1
|
Obata Y, Abe K, Miyazaki M, Koji T, Tabata Y, Nishino T. The Transfer of the Hepatocyte Growth Factor Gene by Macrophages Ameliorates the Progression of Peritoneal Fibrosis in Mice. Int J Mol Sci 2023; 24:ijms24086951. [PMID: 37108115 PMCID: PMC10139180 DOI: 10.3390/ijms24086951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Growing evidence indicates that hepatocyte growth factor (HGF) possesses potent antifibrotic activity. Furthermore, macrophages migrate to inflamed sites and have been linked to the progression of fibrosis. In this study, we utilized macrophages as vehicles to express and deliver the HGF gene and investigated whether macrophages carrying the HGF expression vector (HGF-M) could suppress peritoneal fibrosis development in mice. We obtained macrophages from the peritoneal cavity of mice stimulated with 3% thioglycollate and used cationized gelatin microspheres (CGMs) to produce HGF expression vector-gelatin complexes. Macrophages phagocytosed these CGMs, and gene transfer into macrophages was confirmed in vitro. Peritoneal fibrosis was induced by intraperitoneal injection of chlorhexidine gluconate (CG) for three weeks; seven days after the first CG injection, HGF-M was administered intravenously. Transplantation of HGF-M significantly suppressed submesothelial thickening and reduced type III collagen expression. Moreover, in the HGF-M-treated group, the number of α-smooth muscle actin- and TGF-β-positive cells were significantly lower in the peritoneum, and ultrafiltration was preserved. Our results indicated that the transplantation of HGF-M prevented the progression of peritoneal fibrosis and indicated that this novel gene therapy using macrophages may have potential for treating peritoneal fibrosis.
Collapse
Affiliation(s)
- Yoko Obata
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Katsushige Abe
- Abe Diabetes Clinic, 16-13 Nakakasuga-machi, Oita 870-0039, Japan
| | | | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoya Nishino
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
2
|
Alferiev IS, Hooshdaran B, Pressly BB, Zoltick PW, Stachelek SJ, Chorny M, Levy RJ, Fishbein I. Intraprocedural endothelial cell seeding of arterial stents via biotin/avidin targeting mitigates in-stent restenosis. Sci Rep 2022; 12:19212. [PMID: 36357462 PMCID: PMC9649779 DOI: 10.1038/s41598-022-23820-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Impaired endothelialization of endovascular stents has been established as a major cause of in-stent restenosis and late stent thrombosis. Attempts to enhance endothelialization of inner stent surfaces by pre-seeding the stents with endothelial cells in vitro prior to implantation are compromised by cell destruction during high-pressure stent deployment. Herein, we report on the novel stent endothelialization strategy of post-deployment seeding of biotin-modified endothelial cells to avidin-functionalized stents. Acquisition of an avidin monolayer on the stent surface was achieved by consecutive treatments of bare metal stents (BMS) with polyallylamine bisphosphonate, an amine-reactive biotinylation reagent and avidin. Biotin-modified endothelial cells retain growth characteristics of normal endothelium and can express reporter transgenes. Under physiological shear conditions, a 50-fold higher number of recirculating biotinylated cells attached to the avidin-modified metal surfaces compared to bare metal counterparts. Delivery of biotinylated endothelial cells to the carotid arterial segment containing the implanted avidin-modified stent in rats results in immediate cell binding to the stent struts and is associated with a 30% reduction of in-stent restenosis in comparison with BMS.
Collapse
Affiliation(s)
- Ivan S Alferiev
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Stanley J Stachelek
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael Chorny
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert J Levy
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ilia Fishbein
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Tsukada J, Mela P, Jinzaki M, Tsukada H, Schmitz-Rode T, Vogt F. Development of In Vitro Endothelialised Stents - Review. Stem Cell Rev Rep 2021; 18:179-197. [PMID: 34403073 DOI: 10.1007/s12015-021-10238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 01/12/2023]
Abstract
Endovascular treatment is prevalent as a primary treatment for coronary and peripheral arterial diseases. Although the introduction of drug-eluting stents (DES) dramatically reduced the risk of in-stent restenosis, stent thrombosis persists as an issue. Notwithstanding improvements in newer generation DES, they are yet to address the urgent clinical need to abolish the late stent complications that result from in-stent restenosis and are associated with late thrombus formation. These often lead to acute coronary syndromes with high mortality in coronary artery disease and acute limb ischemia with a high risk of limb amputation in peripheral arterial disease. Recently, a significant amount of research has focused on alternative solutions to improve stent biocompatibility by using tissue engineering. There are two types of tissue engineering endothelialisation methods: in vitro and in vivo. To date, commercially available in vivo endothelialised stents have failed to demonstrate antithrombotic or anti-stenosis efficacy in clinical trials. In contrast, the in vitro endothelialisation methods exhibit the advantage of monitoring cell type and growth prior to implantation, enabling better quality control. The present review discusses tissue-engineered candidate stents constructed by distinct in vitro endothelialisation approaches, with a particular focus on fabrication processes, including cell source selection, stent material composition, stent surface modifications, efficacy and safety evidence from in vitro and in vivo studies, and future directions.
