothelial dysfunction, isolated systolic hypertension, white coat effect, and orthostatic hypertension. As hypertension-related collateral health risk increases among the elderly, the available management strategies are necessary to overcome the clinical treatment challenges faced among elderly population. To improve longevity and reduce adverse health effects, potential approaches producing crucial information into new era of medicine should be considered in the prevention and treatment of hypertension among elderly population. This review provides an overview of mechanisms underlying hypertension and its related collateral health risk in elderly population, along with multiple approaches and management strategies to improve the clinical challenges among elderly population.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, the Republic of Korea.
| | - Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, the Republic of Korea
| |
Collapse
|
2
|
Dissanayake LV, Palygin O, Staruschenko A. Lysine and salt-sensitive hypertension. Curr Opin Nephrol Hypertens 2024; 33:441-446. [PMID: 38639736 DOI: 10.1097/mnh.0000000000000994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
PURPOSE OF REVIEW Salt-sensitive (SS) hypertension and its associated kidney damage have been extensively studied, yet proper therapeutic strategies are lacking. The interest in altering the metabolome to affect renal and cardiovascular disease has been emerging. Here, we discuss the effect and potential mechanism behind the protective effect of lysine, an essential amino acid, on the progression of SS hypertension. RECENT FINDINGS We have recently demonstrated that administering lysine in an SS rodent model can control the progression of hypertension. Both the animal and pilot human studies showed that lysine can efficiently inhibit tubular reabsorption of albumin and protect the kidneys from further damage. In addition, we conducted multilevel omics studies that showed increased lysine conjugation and excretion, leading to the depletion of harmful metabolites and an increase in useful ones. SUMMARY Lysine's twofold action involves both mechanically flushing protein from proximal tubules to shield the kidneys and initiating metabolic adaptations in the kidneys. This results in a net positive impact on SS hypertension. While further research is necessary to apply the current findings in clinical settings, this study offers some evidence suggesting that lysine supplementation holds promise as a therapeutic approach for hypertensive kidney disease.
Collapse
Affiliation(s)
- Lashodya V Dissanayake
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Alexander Staruschenko
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida
- James A. Haley Veterans' Hospital, Tampa, Florida, USA
| |
Collapse
|
3
|
Nishimoto M, Griffin KA, Wynne BM, Fujita T. Salt-Sensitive Hypertension and the Kidney. Hypertension 2024; 81:1206-1217. [PMID: 38545804 DOI: 10.1161/hypertensionaha.123.21369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Salt-sensitive hypertension (SS-HT) is characterized by blood pressure elevation in response to high dietary salt intake and is considered to increase the risk of cardiovascular and renal morbidity. Although the mechanisms responsible for SS-HT are complex, the kidneys are known to play a central role in the development of SS-HT and the salt sensitivity of blood pressure (SSBP). Moreover, several factors influence renal function and SSBP, including the renin-angiotensin-aldosterone system, sympathetic nervous system, obesity, and aging. A phenotypic characteristic of SSBP is aberrant activation of the renin-angiotensin system and sympathetic nervous system in response to excessive salt intake. SSBP is also accompanied by a blunted increase in renal blood flow after salt loading, resulting in sodium retention and SS-HT. Obesity is associated with inappropriate activation of the aldosterone mineralocorticoid receptor pathway and renal sympathetic nervous system in response to excessive salt, and mineralocorticoid receptor antagonists and renal denervation attenuate sodium retention and inhibit salt-induced blood pressure elevation in obese dogs and humans. SSBP increases with age, which has been attributed to impaired renal sodium handling and a decline in renal function, even in the absence of kidney disease. Aging-associated changes in renal hemodynamics are accompanied by significant alterations in renal hormone levels and renal sodium handling, resulting in SS-HT. In this review, we focus mainly on the contribution of renal function to the development of SS-HT.
Collapse
Affiliation(s)
- Mitsuhiro Nishimoto
- Department of Internal Medicine, Division of Nephrology & Hypertension, International University of Health and Welfare Mita Hospital, Tokyo, Japan (M.N.)
| | - Karen A Griffin
- Department of Medicine, Renal Disease & Hypertension, Loyola University, Chicago, IL (K.A.G.)
- Veteran's Administration, Nephrology, Edward Hines Jr. VA Hospital (K.A.G.)
| | - Brandi M Wynne
- Department of Internal Medicine, Nephrology & Hypertension, Department of Nutrition and Integrative Physiology, and Immunology, Inflammation and Infectious Disease Initiative (B.M.W.), University of Utah, Salt Lake City
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science & Technology, The University of Tokyo, Japan (T.F.)
| |
Collapse
|
4
|
Saleem M, Masenga SK, Ishimwe JA, Demirci M, Ahmad T, Jamison S, Albritton CF, Mwesigwa N, Porcia Haynes A, White J, Neikirk K, Vue Z, Hinton A, Arshad S, Desta S, Kirabo A. Recent Advances in Understanding Peripheral and Gut Immune Cell-Mediated Salt-Sensitive Hypertension and Nephropathy. Hypertension 2024; 81:436-446. [PMID: 38164753 PMCID: PMC10922672 DOI: 10.1161/hypertensionaha.123.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1β, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sepiso K Masenga
- Mulungushi University, School of Medicine and Health Sciences, HAND Research Group, Livingstone, Zambia
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sydney Jamison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Claude F. Albritton
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jalyn White
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Spelman College Department of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Suha Arshad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
5
|
Drury ER, Wu J, Gigliotti JC, Le TH. Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. Physiol Rev 2024; 104:199-251. [PMID: 37477622 PMCID: PMC11281816 DOI: 10.1152/physrev.00041.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.
Collapse
Affiliation(s)
- Erika R Drury
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Jing Wu
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States
| | - Joseph C Gigliotti
- Department of Integrative Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
6
|
Liang Q, Huang S, Wei J, Deng W, Li L. Exploring the Interactive Role of Parathyroid Hormone and Sodium Intake in Inducing Cardiac Hypertrophy in Rats: A Novel Study. Cureus 2023; 15:e45154. [PMID: 37842376 PMCID: PMC10571376 DOI: 10.7759/cureus.45154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background and objectives Previous research has suggested that hyperparathyroidism and excessive salt intake may contribute to the development of cardiac hypertrophy. This study aimed to investigate the relationship and underlying mechanisms between parathyroid hormone (PTH) and salt intake in the development of left ventricular hypertrophy (LVH). Additionally, the study sought to determine whether captopril intervention could reduce the impact of sustained PTH stimulation and excessive salt intake on LVH. Methodology We employed 40 eight-week-old male Sprague-Dawley rats, which were randomly assigned to eight groups: a sham group, a PTH group, a low-salt group (0.6% NaCl), a high-salt group (8% NaCl), a PTH + low-salt group, a PTH + high-salt group, a PTH + low salt + captopril group, and a PTH + high salt + captopril group. The rats were continuously infused with recombinant PTH (1-34) (2 pmol/kg per hour) via an osmotic pump for two weeks and were administered varying concentrations of saline for gavage over two weeks, according to their group. We monitored changes in blood pressure, measured heart weight, left ventricular wall thickness, and myocardial histological morphology, and assessed the relative expression of type III collagen. Results The PTH + high-salt group displayed a significant increase in blood pressure, heart weight, and left ventricular posterior wall thickness (P<0.05), in addition to myocardial cell hypertrophy and increased Col III expression (P<0.05), compared to other groups. Captopril intervention significantly reduced blood pressure (P<0.05), ameliorated myocardial tissue morphology changes, and significantly decreased Col III expression (P<0.05) but did not entirely reverse the increase in heart weight and left ventricular posterior wall thickness (P>0.05). Conclusions Our findings suggest that the co-intervention of PTH and high salt can lead to an increase in blood pressure, heart weight, myocardial cell hypertrophy, LVH, and myocardial fibrosis levels in Sprague-Dawley rats. Captopril intervention can lower blood pressure and alleviate pathological myocardial tissue changes and myocardial fibrosis but cannot completely reverse LVH.
Collapse
Affiliation(s)
- Quan Liang
- Department of Gerontology, The First Affiliated Hospital of Dali University, Dali, CHN
| | - Shiqiong Huang
- Department of Gerontology, The First Affiliated Hospital of Dali University, Dali, CHN
| | - Jianhang Wei
- Department of Gerontology, The First Affiliated Hospital of Dali University, Dali, CHN
| | - Wenbin Deng
- Department of Gerontology, The First Affiliated Hospital of Dali University, Dali, CHN
| | - Lihua Li
- Department of Gerontology, The First Affiliated Hospital of Dali University, Dali, CHN
| |
Collapse
|
7
|
Sánchez-Lozada LG, Madero M, Mazzali M, Feig DI, Nakagawa T, Lanaspa MA, Kanbay M, Kuwabara M, Rodriguez-Iturbe B, Johnson RJ. Sugar, salt, immunity and the cause of primary hypertension. Clin Kidney J 2023; 16:1239-1248. [PMID: 37529651 PMCID: PMC10387395 DOI: 10.1093/ckj/sfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 08/03/2023] Open
Abstract
Despite its discovery more than 150 years ago, the cause of primary hypertension remains unknown. Most studies suggest that hypertension involves genetic, congenital or acquired risk factors that result in a relative inability of the kidney to excrete salt (sodium chloride) in the kidneys. Here we review recent studies that suggest there may be two phases, with an initial phase driven by renal vasoconstriction that causes low-grade ischemia to the kidney, followed by the infiltration of immune cells that leads to a local autoimmune reaction that maintains the renal vasoconstriction. Evidence suggests that multiple mechanisms could trigger the initial renal vasoconstriction, but one way may involve fructose that is provided in the diet (such as from table sugar or high fructose corn syrup) or produced endogenously. The fructose metabolism increases intracellular uric acid, which recruits NADPH oxidase to the mitochondria while inhibiting AMP-activated protein kinase. A drop in intracellular ATP level occurs, triggering a survival response. Leptin levels rise, triggering activation of the sympathetic central nervous system, while vasopressin levels rise, causing vasoconstriction in its own right and stimulating aldosterone production via the vasopressin 1b receptor. Low-grade renal injury and autoimmune-mediated inflammation occur. High-salt diets can amplify this process by raising osmolality and triggering more fructose production. Thus, primary hypertension may result from the overactivation of a survival response triggered by fructose metabolism. Restricting salt and sugar and hydrating with ample water may be helpful in the prevention of primary hypertension.
