1
|
Shazly T, Eads L, Kazel M, Yigamawano FK, Guest J, Jones TL, Alshareef AA, Barringhaus KG, Spinale FG. Image-Based Estimation of Left Ventricular Myocardial Stiffness. J Biomech Eng 2025; 147:014501. [PMID: 39269637 PMCID: PMC11500801 DOI: 10.1115/1.4066525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Elevation in left ventricular (LV) myocardial stiffness is a key remodeling-mediated change that underlies the development and progression of heart failure (HF). Despite the potential diagnostic value of quantifying this deterministic change, there is a lack of enabling techniques that can be readily incorporated into current clinical practice. To address this unmet clinical need, we propose a simple protocol for processing routine echocardiographic imaging data to provide an index of left ventricular myocardial stiffness, with protocol specification for patients at risk for heart failure with preserved ejection fraction. We demonstrate our protocol in both a preclinical and clinical setting, with representative findings that suggest sensitivity and translational feasibility of obtained estimates.
Collapse
Affiliation(s)
- Tarek Shazly
- College of Engineering and Computing, Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208; College of Engineering and Computing, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208; Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29208
| | - Logan Eads
- College of Engineering and Computing, Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208
| | - Mia Kazel
- College of Engineering and Computing, Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208
| | - Francesco K. Yigamawano
- College of Engineering and Computing, Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208
| | - Juliana Guest
- College of Engineering and Computing, Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208
| | - Traci L. Jones
- School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC 29208
| | - Ahmed A. Alshareef
- College of Engineering and Computing, Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208; College of Engineering and Computing, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208
| | | | - Francis G. Spinale
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29208; School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC 29208; Columbia VA Health Care System, Columbia, SC 29208
| |
Collapse
|
2
|
Zanetti M, Braidotti N, Khumar M, Montelongo E, Lombardi R, Sbaizero O, Mestroni L, Taylor MRG, Baj G, Lazzarino M, Peña B, Andolfi L. Investigations of cardiac fibrosis rheology by in vitro cardiac tissue modeling with 3D cellular spheroids. J Mech Behav Biomed Mater 2024; 155:106571. [PMID: 38744118 DOI: 10.1016/j.jmbbm.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Cardiac fibrosis refers to the abnormal accumulation of extracellular matrix within the cardiac muscle, leading to increased stiffness and impaired heart function. From a rheological standpoint, knowledge about myocardial behavior is still lacking, partially due to a lack of appropriate techniques to investigate the rheology of in vitro cardiac tissue models. 3D multicellular cardiac spheroids are powerful and versatile platforms for modeling healthy and fibrotic cardiac tissue in vitro and studying how their mechanical properties are modulated. In this study, cardiac spheroids were created by co-culturing neonatal rat ventricular cardiomyocytes and fibroblasts in definite ratios using the hanging-drop method. The rheological characterization of such models was performed by Atomic Force Microscopy-based stress-relaxation measurements on the whole spheroid. After strain application, a viscoelastic bi-exponential relaxation was observed, characterized by a fast relaxation time (τ1) followed by a slower one (τ2). In particular, spheroids with higher fibroblasts density showed reduction for both relaxation times comparing to control, with a more pronounced decrement of τ1 with respect to τ2. Such response was found compatible with the increased production of extracellular matrix within these spheroids, which recapitulates the main feature of the fibrosis pathophysiology. These results demonstrate how the rheological characteristics of cardiac tissue vary as a function of cellular composition and extracellular matrix, confirming the suitability of such system as an in vitro preclinical model of cardiac fibrosis.
Collapse
Affiliation(s)
- Michele Zanetti
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy; Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy.
| | - Nicoletta Braidotti
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy; Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy.
| | - Maydha Khumar
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, At Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, United States
| | - Efren Montelongo
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, At Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, United States
| | - Raffaella Lombardi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, School of Medicine, Division of Cardiology, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Orfeo Sbaizero
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127, Trieste, Italy
| | - Luisa Mestroni
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, School of Medicine, Division of Cardiology, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Matthew R G Taylor
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Marco Lazzarino
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy
| | - Brisa Peña
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, At Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, United States; Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, School of Medicine, Division of Cardiology, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Laura Andolfi
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy
| |
Collapse
|
3
|
Min S, Kim S, Sim WS, Choi YS, Joo H, Park JH, Lee SJ, Kim H, Lee MJ, Jeong I, Cui B, Jo SH, Kim JJ, Hong SB, Choi YJ, Ban K, Kim YG, Park JU, Lee HA, Park HJ, Cho SW. Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications. Nat Commun 2024; 15:2564. [PMID: 38519491 PMCID: PMC10960018 DOI: 10.1038/s41467-024-46928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Engineered human cardiac tissues have been utilized for various biomedical applications, including drug testing, disease modeling, and regenerative medicine. However, the applications of cardiac tissues derived from human pluripotent stem cells are often limited due to their immaturity and lack of functionality. Therefore, in this study, we establish a perfusable culture system based on in vivo-like heart microenvironments to improve human cardiac tissue fabrication. The integrated culture platform of a microfluidic chip and a three-dimensional heart extracellular matrix enhances human cardiac tissue development and their structural and functional maturation. These tissues are comprised of cardiovascular lineage cells, including cardiomyocytes and cardiac fibroblasts derived from human induced pluripotent stem cells, as well as vascular endothelial cells. The resultant macroscale human cardiac tissues exhibit improved efficacy in drug testing (small molecules with various levels of arrhythmia risk), disease modeling (Long QT Syndrome and cardiac fibrosis), and regenerative therapy (myocardial infarction treatment). Therefore, our culture system can serve as a highly effective tissue-engineering platform to provide human cardiac tissues for versatile biomedical applications.
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suran Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Cellartgen, Seoul, 03722, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03312, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Cellartgen, Seoul, 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Ribeiro Vitorino T, Ferraz do Prado A, Bruno de Assis Cau S, Rizzi E. MMP-2 and its implications on cardiac function and structure: Interplay with inflammation in hypertension. Biochem Pharmacol 2023; 215:115684. [PMID: 37459959 DOI: 10.1016/j.bcp.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Hypertension is one of the leading risk factors for the development of heart failure. Despite being a multifactorial disease, in recent years, preclinical and clinical studies suggest strong evidence of the pivotal role of inflammatory cells and cytokines in the remodeling process and cardiac dysfunction. During the heart remodeling, activation of extracellular matrix metalloproteinases (MMPs) occurs, with MMP-2 being one of the main proteases secreted by cardiomyocytes, fibroblasts, endothelial and inflammatory cells in cardiac tissue. In this review, we will address the process of cardiac remodeling and injury induced by the increase in MMP-2 and the main signaling pathways involving cytokines and inflammatory cells in the process of transcriptional, secretion and activation of MMP-2. In addition, an interaction and coordinated action between MMP-2 and inflammation are explored and significant in maintaining the cardiac cycle. These observations suggest that new therapeutic opportunities targeting MMP-2 could be used to reduce inflammatory biomarkers and reduce cardiac damage in hypertension.
Collapse
Affiliation(s)
- Thaís Ribeiro Vitorino
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil; Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, UNICAMP, Brazil
| | - Alejandro Ferraz do Prado
- Cardiovascular System Pharmacology and Toxicology, Institute of Biological Sciences, Federal University of Para, UFPA, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, UFMG, Brazil.
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil.
| |
Collapse
|
5
|
Shukla AG, Milman T, Fertala J, Steplewski A, Fertala A. Scar formation in the presence of mitomycin C and the anti-fibrotic antibody in a rabbit model of glaucoma microsurgery: A pilot study. Heliyon 2023; 9:e15368. [PMID: 37123929 PMCID: PMC10130883 DOI: 10.1016/j.heliyon.2023.e15368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Purpose This study aimed to evaluate the utility of a rationally engineered antibody that directly blocks collagen fibrillogenesis to reduce scar tissue formation associated with subconjunctival glaucoma surgery. Material and methods Fourteen eyes of 7 adult rabbits underwent glaucoma filtering surgery using XEN 45 Gel Stent. The rabbits' eyes were divided randomly into three treatment groups: (i) treated with the antibody, (ii) treated with mitomycin C, and (iii) treated with the antibody and mitomycin C. Following surgeries, the intraocular pressure and bleb appearance were evaluated in vivo. The rabbits were sacrificed 8 weeks after the surgery, and their eyes were harvested and processed for tissue analysis. Subsequently, tissue samples were analyzed microscopically for fibrotic tissue and cellular markers of inflammation. Moreover, the collagen-rich fibrotic tissue formed around the stents was analyzed using quantitative histology and infrared spectroscopy. The outcomes of this study were analyzed using the ANOVA test. Results This study demonstrated no significant differences in intraocular pressure, bleb appearance, or presence of complications such as bleb leak among the treatment groups. In contrast, we observed significant differences among the subpopulations of collagen fibrils formed within scar neo-tissue. Based on the spectroscopic analyses, we determined that the relative content of mature collagen cross-links in the antibody-treated group was significantly reduced compared to other groups. Conclusions Direct blocking of collagen fibrillogenesis with the anti-collagen antibody offers potentially beneficial effects that may reduce the negative impact of the subconjunctival scarring associated with glaucoma filtering surgery.
Collapse
Affiliation(s)
- Aakriti Garg Shukla
- Wills Eye Hospital, Philadelphia, PA, USA
- Glaucoma Division, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Corresponding author. Department of Orthopaedic Surgery; Sidney Kimmel Medical College, Thomas Jefferson University; Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, 19107, PA, USA.
| |
Collapse
|
6
|
Whyte W, Goswami D, Wang SX, Fan Y, Ward NA, Levey RE, Beatty R, Robinson ST, Sheppard D, O'Connor R, Monahan DS, Trask L, Mendez KL, Varela CE, Horvath MA, Wylie R, O'Dwyer J, Domingo-Lopez DA, Rothman AS, Duffy GP, Dolan EB, Roche ET. Dynamic actuation enhances transport and extends therapeutic lifespan in an implantable drug delivery platform. Nat Commun 2022; 13:4496. [PMID: 35922421 PMCID: PMC9349266 DOI: 10.1038/s41467-022-32147-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Fibrous capsule (FC) formation, secondary to the foreign body response (FBR), impedes molecular transport and is detrimental to the long-term efficacy of implantable drug delivery devices, especially when tunable, temporal control is necessary. We report the development of an implantable mechanotherapeutic drug delivery platform to mitigate and overcome this host immune response using two distinct, yet synergistic soft robotic strategies. Firstly, daily intermittent actuation (cycling at 1 Hz for 5 minutes every 12 hours) preserves long-term, rapid delivery of a model drug (insulin) over 8 weeks of implantation, by mediating local immunomodulation of the cellular FBR and inducing multiphasic temporal FC changes. Secondly, actuation-mediated rapid release of therapy can enhance mass transport and therapeutic effect with tunable, temporal control. In a step towards clinical translation, we utilise a minimally invasive percutaneous approach to implant a scaled-up device in a human cadaveric model. Our soft actuatable platform has potential clinical utility for a variety of indications where transport is affected by fibrosis, such as the management of type 1 diabetes. Drug delivery implants suffer from diminished release profiles due to fibrous capsule formation over time. Here, the authors use soft robotic actuation to modulate the immune response of the host to maintain drug delivery over the longer-term and to perform controlled release in vivo.
Collapse
Affiliation(s)
- William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debkalpa Goswami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie X Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Niamh A Ward
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Ruth E Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Scott T Robinson
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Declan Sheppard
- Department of Radiology, University Hospital, Galway, Ireland
| | - Raymond O'Connor
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - David S Monahan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Lesley Trask
- Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Keegan L Mendez
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Claudia E Varela
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Markus A Horvath
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joanne O'Dwyer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Daniel A Domingo-Lopez
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Arielle S Rothman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Eimear B Dolan
- Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. BIOLOGY 2022; 11:biology11060880. [PMID: 35741401 PMCID: PMC9220194 DOI: 10.3390/biology11060880] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Death from injury to the heart from a variety of causes remains a major cause of mortality worldwide. The cardiomyocyte, the major contracting cell of the heart, is responsible for pumping blood to the rest of the body. During fetal development, these immature cardiomyocytes are small and rapidly divide to complete development of the heart by birth when they develop structural and functional characteristics of mature cells which prevent further division. All further growth of the heart after birth is due to an increase in the size of cardiomyocytes, hypertrophy. Following the loss of functional cardiomyocytes due to coronary artery occlusion or other causes, the heart is unable to replace the lost cells. One of the significant research goals has been to induce adult cardiomyocytes to reactivate the cell cycle and repair cardiac injury. This review explores the developmental, structural, and functional changes of the growing cardiomyocyte, and particularly the sarcomere, responsible for force generation, from the early fetal period of reproductive cell growth through the neonatal period and on to adulthood, as well as during pathological response to different forms of myocardial diseases or injury. Multiple issues relative to cardiomyocyte cell-cycle regulation in normal or diseased conditions are discussed. Abstract The cardiomyocyte undergoes dramatic changes in structure, metabolism, and function from the early fetal stage of hyperplastic cell growth, through birth and the conversion to hypertrophic cell growth, continuing to the adult stage and responding to various forms of stress on the myocardium, often leading to myocardial failure. The fetal cell with incompletely formed sarcomeres and other cellular and extracellular components is actively undergoing mitosis, organelle dispersion, and formation of daughter cells. In the first few days of neonatal life, the heart is able to repair fully from injury, but not after conversion to hypertrophic growth. Structural and metabolic changes occur following conversion to hypertrophic growth which forms a barrier to further cardiomyocyte division, though interstitial components continue dividing to keep pace with cardiac growth. Both intra- and extracellular structural changes occur in the stressed myocardium which together with hemodynamic alterations lead to metabolic and functional alterations of myocardial failure. This review probes some of the questions regarding conditions that regulate normal and pathologic growth of the heart.