Collapse
Affiliation(s)
- Jitsuro Tsukada
- Department of Diagnostic Radiology, Nihon University School of Medicine, 30-1, Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan. .,Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - P Mela
- Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Boltzmannstr. 15, Garching, Munich, 85748, Germany
| | - M Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - H Tsukada
- Department of Surgery II, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - T Schmitz-Rode
- AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074, Germany
| | - F Vogt
- Department of Cardiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, Aachen, 52074, Germany
| |
Collapse
|
4
|
Genetically engineered human muscle transplant enhances murine host neovascularization and myogenesis. Commun Biol 2018; 1:161. [PMID: 30320229 PMCID: PMC6172230 DOI: 10.1038/s42003-018-0161-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/24/2018] [Indexed: 11/30/2022] Open
Abstract
Engineered tissues are a promising tool for addressing the growing need for tissues and organs in surgical reconstructions. Prevascularization of implanted tissues is expected to enhance survival prospects post transplantation and minimize deficiencies and/or hypoxia deeper in the tissue. Here, we fabricate a three-dimensional, prevascularized engineered muscle containing human myoblasts, genetically modified endothelial cells secreting angiopoietin 1 (ANGPT1) and genetically modified smooth muscle cells secreting vascular endothelial growth factor (VEGF). The genetically engineered human muscle shows enhanced host neovascularization and myogenesis following transplantation into a mouse host, compared to the non-secreting control. The vascular, genetically modified cells have been cleared for clinical trials and can be used to construct autologous vascularized tissues. Therefore, the described genetically engineered vascularized muscle has the potential to be fully translated to the clinical setting to overcome autologous tissue shortage and to accelerate host neovascularization and integration of engineered grafts following transplantation. Luba Perry et al. report transplantation of engineered prevascularized human muscle into mice to repair an abdominal muscle defect. They show that genetically engineering smooth muscle cells to secrete VEGF and endothelial cells to secrete ANGPT1 significantly improves host neovascularization and myogenesis.
Collapse
|
5
|
Li J, Zhang K, Huang N. Engineering Cardiovascular Implant Surfaces to Create a Vascular Endothelial Growth Microenvironment. Biotechnol J 2017; 12. [PMID: 28941232 DOI: 10.1002/biot.201600401] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease (CVD) is generally accepted as the leading cause of morbidity and mortality worldwide, and an increasing number of patients suffer from atherosclerosis and thrombosis annually. To treat these disorders and prolong the sufferers' life, several cardiovascular implants have been developed and applied clinically. Nevertheless, thrombosis and hyperplasia at the site of cardiovascular implants are recognized as long-term problems in the practice of interventional cardiology. Here, we start this review from the clinical requirement of the implants, such as anti-hyperplasia, anti-thrombosis, and pro-endothelialization, wherein particularly focus on the natural factors which influence functional endothelialization in situ, including the healthy smooth muscle cells (SMCs) environment, blood flow shear stress (BFSS), and the extracellular matrix (ECM) microenvironment. Then, the currently available strategies on surface modification of cardiovascular biomaterials to create vascular endothelial growth microenvironment are introduced as the main topic, e.g., BFSS effect simulation by surface micro-patterning, ECM rational construction and SMCs phenotype maintain. Finally, the prospects for extending use of the in situ construction of endothelial cells growth microenvironment are discussed and summarized in designing the next generation of vascular implants.
Collapse
Affiliation(s)
- Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.,Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Kun Zhang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.,School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
6
|
Young ATL, Lakey JRT, Murray AG, Moore RB. Gene Therapy: A Lipofection Approach for Gene Transfer into Primary Endothelial Cells. Cell Transplant 2017. [DOI: 10.3727/000000002783985495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Despite the great potential of gene therapy to become a new treatment modality in future medicine, there are still many limitations to overcome before this gene approach can pass to the stage of human trial. The foremost obstacle is the development of a safe, efficient, and efficacious vector system for in vivo gene application. This study evaluated the efficacy of lipofection as a gene delivery vehicle into primary endothelial cells. Transfection efficiency of several lipid-based reagents (Effectene, Fugene 6, DOTAP) was examined at experimental temperatures of 37°C, 24°C, and 6°C. Human umbilical vein endothelial cells (HUVECs) were transfected with the enhanced green fluorescent protein (EGFP) using precise amounts of DNA (Effectene, 0.2 μg; Fugene 6, 0.5 μg; DOTAP, 2.5 μg) and lipids (Effectene, 10 μl; Fugene 6, 6 μl; DOTAP, 15 μl) optimized in our laboratory. Duration of incubation in the DNA/lipid transfection mixture varied for each lipid transfectant as follows: 5 h for both Fugene 6 and DOTAP and 3 h for Effectene. Efficiency of transfection was quantified by microscopic evaluation of EFGP expression in a minimum of 100 cells per group. Transfection efficiencies achieved with these lipofection agents were 34 ± 1.3% (mean ± SEM), 33 ± 1.4%, and 18 ± 1.5% for Effectene, Fugene 6, and DOTAP, respectively, at 37°C. Transfection results were lower at 24°C with mean efficiencies of 26 ± 2.4% for Effectene, 14 ± 2.9% for Fugene 6, and 15 ± 3.2% for DOTAP. Furthermore, mean efficiencies at 6°C were 6 ± 0.5%, 8 ± 1.5%, and 6 ± 0.0% for Effectene, Fugene 6, and DOTAP, respectively. Efficiency of transfection appeared to be temperature dependent (ANOVA; p < 0.0001). In spite of a significant decrease (37°C vs. 24°C: p < 0.0001; 37°C vs. 6°C: p < 0.0001; 24°C vs. 6°C: p < 0.0115) in transfection efficiency at low temperatures, the successful in vitro gene manipulation renders lipofection a potential gene delivery strategy for in vivo gene therapy.