Collapse
Affiliation(s)
- Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Magdalena Madero
- Division of Nephrology, Department of Medicine, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Marilda Mazzali
- Division of Nephrology, University of Campinas, São Paulo, Brazil
| | - Daniel I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, AL, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
8
|
Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023; 15:nu15020395. [PMID: 36678265 PMCID: PMC9862583 DOI: 10.3390/nu15020395] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Body sodium (Na) levels must be maintained within a narrow range for the correct functioning of the organism (Na homeostasis). Na disorders include not only elevated levels of this solute (hypernatremia), as in diabetes insipidus, but also reduced levels (hyponatremia), as in cerebral salt wasting syndrome. The balance in body Na levels therefore requires a delicate equilibrium to be maintained between the ingestion and excretion of Na. Salt (NaCl) intake is processed by receptors in the tongue and digestive system, which transmit the information to the nucleus of the solitary tract via a neural pathway (chorda tympani/vagus nerves) and to circumventricular organs, including the subfornical organ and area postrema, via a humoral pathway (blood/cerebrospinal fluid). Circuits are formed that stimulate or inhibit homeostatic Na intake involving participation of the parabrachial nucleus, pre-locus coeruleus, medial tuberomammillary nuclei, median eminence, paraventricular and supraoptic nuclei, and other structures with reward properties such as the bed nucleus of the stria terminalis, central amygdala, and ventral tegmental area. Finally, the kidney uses neural signals (e.g., renal sympathetic nerves) and vascular (e.g., renal perfusion pressure) and humoral (e.g., renin-angiotensin-aldosterone system, cardiac natriuretic peptides, antidiuretic hormone, and oxytocin) factors to promote Na excretion or retention and thereby maintain extracellular fluid volume. All these intake and excretion processes are modulated by chemical messengers, many of which (e.g., aldosterone, angiotensin II, and oxytocin) have effects that are coordinated at peripheral and central level to ensure Na homeostasis.
Collapse
|
9
|
Ertuglu LA, Mutchler AP, Yu J, Kirabo A. Inflammation and oxidative stress in salt sensitive hypertension; The role of the NLRP3 inflammasome. Front Physiol 2022; 13:1096296. [PMID: 36620210 PMCID: PMC9814168 DOI: 10.3389/fphys.2022.1096296] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Salt-sensitivity of blood pressure is an independent risk factor for cardiovascular disease and affects approximately half of the hypertensive population. While the precise mechanisms of salt-sensitivity remain unclear, recent findings on body sodium homeostasis and salt-induced immune cell activation provide new insights into the relationship between high salt intake, inflammation, and hypertension. The immune system, specifically antigen-presenting cells (APCs) and T cells, are directly implicated in salt-induced renal and vascular injury and hypertension. Emerging evidence suggests that oxidative stress and activation of the NLRP3 inflammasome drive high sodium-mediated activation of APCs and T cells and contribute to the development of renal and vascular inflammation and hypertension. In this review, we summarize the recent insights into our understanding of the mechanisms of salt-sensitive hypertension and discuss the role of inflammasome activation as a potential therapeutic target.
Collapse
Affiliation(s)
- Lale A. Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United Staes,*Correspondence: Annet Kirabo, ; Lale A. Ertuglu,
| | - Ashley Pitzer Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Justin Yu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Annet Kirabo, ; Lale A. Ertuglu,
| |
Collapse
|
10
|
Goodlett BL, Balasubbramanian D, Navaneethabalakrishnan S, Love SE, Luera EM, Konatham S, Chiasson VL, Wedgeworth S, Rutkowski JM, Mitchell BM. Genetically inducing renal lymphangiogenesis attenuates hypertension in mice. Clin Sci (Lond) 2022; 136:1759-1772. [PMID: 36345993 PMCID: PMC10586591 DOI: 10.1042/cs20220547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypertension (HTN) is associated with renal proinflammatory immune cell infiltration and increased sodium retention. We reported previously that renal lymphatic vessels, which are responsible for trafficking immune cells from the interstitial space to draining lymph nodes, increase in density under hypertensive conditions. We also demonstrated that augmenting renal lymphatic density can prevent HTN in mice. Whether renal lymphangiogenesis can treat HTN in mice is unknown. We hypothesized that genetically inducing renal lymphangiogenesis after the establishment of HTN would attenuate HTN in male and female mice from three different HTN models. METHODS Mice with inducible kidney-specific overexpression of VEGF-D (KidVD) experience renal lymphangiogenesis upon doxycycline administration. HTN was induced in KidVD+ and KidVD- mice by subcutaneous release of angiotensin II, administration of the nitric oxide synthase inhibitor L-NAME, or consumption of a 4% salt diet following a L-NAME priming and washout period. After a week of HTN stimuli treatment, doxycycline was introduced. Systolic blood pressure (SBP) readings were taken weekly. Kidney function was determined from urine and serum measures. Kidneys were processed for RT-qPCR, flow cytometry, and imaging. RESULTS Mice that underwent renal-specific lymphangiogenesis had significantly decreased SBP and renal proinflammatory immune cells. Additionally, renal lymphangiogenesis was associated with a decrease in sodium transporter expression and increased fractional excretion of sodium, indicating improved sodium handling efficiency. CONCLUSIONS These findings demonstrate that augmenting renal lymphangiogenesis can treat HTN in male and female mice by improving renal immune cell trafficking and sodium handling.
Collapse
Affiliation(s)
- Bethany L Goodlett
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | | | | | - Sydney E Love
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Emily M Luera
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Sunitha Konatham
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Valorie L Chiasson
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Sophie Wedgeworth
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| |
Collapse
|
11
|
Verzicco I, Tedeschi S, Graiani G, Bongrani A, Carnevali ML, Dancelli S, Zappa J, Mattei S, Bovino A, Cavazzini S, Rocco R, Calvi A, Palladini B, Volpi R, Cannone V, Coghi P, Borghetti A, Cabassi A. Evidence for a Prehypertensive Water Dysregulation Affecting the Development of Hypertension: Results of Very Early Treatment of Vasopressin V1 and V2 Antagonism in Spontaneously Hypertensive Rats. Front Cardiovasc Med 2022; 9:897244. [PMID: 35722114 PMCID: PMC9198251 DOI: 10.3389/fcvm.2022.897244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to long-term regulation of blood pressure (BP), in the kidney resides the initial trigger for hypertension development due to an altered capacity to excrete sodium and water. Betaine is one of the major organic osmolytes, and its betaine/gamma-aminobutyric acid transporter (BGT-1) expression in the renal medulla relates to interstitial tonicity and urinary osmolality and volume. This study investigated altered water and sodium balance as well as changes in antidiuretic hormone (ADH) activity in female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats from their 3–5 weeks of age (prehypertensive phase) to SHR’s 28–30 weeks of age (established hypertension-organ damage). Young prehypertensive SHRs showed a reduced daily urine output, an elevated urine osmolarity, and higher immunostaining of tubule BGT-1, alpha-1-Na-K ATPase in the outer medulla vs. age-matched WKY. ADH circulating levels were not different between young prehypertensive SHR and WKY, but the urine aquaporin2 (AQP2)/creatinine ratio and labeling of AQP2 in the collecting duct were increased. At 28–30 weeks, hypertensive SHR with moderate renal failure did not show any difference in urinary osmolarity, urine AQP2/creatinine ratio, tubule BGT-1, and alpha-1-Na-K ATPase as compared with WKY. These results suggest an increased sensitivity to ADH in prehypertensive female SHR. On this basis, a second series of experiments were set to study the role of ADH V1 and V2 receptors in the development of hypertension, and a group of female prehypertensive SHRs were treated from the 25th to 49th day of age with either V1 (OPC21268) or V2 (OPC 41061) receptor antagonists to evaluate the BP time course. OPC 41061-treated SHRs had a delayed development of hypertension for 5 weeks without effect in OPC 21268-treated SHRs. In prehypertensive female SHR, an increased renal ADH sensitivity is crucial for the development of hypertension by favoring a positive water balance. Early treatment with selective V2 antagonism delays future hypertension development in young SHRs.