Collapse
|
8
|
Cheng TC, Tabima DM, Caggiano LR, Frump AL, Hacker TA, Eickhoff JC, Lahm T, Chesler NC. Sex differences in right ventricular adaptation to pressure overload in a rat model. J Appl Physiol (1985) 2022; 132:888-901. [PMID: 35112927 PMCID: PMC8934674 DOI: 10.1152/japplphysiol.00175.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With severe right ventricular (RV) pressure overload, women demonstrate better clinical outcomes compared with men. The mechanoenergetic mechanisms underlying this protective effect, and their dependence on female endogenous sex hormones, remain unknown. To investigate these mechanisms and their impact on RV systolic and diastolic functional adaptation, we created comparable pressure overload via pulmonary artery banding (PAB) in intact male and female Wistar rats and ovariectomized (OVX) female rats. At 8 wk after surgery, right heart catheterization demonstrated increased RV energy input [indexed pressure-volume area (iPVA)] in all PAB groups, with the greatest increase in intact females. PAB also increased RV energy output [indexed stroke or external work (iEW)] in all groups, again with the greatest increase in intact females. In contrast, PAB only increased RV contractility-indexed end-systolic elastance (iEes)] in females. Despite these sex-dependent differences, no statistically significant effects were observed in the ratio of RV energy output to input (mechanical efficiency) or in mechanoenergetic cost to pump blood with pressure overload. These metrics were similarly unaffected by loss of endogenous sex hormones in females. Also, despite sex-dependent differences in collagen content and organization with pressure overload, decreases in RV compliance and relaxation time constant (tau Weiss) were not determined to be sex dependent. Overall, despite sex-dependent differences in RV contractile and fibrotic responses, RV mechanoenergetics for this degree and duration of pressure overload are comparable between sexes and suggest a homeostatic target.NEW & NOTEWORTHY Sex differences in right ventricular mechanical efficiency and energetic adaptation to increased right ventricular afterload were measured. Despite sex-dependent differences in contractile and fibrotic responses, right ventricular mechanoenergetic adaptation was comparable between the sexes, suggesting a homeostatic target.
Collapse
Affiliation(s)
- Tik-Chee Cheng
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Diana M. Tabima
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Laura R. Caggiano
- 2University of California, Irvine Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Irvine, California
| | - Andrea L. Frump
- 3Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy A. Hacker
- 4Cardiovascular Physiology Core Facility, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jens C. Eickhoff
- 5Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tim Lahm
- 3Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana,6Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado,7Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Naomi C. Chesler
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin,2University of California, Irvine Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Irvine, California,8Department of Biomedical Engineering, University of California, Irvine, California
| |
Collapse
|
9
|
Meshram S, Verma VK, Mutneja E, Sahu AK, Malik S, Mishra P, Bhatia J, Arya DS. Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in rats. Br J Nutr 2022; 129:1-14. [PMID: 35177130 DOI: 10.1017/s0007114522000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cardiac hypertrophy is the enlargement of cardiomyocytes in response to persistent release of catecholamine which further leads to cardiac fibrosis. Chrysin, flavonoid from honey, is well known for its multifarious properties like antioxidant, anti-inflammatory, anti-fibrotic and anti-apoptotic. To investigate the cardioprotective potential of chrysin against isoproterenol (ISO), cardiac hypertrophy and fibrosis are induced in rats. Acclimatised male albino Wistar rats were divided into seven groups (n 6): normal (carboxymethyl cellulose at 0·5 % p.o.; as vehicle), hypertrophy control (ISO 3 mg/kg, s.c.), CHY15 + H, CHY30 + H & CHY60 + H (chrysin; p.o.15, 30 and 60 mg/kg respectively + ISO at 3 mg/kg, s.c.), CHY60 (chrysin 60 mg/kg in per se) and LST + H (losartan 10 mg/kg p.o. + ISO 3 mg/kg, s.c.) were treated for 28 d. After the dosing schedule on day 29, haemodynamic parameters were recorded, after that blood and heart were excised for biochemical, histological, ultra-structural and molecular evaluations. ISO administration significantly increases heart weight:body weight ratio, pro-oxidants, inflammatory and cardiac injury markers. Further, histopathological, ultra-structural and molecular studies confirmed deteriorative changes due to ISO administration. Pre-treatment with chrysin of 60 mg/kg reversed the ISO-induced damage to myocardium and prevent cardiac hypertrophy and fibrosis through various anti-inflammatory, anti-apoptotic, antioxidant and anti-fibrotic pathways. Data demonstrated that chrysin attenuated myocardial hypertrophy and prevented fibrosis via activation of transforming growth factor-beta (TGF-β)/Smad signalling pathway.
Collapse
Affiliation(s)
- Sonali Meshram
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Vipin Kumar Verma
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Ekta Mutneja
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Anil Kumar Sahu
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Prashant Mishra
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Dharamvir S Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| |
Collapse
|
10
|
Aiken AV, Goldhaber JI, Chugh SS. Delayed intrinsicoid deflection: Electrocardiographic harbinger of heart disease. Ann Noninvasive Electrocardiol 2022; 27:e12940. [PMID: 35176188 PMCID: PMC9107081 DOI: 10.1111/anec.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/18/2023] Open
Abstract
Delayed intrinsicoid deflection (DID) is an emerging electrocardiogram (ECG) marker of major clinical significance that is increasingly getting attention. Intrinsicoid deflection measures ventricular depolarization in the initial portion of the QRS complex, and DID is defined as an R wave peak time of ≥50 ms in leads V5 and V6 . Prior studies have identified an independent association between DID and cardiovascular conditions such as left ventricular hypertrophy, heart failure, and sudden cardiac death. The exact mechanism that results in DID remains unknown. Animal models indicate that DID may result from abnormal calcium and potassium conductance as well as extracellular matrix remodeling. DID remains an ECG marker of interest given its potential predictive value of underlying cardiovascular pathology and adverse events. This review provides an update on the proposed mechanisms and associations, as well as the clinical and research implications of DID.
Collapse
|
11
|
Regulation of collagen deposition in the trout heart during thermal acclimation. Curr Res Physiol 2022; 5:99-108. [PMID: 35243359 PMCID: PMC8857596 DOI: 10.1016/j.crphys.2022.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The passive mechanical properties of the vertebrate heart are controlled in part by the composition of the extracellular matrix (ECM). Changes in the ECM, caused by increased blood pressure, injury or disease can affect the capacity of the heart to fill with blood during diastole. In mammalian species, cardiac fibrosis caused by an increase in collagen in the ECM, leads to a loss of heart function and these changes in composition are considered to be permanent. Recent work has demonstrated that the cardiac ventricle of some fish species have the capacity to both increase and decrease collagen content in response to thermal acclimation. It is thought that these changes in collagen content help maintain ventricle function over seasonal changes in environmental temperatures. This current work reviews the cellular mechanisms responsible for regulating collagen deposition in the mammalian heart and proposes a cellular pathway by which a change in temperature can affect the collagen content of the fish ventricle through mechanotransduction. This work specifically focuses on the role of transforming growth factor β1, MAPK signaling pathways, and biomechanical stretch in regulating collagen content in the fish ventricle. It is hoped that this work increases the appreciation of the use of comparative models to gain insight into phenomenon with biomedical relevance.
Collapse
|
12
|
Mondaca-Ruff D, Araos P, Yañez CE, Novoa UF, Mora IG, Ocaranza MP, Jalil JE. Hydrochlorothiazide Reduces Cardiac Hypertrophy, Fibrosis and Rho-Kinase Activation in DOCA-Salt Induced Hypertension. J Cardiovasc Pharmacol Ther 2021; 26:724-735. [PMID: 34623176 DOI: 10.1177/10742484211053109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Thiazides are one of the most common antihypertensive drugs used for hypertension treatment and hydrochlorothiazide (HCTZ) is the most frequently used diuretic for hypertension treatment. The Rho/Rho-kinase (ROCK) path plays a key function in cardiovascular remodeling. We hypothesized that in preclinical hypertension HCTZ reduces myocardial ROCK activation and consequent myocardial remodeling. METHODS The preclinical model of deoxycorticosterone (DOCA)-salt hypertension was used (Sprague-Dawley male rats). After 3 weeks, in 3 different groups: HCTZ, the ROCK inhibitor fasudil or spironolactone was added (3 weeks). After 6 weeks myocardial hypertrophy and fibrosis, cardiac levels of profibrotic proteins, mRNA levels (RT PCR) of pro remodeling and pro oxidative molecules and ROCK activity were determined. RESULTS Blood pressure, myocardial hypertrophy and fibrosis were reduced significantly by HCTZ, fasudil and spironolactone. In the heart, increased levels of the pro-fibrotic proteins Col-I, Col-III and TGF-β1 and gene expression of pro-remodeling molecules TGF-β1, CTGF, MCP-1 and PAI-1 and the pro-oxidative molecules gp91phox and p22phox were significantly reduced by HCTZ, fasudil and spironolactone. ROCK activity in the myocardium was increased by 54% (P < 0.05) as related to the sham group and HCTZ, spironolactone and fasudil, reduced ROCK activation to control levels. CONCLUSIONS HCTZ reduced pathologic LVH by controlling blood pressure, hypertrophy and myocardial fibrosis and by decreasing myocardial ROCK activation, expression of pro remodeling, pro fibrotic and pro oxidative genes. In hypertension, the observed effects of HCTZ on the myocardium might explain preventive outcomes of thiazides in hypertension, specifically on LVH regression and incident heart failure.
Collapse
Affiliation(s)
- David Mondaca-Ruff
- Laboratory of Molecular Cardiology, Division of Cardiovascular Diseases, School of Medicine, 60709Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricio Araos
- Laboratory of Molecular Cardiology, Division of Cardiovascular Diseases, School of Medicine, 60709Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Fisiopatologia Renal, Instituto de Ciencias Biomédicas, 28041Universidad Autónoma de Chile, Santiago, Chile
| | - Cristián E Yañez
- Laboratory of Molecular Cardiology, Division of Cardiovascular Diseases, School of Medicine, 60709Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ulises F Novoa
- Department of Biomedical Sciences, 495640Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Italo G Mora
- Laboratory of Molecular Cardiology, Division of Cardiovascular Diseases, School of Medicine, 60709Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Ocaranza
- Laboratory of Molecular Cardiology, Division of Cardiovascular Diseases, School of Medicine, 60709Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), 60709Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for New Drugs for Hypertension (CENDHY), 60709Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge E Jalil
- Laboratory of Molecular Cardiology, Division of Cardiovascular Diseases, School of Medicine, 60709Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for New Drugs for Hypertension (CENDHY), 60709Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Mitogen-activated protein kinases contribute to temperature-induced cardiac remodelling in rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2021; 192:61-76. [PMID: 34586481 DOI: 10.1007/s00360-021-01406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) live in environments where water temperatures range between 4 °C and 20 °C. Laboratory studies demonstrate that cold and warm acclimations of male trout can have oppositional effects on cardiac hypertrophy and the collagen content of the heart. The cellular mechanisms behind temperature-induced cardiac remodelling are unclear, as is why this response differs between male and female fish. Studies with cultured trout cardiac fibroblasts suggests that collagen deposition is regulated, at least in part, by mitogen-activated protein kinase (MAPK) cell signalling pathways. We, therefore, hypothesized that temperature-dependent cardiac remodelling is regulated by these signalling pathways. To test this, male and female trout were acclimated to 18 °C (warm) in the summer and to 4 °C (cold) in the winter and the activation of MAPK pathways in the hearts were characterized and compared to that of control fish maintained at 12 °C. In addition, cardiac collagen content, cardiac morphology and the expression of gene transcripts for matrix metalloproteinases (MMP) -9, MMP-2, tissue inhibitor of matrix metalloproteinases and collagen 1α were characterized. p38 MAPK phosphorylation increased in the hearts of female fish with cold acclimation and the phosphorylation of extracellular signal-regulated kinase increased in the hearts of male fish with warm acclimation. However, there was no effect of thermal acclimation on cardiac morphology or collagen content in either male or female fish. These results indicate that thermal acclimation has transient and sex-specific effects on the phosphorylation of MAPKs but also how variable the response of the trout heart is to thermal acclimation.