Collapse
Affiliation(s)
- A. T. L. Young
- Department of Surgery, Surgical-Medical Research Institute, University of Alberta, Edmonton, Canada T6G 2N8
| | - J. R. T. Lakey
- Department of Surgery, Surgical-Medical Research Institute, University of Alberta, Edmonton, Canada T6G 2N8
| | - A. G. Murray
- Department of Medicine, University of Alberta, Edmonton, Canada T6G 2N8
| | - R. B. Moore
- Department of Surgery, Surgical-Medical Research Institute, University of Alberta, Edmonton, Canada T6G 2N8
| |
Collapse
|
7
|
Perry L, Flugelman MY, Levenberg S. Elderly Patient-Derived Endothelial Cells for Vascularization of Engineered Muscle. Mol Ther 2017; 25:935-948. [PMID: 28279644 DOI: 10.1016/j.ymthe.2017.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 11/29/2022] Open
Abstract
In vitro prevascularization of engineered tissue constructs promises to enhance their clinical applicability. We hypothesize that adult endothelial cells (ECs), isolated from limb veins of elderly patients, bear the vasculogenic properties required to form vascular networks in vitro that can later integrate with the host vasculature upon implantation. Here, we show that adult ECs formed vessel networks that were more developed and complex than those formed by human umbilical vein endothelial cells (HUVECs) seeded with various supporting cells on three-dimensional (3D) biodegradable polymer scaffolds. In parallel, secreted levels of key proangiogenic cytokines were significantly higher in adult EC-bearing scaffolds as compared to HUVEC scaffolds. As a proof of concept for applicability of this model, adult ECs were co-seeded with human myoblasts as well as supporting cells and successfully formed a branched network, which was surrounded by aligned human myotubes. The vascularized engineered muscle tissue implanted into a full-thickness defect in immunodeficient mice remained viable and anastomosed with the host vasculature within 9 days of implantation. Functional "chimeric" blood vessels and various types of anastomosis were observed. These findings provide strong evidence of the applicability of adult ECs in construction of clinically relevant autologous vascularized tissue.
Collapse
Affiliation(s)
- Luba Perry
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa 32000, Israel; Inter-departmental Program in Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Moshe Y Flugelman
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa 32000, Israel
| | - Shulamit Levenberg
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
8
|
Preis M, Schneiderman J, Koren B, Ben-Yosef Y, Levin-Ashkenazi D, Shapiro S, Cohen T, Blich M, Israeli-Amit M, Sarnatzki Y, Gershtein D, Shofti R, Lewis BS, Shaul Y, Flugelman MY. Co-expression of fibulin-5 and VEGF165 increases long-term patency of synthetic vascular grafts seeded with autologous endothelial cells. Gene Ther 2015; 23:237-46. [PMID: 26588709 DOI: 10.1038/gt.2015.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Small caliber synthetic vascular grafts are commonly used for bypass surgery and dialysis access sites but have high failure rates because of neointima formation and thrombosis. Seeding synthetic grafts with endothelial cells (ECs) provides a biocompatible surface that may prevent graft failure. However, EC detachment following exposure to blood flow still remains a major obstacle in the development of biosynthetic grafts. We tested the hypothesis that induced expression by the seeded EC, of vascular endothelial growth factor165 (VEGF165) and of fibulin-5, an extracellular matrix glycoprotein that has a crucial role in elastin fiber organization and increase EC adherence to surfaces, may improve long-term graft patency. Autologous ECs were isolated from venous segments, and were transduced with retroviral vectors expressing fibulin-5 and VEGF165. The modified cells were seeded on expanded polytetrafluoroethylene (ePTFE) grafts and implanted in a large animal model. Three months after transplantation, all grafts seeded with modified EC were patent on a selective angiography, whereas only a third of the control grafts were patent. Similar results were shown at 6 months. Thus, seeding ePTFE vascular grafts with genetically modified EC improved long-term small caliber graft patency. The biosynthetic grafts may provide a novel therapeutic modality for patients with peripheral vascular disease and patients requiring vascular access for hemodialysis.
Collapse
Affiliation(s)
- M Preis
- Institute of Hematology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - J Schneiderman
- Department of Vascular Surgery, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - B Koren
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel.,MultiGene Vascular Systems Ltd, Haifa, Israel
| | - Y Ben-Yosef
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel.,MultiGene Vascular Systems Ltd, Haifa, Israel
| | - D Levin-Ashkenazi
- The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - S Shapiro
- Immunology Research Unit, Lady Davis Carmel Medical Center, Haifa, Israel
| | - T Cohen
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel.,MultiGene Vascular Systems Ltd, Haifa, Israel
| | - M Blich
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel
| | - M Israeli-Amit
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel.,MultiGene Vascular Systems Ltd, Haifa, Israel
| | - Y Sarnatzki
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel.,MultiGene Vascular Systems Ltd, Haifa, Israel
| | - D Gershtein
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel.,MultiGene Vascular Systems Ltd, Haifa, Israel
| | - R Shofti
- The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - B S Lewis
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel.,MultiGene Vascular Systems Ltd, Haifa, Israel.,The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Y Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - M Y Flugelman
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel.,MultiGene Vascular Systems Ltd, Haifa, Israel.,The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Song W, Kaufman DS, Shen W. Efficient generation of endothelial cells from human pluripotent stem cells and characterization of their functional properties. J Biomed Mater Res A 2015; 104:678-687. [PMID: 26519950 DOI: 10.1002/jbm.a.35607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/24/2015] [Accepted: 10/29/2015] [Indexed: 01/15/2023]
Abstract
Although endothelial cells (ECs) have been derived from human pluripotent stem cells (hPSCs), large-scale generation of hPSC-ECs remains challenging and their functions are not well characterized. Here we report a simple and efficient three-stage method that allows generation of approximately 98 and 9500 ECs on day 16 and day 34, respectively, from each human embryonic stem cell (hESC) input. The functional properties of hESC-ECs derived in the presence and absence of a TGFβ-inhibitory molecule SB431542 were characterized and compared with those of human umbilical vein endothelial cells (HUVECs). Confluent monolayers formed by SB431542 + hESC-ECs, SB431542- hESC-ECs, and HUVECs showed similar permeability to 10,000 Da dextran, but these cells exhibited striking differences in forming tube-like structures in 3D fibrin gels. The SB431542 + hESC-ECs were most potent in forming tube-like structures regardless of whether VEGF and bFGF were present in the medium; less potent SB431542- hESC-ECs and HUVECs responded differently to VEGF and bFGF, which significantly enhanced the ability of HUVECs to form tube-like structures but had little impact on SB431542- hESC-ECs. This study offers an efficient approach to large-scale hPSC-EC production and suggests that the phenotypes and functions of hPSC-ECs derived under different conditions need to be thoroughly examined before their use in technology development. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 678-687, 2016.