Collapse
Affiliation(s)
- Ignazio Verzicco
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Stefano Tedeschi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Gallia Graiani
- Histology and Histopathology Unit and Molecular Biology Laboratory, Dental School Parma, University of Parma, Parma, Italy
| | - Alice Bongrani
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Maria Luisa Carnevali
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Simona Dancelli
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Jessica Zappa
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Silvia Mattei
- Nefrologia e Dialisi, Azienda USL – Istituto di Ricerca a Carattere Scientifico IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Achiropita Bovino
- Internal Medicine Unit, Ospedale Fidenza, Azienda USL Parma, Parma, Italy
| | - Stefania Cavazzini
- Laboratory of Industrial Toxicology, DIMEC, University of Parma, Parma, Italy
| | - Rossana Rocco
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Anna Calvi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Barbara Palladini
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Riccardo Volpi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Valentina Cannone
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Pietro Coghi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Alberico Borghetti
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Aderville Cabassi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
- *Correspondence: Aderville Cabassi,
| |
Collapse
|
12
|
Clinical variables accompanying salt-sensitive essential hypertension in ethnic Kashmiri population. J Hypertens 2022; 40:916-923. [PMID: 35506280 DOI: 10.1097/hjh.0000000000003093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Salt sensitivity is actually a measure of an individual's blood pressure response to salt intake. It has been reported that people who are salt sensitive have high prevalence of hypertension and target organ damage. The link between dietary salt intake and hypertension is well established, and a reduction in salt intake has been shown to lower blood pressure. SCOPE In Kashmir, this achieves significance because of a high incidence of hypertension along with a high salt intake among ethnic Kashmiris. DESIGN AND METHODS We analysed clinical variables accompanying salt sensitive hypertension among Kashmiri population in our on-going salt sensitivity study on 770 Kashmiri patients (250 men, 520 women) of age group 18years and above from March 2020 to June 2021. We studied the clinical variables accompanying salt sensitivity and the difference in their blood pressure on. a low salt diet (mean = 2 g/day) vs. their usual salt intake (mean = 11 g/day). To document compliance of salt-restricted diet, we used 24-h urinary NaCl estimation as a surrogate marker for salt intake estimation. RESULTS We observed, a huge drop in SBP (-28.9 mmHg), DBP (-17.6 mmHg) and mean arterial pressure (-21.3mmHg) in this cohort of 770 ethnic Kashmiris on a strict salt restricted diet. And that women, urban inhabitants, and nonsmokers are more prone to the risk of developing salt sensitive hypertension. Physical activity had no effect on salt sensitivity. CONCLUSION As per our study, salt restriction has a major role in treatment of Hypertension in Kashmiri Population. More studies need to be focused on this vital area.
Collapse
|
13
|
Gonzalez-Fernandez E, Fan L, Wang S, Liu Y, Gao W, Thomas KN, Fan F, Roman RJ. The adducin saga: pleiotropic genomic targets for precision medicine in human hypertension-vascular, renal, and cognitive diseases. Physiol Genomics 2022; 54:58-70. [PMID: 34859687 PMCID: PMC8799388 DOI: 10.1152/physiolgenomics.00119.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023] Open
Abstract
Hypertension is a leading risk factor for stroke, heart disease, chronic kidney disease, vascular cognitive impairment, and Alzheimer's disease. Previous genetic studies have nominated hundreds of genes linked to hypertension, and renal and cognitive diseases. Some have been advanced as candidate genes by showing that they can alter blood pressure or renal and cerebral vascular function in knockout animals; however, final validation of the causal variants and underlying mechanisms has remained elusive. This review chronicles 40 years of work, from the initial identification of adducin (ADD) as an ACTIN-binding protein suggested to increase blood pressure in Milan hypertensive rats, to the discovery of a mutation in ADD1 as a candidate gene for hypertension in rats that were subsequently linked to hypertension in man. More recently, a recessive K572Q mutation in ADD3 was identified in Fawn-Hooded Hypertensive (FHH) and Milan Normotensive (MNS) rats that develop renal disease, which is absent in resistant strains. ADD3 dimerizes with ADD1 to form functional ADD protein. The mutation in ADD3 disrupts a critical ACTIN-binding site necessary for its interactions with actin and spectrin to regulate the cytoskeleton. Studies using Add3 KO and transgenic strains, as well as a genetic complementation study in FHH and MNS rats, confirmed that the K572Q mutation in ADD3 plays a causal role in altering the myogenic response and autoregulation of renal and cerebral blood flow, resulting in increased susceptibility to hypertension-induced renal disease and cerebral vascular and cognitive dysfunction.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kirby N Thomas
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
14
|
Yang T, Chakraborty S, Mandal J, Mei X, Joe B. Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation. Compr Physiol 2021; 11:1731-1757. [PMID: 33792901 DOI: 10.1002/cphy.c200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of microbes has rapidly expanded in recent years due to a surge in our understanding that humans host a plethora of commensal microbes, which reside in their bodies and depending upon their composition, contribute to either normal physiology or pathophysiology. This article provides a general foundation for learning about host-commensal microbial interactions as an emerging area of research. The article is divided into two sections. The first section is dedicated to introducing commensal microbiota and its known effects on the host. The second section is on metabolites, which are biochemicals that the host and the microbes use for bi-directional communication with each other. Together, the sections review what is known about how microbes interact with the host to impact cardiovascular physiology, especially blood pressure regulation. © 2021 American Physiological Society. Compr Physiol 11:1731-1757, 2021.
Collapse
Affiliation(s)
- Tao Yang
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Saroj Chakraborty
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Juthika Mandal
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Xue Mei
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
15
|
Dobrek L. An Outline of Renal Artery Stenosis Pathophysiology-A Narrative Review. Life (Basel) 2021; 11:life11030208. [PMID: 33799957 PMCID: PMC8000991 DOI: 10.3390/life11030208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Renal artery stenosis (RAS) is conditioned mainly by two disturbances: fibromuscular dysplasia or atherosclerosis of the renal artery. RAS is an example of renovascular disease, with complex pathophysiology and consequences. There are multiple pathophysiological mechanisms triggered in response to significant renal artery stenosis, including disturbances within endothelin, kinin-kallikrein and sympathetic nervous systems, with angiotensin II and the renin-angiotensin-aldosterone system (RAAS) playing a central and key role in the pathogenesis of RAS. The increased oxidative stress and the release of pro-inflammatory mediators contributing to pathological tissue remodelling and renal fibrosis are also important pathogenetic elements of RAS. This review briefly summarises these pathophysiological issues, focusing on renovascular hypertension and ischemic nephropathy as major clinical manifestations of RAS. The activation of RAAS and its haemodynamic consequences is the primary and key element in the pathophysiological cascade triggered in response to renal artery stenosis. However, the pathomechanism of RAS is more complex and also includes other disturbances that ultimately contribute to the development of the diseases mentioned above. To sum up, RAS is characterised by different clinical pictures, including asymptomatic disorders diagnosed in kidney imaging, renovascular hypertension, usually characterised by severe course, and chronic ischemic nephropathy, described by pathological remodelling of kidney tissue, ultimately leading to kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Salt sensitivity and hypertension. J Hum Hypertens 2020; 35:184-192. [PMID: 32862203 DOI: 10.1038/s41371-020-00407-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Salt sensitivity refers to the physiological trait present in mammals, including humans, by which the blood pressure (BP) of some members of the population exhibits changes parallel to changes in salt intake. It is commoner in elderly, females, Afro-Americans, patients with chronic kidney disease (CKD) and insulin resistance. Increased salt intake promotes an expansion of extracellular fluid volume and increases cardiac output. Salt-sensitive individuals present an abnormal kidney reaction to salt intake; the kidneys retain most of the salt due to an abnormal over-reactivity of sympathetic nervous system and a blunted suppression of renin-angiotensin axis. Moreover, instead of peripheral vascular resistance falling, salt-sensitive subjects present increased vascular resistance due mainly to impaired nitric oxide synthesis in endothelium. Recent studies have shown that part of the dietary salt loading accumulates in skin. Hypertensive and patients with CKD seem to have more sodium in skin comparing to healthy ones. However, we still have not fully explained the link between skin sodium, BP and salt sensitivity. Finally, although salt sensitivity plays a meaningful role in BP pathophysiology, it cannot be used by the physician in everyday patient's care, mainly due to lack of a simple and practical diagnostic test.
Collapse
|
17
|
|
18
|
Rapp JP, Garrett MR. Will the real Dahl S rat please stand up? Am J Physiol Renal Physiol 2019; 317:F1231-F1240. [PMID: 31545925 DOI: 10.1152/ajprenal.00359.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- John P Rapp
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
19
|
Katsi V, Didagelos M, Skevofilax S, Armenis I, Kartalis A, Vlachopoulos C, Karvounis H, Tousoulis D. GUT Microbiome-GUT Dysbiosis-Arterial Hypertension: New Horizons. Curr Hypertens Rev 2019; 15:40-46. [PMID: 29895255 DOI: 10.2174/1573402114666180613080439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023]
Abstract
Arterial hypertension is a progressive cardiovascular syndrome arising from complex and interrelated etiologies. The human microbiome refers to the community of microorganisms that live in or on the human body. They influence human physiology by interfering in several processes such as providing nutrients and vitamins in Phase I and Phase II drug metabolism. The human gut microbiota is represented mainly by Firmicutes and Bacteroidetes and to a lesser degree by Actinobacteria and Proteobacteria, with each individual harbouring at least 160 such species. Gut microbiota contributes to blood pressure homeostasis and the pathogenesis of arterial hypertension through production, modification, and degradation of a variety of microbial-derived bioactive metabolites. Animal studies and to a lesser degree human research has unmasked relative mechanisms, mainly through the effect of certain microbiome metabolites and their receptors, outlining this relationship. Interventions to utilize these pathways, with probiotics, prebiotics, antibiotics and fecal microbiome transplantation have shown promising results. Personalized microbiome-based disease prediction and treatment responsiveness seem futuristic. Undoubtedly, a long way of experimental and clinical research should be pursued to elucidate this novel, intriguing and very promising horizon.