Collapse
|
14
|
Steplewski A, Fertala J, Tomlinson RE, Wang ML, Donahue A, Arnold WV, Rivlin M, Beredjiklian PK, Abboud JA, Namdari S, Fertala A. Mechanisms of reducing joint stiffness by blocking collagen fibrillogenesis in a rabbit model of posttraumatic arthrofibrosis. PLoS One 2021; 16:e0257147. [PMID: 34492074 PMCID: PMC8423260 DOI: 10.1371/journal.pone.0257147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Posttraumatic fibrotic scarring is a significant medical problem that alters the proper functioning of injured tissues. Current methods to reduce posttraumatic fibrosis rely on anti-inflammatory and anti-proliferative agents with broad intracellular targets. As a result, their use is not fully effective and may cause unwanted side effects. Our group previously demonstrated that extracellular collagen fibrillogenesis is a valid and specific target to reduce collagen-rich scar buildup. Our previous studies showed that a rationally designed antibody that binds the C-terminal telopeptide of the α2(I) chain involved in the aggregation of collagen molecules limits fibril assembly in vitro and reduces scar formation in vivo. Here, we have utilized a clinically relevant arthrofibrosis model to study the broad mechanisms of the anti-scarring activity of this antibody. Moreover, we analyzed the effects of targeting collagen fibril formation on the quality of healed joint tissues, including the posterior capsule, patellar tendon, and subchondral bone. Our results show that blocking collagen fibrillogenesis not only reduces collagen content in the scar, but also accelerates the remodeling of healing tissues and changes the collagen fibrils’ cross-linking. In total, this study demonstrated that targeting collagen fibrillogenesis to limit arthrofibrosis affects neither the quality of healing of the joint tissues nor disturbs vital tissues and organs.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mark L. Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Allison Donahue
- College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - William V. Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Pedro K. Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Joseph A. Abboud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Surena Namdari
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Childers RC, Trask AJ, Liu J, Lucchesi PA, Gooch KJ. Paired Pressure-Volume Loop Analysis and Biaxial Mechanical Testing Characterize Differences in Left Ventricular Tissue Stiffness of Volume Overload and Angiotensin-Induced Pressure Overload Hearts. J Biomech Eng 2021; 143:081003. [PMID: 33729495 PMCID: PMC10782875 DOI: 10.1115/1.4050541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/29/2021] [Indexed: 12/18/2022]
Abstract
Pressure overload (PO) and volume overload (VO) of the heart result in distinctive changes to geometry, due to compensatory structural remodeling. This remodeling potentially leads to changes in tissue mechanical properties. Understanding such changes is important, as tissue modulus has an impact on cardiac performance, disease progression, and influences on cell phenotype. Pressure-volume (PV) loop analysis, a clinically relevant method for measuring left ventricular (LV) chamber stiffness, was performed in vivo on control rat hearts and rats subjected to either chronic PO through Angiotensin-II infusion (4-weeks) or VO (8-weeks). Immediately following PV loops, biaxial testing was performed on LV free wall tissue to directly measure tissue mechanical properties. The β coefficient, an index of chamber stiffness calculated from the PV loop analysis, increased 98% in PO (n = 4) and decreased 38% in VO (n = 5) compared to control (n = 6). Material constants of LV walls obtained from ex vivo biaxial testing (n = 9-10) were not changed in Angiotensin-II induced PO and decreased by about half in VO compared to control (47% in the circumferential and 57% the longitudinal direction). PV loop analysis showed the expected increase in chamber stiffness of PO and expected decrease in chamber stiffness of VO. Biaxial testing showed a decreased modulus of the myocardium of the VO model, but no changes in the PO model, this suggests the increased chamber stiffness in PO, as shown in the PV loop analysis, may be secondary to changes in tissue mass and/or geometry but not an increase in passive tissue mechanical properties.
Collapse
Affiliation(s)
- Rachel C. Childers
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | - Aaron J. Trask
- Center for Cardiovascular Research and The Heart Center, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205
| | - Jun Liu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | - Pamela A. Lucchesi
- Departments of Pharmacology and Physiology, New York Medical College, Valhalla, NY 10595
| | - Keith J. Gooch
- Institute Frick Center for Heart Failure, Department of Biomedical Engineering, Davis Heart Lung Research, The Ohio State University Fontana Labs, 140 W 19th Avenue, Columbus, OH 43210
| |
Collapse
|
16
|
Zeigler AC, Chandrabhatla AS, Christiansen SL, Nelson AR, Holmes JW, Saucerman JJ. Network model-based screen for FDA-approved drugs affecting cardiac fibrosis. CPT Pharmacometrics Syst Pharmacol 2021; 10:377-388. [PMID: 33571402 PMCID: PMC8099443 DOI: 10.1002/psp4.12599] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac fibrosis is a significant component of pathological heart remodeling, yet it is not directly targeted by existing drugs. Systems pharmacology approaches have the potential to provide mechanistic frameworks with which to predict and understand how drugs modulate biological systems. Here, we combine network modeling of the fibroblast signaling network with 36 unique drug-target interactions from DrugBank to predict drugs that modulate fibroblast phenotype and fibrosis. Galunisertib was predicted to decrease collagen and α-SMA expression, which we validated in human cardiac fibroblasts. In vivo fibrosis data from the literature validated predictions for 10 drugs. Further, the model was used to identify network mechanisms by which these drugs work. Arsenic trioxide was predicted to induce fibrosis by AP1-driven TGFβ expression and MMP2-driven TGFβ activation. Entresto (valsartan/sacubitril) was predicted to suppress fibrosis by valsartan suppression of ERK signaling and sacubitril enhancement of PKG activity, both of which decreased Smad3 activity. Overall, this study provides a framework for integrating drug-target mechanisms with logic-based network models, which can drive further studies both in cardiac fibrosis and other conditions.
Collapse
Affiliation(s)
- Angela C. Zeigler
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | | | - Anders R. Nelson
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Jeffrey W. Holmes
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Division of Cardiovascular MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Jeffrey J. Saucerman
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Division of Cardiovascular MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
17
|
Meagher PB, Lee XA, Lee J, Visram A, Friedberg MK, Connelly KA. Cardiac Fibrosis: Key Role of Integrins in Cardiac Homeostasis and Remodeling. Cells 2021; 10:cells10040770. [PMID: 33807373 PMCID: PMC8066890 DOI: 10.3390/cells10040770] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a common finding that is associated with the progression of heart failure (HF) and impacts all chambers of the heart. Despite intense research, the treatment of HF has primarily focused upon strategies to prevent cardiomyocyte remodeling, and there are no targeted antifibrotic strategies available to reverse cardiac fibrosis. Cardiac fibrosis is defined as an accumulation of extracellular matrix (ECM) proteins which stiffen the myocardium resulting in the deterioration cardiac function. This occurs in response to a wide range of mechanical and biochemical signals. Integrins are transmembrane cell adhesion receptors, that integrate signaling between cardiac fibroblasts and cardiomyocytes with the ECM by the communication of mechanical stress signals. Integrins play an important role in the development of pathological ECM deposition. This review will discuss the role of integrins in mechano-transduced cardiac fibrosis in response to disease throughout the myocardium. This review will also demonstrate the important role of integrins as both initiators of the fibrotic response, and modulators of fibrosis through their effect on cardiac fibroblast physiology across the various heart chambers.
Collapse
Affiliation(s)
- Patrick B. Meagher
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Xavier Alexander Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Joseph Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Aylin Visram
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Mark K. Friedberg
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Labatt Family Heart Center and Department of Paediatrics, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kim A. Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +141-686-45201
| |
Collapse
|
18
|
Fan X, Gao Y, Zhang X, Lughmani HY, Kennedy DJ, Haller ST, Pierre SV, Shapiro JI, Tian J. A strategic expression method of miR-29b and its anti-fibrotic effect based on RNA-sequencing analysis. PLoS One 2020; 15:e0244065. [PMID: 33332475 PMCID: PMC7746150 DOI: 10.1371/journal.pone.0244065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue fibrosis is a significant health issue associated with organ dysfunction and failure. Increased deposition of collagen and other extracellular matrix (ECM) proteins in the interstitial area is a major process in tissue fibrosis. The microRNA-29 (miR-29) family has been demonstrated as anti-fibrotic microRNAs. Our recent work showed that dysregulation of miR-29 contributes to the formation of cardiac fibrosis in animal models of uremic cardiomyopathy, whereas replenishing miR-29 attenuated cardiac fibrosis in these animals. However, excessive overexpression of miR-29 is a concern because microRNAs usually have multiple targets, which could result in unknown and unexpected side effect. In the current study, we constructed a novel Col1a1-miR-29b vector using collagen 1a1 (Col1a1) promoter, which can strategically express miR-29b-3p (miR-29b) in response to increased collagen synthesis and reach a dynamic balance between collagen and miR-29b. Our experimental results showed that in mouse embryonic fibroblasts (MEF cells) transfected with Col1a1-miR-29b vector, the miR-29b expression is about 1000 times less than that in cells transfected with CMV-miR-29b vector, which uses cytomegalovirus (CMV) as a promoter for miR-29b expression. Moreover, TGF-β treatment increased the miR-29b expression by about 20 times in cells transfected with Col1a1-miR-29b, suggesting a dynamic response to fibrotic stimulation. Western blot using cell lysates and culture media demonstrated that transfection of Col1a1-miR-29b vector significantly reduced TGF-β induced collagen synthesis and secretion, and the effect was as effective as the CMV-miR-29b vector. Using RNA-sequencing analysis, we found that 249 genes were significantly altered (180 upregulated and 69 downregulated, at least 2-fold change and adjusted p-value <0.05) after TGF-β treatment in MEF cells transfected with empty vector. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using GAGE R-package showed that the top 5 upregulated pathways after TGF-β treatment were mostly fibrosis-related, including focal adhesion, ECM reaction, and TGF-β signaling pathways. As expected, transfection of Col1a1-miR-29b or CMV-miR-29b vector partially reversed the activation of these pathways. We also analyzed the expression pattern of the top 100 miR-29b targeting genes in these cells using the RNA-sequencing data. We identified that miR-29b targeted a broad spectrum of ECM genes, but the inhibition effect is mostly moderate. In summary, our work demonstrated that the Col1a1-miR-29b vector can be used as a dynamic regulator of collagen and other ECM protein expression in response to fibrotic stimulation, which could potentially reduce unnecessary side effect due to excessive miR-29b levels while remaining an effective potential therapeutic approach for fibrosis.