Collapse
Affiliation(s)
- Wei Song
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Dan S Kaufman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, 55455
| |
Collapse
|
10
|
Jantzen AE, Noviani M, Mills JS, Baker KM, Lin FH, Truskey GA, Achneck HE. Point-of-care seeding of nitinol stents with blood-derived endothelial cells. J Biomed Mater Res B Appl Biomater 2015; 104:1658-1665. [PMID: 26340233 DOI: 10.1002/jbm.b.33510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/09/2015] [Accepted: 08/14/2015] [Indexed: 01/21/2023]
Abstract
Nitinol-based vascular devices, for example, peripheral and intracranial stents, are limited by thrombosis and restenosis. To ameliorate these complications, we developed a technology to promote vessel healing by rapidly seeding (QuickSeeding) autologous blood-derived endothelial cells (ECs) onto modified self-expanding nitinol stent delivery systems immediately before implantation. Several thousand micropores were laser-drilled into a delivery system sheath surrounding a commercial nitinol stent to allow for exit of an infused cell suspension. As suspension medium flowed outward through the micropores, ECs flowed through the delivery system attaching to the stent surface. The QuickSeeded ECs adhered to and spread on the stent surface following 24-h in vitro culture under static or flow conditions. Further, QuickSeeded ECs on stents that were deployed into porcine carotid arteries spread to endothelialize stent struts within 48 h (n = 4). The QuickSeeded stent struts produced significantly more nitric oxide in ex vivo flow circuits after 24 h, as compared to static conditions (n = 5). In conclusion, ECs QuickSeeded onto commercial nitinol stents within minutes of implantation spread to form a functional layer in vitro and in vivo, providing proof of concept that the novel QuickSeeding method with modified delivery systems can be used to seed functional autologous endothelium at the point of care. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1658-1665, 2016.
Collapse
Affiliation(s)
- Alexandra E Jantzen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Maria Noviani
- Department of Surgery, Duke University Medical Center, Durham, North Carolina.,Duke-National University of Singapore Graduate Medical School Singapore Cardiovascular & Metabolic Disorders Program, Singapore
| | - James S Mills
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Fu-Hsiung Lin
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Hardean E Achneck
- Department of Surgery, Duke University Medical Center, Durham, North Carolina. .,Duke-National University of Singapore Graduate Medical School Singapore Cardiovascular & Metabolic Disorders Program, Singapore. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina. .,Hemostemix Inc., Ness Ziona, Israel, Calgary, Alberta, Canada.
| |
Collapse
|
11
|
Sultan S, Kavanagh EP, Bonneau M, Kang C, Alves A, Hynes NM. Kinetics of endothelialization of the multilayer flow modulator and single-layer arterial stents. Vascular 2015; 24:78-87. [DOI: 10.1177/1708538115585073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The multilayer flow modulator (MFM; Cardiatis, Isnes, Belgium) is a self-expandable mesh of braided cobalt alloy wires, used for treatment of aortic and peripheral aneurysms. To further improve our understanding of this novel technology, the endothelialization kinetics of the MFM was investigated and compared with those of two marketed single-layer stents. Five porcine animal models were used in which a total of 19 stents were implanted in the iliac and carotid arteries between one and five weeks before sacrifice. All 19 stents were successfully delivered. For all devices, nonsignificant signs of inflammation or thrombosis were noted, and there was no evidence of local intolerance. The MFM developed a thin layer of endothelial cells earlier and was associated with less neointimal development than the two single-layer stents. A differing phenomenon of integration was also revealed and hypothesized as endothelialization from adhesion of circulating endothelial progenitor cells, as well as adhesion from the arterial wall, and also by the differences in trauma exposed to the arterial wall.
Collapse
Affiliation(s)
- Sherif Sultan
- Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, Galway, Ireland
- Department of Vascular and Endovascular Surgery, Galway Clinic, Doughiska, Galway, Ireland
| | - Edel P Kavanagh
- Department of Vascular and Endovascular Surgery, Galway Clinic, Doughiska, Galway, Ireland
| | - Michel Bonneau
- Centre de Recherche en Imagerie Interventionnelle (CR2i), National Institute of Agronomic Research, Jouy-en-Josas, France
| | - Chantal Kang
- Centre de Recherche en Imagerie Interventionnelle (CR2i), National Institute of Agronomic Research, Jouy-en-Josas, France
| | | | - Niamh M Hynes
- Department of Vascular and Endovascular Surgery, Galway Clinic, Doughiska, Galway, Ireland
| |
Collapse
|
12
|
Kumar AHS, Martin K, Doyle B, Huang CL, Pillai GKM, Ali MT, Skelding KA, Wang S, Gleeson BM, Jahangeer S, Ritman EL, Russell SJ, Caplice NM. Intravascular cell delivery device for therapeutic VEGF-induced angiogenesis in chronic vascular occlusion. Biomaterials 2014; 35:9012-22. [PMID: 25096850 DOI: 10.1016/j.biomaterials.2014.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/10/2014] [Indexed: 10/24/2022]
Abstract
Site specific targeting remains elusive for gene and stem cell therapies in the cardiovascular field. One promising option involves use of devices that deliver larger and more sustained cell/gene payloads to specific disease sites using the versatility of percutaneous vascular access technology. Smooth muscle cells (SMCs) engineered to deliver high local concentrations of an angiogenic molecule (VEGF) were placed in an intravascular cell delivery device (ICDD) in a porcine model of chronic total occlusion (CTO) involving ameroid placement on the proximal left circumflex (LCx) artery. Implanted SMC were retained within the ICDD and were competent for VEGF production in vitro and in vivo. Following implantation, micro-CT analyses revealed that ICDD-VEGF significantly enhanced vasa vasora microvessel density with a concomitant increase in tissue VEGF protein levels and formation of endothelial cell colonies suggesting increased angiogenic potential. ICDD-VEGF markedly enhanced regional blood flow determined by microsphere and contrast CT analysis translating to a functional improvement in regional wall motion and global left ventricular (LV) systolic and diastolic function. Our data indicate robust, clinically relevant angiogenesis can be achieved in a human scale porcine chronic vascular occlusion model following ICDD-VEGF-based delivery of angiogenic cells. This may have implications for percutaneous delivery of numerous therapeutic factors promoting creation of microvascular bypass networks in chronic vaso-occlusive diseases.