Collapse
Affiliation(s)
- Vasiliki Katsi
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthaios Didagelos
- 1st Cardiology Department, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Iakovos Armenis
- Cardiology Department, Skylitseio General Hospital, Chios, Greece
| | | | - Charalambos Vlachopoulos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Haralambos Karvounis
- 1st Cardiology Department, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Tousoulis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
21
|
Potential target-organ protection of mineralocorticoid receptor antagonist in acute kidney disease. J Hypertens 2019; 37:125-134. [PMID: 30063639 DOI: 10.1097/hjh.0000000000001876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Sethna CB, Kee D, Casado P, Murphy M, Palmer LS, Ghorayeb SR, Morganstern B. Renal sonographic changes in heterogeneity index and echogenicity in children with hypertension: a novel assessment. ACTA ACUST UNITED AC 2018; 12:e77-e83. [PMID: 30502313 DOI: 10.1016/j.jash.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 11/09/2018] [Indexed: 11/17/2022]
Abstract
The kidneys are thought to contribute to the pathogenesis of primary hypertension, but hypertension is also known to cause target organ damage in the kidney. Noninvasive methods to capture possible changes in the kidney related to hypertension are limited. A new program that has been used to quantify the heterogeneity and percent echogenicity in renal ultrasound images was implemented to assess patients with hypertension. Children and adolescents <21 years with primary hypertension diagnosed by ambulatory blood pressure monitoring were compared with normotensive age- and sex-matched controls. Renal ultrasound images were evaluated by a technique that measured pixels of gray-scale images and transformed them into a binary map, which was converted to a heterogeneity index (HI) and percent echogenicity score. This study included 99 children with hypertension and 99 control subjects. Body mass index (BMI) was greater in the hypertension group. Average HI for hypertension was significantly higher than in controls (1.37 ± 0.19 vs. 1.2 ± 0.23, P = .001), while echogenicity scores were not different (26.6 ± 8.9 vs. 25.9 ± 10, P = .8). In regression analysis adjusting for BMI z-score and race, hypertension was associated with greater HI compared with controls (β = 0.11, 95% confidence interval 0.03-0.18, P = .005). In a model adjusted for age, sex, and BMI z-score in the hypertension group only, no ambulatory blood pressure monitoring measures were associated with HI or echogenicity scores (P > .05).HI was significantly greater in the hypertension group compared with normotensive controls. HI may be a novel method to detect changes in the kidney related to hypertension.
Collapse
Affiliation(s)
- Christine B Sethna
- Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | - Dustin Kee
- Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Pablo Casado
- Ultrasound Research Lab, DeMatteis School of Engineering and Applied Sciences, Hofstra University, Hempstead, NY, USA
| | - Megan Murphy
- Ultrasound Research Lab, DeMatteis School of Engineering and Applied Sciences, Hofstra University, Hempstead, NY, USA
| | - Lane S Palmer
- Division of Pediatric Urology, Cohen Children's Medical Center, New Hyde Park, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sleiman R Ghorayeb
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Feinstein Institute for Medical Research, Manhasset, NY, USA; Ultrasound Research Lab, DeMatteis School of Engineering and Applied Sciences, Hofstra University, Hempstead, NY, USA
| | - Bradley Morganstern
- Division of Pediatric Urology, Cohen Children's Medical Center, New Hyde Park, NY, USA
| |
Collapse
|
23
|
Liu BX, Sun W, Kong XQ. Perirenal Fat: A Unique Fat Pad and Potential Target for Cardiovascular Disease. Angiology 2018; 70:584-593. [PMID: 30301366 DOI: 10.1177/0003319718799967] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although visceral obesity is recognized as a risk factor for cardiovascular diseases (CVDs), the efficacy of omental fat removal in CVD treatment is still controversial. There is a need to identify other visceral fat depots for CVD management. This review aims to provide a summary on perirenal fat as an important risk factor for CVD. Studies on epidemiology, anatomy, and function of perirenal fat were reviewed. Observational studies in humans suggest that excessive perirenal fat increases the risk of hypertension and coronary heart disease. Anatomy studies prove that perirenal fat is unique compared to other connective tissues in that it is well vascularized, innervated, and drains into the lymphatic system. Other special morphological features include a complete fascia border, sympathetic-independent development of architecture, and proximity to the kidneys. Based on these anatomical features, perirenal fat regulates the cardiovascular system presumably via neural reflex, adipokine secretion, and fat-kidney interaction. These new insights suggest that perirenal fat may constitute a promising target for CVD management.
Collapse
Affiliation(s)
- Bo-Xun Liu
- 1 Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Sun
- 1 Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiang-Qing Kong
- 1 Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The mammalian mucosal surfaces are densely inhabited by a diverse microbial ecosystem termed the microbiota. Among these highly heterogeneous populations, the largest and richest is the gut microbiota, recently suggested to affect various physiological traits and susceptibility to disease. Novel metagenomic and metabolomic approaches, which have been developed in the past decade, have enabled the elucidation of the contribution of the microbiota to metabolic, immunologic, neurologic and endocrine homeostasis. RECENT FINDINGS Dysbiosis, the alteration in the gut microbiota composition and function, has been lately associated with the pathogenesis of multifactorial diseases such as obesity, diabetes and cardiovascular disorders. Recent studies have also suggested associations between dysbiosis and essential hypertension, a common chronic medical condition affecting 20% or more of the adult population worldwide, which is considered a major causative factor for heart disease, stroke, chronic renal failure, blindness and dementia. SUMMARY In this review, we discuss the accumulating research pointing to possible interplays between the gut microbiome and hypertension and highlight future prospects by which utilization of microbiome-related techniques may be incorporated into the diagnosis and therapeutic arsenal of hypertension management.
Collapse
|
25
|
Isobe-Sasaki Y, Fukuda M, Ogiyama Y, Sato R, Miura T, Fuwa D, Mizuno M, Matsuoka T, Shibata H, Ito H, Ono M, Abe-Dohmae S, Kiyono K, Yamamoto Y, Kobori H, Michikawa M, Hayano J, Ohte N. Sodium balance, circadian BP rhythm, heart rate variability, and intrarenal renin-angiotensin-aldosterone and dopaminergic systems in acute phase of ARB therapy. Physiol Rep 2018; 5:5/11/e13309. [PMID: 28576855 PMCID: PMC5471446 DOI: 10.14814/phy2.13309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/29/2017] [Accepted: 05/10/2017] [Indexed: 01/11/2023] Open
Abstract
We have revealed that even in humans, activated intrarenal renin–angiotensin–aldosterone system (RAAS) enhances tubular sodium reabsorption to facilitate salt sensitivity and nondipper rhythm of blood pressure (BP), and that angiotensin receptor blocker (ARB) could increase daytime urinary sodium excretion rate (UNaV) to produce lower sodium balance and restore nondipper rhythm. However, the sympathetic nervous system and intrarenal dopaminergic system can also contribute to renal sodium handling. A total of 20 patients with chronic kidney disease (61 ± 15 years) underwent 24‐h ambulatory BP monitoring before and during two‐day treatment with ARB, azilsartan. Urinary angiotensinogen excretion rate (UAGTV, μg/gCre) was measured as intrarenal RAAS; urinary dopamine excretion rate (UDAV, pg/gCre) as intrarenal dopaminergic system; heart rate variabilities (HRV, calculated from 24‐h Holter‐ECG) of non‐Gaussianity index λ25s as sympathetic nerve activity; and power of high‐frequency (HF) component or deceleration capacity (DC) as parasympathetic nerve activity. At baseline, glomerular filtration rate correlated inversely with UAGTV (r = −0.47, P = 0.04) and positively with UDAV (r = 0.58, P = 0.009). HF was a determinant of night/day BP ratio (β = −0.50, F = 5.8), rather than DC or λ25s. During the acute phase of ARB treatment, a lower steady sodium balance was not achieved. Increase in daytime UNaV preceded restoration of BP rhythm, accompanied by decreased UAGTV (r = −0.88, P = 0.05) and increased UDAV (r = 0.87, P = 0.05), but with no changes in HRVs. Diminished sodium excretion can cause nondipper BP rhythm. This was attributable to intrarenal RAAS and dopaminergic system and impaired parasympathetic nerve activity. During the acute phase of ARB treatment, cooperative effects of ARB and intrarenal dopaminergic system exert natriuresis to restore circadian BP rhythm.