Collapse
Affiliation(s)
- Xiaoming Fan
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States of America
| | - Xiaolu Zhang
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Haroon Y. Lughmani
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - David J. Kennedy
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Steven T. Haller
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States of America
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Department of Biomedical Sciences, Marshall University, Huntington, West Virginia, United States of America
| | - Jiang Tian
- Joan C. Edwards School of Medicine, Department of Biomedical Sciences, Marshall University, Huntington, West Virginia, United States of America
| |
Collapse
|
19
|
Cheng TC, Philip JL, Tabima DM, Kumari S, Yakubov B, Frump AL, Hacker TA, Bellofiore A, Li R, Sun X, Goss KN, Lahm T, Chesler NC. Estrogen receptor-α prevents right ventricular diastolic dysfunction and fibrosis in female rats. Am J Physiol Heart Circ Physiol 2020; 319:H1459-H1473. [PMID: 33064565 PMCID: PMC7792707 DOI: 10.1152/ajpheart.00247.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Although women are more susceptible to pulmonary arterial hypertension (PAH) than men, their right ventricular (RV) function is better preserved. Estrogen receptor-α (ERα) has been identified as a likely mediator for estrogen protection in the RV. However, the role of ERα in preserving RV function and remodeling during pressure overload remains poorly understood. We hypothesized that loss of functional ERα removes female protection from adverse remodeling and is permissive for the development of a maladapted RV phenotype. Male and female rats with a loss-of-function mutation in ERα (ERαMut) and wild-type (WT) littermates underwent RV pressure overload by pulmonary artery banding (PAB). At 10 wk post-PAB, WT and ERαMut demonstrated RV hypertrophy. Analysis of RV pressure waveforms demonstrated RV-pulmonary vascular uncoupling and diastolic dysfunction in female, but not male, ERαMut PAB rats. Similarly, female, but not male, ERαMut exhibited increased RV fibrosis, comprised primarily of thick collagen fibers. There was an increased protein expression ratio of TIMP metallopeptidase inhibitor 1 (Timp1) to matrix metalloproteinase 9 (Mmp9) in female ERαMut compared with WT PAB rats, suggesting less collagen degradation. RNA-sequencing in female WT and ERαMut RV revealed kallikrein-related peptidase 10 (Klk10) and Jun Proto-Oncogene (Jun) as possible mediators of female RV protection during PAB. In summary, ERα in females is protective against RV-pulmonary vascular uncoupling, diastolic dysfunction, and fibrosis in response to pressure overload. ERα appears to be dispensable for RV adaptation in males. ERα may be a mediator of superior RV adaptation in female patients with PAH.NEW & NOTEWORTHY Using a novel loss-of-function mutation in estrogen receptor-α (ERα), we demonstrate that female, but not male, ERα mutant rats display right ventricular (RV)-vascular uncoupling, diastolic dysfunction, and fibrosis following pressure overload, indicating a sex-dependent role of ERα in protecting against adverse RV remodeling. TIMP metallopeptidase inhibitor 1 (Timp1), matrix metalloproteinase 9 (Mmp9), kallikrein-related peptidase 10 (Klk10), and Jun Proto-Oncogene (Jun) were identified as potential mediators in ERα-regulated pathways in RV pressure overload.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Fibrillar Collagens/metabolism
- Fibrosis
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Kallikreins/genetics
- Kallikreins/metabolism
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- Rats, Mutant Strains
- Rats, Sprague-Dawley
- Sex Factors
- Signal Transduction
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/prevention & control
- Ventricular Function, Right
- Ventricular Remodeling
Collapse
Affiliation(s)
- Tik-Chee Cheng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer L Philip
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Santosh Kumari
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bakhtiyor Yakubov
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrea L Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alessandro Bellofiore
- Department of Biomedical, Chemical and Materials Engineering, San Jose State University, San Jose, California
| | - Rongbo Li
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Kara N Goss
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
20
|
Torres WM, Barlow SC, Moore A, Freeburg LA, Hoenes A, Doviak H, Zile MR, Shazly T, Spinale FG. Changes in Myocardial Microstructure and Mechanics With Progressive Left Ventricular Pressure Overload. JACC Basic Transl Sci 2020; 5:463-480. [PMID: 32478208 PMCID: PMC7251228 DOI: 10.1016/j.jacbts.2020.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023]
Abstract
This study assessed the regional changes in myocardial geometry, microstructure, mechanical behavior, and properties that occur in response to progressive left ventricular pressure overload (LVPO) in a large animal model. Using an index of local biomechanical function at early onset of LVPO allowed for prediction of the magnitude of left ventricular chamber stiffness (Kc) and left atrial area at LVPO late timepoints. Our study found that LV myocardial collagen content alone was insufficient to identify mechanisms for LV myocardial stiffness with progression to heart failure with preserved ejection fraction (HFpEF). Serial assessment of regional biomechanical function might hold value in monitoring the natural history and progression of HFpEF, which would allow evaluation of novel therapeutic approaches.
Collapse
Key Words
- Ct, cycle time
- EDV, end-diastolic volume
- EF, ejection fraction
- ESV, end-systolic volume
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- IVRT, isovolumic relaxation time
- LA, left atrial
- LV, left ventricular
- LVPO, left ventricular pressure overload
- NT-proBNP, N-terminal pro-brain natriuretic peptide
- PCR, polymerase chain reaction
- PRSW, pre-load recruitable stroke work
- SHG, second harmonic generation
- STE, speckle tracking echocardiography
- echocardiography
- heart failure
- pressure overload
- qPCR, quantitative real-time PCR
Collapse
Affiliation(s)
- William M. Torres
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Shayne C. Barlow
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Amber Moore
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Lisa A. Freeburg
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Abigail Hoenes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Heather Doviak
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Michael R. Zile
- Medical University of South Carolina and RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina
| | - Tarek Shazly
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| | - Francis G. Spinale
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| |
Collapse
|
21
|
Nakayama S, Koie H, Pai C, Ito-Fujishiro Y, Kanayama K, Sankai T, Yasutomi Y, Ageyama N. Echocardiographic evaluation of cardiac function in cynomolgus monkeys over a wide age range. Exp Anim 2020; 69:336-344. [PMID: 32173671 PMCID: PMC7445060 DOI: 10.1538/expanim.19-0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various cardiovascular diseases can be detected and diagnosed using echocardiography. The
demand for cardiovascular system research using nonhuman primates is increasing, but
echocardiographic references for nonhuman primates are limited. This report describes the
first comparison of echocardiographic reference values in 247 normal cynomolgus monkeys
(135 females, 112 males) over a wide age range. Echocardiography, electrocardiography,
blood pressure and chest X-ray images were acquired under immobilization with
intramuscular ketamine hydrochloride, then cardiac structure, function, and flow velocity
were assessed. Cardiac hormone levels were also tested. We found that cardiac structures
positively correlated with weight, that the size of these structures stabilized after
reaching maturity and that cardiac output increased according to heart size. In contrast,
fractional shortening of the left ventricle, ejection fraction and flow velocity showed no
significant correlations with weight or age, and age and E wave correlated negatively.
These findings appear sufficiently similar to those in humans to suggest that cynomolgus
monkeys can serve as a suitable model of human cardiac disease. Our data should also prove
useful for surveying cardiac dysfunction in monkeys.
Collapse
Affiliation(s)
- Shunya Nakayama
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Hiroshi Koie
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Chungyu Pai
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Yasuyo Ito-Fujishiro
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Kiichi Kanayama
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadashi Sankai
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan.,Mie University Graduate School of Medicine, Department of Molecular and Experimental Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Naohide Ageyama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| |
Collapse
|
22
|
Quarles E, Basisty N, Chiao YA, Merrihew G, Gu H, Sweetwyne MT, Fredrickson J, Nguyen N, Razumova M, Kooiker K, Moussavi‐Harami F, Regnier M, Quarles C, MacCoss M, Rabinovitch PS. Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging Cell 2020; 19:e13086. [PMID: 31823466 PMCID: PMC6996961 DOI: 10.1111/acel.13086] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Even in healthy aging, cardiac morbidity and mortality increase with age in both mice and humans. These effects include a decline in diastolic function, left ventricular hypertrophy, metabolic substrate shifts, and alterations in the cardiac proteome. Previous work from our laboratory indicated that short-term (10-week) treatment with rapamycin, an mTORC1 inhibitor, improved measures of these age-related changes. In this report, we demonstrate that the rapamycin-dependent improvement of diastolic function is highly persistent, while decreases in both cardiac hypertrophy and passive stiffness are substantially persistent 8 weeks after cessation of an 8-week treatment of rapamycin in both male and female 22- to 24-month-old C57BL/6NIA mice. The proteomic and metabolomic abundance changes that occur after 8 weeks of rapamycin treatment have varying persistence after 8 further weeks without the drug. However, rapamycin did lead to a persistent increase in abundance of electron transport chain (ETC) complex components, most of which belonged to Complex I. Although ETC protein abundance and Complex I activity were each differentially affected in males and females, the ratio of Complex I activity to Complex I protein abundance was equally and persistently reduced after rapamycin treatment in both sexes. Thus, rapamycin treatment in the aged mice persistently improved diastolic function and myocardial stiffness, persistently altered the cardiac proteome in the absence of persistent metabolic changes, and led to persistent alterations in mitochondrial respiratory chain activity. These observations suggest that an optimal translational regimen for rapamycin therapy that promotes enhancement of healthspan may involve intermittent short-term treatments.
Collapse
Affiliation(s)
- Ellen Quarles
- Department of PathologyUniversity of WashingtonSeattleWAUSA
- Present address:
University of MichiganAnn ArborMIUSA
| | - Nathan Basisty
- Department of PathologyUniversity of WashingtonSeattleWAUSA
- Present address:
Buck Institute of AgingNovatoCAUSA
| | - Ying Ann Chiao
- Department of PathologyUniversity of WashingtonSeattleWAUSA
- Present address:
Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | | | - Haiwei Gu
- Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWAUSA
| | | | | | | | - Maria Razumova
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
| | - Kristina Kooiker
- Division of CardiologyDepartment of MedicineUniversity of WashingtonSeattleWAUSA
| | | | - Michael Regnier
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
| | - Christopher Quarles
- School of InformationUniversity of MichiganAnn ArborMIUSA
- Present address:
University of MichiganAnn ArborMIUSA
| | - Michael MacCoss
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | | |
Collapse
|
23
|
Heidel JS, Fischer AG, Tang XL, Sadri G, Wu WJ, Moisa CR, Stowers H, Sandella N, Wysoczynski M, Uchida S, Moore IV JB. The Effect of Cardiogenic Factors on Cardiac Mesenchymal Cell Anti-Fibrogenic Paracrine Signaling and Therapeutic Performance. Am J Cancer Res 2020; 10:1514-1530. [PMID: 32042319 PMCID: PMC6993223 DOI: 10.7150/thno.41000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Intrinsic cardiogenic factor expression, a proxy for cardiomyogenic lineage commitment, may be an important determinant of donor cell cardiac reparative capacity in cell therapy applications; however, whether and how this contributes to their salutary effects remain largely ambiguous. Methods: The current study examined the consequences of enhanced cardiogenic factor expression, via lentiviral delivery of GMT (GATA4, MEF2C, and TBX5), on cardiac mesenchymal cell (CMC) anti-fibrogenic paracrine signaling dynamics, in vitro, and cardiac reparative capacity, in vivo. Proteome cytokine array analyses and in vitro cardiac fibroblast activation assays were performed using conditioned medium derived from either GMT- or GFP control-transduced CMCs, to respectively assess cardiotrophic factor secretion and anti-fibrogenic paracrine signaling aptitude. Results: Relative to GFP controls, GMT CMCs exhibited enhanced secretion of cytokines implicated to function in pathways associated with matrix remodeling and collagen catabolism, and more ably impeded activated cardiac fibroblast Col1A1 synthesis in vitro. Following their delivery in a rat model of chronic ischemic cardiomyopathy, conventional echocardiography was unable to detect a therapeutic advantage with either CMC population; however, hemodynamic analyses identified a modest, yet calculable supplemental benefit in surrogate measures of global left ventricular contractility with GMT CMCs relative to GFP controls. This phenomenon was neither associated with a decrease in infarct size nor an increase in viable myocardium, but with only a marginal decrease in regional myocardial collagen deposition. Conclusion: Overall, these results suggest that CMC cardiomyogenic lineage commitment biases cardiac repair and, further, that enhanced anti-fibrogenic paracrine signaling potency may underlie, in part, their improved therapeutic utility.
Collapse
|
24
|
Rusu M, Hilse K, Schuh A, Martin L, Slabu I, Stoppe C, Liehn EA. Biomechanical assessment of remote and postinfarction scar remodeling following myocardial infarction. Sci Rep 2019; 9:16744. [PMID: 31727993 PMCID: PMC6856121 DOI: 10.1038/s41598-019-53351-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023] Open
Abstract
The importance of collagen remodeling following myocardial infarction (MI) is extensively investigated, but little is known on the biomechanical impact of fibrillar collagen on left ventricle post-MI. We aim to identify the significant effects of the biomechanics of types I, III, and V collagen on physio-pathological changes of murine hearts leading to heart failure. Immediately post-MI, heart reduces its function (EF = 40.94 ± 2.12%) while sarcomeres' dimensions are unchanged. Strikingly, as determined by immunohistochemistry staining, type V collagen fraction significantly grows in remote and scar for sustaining de novo-types I and III collagen fibers' assembly while hindering their enzymatic degradation. Thereafter, the compensatory heart function (EF = 63.04 ± 3.16%) associates with steady development of types I and III collagen in a stiff remote (12.79 ± 1.09 MPa) and scar (22.40 ± 1.08 MPa). In remote, the soft de novo-type III collagen uncoils preventing further expansion of elongated sarcomeres (2.7 ± 0.3 mm). Once the compensatory mechanisms are surpassed, the increased turnover of stiff type I collagen (>50%) lead to a pseudo-stable biomechanical regime of the heart (≅9 MPa) with reduced EF (50.55 ± 3.25%). These end-characteristics represent the common scenario evidenced in patients suffering from heart failure after MI. Our pre-clinical data advances the understanding of the cause of heart failure induced in patients with extended MI.