Collapse
Affiliation(s)
- Arun H S Kumar
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kenneth Martin
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Brendan Doyle
- Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Chien-Ling Huang
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Gopala-Krishnan M Pillai
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Mohammed T Ali
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kimberly A Skelding
- Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Shaohua Wang
- Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Birgitta M Gleeson
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Saleem Jahangeer
- Cork Cancer Research Centre, Biosciences Institute, University College Cork, Cork, Ireland
| | - Erik L Ritman
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Russell
- Division of Hematology, Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Noel M Caplice
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland; Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Occlusion of canine aneurysms using microporous self-expanding stent grafts: long-term follow-up. Clin Neurol Neurosurg 2014; 122:34-41. [PMID: 24908214 DOI: 10.1016/j.clineuro.2014.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/12/2014] [Accepted: 04/14/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE The treatment of large or giant cerebral aneurysms by surgical and/or endovascular techniques is difficult and poses relatively high risks. Therefore, a microporous self-expanding (hybrid) stent graft composed of a thin, expandable, segmented polyurethane (SPU) membrane with micropores and a drug-delivery system was developed. MATERIALS AND METHODS A commercially available, self-expanding carotid stent was covered with a thin microporous SPU membrane fabricated by the dip-coating method and the excimer laser ablation technique, with an intraluminal coating of argatroban. Experimentally fabricated lateral-wall aneurysms in canine carotid arteries using venous pouches were occluded with the hybrid stent graft (bale-shaped pore density of 23.6%) on one side and a bare-metal stent on the other side without systemic antiplatelet therapy. RESULTS Angiography at 1, 6, and 12 months of stenting revealed that all arteries were patent without marked stenosis without systemic antiplatelet therapy. All aneurysms treated with hybrid stent grafts remained occluded throughout the 12-month period, while among those treated by bare-metal stents, 2 of 3 aneurysms were occluded at 6 months (67%) and only 1 of 3 aneurysms were occluded at 12 months (33%). Histology revealed that the novel hybrid stent graft had less intimal hyperplasia than the bare-metal stent. The hybrid stent graft was useful for the successful occlusion of these canine carotid aneurysms, even at 12 months. CONCLUSIONS The novel hybrid stent grafts are expected to overcome the disadvantages of fully covered stent grafts and simple bare-metal stents, while combining both their merits, and appear to be useful in the treatment of large or giant cerebral aneurysms.
Collapse
|
14
|
Human vascular endothelial cell morphology and functional cytokine secretion influenced by different size of HA micro-pattern on titanium substrate. Colloids Surf B Biointerfaces 2013; 110:199-207. [DOI: 10.1016/j.colsurfb.2013.04.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022]
|
15
|
Nishi S, Nakayama Y, Ishibashi-Ueda H, Yoshida M, Yonetani H. Treatment of rabbit carotid aneurysms by hybrid stents (microporous thin polyurethane-covered stents): preservation of side-branches. J Biomater Appl 2013; 28:1097-104. [PMID: 23887877 PMCID: PMC4025620 DOI: 10.1177/0885328213498293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective We sought to determine the patency of normal arterial branches from the covered
segments of an artery after stenting. Background Most intracranial aneurysms occur at arterial branching points (bifurcations,
side-branches, or perforators). The post-stenting patency of normal arterial branches
from the covered segments of the artery is important. We have previously developed a
hybrid stent with micropores to prevent early parent artery occlusion by more early
endothelialization, and mid- to long-term parent artery stenosis by control of intimal
hyperplasia after aneurysm occlusion. Methods We created aneurysms in 10 rabbits by distal ligation and intraluminal incubation of
elastase within an endovascularly trapped proximal segment of the common carotid artery.
All animals were treated with hybrid stents having micropores. Four animals were
observed for one month and three each for three and 12 months. The patency of the
side-branches of the subclavian artery was evaluated angiographically and in some cases,
histologically. Results Aneurysms were completely occluded at all time points other than 12 months. The
subclavian artery and brachiocephalic artery were patent, without significant stenosis.
All the side-branches of the subclavian artery detected on the preoperative angiogram
remained patent at the final assessment. Conclusion The use of hybrid stents for aneurysm repair and side-branch patency seems to be
effective, as per the long-term results obtained in an animal model.
Collapse
Affiliation(s)
- Shogo Nishi
- 1Department of Neurosurgery, Neuro-Intervention, Spinal Surgery, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
16
|
Abstract
Although the pulmonary capillaries were discovered in 1661, the ultrastructure of the wall was not elucidated until 60 years ago. Electron micrographs then showed that only 0.2 μm of tissue separated the capillary endothelium from the alveolar space over much of the area. In retrospect this vanishingly small protective layer should have alerted physiologists to the potential fragility of the capillaries, but this was not appreciated until almost 40 years later. This predicament is unique to pulmonary capillaries. No other capillaries in the body are shielded from the outside environment by such a minute amount of tissue. Reasons why the fragility of the capillaries was not recognized earlier include an inappropriate comparison with the properties of systemic capillaries, the mistaken view that the pulmonary capillary pressure is always low, and a misleading use of the Laplace equation. Evidence for the fragility comes from physiological, pathological, and laboratory observations. As expected from evolutionary considerations, the fragility only becomes evident in the normal lung under exceptional conditions. These include elite human athletes at maximal exercise and animals that have developed the capacity for extreme aerobic activity. However, lung and heart diseases frequently cause capillary disruption. Remodeling of pulmonary capillaries occurs in humans in whom the capillary pressure rises over a long period. Neonatal capillaries are extremely fragile, presumably because they have never been exposed to increased transmural pressures. The capillaries conform to the general biological rule that tissue adapts its structure to carry out its required function.