Collapse
Affiliation(s)
- Yukako Isobe-Sasaki
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Michio Fukuda
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiaki Ogiyama
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryo Sato
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiyuki Miura
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Daisuke Fuwa
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masashi Mizuno
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuhei Matsuoka
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Shibata
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Ito
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Minamo Ono
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sumiko Abe-Dohmae
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ken Kiyono
- Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Yoshiharu Yamamoto
- Department of Physical and Health Education, University of Tokyo Graduate School of Education, Tokyo, Japan
| | - Hiroyuki Kobori
- International University of Health and Welfare, Tokyo, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Junichiro Hayano
- Department of Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuyuki Ohte
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
26
|
Tutakhel OAZ, Bianchi F, Smits DA, Bindels RJM, Hoenderop JGJ, van der Wijst J. Dominant functional role of the novel phosphorylation site S811 in the human renal NaCl cotransporter. FASEB J 2018; 32:4482-4493. [PMID: 29547703 DOI: 10.1096/fj.201701047r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The NaCl cotransporter (NCC) is essential for electrolyte homeostasis and control of blood pressure. The human SLC12A3 gene, which encodes NCC, gives rise to 3 isoforms, of which only the shortest isoform [NaCl cotransporter isoform 3 (NCC3)] has been studied extensively. All NCC isoforms share key phosphorylation sites at T55 and T60 that are essential mediators of NCC function. Recently, a novel phosphorylation site at S811 was identified in isoforms 1 and 2 [NaCl cotransporter splice variant (NCCSV)], which are only present in humans and higher primates. The aim of the current study, therefore, is to investigate the role of S811 phosphorylation in the regulation of NCC by a combination of biochemical and fluorescent microscopy analyses. We demonstrate that hypotonic low-chloride buffer increases S811 phosphorylation, whereas phosphorylation-deficient S811A mutant hinders phosphorylation at T55 and T60 in NCCSV and NCC3. NCCSV S811A impairs NCC3 activity in a dominant-negative fashion, although it does not affect plasma membrane abundance. This effect may be explained by the heterodimerization of NCCSV with NCC3. Taken together, our study highlights the dominant-negative effect of NCCSV on T55 and T60 phosphorylation and NCC activity. Here, we reveal a new function of NCCSV in humans that broadens the understanding on NCC regulation in blood pressure control.-Tutakhel, O. A. Z., Bianchi, F., Smits, D. A., Bindels, R. J. M., Hoenderop, J. G. J., van der Wijst, J. Dominant functional role of the novel phosphorylation site S811 in the human renal NaCl cotransporter.
Collapse
Affiliation(s)
- Omar A Z Tutakhel
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans Bianchi
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniël A Smits
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Abstract
Fierce debate has developed whether low-sodium intake, like high-sodium intake, could be associated with adverse outcome. The debate originates in earlier epidemiological studies associating high-sodium intake with high blood pressure and more recent studies demonstrating a higher cardiovascular event rate with both low- and high-sodium intake. This brings into question whether we entirely understand the consequences of high- and (very) low-sodium intake for the systemic hemodynamics, the kidney function, the vascular wall, the immune system, and the brain. Evolutionarily, sodium retention mechanisms in the context of low dietary sodium provided a survival advantage and are highly conserved, exemplified by the renin-angiotensin system. What is the potential for this sodium-retaining mechanism to cause harm? In this paper, we will consider current views on how a sodium load is handled, visiting aspects including the effect of sodium on the vessel wall, the sympathetic nervous system, the brain renin-angiotensin system, the skin as "third compartment" coupling to vascular endothelial growth factor C, and the kidneys. From these perspectives, several mechanisms can be envisioned whereby a low-sodium diet could potentially cause harm, including the renin-angiotensin system and the sympathetic nervous system. Altogether, the uncertainties preclude a unifying model or practical clinical guidance regarding the effects of a low-sodium diet for an individual. There is a very strong need for fundamental and translational studies to enhance the understanding of the potential adverse consequences of low-salt intake as an initial step to facilitate better clinical guidance.
Collapse
Affiliation(s)
- Branko Braam
- Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Physiology, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine / Division of Nephrology and Immunology, University of Alberta Hospital, 11-132 CSB Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| | - Xiaohua Huang
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - William A Cupples
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Shereen M Hamza
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Wang L, Wang X, Qu HY, Jiang S, Zhang J, Fu L, Buggs J, Pang B, Wei J, Liu R. Role of Kidneys in Sex Differences in Angiotensin II-Induced Hypertension. Hypertension 2017; 70:1219-1227. [PMID: 29061720 DOI: 10.1161/hypertensionaha.117.10052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/10/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
Abstract
The significance of kidneys in regulation of sodium and water balance and hemodynamics has been demonstrated both in patients and animal models. In the present study, we tested our hypothesis that kidneys play an essential role in control of sex differences in angiotensin II (Ang II)-dependent hypertension. Kidney transplantations (KTXs) were performed between male (M) and female (F) C57BL/6 mice (donor→recipient: F→F, M→M, F→M, and M→F). Radiotelemetry transmitters were implanted for measurement of mean arterial pressure during the infusion of Ang II (600 ng·kg-1·min-1). Gene expressions and inflammatory responses in the transplanted grafts were assessed. We found that same-sex-KTX mice still exhibited sex differences in Ang II-dependent hypertension (31.3±0.8 mm Hg in M→M versus 12.2±0.6 mm Hg in F→F), which were reduced between males and females when they received kidneys of the opposite sex (32.9±1 mm Hg in M→F versus 22.3±0.7 mm Hg in F→M). The sex differences in gene expressions, including AT1R (angiotensin II receptor, type 1), AT1R/AT2R, ET-1 (endothelin-1), ETA (endothelin receptor type A), NHE3 (sodium-hydrogen exchanger 3), α-ENaC (α-epithelial sodium channel), and γ-ENaC, were unaltered in same-sex KTXs and much lessened in cross-sex KTXs. In addition, the cross-sex KTXs exhibited more robust inflammatory responses reflected by higher expression of IL-6 (interleukin 6), TNFα (tumor necrosis factor α), and KC (keratinocyte-derived chemokine) than same-sex KTX. Our results indicate that kidneys play an essential role in sex differences of Ang II-dependent hypertension. KTX of male kidneys to females augmented the blood pressure response, whereas KTX of female kidneys to males attenuated the blood pressure response. The host's extrarenal systems modulate expressions of many genes and inflammatory response, which may also contribute to the sex differences in blood pressure regulation.
Collapse
Affiliation(s)
- Lei Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL.
| | - Ximing Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Helena Y Qu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Shan Jiang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Jie Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Liying Fu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Jacentha Buggs
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Bo Pang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Jin Wei
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Ruisheng Liu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| |
Collapse
|
29
|
Delacroix S, Chokka RG, Nelson AJ, Wong DT, Sidharta S, Pederson SM, Rajwani A, Nimmo J, Teo KS, Worthley SG. Renal sympathetic denervation increases renal blood volume per cardiac cycle: a serial magnetic resonance imaging study in resistant hypertension. Int J Nephrol Renovasc Dis 2017; 10:243-249. [PMID: 28919800 PMCID: PMC5587163 DOI: 10.2147/ijnrd.s131220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim Preclinical studies have demonstrated improvements in renal blood flow after renal sympathetic denervation (RSDN); however, such effects are yet to be confirmed in patients with resistant hypertension. Herein, we assessed the effects of RSDN on renal artery blood flow and diameter at multiple time points post-RSDN. Methods and results Patients (n=11) with systolic blood pressures ≥160 mmHg despite taking three or more antihypertensive medications at maximum tolerated dose were recruited into this single-center, prospective, non-blinded study. Magnetic resonance imaging indices included renal blood flow and renal artery diameters at baseline, 1 month and 6 months. In addition to significant decreases in blood pressures (p<0.0001), total volume of blood flow per cardiac cycle increased by 20% from 6.9±2 mL at baseline to 8.4±2 mL (p=0.003) at 1 month and to 8.0±2 mL (p=0.04) 6 months post-procedure, with no changes in the renal blood flow. There was a significant decrease in renal artery diameters from 7±2 mm at baseline to 6±1 mm (p=0.03) at 1 month post-procedure. This decrease was associated with increases in maximum velocity of blood flow from 73±20 cm/s at baseline to 78±19 cm/s at 1 month post-procedure. Notably, both parameters reverted to 7±2 mm and 72±18 cm/s, respectively, 6 months after procedure. Conclusion RSDN improves renal physiology as evidenced by significant improvements in total volume of blood flow per cardiac cycle. Additionally, for the first time, we identified a transient decrease in renal artery diameters immediately after procedure potentially caused by edema and inflammation that reverted to baseline values 6 months post-procedure.
Collapse
Affiliation(s)
- Sinny Delacroix
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | - Ramesh G Chokka
- Cardiovascular Research Centre, Royal Adelaide Hospital.,South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA
| | - Adam J Nelson
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | | | - Samuel Sidharta
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Adil Rajwani
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | - Joanne Nimmo
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | - Karen S Teo
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| | - Stephen G Worthley
- Cardiovascular Research Centre, Royal Adelaide Hospital.,Department of Medicine, University of Adelaide, Adelaide, SA
| |
Collapse
|
30
|
Nosalski R, McGinnigle E, Siedlinski M, Guzik TJ. Novel Immune Mechanisms in Hypertension and Cardiovascular Risk. CURRENT CARDIOVASCULAR RISK REPORTS 2017; 11:12. [PMID: 28360962 PMCID: PMC5339316 DOI: 10.1007/s12170-017-0537-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hypertension is a common disorder with substantial impact on public health due to highly elevated cardiovascular risk. The mechanisms still remain unclear and treatments are not sufficient to reduce risk in majority of patients. Inflammatory mechanisms may provide an important mechanism linking hypertension and cardiovascular risk. We aim to review newly identified immune and inflammatory mechanisms of hypertension with focus on their potential therapeutic impact. RECENT FINDINGS In addition to the established role of the vasculature, kidneys and central nervous system in pathogenesis of hypertension, low-grade inflammation contributes to this disorder as indicated by experimental models and GWAS studies pointing to SH2B3 immune gene as top key driver of hypertension. Immune responses in hypertension are greatly driven by neoantigens generated by oxidative stress and modulated by chemokines such as RANTES, IP-10 and microRNAs including miR-21 and miR-155 with other molecules under investigation. Cells of both innate and adoptive immune system infiltrate vasculature and kidneys, affecting their function by releasing pro-inflammatory mediators and reactive oxygen species. SUMMARY Immune and inflammatory mechanisms of hypertension provide a link between high blood pressure and increased cardiovascular risk, and reduction of blood pressure without attention to these underlying mechanisms is not sufficient to reduce risk.