Collapse
Affiliation(s)
- Mihaela Rusu
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen, Aachen, Germany.
| | - Katrin Hilse
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen, Aachen, Germany
| | - Alexander Schuh
- Department of Cardiology Pulmonology, Angiology and Intensive Care, University Hospital, RWTH Aachen, Aachen, Germany
| | - Lukas Martin
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Aachen, Germany
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Stoppe
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Aachen, Germany
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen, Aachen, Germany
- Human Genetic Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania
| |
Collapse
|
25
|
Corbin EA, Vite A, Peyster EG, Bhoopalam M, Brandimarto J, Wang X, Bennett AI, Clark AT, Cheng X, Turner KT, Musunuru K, Margulies KB. Tunable and Reversible Substrate Stiffness Reveals a Dynamic Mechanosensitivity of Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20603-20614. [PMID: 31074953 DOI: 10.1021/acsami.9b02446] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
New directions in material applications have allowed for the fresh insight into the coordination of biophysical cues and regulators. Although the role of the mechanical microenvironment on cell responses and mechanics is often studied, most analyses only consider static environments and behavior, however, cells and tissues are themselves dynamic materials that adapt in myriad ways to alterations in their environment. Here, we introduce an approach, through the addition of magnetic inclusions into a soft poly(dimethylsiloxane) elastomer, to fabricate a substrate that can be stiffened nearly instantaneously in the presence of cells through the use of a magnetic gradient to investigate short-term cellular responses to dynamic stiffening or softening. This substrate allows us to observe time-dependent changes, such as spreading, stress fiber formation, Yes-associated protein translocation, and sarcomere organization. The identification of temporal dynamic changes on a short time scale suggests that this technology can be more broadly applied to study targeted mechanisms of diverse biologic processes, including cell division, differentiation, tissue repair, pathological adaptations, and cell-death pathways. Our method provides a unique in vitro platform for studying the dynamic cell behavior by better mimicking more complex and realistic microenvironments. This platform will be amenable to future studies aimed at elucidating the mechanisms underlying mechanical sensing and signaling that influence cellular behaviors and interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andy T Clark
- Department of Physics , Bryn Mawr College , Bryn Mawr , Pennsylvania 19010 , United States
| | - Xuemei Cheng
- Department of Physics , Bryn Mawr College , Bryn Mawr , Pennsylvania 19010 , United States
| | | | | | | |
Collapse
|
26
|
Kumari P, Saifi MA, Khurana A, Godugu C. Cardioprotective effects of nanoceria in a murine model of cardiac remodeling. J Trace Elem Med Biol 2018; 50:198-208. [PMID: 30262280 DOI: 10.1016/j.jtemb.2018.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022]
Abstract
Isoproterenol (ISO), a synthetic β1 adrenergic agonist is a well-known agent to be associated with severe cardiotoxicity manifested as marked myocardial necrosis and fibrosis. Oxidative stress plays a crucial role in mediating ISO induced cardiotoxicity. In present study, we have investigated the possible protective effect of nanoceria (NC) in ISO induced cardiac injury. We have given long duration exposure (a total of 10 days) of low dose ISO (20 mg/kg/day) to investigate the protective effects of NC in chronic cardiac injury model. ISO (20 mg/kg/day for 10 days) produced cardiac injury as evident by increased plasma LDH and CK-MB, AST, ALT, cardiac hypertrophy, severe myocardial fibrosis (MF) and significantly higher levels of cytokines, IL-6, TGF-β and TNF-α. Interestingly, the treatment with NC (0.2 and 2 mg/kg) abrogated cardiotoxicity symptoms and provided protection from ISO induced cardiac injury. The results from present study demonstrated strong evidences of cardioprotective effects of NC as shown by reduction in the levels of LDH (p < 0.05 at 2 mg/kg) and CK-MB (p < 0.05 at 2 mg/kg). In addition, NC reduced oxidative stress parameters MDA (p < 0.05 at 2 mg/kg) and enhanced GSH levels which is physiological antioxidant (p < 0.01 at both doses). Further, NC exhibited promising anti-inflammatory activity and curbed the levels of cytokines (p < 0.05 at 0.2 mg/kg and p < 0.001 for IL-1β and p < 0.001 at both doses for IL-6). In addition, NC also reduced the levels of pro-fibrotic cytokine, TGF-β (p < 0.05 at 2 mg/kg) and helped in reduction of collagen deposition in heart thereby, preventing the myocardial remodeling. Our results strongly suggested that NC might be of potential use as a cardioprotective agent.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
27
|
Gallo LA, Walton SL, Mazzuca MQ, Tare M, Parkington HC, Wlodek ME, Moritz KM. Uteroplacental insufficiency temporally exacerbates salt-induced hypertension associated with a reduced natriuretic response in male rat offspring. J Physiol 2018; 596:5859-5872. [PMID: 29604087 PMCID: PMC6265551 DOI: 10.1113/jp275655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Low weight at birth increases the risk of developing chronic diseases in adulthood A diet that is high in salt is known to elevate blood pressure, which is a major risk factor for cardiovascular and kidney diseases The present study demonstrates that growth restricted male rats have a heightened sensitivity to high dietary salt, in the context of raised systolic blood pressure, reduced urinary sodium excretion and stiffer mesenteric resistance vessels Other salt-induced effects, such as kidney hyperfiltration, albuminuria and glomerular damage, were not exacerbated by being born small The present study demonstrates that male offspring born small have an increased cardiovascular susceptibility to high dietary salt, such that that minimizing salt intake is probably of particular benefit to this at-risk population ABSTRACT: Intrauterine growth restriction increases the risk of developing chronic diseases in adulthood. Lifestyle factors, such as poor dietary choices, may elevate this risk. We determined whether being born small increases the sensitivity to a dietary salt challenge, in the context of hypertension, kidney disease and arterial stiffness. Bilateral uterine vessel ligation or sham surgery (offspring termed Restricted and Control, respectively) was performed on 18-day pregnant Wistar Kyoto rats. Male offspring were allocated to receive a diet high in salt (8% sodium chloride) or remain on standard rat chow (0.52% sodium chloride) from 20 to 26 weeks of age for 6 weeks. Systolic blood pressure (tail-cuff), renal function (24 h urine excretions) and vascular stiffness (pressure myography) were assessed. Restricted males were born 15% lighter than Controls and remained smaller throughout the study. Salt-induced hypertension was exacerbated in Restricted offspring, reaching a peak systolic pressure of ∼175 mmHg earlier than normal weight counterparts. The natriuretic response to high dietary salt in Restricted animals was less than in Controls and may explain the early rise in arterial pressure. Growth restricted males allocated to a high salt diet also had increased passive arterial stiffness of mesenteric resistance arteries. Other aspects of renal function, including salt-induced hyperfiltration, albuminuria and glomerular damage, were not exacerbated by uteroplacental insufficiency. The present study demonstrates that male offspring exposed to uteroplacental insufficiency and born small have an increased sensitivity to salt-induced hypertension and arterial remodelling.
Collapse
Affiliation(s)
- Linda A. Gallo
- Department of PhysiologyThe University of MelbourneVICAustralia
- School of Biomedical SciencesThe University of QueenslandQLDAustralia
- Mater Research Institute‐The University of QueenslandTranslational Research InstituteQLDAustralia
| | - Sarah L. Walton
- School of Biomedical SciencesThe University of QueenslandQLDAustralia
- Child Health Research CentreThe University of QueenslandQLDAustralia
| | - Marc Q. Mazzuca
- Department of PhysiologyThe University of MelbourneVICAustralia
| | - Marianne Tare
- Department of PhysiologyMonash UniversityVICAustralia
- Monash Rural HealthMonash UniversityVICAustralia
| | | | - Mary E. Wlodek
- Department of PhysiologyThe University of MelbourneVICAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesThe University of QueenslandQLDAustralia
- Child Health Research CentreThe University of QueenslandQLDAustralia
| |
Collapse
|
28
|
Kobara Y, Hasegawa H, Hirose M, Takano H, Kobayashi Y. Analysis of the Correlation between the Myocardial Expression of DPP-4 and the Clinical Parameters of Patients with Heart Failure. Int Heart J 2018; 59:1303-1311. [PMID: 30369565 DOI: 10.1536/ihj.17-547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used as antidiabetic drugs. We recently reported that DPP-4 inhibition has beneficial effects on heart failure (HF) mice model. Furthermore, we confirmed that myocardial DPP-4 activity was significantly increased in HF mice compared with non-HF mice. The aim of this study was to investigate the level of myocardial CD26 (DPP-4) expression and its association to clinical parameters in HF patients.Endomyocardial biopsy (EMB) specimens (n = 33) were obtained from HF patients who were admitted to Chiba University Hospital from June 2006 to July 2012. EMB specimens were fixed in formaldehyde and stained with Masson's trichrome staining or with anti-CD26 antibody. Patients were divided into the high CD26 density (CD26-H) or low CD26 density groups (CD26-L). DPP-4 density was compared with blood brain natriuretic peptide (BNP) level and echocardiographic parameters at one year after EMB. Although there were no significant differences in echocardiographic parameters between the CD26-H group and CD26-L group, blood BNP levels were higher in the CD26-H group than in the CD26-L group at one year after EMB. Multivariate regression analysis showed that CD26 density was also an independent determinant of blood BNP levels at one year after EMB.The level of myocardial CD26 expression might be a predictive marker of prognosis in patients with HF.
Collapse
Affiliation(s)
- Yuka Kobara
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | - Hiroshi Hasegawa
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | - Masanori Hirose
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | - Hiroyuki Takano
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| |
Collapse
|
29
|
Vu TT, Marquez J, Le LT, Nguyen ATT, Kim HK, Han J. The role of decorin in cardiovascular diseases: more than just a decoration. Free Radic Res 2018; 52:1210-1219. [PMID: 30468093 DOI: 10.1080/10715762.2018.1516285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decorin (DCN) is a proteoglycan constituent of the extracellular matrix (ECM) possessing powerful antifibrotic, anti-inflammation, antioxidant, and antiangiogenic properties. By attaching to receptors in the cell surface or to several ECM molecules, it regulates plenty of cellular functions, consequently influencing cell differentiation, proliferation, and apoptosis. These processes are dependent on cell types, biological contexts, and interfere with pathological processes such as cardiovascular diseases. In this review, we briefly discuss the potential of DCN targeting in addressing cardiovascular diseases (CVD). We dive into its interactome and discuss how its interaction with the proteins can affect disease progression, and how DCN can be a possible target for CVD therapeutics.
Collapse
Affiliation(s)
- Thu Thi Vu
- a Faculty of Biology, National Key Laboratory of Enzyme and Protein Technology , VNU University of Science , Hanoi , Vietnam
| | - Jubert Marquez
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Long Thanh Le
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Anh Thi Tuyet Nguyen
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Hyoung Kyu Kim
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,d Department of Integrated Biomedical Science , College of Medicine, Inje University , Busan , Korea
| | - Jin Han
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| |
Collapse
|
30
|
Ciaccio EJ, Peters NS, Garan H. Use of an automaton model to suggest methods for cessation of intractable fibrillatory activity. Comput Biol Med 2018; 102:357-368. [PMID: 30097173 DOI: 10.1016/j.compbiomed.2018.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common heart arrhythmia, and permanent AF is an intractable medical problem. If cessation of permanent AF were possible, via extensive substrate ablation or multisite stimulation, it could significantly improve the public health. METHOD A cellular automaton composed of 576 × 576 computerized grid nodes, described in detail previously, was used to test hypotheses concerning the cessation of fibrillatory electrical activity. A refractory period gradient across the grid, and addition of randomly located nonconducting fibers, were utilized as conditions leading to fibrillatory activity. A premature S1-S2 stimulus was applied to one grid corner, resulting in unidirectional conduction block at some locations, followed by rotational activity and random propagation of activation wavelets throughout the grid, none of which terminated spontaneously. Simulated ablation lesions of dimension 20 × 20 grid nodes, imparted at core locations of rotational activity, and multisite electrode stimulation (MES) applied at nodes where recovery of excitability had occurred, were used in attempts to terminate fibrillatory activity. Six impositions of random fiber location were utilized in separate trials. RESULTS Simulated ablation lesions eliminated the targeted swirling vortices; however, additional vortices then often appeared at other locations. After ablating approximately one third of the grid area, localized vortices were eliminated, but individual wavelets continued to propagate about longer viable pathways forming at ablation lesions. Thus extensive ablation was unsuccessful in terminating arrhythmia. However, MES applied uniformly throughout the grid, with a coupling interval slightly longer than the maximum refractory period, terminated fibrillatory activity in some trials. More efficaciously, application of MES with a coupling interval half the maximum refractory period of the grid succeeded in capture of activation at all nodes, and when followed by a doubling of the MES coupling interval, resulted in cessation of all fibrillatory activity. CONCLUSIONS It is possible to terminate simulated fibrillatory activity in a computerized grid that would otherwise be intractable, using multisite stimulation with a coupling interval related to the maximum refractory period of the substrate. If each MES stimulating electrode could be individually controlled, it would be possible to apply a stimulation pattern mimicking the normal heart activation sequence.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hasan Garan
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
31
|
Graziani F, Varone F, Crea F, Richeldi L. Treating heart failure with preserved ejection fraction: learning from pulmonary fibrosis. Eur J Heart Fail 2018; 20:1385-1391. [PMID: 30085383 DOI: 10.1002/ejhf.1286] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has a poor prognosis, and an effective treatment is currently lacking. Increasing evidence suggests a prevailing pathogenic role of cardiac fibrosis in HFpEF, which generates the possibility of a mechanistic overlap with pulmonary fibrosis. Indeed, cardiac and pulmonary fibrosis share some characteristics and molecular pathways, such as that of transforming growth factor-β. If pulmonary and cardiac fibrosis share common pathways, we can hypothesize a beneficial effect of anti-fibrotic drugs used in idiopathic pulmonary fibrosis on cardiac outcomes. Of note, pirfenidone has been tested in animal models of cardiac fibrosis and was found to be effective in reducing ventricular remodelling. Yet, no results are hitherto available for humans. In this review article, we discuss the potential benefit of anti-fibrotic treatment in HFpEF. In particular, we propose to reappraise safety data collected in placebo-controlled trials of anti-fibrotic drugs in idiopathic pulmonary fibrosis, to explore the hypothesis that these might reduce cardiac fibrosis.