Collapse
Affiliation(s)
- John B West
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Shi Z, Neoh KG, Kang ET. In vitro endothelialization of cobalt chromium alloys with micro/nanostructures using adipose-derived stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1067-1077. [PMID: 23371765 DOI: 10.1007/s10856-013-4868-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
In this study, integrin expression, proliferation, and endothelial differentiation of adipose-derived stem cells (ADSCs) on pristine cobalt chrome (CoCr) surface, microstructured and nanostructured CoCr surfaces (obtained after treatment with piranha solution) were investigated. The results showed that proliferation of ADSCs on the substrates treated with piranha solution is not significantly different from that on the pristine substrates. However, quantitative real-time PCR analysis showed significantly enhanced up-regulation of CD31, vWF and eNOS from gene level by ADSCs on the nanostructured substrates but not on the microstructured substrates. The adsorption of vitronectin from the culture medium on the nanostructured substrates was higher than on the pristine and microstructured substrates. We speculate that this results in increased integrin αvβ3 expression in the ADSCs, which may contribute partially to the enhanced endothelial differentiation of ADSCs on the nanostructured substrates. This study shows that ADSCs can be used to endothelialize stents in vitro and the endothelial differentiation of ADSC is enhanced on the nanostructured surfaces.
Collapse
Affiliation(s)
- Zhilong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore, Singapore
| | | | | |
Collapse
|
18
|
Tan JY, Wen JC, Shi WH, He Q, Zhu L, Liang K, Shao ZZ, Yu B. Effect of microtopographic structures of silk fibroin on endothelial cell behavior. Mol Med Rep 2012; 7:292-8. [PMID: 23064224 DOI: 10.3892/mmr.2012.1127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/05/2012] [Indexed: 11/06/2022] Open
Abstract
Stent implantation has become the preferred revascularization treatment for occlusive blood vessel disease; however, there are occasionally complications resulting in re-narrowing of the treated artery. One approach to overcoming this problem is to establish a confluent monolayer of endothelial cells (ECs) on the stent, and a coating would facilitate the attachment of ECs. Silk fibroin was reported to be used as an ideal coating applied to stent for the culture of human ECs. The aim of the present study is to gain more insight into the influence of the internal microtopographical structure of silk fibroin on cell behavior, such as attachment and growth, and to further investigate its molecular mechanism using human umbilical vein ECs (HUVECs). Our results evaluated the effect of different microtopographical structures on cell behavior. In addition, we analyzed the cell cycle and investigated relevant molecules involved. The results indicated that the microtopographic structure of silk fibroin was associated with EC morphology, attachment and proliferation.
Collapse
Affiliation(s)
- Jin-Yun Tan
- Department of Surgery, Huashan Hospital of Fudan University, Shanghai 200040, PR China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nishi S, Nakayama Y, Ishibashi-Ueda H, Okamoto Y, Yoshida M. Development of microporous self-expanding stent grafts for treating cerebral aneurysms: designing micropores to control intimal hyperplasia. J Artif Organs 2011; 14:348-56. [PMID: 21698514 DOI: 10.1007/s10047-011-0581-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/01/2011] [Indexed: 11/30/2022]
Abstract
Treatment of large (diameter 12-25 mm) or giant (diameter >25 mm) cerebral aneurysms with a broad neck in the cranio-cervical area is difficult and carries relatively high risks, even with surgical and/or endovascular methods. To this end, we have been developing a high-performance, self-expanding stent graft which consists of a commercially available NiTi stent (diameter 5 mm, length 20 mm) initially covered with a thin microporous segmented polyurethane membrane fabricated by the dip-coating method. Micropores are then created by the excimer laser ablation technique, and the outer surface is coated with argatroban. There are 2 types of micropore patterns: circular-shaped pore type (pore: diameter 100 μm, opening ratio 12.6%) and the bale-shaped pore type (pore: size 100 × 268 μm, opening ratio 23.6%). This self-expanding stent graft was tested on side-wall aneurysms of both canine carotid arteries that were experimentally induced using the venous pouches from the external jugular veins, with the self-expanding stent graft on one side and a bare self-expanding stent on the other side. All carotid arteries were patent and free of marked stenosis after 1 month. All aneurysms were occluded by stent grafts, while patent in those treated with bare stents. Histologically, the stent grafts with bale-shaped micropores and a high opening ratio were associated with less intimal hyperplasia (187 ± 98 μm) than the bare stents (341 ± 146 μm) or the stent grafts with circular micropores and a low opening ratio (441 ± 129 μm). A pore ratio of 23.6% was found to control intimal growth.