Collapse
Affiliation(s)
- Ryszard Nosalski
- BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland UK
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Eilidh McGinnigle
- BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland UK
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J. Guzik
- BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland UK
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
31
|
Murphy MO, Cohn DM, Loria AS. Developmental origins of cardiovascular disease: Impact of early life stress in humans and rodents. Neurosci Biobehav Rev 2017; 74:453-465. [PMID: 27450581 PMCID: PMC5250589 DOI: 10.1016/j.neubiorev.2016.07.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesizes that environmental insults during childhood programs the individual to develop chronic disease in adulthood. Emerging epidemiological data strongly supports that early life stress (ELS) given by the exposure to adverse childhood experiences is regarded as an independent risk factor capable of predicting future risk of cardiovascular disease. Experimental animal models utilizing chronic behavioral stress during postnatal life, specifically maternal separation (MatSep) provides a suitable tool to elucidate molecular mechanisms by which ELS increases the risk to develop cardiovascular disease, including hypertension. The purpose of this review is to highlight current epidemiological studies linking ELS to the development of cardiovascular disease and to discuss the potential molecular mechanisms identified from animal studies. Overall, this review reveals the need for future investigations to further clarify the molecular mechanisms of ELS in order to develop more personalized therapeutics to mitigate the long-term consequences of chronic behavioral stress including cardiovascular and heart disease in adulthood.
Collapse
Affiliation(s)
- M O Murphy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - D M Cohn
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - A S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
32
|
Liu Y, Rafferty TM, Rhee SW, Webber JS, Song L, Ko B, Hoover RS, He B, Mu S. CD8 + T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension. Nat Commun 2017; 8:14037. [PMID: 28067240 PMCID: PMC5227995 DOI: 10.1038/ncomms14037] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8+ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8+ T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8+ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K+ channel Kir4.1, and stimulation of the Cl- channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Yunmeng Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Tonya M Rafferty
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Jessica S Webber
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Li Song
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Robert S Hoover
- Department of Medicine, Division of Nephrology, Emory University, Atlanta, Georgia 30322, USA.,Research Service Atlanta, Veteran's Administration Medical Center, Decatur, Georgia 30033, USA
| | - Beixiang He
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| |
Collapse
|
33
|
Chu PL, Gigliotti JC, Cechova S, Bodonyi-Kovacs G, Chan F, Ralph DL, Howell N, Kalantari K, Klibanov AL, Carey RM, McDonough AA, Le TH. Renal Collectrin Protects against Salt-Sensitive Hypertension and Is Downregulated by Angiotensin II. J Am Soc Nephrol 2017; 28:1826-1837. [PMID: 28062568 DOI: 10.1681/asn.2016060675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Collectrin, encoded by the Tmem27 gene, is a transmembrane glycoprotein with approximately 50% homology with angiotensin converting enzyme 2, but without a catalytic domain. Collectrin is most abundantly expressed in the kidney proximal tubule and collecting duct epithelia, where it has an important role in amino acid transport. Collectrin is also expressed in endothelial cells throughout the vasculature, where it regulates L-arginine uptake. We previously reported that global deletion of collectrin leads to endothelial dysfunction, augmented salt sensitivity, and hypertension. Here, we performed kidney crosstransplants between wild-type (WT) and collectrin knockout (Tmem27Y/- ) mice to delineate the specific contribution of renal versus extrarenal collectrin on BP regulation and salt sensitivity. On a high-salt diet, WT mice with Tmem27Y/- kidneys had the highest systolic BP and were the only group to exhibit glomerular mesangial hypercellularity. Additional studies showed that, on a high-salt diet, Tmem27Y/- mice had lower renal blood flow, higher abundance of renal sodium-hydrogen antiporter 3, and lower lithium clearance than WT mice. In WT mice, administration of angiotensin II for 2 weeks downregulated collectrin expression in a type 1 angiotensin II receptor-dependent manner. This downregulation coincided with the onset of hypertension, such that WT and Tmem27Y/- mice had similar levels of hypertension after 2 weeks of angiotensin II administration. Altogether, these data suggest that salt sensitivity is determined by intrarenal collectrin, and increasing the abundance or activity of collectrin may have therapeutic benefits in the treatment of hypertension and salt sensitivity.
Collapse
Affiliation(s)
| | - Joseph C Gigliotti
- Division of Nephrology.,Department of Integrated Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia; and
| | | | | | | | - Donna Lee Ralph
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Nancy Howell
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | | | | | - Robert M Carey
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Alicia A McDonough
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, Los Angeles, California
| | | |
Collapse
|
34
|
Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Renal Physiol 2016; 313:F135-F140. [PMID: 28003189 DOI: 10.1152/ajprenal.00427.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Salt-sensitive hypertension is associated with renal and vascular dysfunctions, which lead to impaired fluid excretion, increased cardiac output, and total peripheral resistance. It is commonly accepted that increased renal sodium handling and plasma volume expansion are necessary factors for the development of salt-induced hypertension. The epithelial sodium channel (ENaC) is a trimeric ion channel expressed in the distal nephron that plays a critical role in the regulation of sodium reabsorption in both normal and pathological conditions. In this mini-review, we summarize recent studies investigating the role of ENaC in the development of salt-sensitive hypertension. On the basis of experimental data obtained from the Dahl salt-sensitive rats, we and others have demonstrated that abnormal ENaC activation in response to a dietary NaCl load contributes to the development of high blood pressure in this model. The role of different humoral factors, such as the components of the renin-angiotensin-aldosterone system, members of the epidermal growth factors family, arginine vasopressin, and oxidative stress mediating the effects of dietary salt on ENaC are discussed in this review to highlight future research directions and to determine potential molecular targets for drug development.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan; and
| | | |
Collapse
|
35
|
Abstract
During the past 20 years, the studies on genetics or pharmacogenomics of primary hypertension provided interesting results supporting the role of genetics, but no actionable finding ready to be translated into personalized medicine. Two types of approaches have been applied: a "hypothesis-driven" approach on the candidate genes, coding for proteins involved in the biochemical machinery underlying the regulation of BP, and an "unbiased hypothesis-free" approach with GWAS, based on the randomness principles of frequentist statistics. During the past 10-15 years, the application of the latter has overtaken the application of the former leading to an enlargement of the number of previously unknown candidate loci or genes but without any actionable result for the therapy of hypertension. In the present review, we summarize the results of our hypothesis-driven approach based on studies carried out in rats with genetic hypertension and in humans with essential hypertension at the pre-hypertensive and early hypertensive stages. These studies led to the identification of mutant adducin and endogenous ouabain as candidate genetic-molecular mechanisms in both species. Rostafuroxin has been developed for its ability to selectively correct Na(+) pump abnormalities sustained by the two abovementioned mechanisms and to selectively reduce BP in rats and in humans carrying the gene variants underlying the mutant adducin and endogenous ouabain (EO) effects. A clinical trial is ongoing to substantiate these findings. Future studies should apply both the candidate gene and GWAS approaches to fully exploit the potential of genetics in optimizing the personalized therapy.
Collapse
|
36
|
Affiliation(s)
- John E Hall
- From the Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson.
| |
Collapse
|
37
|
Wang D, Wang Y, Liu FQ, Yuan ZY, Mu JJ. High Salt Diet Affects Renal Sodium Excretion and ERRα Expression. Int J Mol Sci 2016; 17:480. [PMID: 27043552 PMCID: PMC4848936 DOI: 10.3390/ijms17040480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022] Open
Abstract
Kidneys regulate the balance of water and sodium and therefore are related to blood pressure. It is unclear whether estrogen-related receptor α (ERRα), an orphan nuclear receptor and transcription factor highly expressed in kidneys, affects the reabsorption of water and sodium. The aim of this study was to determine whether changes in the expressions of ERRα, Na⁺/K⁺-ATPase and epithelial sodium channel (ENaC) proteins affected the reabsorption of water and sodium in kidneys of Dahl salt-sensitive (DS) rats. SS.13BN rats, 98% homologous to the DS rats, were used as a normotensive control group. The 24 h urinary sodium excretion of the DS and SS.13BN rats increased after the 6-week high salt diet intervention, while sodium excretion was increased in DS rats with daidzein (agonist of ERRα) treatment. ERRα expression was decreased, while β- and γ-ENaC mRNA expressions were increased upon high sodium diet treatment in the DS rats. In the chromatin immunoprecipitation (CHIP) assay, positive PCR signals were obtained in samples treated with anti-ERRα antibody. The transcriptional activity of ERRα was decreased upon high salt diet intervention. ERRα reduced the expressions of β- and γ-ENaC by binding to the ENaC promoter, thereby increased Na+ reabsorption. Therefore, ERRα might be one of the factors causing salt-sensitive hypertension.