Collapse
Affiliation(s)
- Francesca Graziani
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Varone
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
32
|
Matata BM, Elahi MM. In Situ Oxidative Stress and Atrial Cell Deaths in Patients with Valve Disease. Cardiovasc Hematol Disord Drug Targets 2018; 19:79-87. [PMID: 30033881 DOI: 10.2174/1871529x18666180723094926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Left ventricular hypertrophy and myocardial remodeling occur with aortic valve disease and may lead to heart failure. Although increased oxidative stress and inflammatory factors have been implicated in heart failure, their role in the progression of valve disease remains unclear. OBJECTIVES We investigated the role of oxidative stress and inflammatory factors in valve disease whether this relates to cell death. METHODS Blood samples were taken from 24 patients with valve disease before surgery and the results were compared with those from blood samples from 30 control healthy subjects. Myocardial biopsies from patients with valve disease were also collected before cannulation of the right atrial appendage. NF-κB activities in atrial and mononuclear cells nuclear extracts were determined by electrophoretic mobility shift assay. RESULTS Nuclear factor kappaB activities were significantly greater in mononuclear cells from AVD patients compared with healthy controls and the antigens were detectable in atrial tissues valve disease patients. Plasma C-reactive protein, B-natriuretic peptides, plasma tumor necrosis factor alpha and soluble tumor necrosis factor receptor 1 and 3-nitrotyrosine levels were significantly higher in valve disease patients. Inducible nitric oxide and 3-nitrotyrosine antigens and cells expressing CD45 antigens were detected within atrial tissues obtained from valve disease patients suggesting oxidative stress originated from in situ leukocytes. CONCLUSION The findings suggest that oxidative stress originating from in situ leukocytes within the atrial myocardium may be the potential trigger for excessive transcriptional activities and apoptotic cell death within the atrial myocardium of valve disease patients. This represents a potential therapeutic target.
Collapse
Affiliation(s)
- Bashir M Matata
- The Liverpool Heart & Chest Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Maqsood M Elahi
- Heart-Lung Institute, Cardiac Eye International Foundation, Texas, TX, United States
| |
Collapse
|
33
|
Nandrolone alter left ventricular contractility and promotes remodelling involving calcium-handling proteins and renin-angiotensin system in male SHR. Life Sci 2018; 208:239-245. [PMID: 30040952 DOI: 10.1016/j.lfs.2018.07.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022]
Abstract
AIMS Hypertension is a highly prevalent disease that has been correlated to severe organ damage and mortality. However, the role of androgens in hypertension is controversial. The aim of this study was to evaluate the cardiac effects of the nandrolone decanoate (NDL) in male SHR. MAIN METHODS At 12 weeks of age, male SHR rats were separated into three groups: Control (CON), Nandrolone 10 mg/kg twice weekly (NDL), and NDL plus Enalapril 10 mg/kg/day (NDL-E) groups. The animals were treated for 4 weeks. Haemodynamic parameters were acquired through ventricular catheter implantation. The left ventricle was stained with haematoxylin/eosin or picrosirius red. Western blot analysis of TNF-α, ACE, AT1R, β1-AR, PLB, p-PLBser16 and SERCA2a was performed. KEY FINDINGS Nandrolone increased hypertension in SHR rats and enalapril reduced blood pressure to values below those of the control. NDL increased +dP/dtmax, -dP/dtmax and cardiac hypertrophy, which were prevented in the NDL-E group. Cardiac collagen deposition was increased in the NDL group, with this effect being attenuated by enalapril in NDL-E animals. TNF-α, ACE, AT1R and β1-AR proteins were increased in the NDL, and enalapril decreased them, except for TNF-α. The ratio p-PLBser16/PLB revealed an increase after nandrolone, which was prevented in the NDL-E group. The SERCA2a expression protein and SERCA2a/PLB were increased in NDL animals, which did not occur in the NDL-E group. SIGNIFICANCE Nandrolone has distinct effects on cardiac function and remodelling in male SHR, altering the hypertension development process in the heart through modulation of calcium handling proteins and the renin-angiotensin system.
Collapse
|
34
|
Drummond CA, Fan X, Haller ST, Kennedy DJ, Liu J, Tian J. Na/K-ATPase signaling mediates miR-29b-3p regulation and cardiac fibrosis formation in mice with chronic kidney disease. PLoS One 2018; 13:e0197688. [PMID: 29775473 PMCID: PMC5959191 DOI: 10.1371/journal.pone.0197688] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/07/2018] [Indexed: 01/19/2023] Open
Abstract
The Na/K-ATPase is an important membrane ion transporter and a signaling receptor that is essential for maintaining normal cell function. The current study examined the role of Na/K-ATPase signaling in regulating miR-29b-3p, an anti-fibrotic microRNA, in a mouse chronic kidney disease (CKD) model (5/6th partial nephrectomy or PNx). The results showed that CKD induced significant reduction of miR-29b-3p expression in the heart tissue by activation of Src and NFκB signaling in these animals. To demonstrate the role of Na/K-ATPase signaling, we also performed the PNx surgery on Na/K-ATPase α1 heterozygous (α1+/-) mice, which expresses ~40% less Na/K-ATPase α1 compared to their wild type littermates (WT) and exhibits deficiency in Na/K-ATPase signaling. We found that CKD did not significantly change the miR-29b-3p expression in heart tissue from the α1+/- animals. We also found that CKD failed to activate Src and NFκB signaling in these animals. Using isolated cardiac fibroblasts from α1+/- mice and their WT littermates, we showed that ouabain, a specific Na/K-ATPase ligand, induces decreased miR-29b-3p expression in fibroblasts isolated from WT mice, but had no effect in cells from α1+/- mice. Inhibition of NFκB by Bay11-7082 prevented ouabain-induced miR-29b-3p reduction in WT fibroblasts. To further confirm the in vivo effect of Na/K-ATPase signaling in regulation of miR-29b-3p and cardiac fibrosis in CKD animals, we used pNaKtide, a Src inhibiting peptide derived from the sequence of Na/K-ATPase, to block the activation of Na/K-ATPase signaling. The result showed that pNaKtide injection significantly increased miR-29b-3p expression and mitigated the CKD-induced cardiac fibrosis in these animals. These results clearly demonstrated that Na/K-ATPase signaling is an important mediator in CKD that regulates miR-29b-3p expression and cardiac fibrosis, which provides a novel target for regulation of miR-29b-3p in CKD. We also demonstrate that antagonizing Na/K-ATPase signaling by pNaKtide can reduce organ fibrosis through the stimulation of tissue miR-29b-3p expression.
Collapse
Affiliation(s)
| | - Xiaoming Fan
- Department of Medicine at the University of Toledo, Toledo, OH, United States of America
| | - Steven T. Haller
- Department of Medicine at the University of Toledo, Toledo, OH, United States of America
| | - David J. Kennedy
- Department of Medicine at the University of Toledo, Toledo, OH, United States of America
| | - Jiang Liu
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States of America
| | - Jiang Tian
- Department of Medicine at the University of Toledo, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
35
|
Platt MJ, Huber JS, Romanova N, Brunt KR, Simpson JA. Pathophysiological Mapping of Experimental Heart Failure: Left and Right Ventricular Remodeling in Transverse Aortic Constriction Is Temporally, Kinetically and Structurally Distinct. Front Physiol 2018; 9:472. [PMID: 29867532 PMCID: PMC5962732 DOI: 10.3389/fphys.2018.00472] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/16/2018] [Indexed: 12/16/2022] Open
Abstract
A growing proportion of heart failure (HF) patients present with impairments in both ventricles. Experimental pressure-overload (i.e., transverse aortic constriction, TAC) induces left ventricle (LV) hypertrophy and failure, as well as right ventricle (RV) dysfunction. However, little is known about the coordinated progression of biventricular dysfunction that occurs in TAC. Here we investigated the time course of systolic and diastolic function in both the LV and RV concurrently to improve our understanding of the chronology of events in TAC. Hemodynamic, histological, and morphometric assessments were obtained from the LV and RV at 2, 4, 9, and 18 weeks post-surgery. Results: Systolic pressures peaked in both ventricles at 4 weeks, thereafter steadily declining in the LV, while remaining elevated in the RV. The LV and RV followed different structural and functional timelines, suggesting the patterns in one ventricle are independent from the opposing ventricle. RV hypertrophy/fibrosis and pulmonary arterial remodeling confirmed a progressive right-sided pathology. We further identified both compensation and decompensation in the LV with persistent concentric hypertrophy in both phases. Finally, diastolic impairments in both ventricles manifested as an intricate progression of multiple parameters that were not in agreement until overt systolic failure was evident. Conclusion: We establish pulmonary hypertension was secondary to LV dysfunction, confirming TAC is a model of type II pulmonary hypertension. This study also challenges some common assumptions in experimental HF (e.g., the relationship between fibrosis and filling pressure) while addressing a knowledge gap with respect to temporality of RV remodeling in pressure-overload.
Collapse
Affiliation(s)
- Mathew J. Platt
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Team Canada Investigator Network, Saint John, NB, Canada
| | - Jason S. Huber
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Team Canada Investigator Network, Saint John, NB, Canada
| | - Nadya Romanova
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Team Canada Investigator Network, Saint John, NB, Canada
| | - Keith R. Brunt
- IMPART Team Canada Investigator Network, Saint John, NB, Canada
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jeremy A. Simpson
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Team Canada Investigator Network, Saint John, NB, Canada
| |
Collapse
|
36
|
Tica J, Bradbury EJ, Didangelos A. Combined Transcriptomics, Proteomics and Bioinformatics Identify Drug Targets in Spinal Cord Injury. Int J Mol Sci 2018; 19:E1461. [PMID: 29758010 PMCID: PMC5983596 DOI: 10.3390/ijms19051461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) causes irreversible tissue damage and severe loss of neurological function. Currently, there are no approved treatments and very few therapeutic targets are under investigation. Here, we combined 4 high-throughput transcriptomics and proteomics datasets, 7 days and 8 weeks following clinically-relevant rat SCI to identify proteins with persistent differential expression post-injury. Out of thousands of differentially regulated entities our combined analysis identified 40 significantly upregulated versus 48 significantly downregulated molecules, which were persistently altered at the mRNA and protein level, 7 days and 8 weeks post-SCI. Bioinformatics analysis was then utilized to identify currently available drugs with activity against the filtered molecules and to isolate proteins with known or unknown function in SCI. Our findings revealed multiple overlooked therapeutic candidates with important bioactivity and established druggability but with unknown expression and function in SCI including the upregulated purine nucleoside phosphorylase (PNP), cathepsins A, H, Z (CTSA, CTSH, CTSZ) and proteasome protease PSMB10, as well as the downregulated ATP citrate lyase (ACLY), malic enzyme (ME1) and sodium-potassium ATPase (ATP1A3), amongst others. This work reveals previously unappreciated therapeutic candidates for SCI and available drugs, thus providing a valuable resource for further studies and potential repurposing of existing therapeutics for SCI.