Collapse
Affiliation(s)
- Shogo Nishi
- Department of Neurosurgery, Interventional Neurosurgery, and Spinal Surgery, Sapporo-Higashi Tokushukai Hospital, 14-3-1 Higashi, N33, Higashi-ku, Sapporo, Hokkaido 065-0033, Japan.
| | | | | | | | | |
Collapse
|
20
|
Enhancement of fibrinolytic activity in vascular endothelial cells by heterologous expression of adenine nucleotide translocase-1. Blood Coagul Fibrinolysis 2010; 21:272-8. [PMID: 20160640 DOI: 10.1097/mbc.0b013e328337b3dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The fibrinolytic activity of blood is regulated by expressing tissue-type plasminogen activator (t-PA) and its specific inhibitor, type-1 plasminogen activator inhibitor (PAI-1), from vascular endothelial cells. Since t-PA is a major plasminogen activator in blood, it is considered that the binding protein for t-PA, which exists on endothelial cell membrane, immobilizes t-PA on the surface of endothelial cells and enhances their antithrombotic property. Recently, we have found a new t-PA binding protein in endothelial cells. Its amino acid sequence has matched that of human adenine nucleotide translocase-1 (ANT1). The aims of this study are to confirm the binding of t-PA to ANT1, and to clarify the effect of ANT1 on fibrinolytic activity around endothelial cells. ANT1 is prepared from recombinant glutathione S-transferase (GST)-ANT1 fusion protein, and reveals t-PA binding activity in a ligand blot assay. In addition, ANT1 is exclusively expressed on endothelial cell membrane by using pDisplay vector. Interaction of t-PA with ANT1, which is expressed on the surface of endothelial cells, is confirmed by IAsys binding analysis and chromogenic assay. The heterologous expression of ANT1 on endothelial cell membrane enhances the t-PA binding ability of endothelial cells and the effect of ANT1 expression on fibrinolytic activity is demonstrated by increasing t-PA-catalyzed plasminogen activation. These results suggest that a novel t-PA-binding protein, ANT1, may concentrate t-PA on the surface of cells and enhance fibrinolytic properties around endothelial cells; therefore, ANT1 can be a powerful tool for regulating the plasminogen activation system in the vessel.
Collapse
|
21
|
Zarbiv G, Preis M, Ben-Yosef Y, Flugelman MY. Engineering blood vessels by gene and cell therapy. Expert Opin Biol Ther 2007; 7:1183-91. [PMID: 17696817 DOI: 10.1517/14712598.7.8.1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cardiovascular-related syndromes are the leading cause of morbidity and mortality worldwide. Arterial narrowing and blockage due to atherosclerosis cause reduced blood flow to the brain, heart and legs. Bypass surgery to improve blood flow to the heart and legs in these patients is performed in hundreds of thousands of patients every year. Autologous grafts, such as the internal thoracic artery and saphenous vein, are used in most patients, but in a significant number of patients such grafts are not available and synthetic grafts are used. Synthetic grafts have higher failure rates than autologous grafts due to thrombosis and scar formation within graft lumen. Cell and gene therapy combined with tissue engineering hold a great promise to provide grafts that will be biocompatible and durable. This review describes the field of vascular grafts in the context of tissue engineering using cell and gene therapies.
Collapse
Affiliation(s)
- Gabriel Zarbiv
- MultiGene Vascular Systems Ltd, Lady Davis Carmel Medical Center, Haifa, Israel
| | | | | | | |
Collapse
|
22
|
Gluzman Z, Koren B, Preis M, Cohen T, Tsaba A, Cosset FL, Shofti R, Lewis BS, Virmani R, Flugelman MY. Endothelial cells are activated by angiopoeitin-1 gene transfer and produce coordinated sprouting in vitro and arteriogenesis in vivo. Biochem Biophys Res Commun 2007; 359:263-8. [PMID: 17544375 DOI: 10.1016/j.bbrc.2007.05.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 05/10/2007] [Indexed: 11/25/2022]
Abstract
RATIONAL AND OBJECTIVES Activation of fully differentiated vascular cells using angiogenic genes can lead to phenotypic changes resulting in formation of new blood vessels. We tested whether Ang-1 gene transfer to endothelial cells (EC) activates these cells. METHODS AND RESULTS EC and SMC were transduced using retroviral or adenoviral vectors to produce Ang-1 or vascular endothelial growth factor (VEGF). EC Tie-2 receptor was phosphorilated by autologous secretion of Ang-1. Transduced EC and SMC sprouting capacity was tested using collagen embedded spheroids assay and capacity to produce arteriogenesis was tested in a hind limb model of ischemia. EC expressing Ang-1 in the presence of SMC expressing VEGF exhibited high levels of sprouting of the two cell types. Flow and numbers of arteries were increased after transduced cells implantation in vivo. CONCLUSIONS Autologous secretion of Ang-1 by transduced EC resulted in Tie-2 activation and in the presence of SMC expressing VEGF resulted in coordinated sprouting in vitro and increase in flow and number of arteries in vivo.
Collapse
Affiliation(s)
- Zoya Gluzman
- MultiGene Vascular Systems Ltd, Lady Davis Carmel Medical Center, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Preis M, Cohen T, Sarnatzki Y, Ben Yosef Y, Schneiderman J, Gluzman Z, Koren B, Lewis BS, Shaul Y, Flugelman MY. Effects of fibulin-5 on attachment, adhesion, and proliferation of primary human endothelial cells. Biochem Biophys Res Commun 2006; 348:1024-33. [PMID: 16904068 DOI: 10.1016/j.bbrc.2006.07.156] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Fibulin-5 is a novel extracellular protein that is thought to act as a bridging peptide between elastin fibers and cell surface integrins in blood vessel wall. Fibulin-5 binding to endothelial cell (EC) surface integrins may effect cell proliferation and cell attachment to extracellular matrix (ECM) or to artificial surfaces. In this paper, we describe the effects of fibulin-5 on attachment, adhesion, and proliferation of primary human EC. After demonstrating that fibulin-5 over-expression inhibited EC proliferation, we tested the hypothesis that co-expression of fibulin-5 and VEGF165 will lead to unique EC phenotype that will exhibit increased adherence properties and retain its proliferation capacity. METHODS AND RESULTS Fibulin-5 and VEGF165 gene transfer to primary human saphenous vein endothelial cells was accomplished using retroviral vectors encoding the two genes. Transgene expression was verified using immunohistochemistry, Western blotting, and ELISA. Fibulin 5 over-expression tended to improve immediate EC attachment (30 min after seeding) and improved significantly adhesion (>40%) under shear stress tested 24h after EC seeding. The effects of fibulin-5 and VEGF165 on EC proliferation in the presence or absence of basic FGF were also tested. EC expressing fibulin-5 had reduced proliferation while VEGF165 co-expression ameliorated this effect. CONCLUSION Fibulin-5 improved EC attachment to artificial surfaces. Dual transfer of fibulin-5 and VEGF165 resulted in EC phenotype with increased adhesion and improved proliferation. This unique EC phenotype can be useful for tissue engineering on endovascular prostheses.