Collapse
Affiliation(s)
- Dan Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Fu-Qiang Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| |
Collapse
|
38
|
Hsu CY, Hsu RK, Yang J, Ordonez JD, Zheng S, Go AS. Elevated BP after AKI. J Am Soc Nephrol 2015; 27:914-23. [PMID: 26134154 DOI: 10.1681/asn.2014111114] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/19/2015] [Indexed: 01/08/2023] Open
Abstract
The connection between AKI and BP elevation is unclear. We conducted a retrospective cohort study to evaluate whether AKI in the hospital is independently associated with BP elevation during the first 2 years after discharge among previously normotensive adults. We studied adult members of Kaiser Permanente Northern California, a large integrated health care delivery system, who were hospitalized between 2008 and 2011, had available preadmission serum creatinine and BP measures, and were not known to be hypertensive or have BP>140/90 mmHg. Among 43,611 eligible patients, 2451 experienced AKI defined using observed changes in serum creatinine concentration measured during hospitalization. Survivors of AKI were more likely than those without AKI to have elevated BP--defined as documented BP>140/90 mmHg measured during an ambulatory, nonemergency department visit--during follow-up (46.1% versus 41.2% at 730 days; P<0.001). This difference was evident within the first 180 days (30.6% versus 23.1%; P<0.001). In multivariable models, AKI was independently associated with a 22% (95% confidence interval, 12% to 33%) increase in the odds of developing elevated BP during follow-up, with higher adjusted odds with more severe AKI. Results were similar in sensitivity analyses when elevated BP was defined as having at least two BP readings of >140/90 mmHg or those with evidence of CKD were excluded. We conclude that AKI is an independent risk factor for subsequent development of elevated BP. Preventing AKI during a hospitalization may have clinical and public health benefits beyond the immediate hospitalization.
Collapse
Affiliation(s)
- Chi-yuan Hsu
- Departments of Medicine and Division of Research, Kaiser Permanente Northern California, Oakland, California;
| | | | - Jingrong Yang
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Juan D Ordonez
- Division of Nephrology, Kaiser Permanente Oakland Medical Center, Oakland, California; and
| | - Sijie Zheng
- Division of Nephrology, Kaiser Permanente Oakland Medical Center, Oakland, California; and
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, Oakland, California; Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, California
| |
Collapse
|
39
|
Loria AS, Pollock DM, Pollock JS. Angiotensin II is required to induce exaggerated salt sensitivity in Dahl rats exposed to maternal separation. Physiol Rep 2015; 3:3/5/e12408. [PMID: 25999404 PMCID: PMC4463836 DOI: 10.14814/phy2.12408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously reported that maternal separation, rat model of early life stress, enhances pressor responses to acute and chronic stressors. The aims of this study were to determine whether Dahl salt-sensitive (DS) rats subjected to maternal separation (MatSep-DS) as compared to normally reared DS (Ctl-DS) rats show exaggerated blood pressure responses to acute behavioral stressors, such as restraint stress or air jet stress (AJS), or, hypertensive stimuli including chronic high-salt diet (4% NaCl) and angiotensin II (AngII) infusion (200 ng/Kg/min) during 1 week. MatSep was performed in male DS rats for 3 h/day from postnatal days 2-14. At 8 weeks of age, rats were implanted with telemetry transmitters and allowed to recover. Mean arterial pressure (MAP) was not different between MatSep-DS and Ctl-DS rats at baseline (120 ± 2 mmHg vs. 118 ± 1 mmHg, n = 4-8). Blood pressure responses during AJS and restraint stress were not different between MatSep-DS and Ctl-DS at 3 min. However, blood pressure recovery from AJS was significantly impaired in MatSep-DS rats compared to Ctl-DS rats (P < 0.05). 3-h stress-induced similar responses in MatSep and Ctl-DS rats. Chronic blood pressure responses to AngII infusion in rats fed a high-salt diet displayed enhanced MAP in MatSep-DS when compared with Ctl-DS rats (167 ± 5 mmHg vs. 152 ± 2 mmHg, pinteraction <0.05). However, MAP increased similarly in both groups in response to AngII infusion or high-salt diet separately. Renal parameters such as proteinuria, urine flow rate, and urine electrolytes were not different between groups in response to each treatment. In summary, salt sensitivity induces exaggerated blood pressor responses only in presence of AngII due to early life stress.
Collapse
Affiliation(s)
- Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky Department of Medicine, Georgia Regents University, Augusta, Georgia
| | - David M Pollock
- Department of Medicine, Georgia Regents University, Augusta, Georgia Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Department of Medicine, Georgia Regents University, Augusta, Georgia Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
40
|
Joe B. Dr Lewis Kitchener Dahl, the Dahl rats, and the "inconvenient truth" about the genetics of hypertension. Hypertension 2015; 65:963-9. [PMID: 25646295 PMCID: PMC4393342 DOI: 10.1161/hypertensionaha.114.04368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/29/2014] [Indexed: 12/28/2022]
Abstract
Lewis K. Dahl is regarded as an iconic figure in the field of hypertension research. During the 1960s and 1970s he published several seminal articles in the field that shed light on the relationship between salt and hypertension. Further, the Dahl rat models of hypertension that he developed by a selective breeding strategy are among the most widely used models for hypertension research. To this day, genetic studies using this model are ongoing in our laboratory. While Dr. Dahl is known for his contributions to the field of hypertension, very little, if any, of his personal history is documented. This article details a short biography of Dr. Lewis Dahl, the history behind the development of the Dahl rats and presents an overview of the results obtained through the genetic analysis of the Dahl rat as an experimental model to study the inheritance of hypertension.
Collapse
Affiliation(s)
- Bina Joe
- From the Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine and Program in Physiological Genomics, University of Toledo College of Medicine and Life Sciences, OH.
| |
Collapse
|
41
|
The role of the kidney and the sympathetic nervous system in hypertension. Pediatr Nephrol 2015; 30:549-60. [PMID: 24609827 DOI: 10.1007/s00467-014-2789-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 12/17/2022]
Abstract
Nearly one-third of the world's population has hypertension. The human and societal impact of hypertension is enormous. Primary hypertension accounts for 95 % of cases of hypertension in adults. The pathogenesis of primary hypertension is complex. The kidney and the sympathetic nervous system play important roles in the development and maintenance of hypertension. This review discusses their respective roles, the interaction between the two, implications of sympathetic overactivity in kidney disease and therapeutic interventions that have been developed on the basis of this knowledge, especially modulation of the sympathetic nervous system.
Collapse
|
42
|
Johnson RJ, Lanaspa MA, Gabriela Sánchez-Lozada L, Rodriguez-Iturbe B. The discovery of hypertension: evolving views on the role of the kidneys, and current hot topics. Am J Physiol Renal Physiol 2014; 308:F167-78. [PMID: 25377913 DOI: 10.1152/ajprenal.00503.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary hypertension is increasingly common and is associated with significant morbidity. Here, we review the history of its discovery and rise during the last century with an emphasis on studies trying to identify its cause. Early studies identified a defect in sodium excretion by the kidney as being central to the pathogenesis. Recent studies have focused on a variety of genetic, congenital (fetal programming), and acquired mechanisms for causing the defect in natriuresis. Certain risk factors are apparent, including genetic polymorphisms that regulate sodium excretion, a congenital reduction in nephron number, obesity and hyperleptinemia, an elevated sympathetic nervous system, diet (salt and fructose), and metabolic (hyperuricemia) mechanisms. The kidney shows evidence for renal arteriolar vasoconstriction, an intrarenal inflammatory response, local oxidative stress, and intrarenal activation of the renin-angiotensin system. Recent studies suggest that intrarenal T cells have an important role in causing hypertension to be persistent, likely due to the induction of a local autoimmune response to neoantigens such as heat shock protein 70 and protein aggregates formed by isoketals resulting from lipid peroxidation. Salt retention due to impairment in pressure-diuresis leads to the release of cardiotonic steroids and central nervous system effects that cause systemic vasoconstriction and a rise in blood pressure. Some recent studies suggest that salt may increase blood pressure not simply by effects on extracellular volume but rather as a consequence of hyperosmolarity. These new insights could lead to new approaches for the prevention and treatment of this important disease.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, Colorado;
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, Colorado
| | - L Gabriela Sánchez-Lozada
- Laboratory of Renal Physiopathology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico; and
| | - Bernardo Rodriguez-Iturbe
- Hospital Universitario y Universidad del Zulia; and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela
| |
Collapse
|
43
|
Hamza SM, Dyck JRB. Systemic and renal oxidative stress in the pathogenesis of hypertension: modulation of long-term control of arterial blood pressure by resveratrol. Front Physiol 2014; 5:292. [PMID: 25140155 PMCID: PMC4122172 DOI: 10.3389/fphys.2014.00292] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/19/2014] [Indexed: 12/12/2022] Open
Abstract
Hypertension affects over 25% of the global population and is associated with grave and often fatal complications that affect many organ systems. Although great advancements have been made in the clinical assessment and treatment of hypertension, the cause of hypertension in over 90% of these patients is unknown, which hampers the development of targeted and more effective treatment. The etiology of hypertension involves multiple pathological processes and organ systems, however one unifying feature of all of these contributing factors is oxidative stress. Once the body's natural anti-oxidant defense mechanisms are overwhelmed, reactive oxygen species (ROS) begin to accumulate in the tissues. ROS play important roles in normal regulation of many physiological processes, however in excess they are detrimental and cause widespread cell and tissue damage as well as derangements in many physiological processes. Thus, control of oxidative stress has become an attractive target for pharmacotherapy to prevent and manage hypertension. Resveratrol (trans-3,5,4'-Trihydroxystilbene) is a naturally occurring polyphenol which has anti-oxidant effects in vivo. Many studies have shown anti-hypertensive effects of resveratrol in different pre-clinical models of hypertension, via a multitude of mechanisms that include its function as an anti-oxidant. However, results have been mixed and in some cases resveratrol has no effect on blood pressure. This may be due to the heavy emphasis on peripheral vasodilator effects of resveratrol and virtually no investigation of its potential renal effects. This is particularly troubling in the arena of hypertension, where it is well known and accepted that the kidney plays an essential role in the long term regulation of arterial pressure and a vital role in the initiation, development and maintenance of chronic hypertension. It is thus the focus of this review to discuss the potential of resveratrol as an anti-hypertensive treatment via amelioration of oxidative stress within the framework of the fundamental physiological principles of long term regulation of arterial blood pressure.