Collapse
Affiliation(s)
- Jure Tica
- Imperial College London, Alexander Fleming Building, London SW7 2AZ, UK.
| | - Elizabeth J Bradbury
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, UK.
| | - Athanasios Didangelos
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
37
|
Ciaccio EJ, Peters NS, Garan H. Effects of refractory gradients and ablation on fibrillatory activity. Comput Biol Med 2018; 95:175-187. [PMID: 29501736 DOI: 10.1016/j.compbiomed.2018.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND The mechanisms involved in onset, maintenance, and termination of atrial fibrillation are not well understood. A biophysical model could be useful to determine how the events unfold. METHOD A two-dimensional cellular automaton consisting of 576 × 576 grid nodes was implemented to demonstrate the types of electrical activity that may occur in compromised atrial substrate. Electrical activation between nodes was made anisotropic (2:1), and the refractory period (RP) was adjusted from 74 to 192 ms in the spatial domain. Presence of collagen fibers were simulated as short lines of conduction block at many random grid sites, while ablation lesions were delineated as longer lines of block. An S1-S2 pulse from one grid corner was utilized to initiate simulated electrical activity. Simulations were done in which 1. no ablation lines, 2. random ablation lines, and 3. parallel ablation lines were added to the grid to determine how this affected the formation and annihilation of rotational activity after S1-S2 stimulation. RESULTS As the premature (S2) wavefront traversed the grid, rotational activity formed near boundaries where wavefronts propagated from shorter to longer refractory regions, causing unidirectional block, and were anchored by fiber clusters. Multiple wavelets appeared when wavefronts originating from different driving rotational features collided, and/or by their encounter with RP discontinuities. With the addition of randomly orientated simulated ablation lesions, followed by reinduction of fibrillatory activity, mean activation interval (AI) prolonged from a baseline level of 144.2 ms-160.3 ms (p < 0.001 in most comparisons). During fibrillatory activity, when parallel ablation lines were added to short RP regions, AI prolonged to 150.4 ms (p < 0.001), and when added to long RP regions, AI prolonged to 185.3 ms (p < 0.001). In all cases, AI prolongation after simulated ablation resulted from reduced number and/or from the isolation of local drivers, so that distant drivers in short RP regions activated long RP regions N:1, while distant drivers in long RP regions activated short RP regions at a relatively slow rate. CONCLUSIONS An automaton model was found useful to generate and test hypotheses concerning fibrillatory activity, which can then be validated in the clinical electrophysiology laboratory.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, United States; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
38
|
Less primary fistula failure in hypertensive patients. J Hum Hypertens 2018; 32:311-318. [PMID: 29581557 DOI: 10.1038/s41371-018-0052-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 11/08/2022]
Abstract
End stage renal disease (ESRD) patients suffer from advanced renal diseases and actually nonfunctioning kidneys, and need kidney transplantation or dialysis. Hemodialysis (HD) is the most used method and requires a vascular access (VA). Arteriovenous fistula (AVF) is the first choice of VA over the world for having least morbidity and mortality. Despite the wide-spread use of AVFs, the rate of AVF failures are notable. Detecting the factors that cause AVF failure can reduce repeating VA surgeries and hospitalization of ESRD patients. Present research studies 480 Iranian HD patients who underwent AVF surgery from 2010 to 2017 and aged 18-90 years old, using data mining techniques. (i) The AVF failure rate was equal to 8.96%, such that AVF failure has occurred in 3.54% and 5.52% of HD patient with and without hypertension, respectively. (ii) The rate of non-failure AVF in hypertensive patients is 61.46%, whereas the same rate for patients with negative history of hypertension reaches to 29.58%. (iii) Hypertension has a significant inverse association with AVF failure (Spearman's ρ = -0.160, P-value ≤ 0.005). (iv) The decision tree (with accuracy rate = 92.24%) shows less AVF failure in hypertsensive patients (5.53%) comparing with non-hypertensive patients (15.09%). (v) The AVFs with greater failure rates and non-hypertensive HD patients were clustered together. "Significantly lower risk of AVF failure was associated with presence of a positive history of hypertension; in other words, positive history of hypertension has an adverse effect on AVF failure and Hypertensive HD patients have more maturated AVF."
Collapse
|
39
|
Treibel TA, Kozor R, Schofield R, Benedetti G, Fontana M, Bhuva AN, Sheikh A, López B, González A, Manisty C, Lloyd G, Kellman P, Díez J, Moon JC. Reverse Myocardial Remodeling Following Valve Replacement in Patients With Aortic Stenosis. J Am Coll Cardiol 2018; 71:860-871. [PMID: 29471937 PMCID: PMC5821681 DOI: 10.1016/j.jacc.2017.12.035] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Left ventricular (LV) hypertrophy, a key process in human cardiac disease, results from cellular (hypertrophy) and extracellular matrix expansion (interstitial fibrosis). OBJECTIVES This study sought to investigate whether human myocardial interstitial fibrosis in aortic stenosis (AS) is plastic and can regress. METHODS Patients with symptomatic, severe AS (n = 181; aortic valve area index 0.4 ± 0.1 cm2/m2) were assessed pre-aortic valve replacement (AVR) by echocardiography (AS severity, diastology), cardiovascular magnetic resonance (CMR) (for volumes, function, and focal or diffuse fibrosis), biomarkers (N-terminal pro-B-type natriuretic peptide and high-sensitivity troponin T), and the 6-min walk test. CMR was used to measure the extracellular volume fraction (ECV), thereby deriving matrix volume (LV mass × ECV) and cell volume (LV mass × [1 - ECV]). Biopsy excluded occult bystander disease. Assessment was repeated at 1 year post-AVR. RESULTS At 1 year post-AVR in 116 pacemaker-free survivors (age 70 ± 10 years; 54% male), mean valve gradient had improved (48 ± 16 mm Hg to 12 ± 6 mm Hg; p < 0.001), and indexed LV mass had regressed by 19% (88 ± 26 g/m2 to 71 ± 19 g/m2; p < 0.001). Focal fibrosis by CMR late gadolinium enhancement did not change, but ECV increased (28.2 ± 2.9% to 29.9 ± 4.0%; p < 0.001): this was the result of a 16% reduction in matrix volume (25 ± 9 ml/m2 to 21 ± 7 ml/m2; p < 0.001) but a proportionally greater 22% reduction in cell volume (64 ± 18 ml/m2 to 50 ± 13 ml/m2; p < 0.001). These changes were accompanied by improvement in diastolic function, N-terminal pro-B-type natriuretic peptide, 6-min walk test results, and New York Heart Association functional class. CONCLUSIONS Post-AVR, focal fibrosis does not resolve, but diffuse fibrosis and myocardial cellular hypertrophy regress. Regression is accompanied by structural and functional improvements suggesting that human diffuse fibrosis is plastic, measurable by CMR and a potential therapeutic target. (Regression of Myocardial Fibrosis After Aortic Valve Replacement; NCT02174471).
Collapse
Affiliation(s)
- Thomas A Treibel
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Institute for Cardiovascular Sciences, University College London, London, United Kingdom
| | - Rebecca Kozor
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Rebecca Schofield
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Giulia Benedetti
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Marianna Fontana
- Institute for Cardiovascular Sciences, University College London, London, United Kingdom
| | - Anish N Bhuva
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Institute for Cardiovascular Sciences, University College London, London, United Kingdom
| | - Amir Sheikh
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Begoña López
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Cardiovascular Biomedical Research Center Network (CIBERCV), Carlos III National Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Cardiovascular Biomedical Research Center Network (CIBERCV), Carlos III National Institute of Health, Madrid, Spain
| | - Charlotte Manisty
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Institute for Cardiovascular Sciences, University College London, London, United Kingdom
| | - Guy Lloyd
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Institute for Cardiovascular Sciences, University College London, London, United Kingdom
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Javier Díez
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Cardiovascular Biomedical Research Center Network (CIBERCV), Carlos III National Institute of Health, Madrid, Spain; Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, Pamplona, Spain
| | - James C Moon
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Institute for Cardiovascular Sciences, University College London, London, United Kingdom.
| |
Collapse
|
40
|
Lewalle A, Land S, Carruth E, Frank LR, Lamata P, Omens JH, McCulloch AD, Niederer SA, Smith NP. Decreasing Compensatory Ability of Concentric Ventricular Hypertrophy in Aortic-Banded Rat Hearts. Front Physiol 2018; 9:37. [PMID: 29527171 PMCID: PMC5829063 DOI: 10.3389/fphys.2018.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/10/2018] [Indexed: 11/28/2022] Open
Abstract
The cardiac system compensates for variations in physiological and pathophysiological conditions through a dynamic remodeling at the organ, tissue, and intracellular levels in order to maintain function. However, on longer time scales following the onset of ventricular pressure overload, such remodeling may begin to inhibit physiological function and ultimately lead to heart failure. This progression from compensatory to decompensatory behavior is poorly understood, in particular owing to the absence of a unified perspective of the concomitantly remodeling subsystems. To address this issue, the present study investigates the evolution of compensatory mechanisms, in response to overload, by integrating diffusion-tensor MRI, echocardiography, and intracellular and hemodynamic measurements within consistent computational simulations of aortic-banded rat hearts. This approach allows a comparison of the relative leverage of different cardiac properties (geometry, passive mechanical stiffness, fiber configuration, diastolic and peak calcium concentrations, calcium-binding affinity, and aortic impedance) to affect cardiac contraction. Measurements indicate that, following aortic banding, an ejection fraction (EF) of 75% was maintained, relative to control rats, despite significant remodeling of the left-ventricular wall thickness (increasing by ~90% over 4 weeks). Applying our framework, we identified the left-ventricular wall thickness (concentric hypertrophy) and the intracellular calcium dynamics as playing the dominant roles in preserving EF acutely, whereas the significance of hypertrophy decreased subsequently. This trend suggests an increasing reliance on intracellular mechanisms (average increase ~50%), rather than on anatomical features (average decrease ~60%), to achieve compensation of pump function in the early phase of heart failure.
Collapse
Affiliation(s)
- Alexandre Lewalle
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Sander Land
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Eric Carruth
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Lawrence R. Frank
- Radiology Department, University of California, San Diego, San Diego, CA, United States
| | - Pablo Lamata
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Jeffrey H. Omens
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Steven A. Niederer
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Nicolas P. Smith
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Kandel J, Angelin AA, Wallace DC, Eckmann DM. Mitochondrial respiration is sensitive to cytoarchitectural breakdown. Integr Biol (Camb) 2017; 8:1170-1182. [PMID: 27734042 DOI: 10.1039/c6ib00192k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.
Collapse
Affiliation(s)
- Judith Kandel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessia A Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, USA and Department of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA
| | - David M Eckmann
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA and Department of Anesthesiology and Critical Care, Perelman School of Medicine, 27B John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA. and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Ivey MJ, Kuwabara JT, Pai JT, Moore RE, Sun Z, Tallquist MD. Resident fibroblast expansion during cardiac growth and remodeling. J Mol Cell Cardiol 2017; 114:161-174. [PMID: 29158033 DOI: 10.1016/j.yjmcc.2017.11.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/25/2017] [Accepted: 11/16/2017] [Indexed: 01/18/2023]
Abstract
Cardiac fibrosis, denoted by the deposition of extracellular matrix, manifests with a variety of diseases such as hypertension, diabetes, and myocardial infarction. Underlying this pathological extracellular matrix secretion is an expansion of fibroblasts. The mouse is now a common experimental model system for the study of cardiovascular remodeling and elucidation of fibroblast responses to cardiac growth and stress is vital for understanding disease processes. Here, using diverse but fibroblast specific markers, we report murine fibroblast distribution and proliferation in early postnatal, adult, and injured hearts. We find that perinatal fibroblasts and endothelial cells proliferate at similar rates. Furthermore, regardless of the injury model, fibroblast proliferation peaks within the first week after injury, a time window similar to the period of the inflammatory phase. In addition, fibroblast densities remain high weeks after the initial insult. These results provide detailed information regarding fibroblast distribution and proliferation in experimental methods of heart injury.
Collapse
Affiliation(s)
- Malina J Ivey
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Jill T Kuwabara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Jonathan T Pai
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Richard E Moore
- Department of Molecular Biochemistry and Bioengineering, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Zuyue Sun
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States.
| |
Collapse
|
43
|
Worke LJ, Barthold JE, Seelbinder B, Novak T, Main RP, Harbin SL, Neu CP. Densification of Type I Collagen Matrices as a Model for Cardiac Fibrosis. Adv Healthc Mater 2017; 6. [PMID: 28881428 DOI: 10.1002/adhm.201700114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/10/2017] [Indexed: 12/17/2022]
Abstract
Cardiac fibrosis is a disease state characterized by excessive collagenous matrix accumulation within the myocardium that can lead to ventricular dilation and systolic failure. Current treatment options are severely lacking due in part to the poor understanding of the complexity of molecular pathways involved in cardiac fibrosis. To close this gap, in vitro model systems that recapitulate the defining features of the fibrotic cellular environment are in need. Type I collagen, a major cardiac extracellular matrix protein and the defining component of fibrotic depositions, is an attractive choice for a fibrosis model, but demonstrates poor mechanical strength due to solubility limits. However, plastic compression of collagen matrices is shown to significantly increase its mechanical properties. Here, confined compression of oligomeric, type I collagen matrices is utilized to resemble defining hallmarks seen in fibrotic tissue such as increased collagen content, fibril thickness, and bulk compressive modulus. Cardiomyocytes seeded on compressed matrices show a strong beating abrogation as observed in cardiac fibrosis. Gene expression analysis of selected fibrosis markers indicates fibrotic activation and cardiomyocyte maturation with regard to the existing literature. With these results, a promising first step toward a facile heart-on-chip model is presented to study cardiac fibrosis.
Collapse
Affiliation(s)
- Logan J. Worke
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
| | - Jeanne E. Barthold
- Department of Mechanical Engineering; University of Colorado Boulder; Boulder CO USA 80309
| | - Benjamin Seelbinder
- Department of Mechanical Engineering; University of Colorado Boulder; Boulder CO USA 80309
| | - Tyler Novak
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
| | - Russell P. Main
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
- Department of Basic Medical Sciences; Purdue University; West Lafayette IN USA 47906
| | - Sherry L. Harbin
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
- Department of Basic Medical Sciences; Purdue University; West Lafayette IN USA 47906
| | - Corey P. Neu
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
- Department of Mechanical Engineering; University of Colorado Boulder; Boulder CO USA 80309
| |
Collapse
|
44
|
Tereshchenko LG, Soliman EZ, Davis BR, Oparil S. Risk stratification of sudden cardiac death in hypertension. J Electrocardiol 2017; 50:798-801. [PMID: 28916176 DOI: 10.1016/j.jelectrocard.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 12/28/2022]
Abstract
In the United States, up to 450,000 people per year die suddenly; an average of 1 sudden death every 70s. Strategies for preventing sudden cardiac death are urgently needed. Systemic arterial hypertension is a major risk factor for sudden cardiac death and the increasing burden of hypertension is a worldwide problem. The lifetime risk of sudden cardiac death at 30years of age is higher by 30% in individuals with hypertension. Each 20/10mmHg increase in systolic/diastolic blood pressure, is associated with a 20% additional increase in sudden cardiac death risk. Theoretically, antihypertensive treatment should be an effective strategy for sudden cardiac death prevention. However, a recent meta-analysis of 15 randomized controlled trials showed that antihypertensive treatment does not reduce the incidence of sudden cardiac death. This manuscript reviews ECG predictors of sudden cardiac death and the importance of risk stratification for appropriate management of hypertension.
Collapse
Affiliation(s)
- Larisa G Tereshchenko
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Division of Public Health Sciences, Department of Medicine, Cardiology Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Barry R Davis
- University of Texas School of Public Health, Houston, TX, United States
| | - Suzanne Oparil
- University of Alabama at Birmingham, Department of Medicine, School of Medicine, Birmingham, AL, United States
| |
Collapse
|
45
|
Nio AQX, Stöhr EJ, Shave RE. Age-related differences in left ventricular structure and function between healthy men and women. Climacteric 2017; 20:476-483. [DOI: 10.1080/13697137.2017.1356814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A. Q. X. Nio
- Department of Physiology and Health, Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, UK
| | - E. J. Stöhr
- Department of Physiology and Health, Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, UK
| | - R. E. Shave
- Department of Physiology and Health, Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
46
|
Loss of dystrophin is associated with increased myocardial stiffness in a model of left ventricular hypertrophy. Mol Cell Biochem 2017; 432:169-178. [PMID: 28316061 DOI: 10.1007/s11010-017-3007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
Transition from compensated to decompensated left ventricular hypertrophy (LVH) is accompanied by functional and structural changes. Here, the aim was to evaluate dystrophin expression in murine models and human subjects with LVH by transverse aortic constriction (TAC) and aortic stenosis (AS), respectively. We determined whether doxycycline (Doxy) prevented dystrophin expression and myocardial stiffness in mice. Additionally, ventricular function recovery was evaluated in patients 1 year after surgery. Mice were subjected to TAC and monitored for 3 weeks. A second group received Doxy treatment after TAC. Patients with AS were stratified by normal left ventricular end-diastolic wall stress (LVEDWS) and high LVEDWS, and groups were compared. In mice, LVH decreased inotropism and increased myocardial stiffness associated with a dystrophin breakdown and a decreased mitochondrial O2 uptake (MitoMVO2). These alterations were attenuated by Doxy. Patients with high LVEDWS showed similar results to those observed in mice. A correlation between dystrophin and myocardial stiffness was observed in both mice and humans. Systolic function at 1 year post-surgery was only recovered in the normal-LVEDWS group. In summary, mice and humans present diastolic dysfunction associated with dystrophin degradation. The recovery of ventricular function was observed only in patients with normal LVEDWS and without dystrophin degradation. In mice, Doxy improved MitoMVO2. Based on our results it is concluded that the LVH with high LVEDWS is associated to a degradation of dystrophin and increase of myocardial stiffness. At least in a murine model these alterations were attenuated after the administration of a matrix metalloprotease inhibitor.
Collapse
|
47
|
Sun R, Wang J, Zheng Y, Li X, Xie T, Li R, Liu M, Cao Y, Lu L, Zhang Q, Zhang P. Traditional Chinese medicine baoxin decoction improves cardiac fibrosis of rats with dilated cardiomyopathy. Exp Ther Med 2017; 13:1900-1906. [PMID: 28565783 PMCID: PMC5443197 DOI: 10.3892/etm.2017.4223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/27/2017] [Indexed: 11/06/2022] Open
Abstract
We investigated the effect of baoxin decoction (BXD) on myocardial fibrosis and clarified the possible mechanism of action. Dilated myocardiopathy was induced by doxorubicin injected intraperitoneally for 6 weeks. Rats that demonstrated dilated myocardiopathy were randomly divided into five groups plus a control group. Three groups were treated with BXD (7.5/kg, 15 g/kg and 30 g/kg) daily for 4 weeks. One group was treated with 8.75 g/kg of captopril (positive control), and with physiologic saline (negative control). Cardiac function was evaluated using echocardiography. Hematoxylin and eosin, and Massons trichrome staining were performed, PICP and PIIINP were assessed by ELISA, the expression of galectin-3 and collagen types I and III was evaluated with reverse transcription-quantitative PCR, and interrelated proteins were detected by western blot analysis. BXD downregulated galectin-3, collagen I and III and was correlated with a high expression of fibrosis markers. It also significantly decreased myocardial collagen volume fraction (CVF), together with markedly preventing the upregulation of collagen I and III. In addition, BXD downregulated the expression of TGF-β1 and Smad3 in the myocardial fibrosis rats. Therefore, BXD treatment significantly improved cardiac function and alleviated myocardial fibrosis in a rat model of doxorubicin-induced dilated cardiomyopathy (DCM), which is the mechanism that may be associated with inhibiting the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Rongrong Sun
- Clinical Medicine, Nanjing University of Traditional Chinese Medicine, The Affiliated Xuzhou Central Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Jiangbo Wang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yi Zheng
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xianchi Li
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Tiantian Xie
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Rui Li
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Min Liu
- Department of Cardiology, Xuzhou Hospital of Traditional Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Yong Cao
- Department of Cardiology, Xuzhou Hospital of Traditional Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Lei Lu
- Department of Cardiology, Xuzhou Hospital of Traditional Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Qing Zhang
- Department of Cardiology, Xuzhou Hospital of Traditional Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Peiying Zhang
- Department of Cardiology, The Affiliated Xuzhou Central Hospital of Nanjing University of Traditional Chinese Medicine, The Affiliated Xuzhou Hospital of Medical School of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
48
|
Ciaccio EJ, Biviano AB, Wan EY, Peters NS, Garan H. Development of an automaton model of rotational activity driving atrial fibrillation. Comput Biol Med 2017; 83:166-181. [PMID: 28282592 DOI: 10.1016/j.compbiomed.2017.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is difficult to treat effectively, owing to uncertainty in where to best ablate to eliminate arrhythmogenic substrate. A model providing insight into the electrical activation events would be useful to guide catheter ablation strategy. Method A two-dimensional, 576×576 node automaton was developed to simulate atrial electrical activity. The substrate field was altered by the presence of differing refractory period at varying locations. Fibrosis was added in the form of short, randomly positioned lines of conduction block. Larger areas of block were used to simulate ablation lesions. Anisotropy was imposed in a 2:1 ratio. A premature electrical impulse from one of four grid corners was utilized to initiate activation. RESULTS Rotational activity was uninducible when refractory patch dimensions were less than 20×20mm. For larger refractory regions, a single premature stimulus was capable of inducing an average of 1.19±1.10 rotors, which often formed near the patch edges. A maximum of 5 rotors formed when refractory patch dimensions approached the size of the entire left atrial virtual field. Rotors formed along a refractory patch edge, after wavefront arrival was delayed at turning points or due to the presence of a fiber cluster of sufficient size. However, rotational activity could also occur around a large fiber cluster without the need of spatially variable refractoriness. When obstacles to conduction were lacking in size, nascent rotors drifted and either extinguished, or stabilized upon anchoring at a sufficiently large fiber cluster elsewhere in the field. Transient rotors terminated when traversing a region with differing refractory periods, if no obstacle to conduction was present to sufficiently delay wavefront arrival beyond the longest refractory period. Other rotors were annihilated when a nearby rotor with faster spin rate gradually interrupted the activation pathway. Elimination of anchors by removal, or by simulated ablation over a sufficient region, prevented rotor onset at a particular location where it would otherwise form. CONCLUSIONS The presence of obstacles to conduction and spatial differences in refractory period are important parameters for initiating and maintaining rotational activity in this simulation of an atrial substrate.
Collapse
Affiliation(s)
- E J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - A B Biviano
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E Y Wan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - N S Peters
- Department of Medicine, Cardiovascular Sciences, Imperial College London, London, UK
| | - H Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
49
|
Fan X, Xie J, Tian J. Reducing Cardiac Fibrosis: Na/K-ATPase Signaling Complex as a Novel Target. ACTA ACUST UNITED AC 2017; 6. [PMID: 29034264 DOI: 10.4172/2329-6607.1000204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiac fibrosis is a common pathological process in cardiac disease and may lead to heart failure. It can also cause sudden death even in those without cardiac symptoms. Tissue fibrosis can be categorized into two categories: replacement fibrosis (also called reparative fibrosis) and reactive fibrosis. In replacement fibrosis, infiltration of inflammatory cells and accumulation of Extracellular Matrix (ECM) proteins are the initial steps in forming scarlike fibrotic tissue after acute cardiac injury and cardiac cell necrosis. Reactive fibrosis can be formed in response to hormonal change and pressure or volume overload. Experimental studies in animals have identified important pathways such as the Renin-Angiotensin-Aldosterone System (RAAS) and the endothelin pathway that contribute to fibrosis formation. Despite the fact that clinical trials using RAAS inhibitors as therapies for reducing cardiac fibrosis and improving cardiac function have been promising, heart failure is still the leading cause of deaths in the United States. Intensive efforts have been made to find novel targets and to develop new treatments for cardiac fibrosis and heart failure in the past few decades. The Na/K-ATPase, a canonical ion transporter, has been shown to also function as a signal transducer and prolonged activation of Na/K-ATPase signaling has been found to promote the formation of cardiac fibrosis. Novel tools that block the activation of Na/K-ATPase signaling have been developed and have shown promise in reducing cardiac fibrosis. This review will discuss the recent development of novel molecular targets, focusing on the Na/K-ATPase signaling complex as a therapeutic target in treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- X Fan
- Department of Medicine, Center for Hypertension and Personalized Medicine, University of Toledo, Ohio 43614, USA
| | - J Xie
- Department of Medicine, Center for Hypertension and Personalized Medicine, University of Toledo, Ohio 43614, USA
| | - J Tian
- Department of Medicine, Center for Hypertension and Personalized Medicine, University of Toledo, Ohio 43614, USA
| |
Collapse
|
50
|
Malka A, Ertracht O, Bachner-Hinenzon N, Reiter I, Binah O. The cardioprotective efficacy of TVP1022 against ischemia/reperfusion injury and cardiac remodeling in rats. Pharmacol Res Perspect 2016; 4:e00272. [PMID: 28097005 PMCID: PMC5226283 DOI: 10.1002/prp2.272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
Following acute myocardial infarction (MI), early and successful reperfusion is the most effective strategy for reducing infarct size and improving the clinical outcome. However, immediate restoration of blood flow to the ischemic zone results in myocardial damage, defined as “reperfusion‐injury”. Whereas we previously reported that TVP1022 (the S‐isomer of rasagiline, FDA‐approved anti‐Parkinson drug) decreased infarct size 24 h post ischemia reperfusion (I/R) in rats, in this study we investigated the chronic cardioprotective efficacy of TVP1022 14 days post‐I/R. To simulate the clinical settings of acute MI followed by reperfusion therapy, we employed a rat model of left anterior descending artery occlusion for 30 min followed by reperfusion and a follow‐up for 14 days. TVP1022 was initially administered postocclusion–prereperfusion, followed by chronic daily administrations. Cardiac performance and remodeling were evaluated using customary and advanced echocardiographic methods, hemodynamic measurements by Millar Mikro‐Tip® catheter, and histopathological techniques. TVP1022 administration markedly decreased the remodeling process as illustrated by attenuation of left ventricular enlargement and cardiac hypertrophy (both at the whole heart and the cellular level). Furthermore, TVP1022 inhibited cardiac fibrosis and reduced ventricular BNP levels. Functionally, TVP1022 treatment preserved cardiac wall motion. Specifically, the echocardiographic and most of the direct hemodynamic measures were pronouncedly improved by TVP1022. Collectively, these findings indicate that TVP1022 provides prominent cardioprotection against I/R injury and post‐MI remodeling in this I/R model.
Collapse
Affiliation(s)
- Assaf Malka
- Faculty of Medicine in the Galilee Bar-Ilan University Safed Israel
| | - Offir Ertracht
- Eliachar Research Laboratory Galilee Medical Center Nahariya Israel
| | - Noa Bachner-Hinenzon
- Migal Galilee Technology Center Department of Computational Science and Bioinformatics Kiryat, Shmona Israel
| | - Irina Reiter
- Department of Physiology, Biophysics and Systems Biology the Rappaport Faculty of Medicine and Research Institute Technion, Haifa Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology the Rappaport Faculty of Medicine and Research Institute Technion, Haifa Israel
| |
Collapse
|