Collapse
Affiliation(s)
- Shereen M. Hamza
- Department of Pediatrics, Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
| | - Jason R. B. Dyck
- Department of Pediatrics, Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
- Department of Pharmacology, Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
44
|
|
45
|
Abstract
An essential link between the kidney and blood pressure control has long been known. Here, we review evidence supporting the premise that an impaired capacity of the kidney to excrete sodium in response to elevated blood pressure is a major contributor to hypertension, irrespective of the initiating cause. In this regard, recent work suggests that novel pathways controlling key sodium transporters in kidney epithelia have a critical impact on hypertension pathogenesis, supporting a model in which impaired renal sodium excretion is a final common pathway through which vascular, neural, and inflammatory responses raise blood pressure. We also address recent findings calling into question long-standing notions regarding the relationship between sodium intake and changes in body fluid volume. Expanded understanding of the role of the kidney as both a cause and target of hypertension highlights key aspects of pathophysiology and may lead to identification of new strategies for prevention and treatment.
Collapse
|
46
|
Abstract
Kidney disease is one of the most prevalent chronic conditions and is a frequent complication of diabetes, cardiovascular disease, and obesity. Recent advances in biomedical research and novel technologies have created opportunities to study kidney disease in a variety of platforms, applied to human populations. The Reviews in this series discuss the kidney in hypertension, diabetes, and monogenic forms of kidney disease, as well as the cellular and molecular mediators of acute kidney injury and fibrosis, IgA nephropathy and idiopathic membranous nephropathy, and kidney transplantation. In this introduction, we briefly review new insights into focal segmental glomerulosclerosis and the role of podocytes in health and disease. Additionally, we discuss how new technologies, therapeutics, and the availability of patient data can help shape the study of kidney disease and ultimately inform policies concerning biomedical research and health care.
Collapse
|
47
|
Otsuka T, Kato K, Kachi Y, Ibuki C, Seino Y, Kodani E, Kawada T. Serum cystatin C, creatinine-based estimated glomerular filtration rate, and the risk of incident hypertension in middle-aged men. Am J Hypertens 2014; 27:596-602. [PMID: 24008123 DOI: 10.1093/ajh/hpt164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The aim of this study was to examine the predictive value of serum cystatin C (CysC) and that of creatinine-based estimated glomerular filtration rate (eGFRCreat) for the risk of incident hypertension in a middle-aged male population. METHODS Serum CysC levels were measured in 904 nonhypertensive, Japanese male subjects (mean age = 44±6 years) who received an annual general health examination in a company. Serum creatinine levels were simultaneously measured, and eGFRCreat was calculated. Subjects were followed-up for a maximum period of 4 years, and annual blood pressure measurements were recorded. RESULTS During the follow-up period, 124 subjects developed hypertension, defined as systolic/diastolic blood pressure ≥140/90 mmHg or use of antihypertensive medications. In the Kaplan-Meier analysis, both the third quintile of CysC and that of eGFRCreat showed the lowest 4-year cumulative incident rate of hypertension. The multiadjusted hazard ratio for incident hypertension was significantly increased in the highest quintile of CysC compared with the third quintile (2.60; 95% confidence interval (CI) = 1.41-4.77; P = 0.002), as well as compared with the lowest 4 quintiles combined (1.89; 95% CI = 1.26-2.84; P = 0.002). However, eGFRCreat did not show significant hazard ratios for incident hypertension in any of the adjusted models. CONCLUSIONS Elevated serum CysC levels could predict the risk of incident hypertension in this study population with a maximum follow-up period of 4 years. In contrast, eGFRCreat did not show predictive value for the risk of incident hypertension.
Collapse
Affiliation(s)
- Toshiaki Otsuka
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Franceschini N, Le TH. Genetics of hypertension: discoveries from the bench to human populations. Am J Physiol Renal Physiol 2014; 306:F1-F11. [PMID: 24133117 PMCID: PMC3921821 DOI: 10.1152/ajprenal.00334.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022] Open
Abstract
Hypertension is a complex trait that is influenced by both heritable and environmental factors. The search for genes accounting for the susceptibility to hypertension has driven parallel efforts in human research and in research using experimental animals in controlled environmental settings. Evidence from rodent models of genetic hypertension and human Mendelian forms of hypertension and hypotension have yielded mechanistic insights into the pathways that are perturbed in blood pressure homeostasis, most of which converge at the level of renal sodium reabsorption. However, the bridging of evidence from these very diverse approaches to identify mechanisms underlying hypertension susceptibility and the translation of these findings to human populations and public health remain a challenge. Furthermore, findings from genome-wide association studies still require functional validation in experimental models. In this review, we highlight results and implications from key studies in experimental and clinical hypertension to date.
Collapse
|
49
|
Rodríguez-Pérez A, López-Rodríguez J, Calvo-Turrubiartes M, Saavedra-Alanís V, Llamazares-Azuara L, Rodríguez-Martínez M. Partial baroreceptor dysfunction and low plasma nitric oxide bioavailability as determinants of salt-sensitive hypertension: a reverse translational rat study. Braz J Med Biol Res 2013; 46:868-880. [PMID: 24141614 PMCID: PMC3854306 DOI: 10.1590/1414-431x20132834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/17/2013] [Indexed: 11/26/2022] Open
Abstract
This study determined whether clinical salt-sensitive hypertension (cSSHT) results from the interaction between partial arterial baroreceptor impairment and a high-sodium (HNa) diet. In three series (S-I, S-II, S-III), mean arterial pressure (MAP) of conscious male Wistar ChR003 rats was measured once before (pdMAP) and twice after either sham (SHM) or bilateral aortic denervation (AD), following 7 days on a low-sodium (LNa) diet (LNaMAP) and then 21 days on a HNa diet (HNaMAP). The roles of plasma nitric oxide bioavailability (pNOB), renal medullary superoxide anion production (RMSAP), and mRNA expression of NAD(P)H oxidase and superoxide dismutase were also assessed. In SHM (n=11) and AD (n=15) groups of S-I, LNaMAP-pdMAP was 10.5±2.1 vs 23±2.1 mmHg (P<0.001), and the salt-sensitivity index (SSi; HNaMAP-LNaMAP) was 6.0±1.9 vs 12.7±1.9 mmHg (P=0.03), respectively. In the SHM group, all rats were normotensive, and 36% were salt sensitive (SSi≥10 mmHg), whereas in the AD group ∼50% showed cSSHT. A 45% reduction in pNOB (P≤0.004) was observed in both groups in dietary transit. RMSAP increased in the AD group on both diets but more so on the HNa diet (S-II, P<0.03) than on the LNa diet (S-III, P<0.04). MAP modeling in rats without a renal hypertensive genotype indicated that the AD*HNa diet interaction (P=0.008) increases the likelihood of developing cSSHT. Translationally, these findings help to explain why subjects with clinical salt-sensitive normotension may transition to cSSHT.
Collapse
Affiliation(s)
- A.S. Rodríguez-Pérez
- Integrative Physiology Laboratory, Department of Physiology and
Biophysics, San Luis Potosí, Mexico
| | - J.F. López-Rodríguez
- Integrative Physiology Laboratory, Department of Physiology and
Biophysics, San Luis Potosí, Mexico
| | - M.Z. Calvo-Turrubiartes
- Integrative Physiology Laboratory, Department of Physiology and
Biophysics, San Luis Potosí, Mexico
| | - V.M. Saavedra-Alanís
- Molecular Biology Laboratory, Department of Biochemistry, San
Luis Potosí, Mexico
| | - L. Llamazares-Azuara
- Autonomous University of San Luis Potosí, Renal Laboratory,
Faculty of Medicine, San Luis Potosí, Mexico
| | - M. Rodríguez-Martínez
- Integrative Physiology Laboratory, Department of Physiology and
Biophysics, San Luis Potosí, Mexico
| |
Collapse
|
50
|
He W, Zhang M, Zhao M, Davis LS, Blackwell TS, Yull F, Breyer MD, Hao CM. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells. Pflugers Arch 2013; 466:357-367. [PMID: 23900806 DOI: 10.1007/s00424-013-1328-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
Abstract
High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.
Collapse
Affiliation(s)
- Wenjuan He
- Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| | - Min Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Zhao
- Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| | - Linda S Davis
- Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| | - Timothy S Blackwell
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Fiona Yull
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Matthew D Breyer
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China.,Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| |
Collapse
|