Collapse
Affiliation(s)
- M Preis
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, 7 Michal Street, Haifa 34632, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brewster L, Brey E, Greisler H. Cardiovascular gene delivery: The good road is awaiting. Adv Drug Deliv Rev 2006; 58:604-29. [PMID: 16769148 PMCID: PMC3337725 DOI: 10.1016/j.addr.2006.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/24/2006] [Indexed: 01/13/2023]
Abstract
Atherosclerotic cardiovascular disease is a leading cause of death worldwide. Despite recent improvements in medical, operative, and endovascular treatments, the number of interventions performed annually continues to increase. Unfortunately, the durability of these interventions is limited acutely by thrombotic complications and later by myointimal hyperplasia followed by progression of atherosclerotic disease over time. Despite improving medical management of patients with atherosclerotic disease, these complications appear to be persisting. Cardiovascular gene therapy has the potential to make significant clinical inroads to limit these complications. This article will review the technical aspects of cardiovascular gene therapy; its application for promoting a functional endothelium, smooth muscle cell growth inhibition, therapeutic angiogenesis, tissue engineered vascular conduits, and discuss the current status of various applicable clinical trials.
Collapse
Affiliation(s)
- L.P. Brewster
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - E.M. Brey
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
| | - H.P. Greisler
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
- Corresponding author. Loyola University Medical Center, Department of Surgery, 2160 South First Avenue, Maywood, IL, 60153, USA. Tel.: +1 708 216 8541; fax: +1 708 216 6300. (H.P. Greisler)
| |
Collapse
|
26
|
Koren B, Weisz A, Fischer L, Gluzman Z, Preis M, Avramovitch N, Cohen T, Cosset FL, Lewis BS, Flugelman MY. Efficient transduction and seeding of human endothelial cells onto metallic stents using bicistronic pseudo-typed retroviral vectors encoding vascular endothelial growth factor. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2006; 7:173-8. [PMID: 16945825 DOI: 10.1016/j.carrev.2005.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 12/28/2005] [Accepted: 12/28/2005] [Indexed: 11/30/2022]
Abstract
BACKGROUND Stents seeded with genetically modified endothelial cells (EC) may provide an attractive therapeutic modality for treating vascular diseases by combining the mechanical properties of the metallic stent with the biologic activity of native or genetically engineered ECs. The clinical feasibility of implanting seeded stents depends on the ability to achieve adequate stent coverage within a clinically applicable time frame. We tested the hypothesis that this goal could be achieved by seeding stents with human ECs overexpressing vascular endothelial growth factor (VEGF) and by using an efficient gene transfer system. METHODS AND RESULTS Efficiency of gene transfer to human ECs using an amphotropic retroviral vector and a gibbon ape leukemia virus (GALV) pseudo-typed retroviral vector was examined and compared. For assessment of transduction rates, LacZ-encoding vectors were used and beta-galactosidase activity was determined 48 h after gene transfer. The transduction rate of primary human ECs using the amphotropic retroviral vector encoding the LacZ gene was low (2.9+/-2% of cells). Under the same conditions, the GALV pseudo-typed vector encoding LacZ transduced 94+/-2% of cells (P<.001). To test the effect of VEGF gene transfer on stent coverage, we transduced ECs using a bicistronic GALV pseudo-typed retroviral vector encoding either GFP alone or both VEGF and GFP. Since all transduced cells expressed GFP, stent coverage by ECs could be assessed by fluorescent inverted microscopy, which demonstrated that stent coverage by ECs overexpressing VEGF was more rapid and effective than coverage by ECs overexpressing GFP. Progressively increasing quantities of VEGF protein were detected in the conditioned medium of stents seeded with endothelia cells expressing VEGF 2, 3, and 5 days after seeding. CONCLUSIONS High-rate gene transfer to human primary ECs was observed 48 h after transduction with GALV pseudo-typed retroviral vectors, eliminating the need for the time-consuming process of cell selection. Seeding with ECs overexpressing VEGF improved stent coverage and was associated with continuing secretion of the protein. The findings provide support for the feasibility of implanting genetically engineered biologically active cellular-coated stents.
Collapse
Affiliation(s)
- Belly Koren
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Bruce Rappaport School of Medicine, Technion-IIT, Haifa 34362, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vara DS, Salacinski HJ, Kannan RY, Bordenave L, Hamilton G, Seifalian AM. Cardiovascular tissue engineering: state of the art. ACTA ACUST UNITED AC 2005; 53:599-612. [PMID: 16364812 DOI: 10.1016/j.patbio.2004.12.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 12/03/2004] [Indexed: 11/18/2022]
Abstract
In patients requiring coronary or peripheral vascular bypass procedures, autogenous arterial or vein grafts remain as the conduit of choice even in the case of redo patients. It is in this class of redo patients that often natural tissue of suitable quality becomes unavailable; so that prosthetic material is then used. Prosthetic grafts are liable to fail due to graft occlusion caused by surface thrombogenicity and lack of elasticity. To prevent this, seeding of the graft lumen with endothelial cells has been undertaken and recent clinical studies have evidenced patency rates approaching reasonable vein grafts. Recent advances have also looked at developing a completely artificial biological graft engineered from the patient's cells with surface and viscoelastic properties similar to autogenous vessels. This review encompasses both endothelialisation of grafts and the construction of biological cardiovascular conduits.
Collapse
Affiliation(s)
- Dina S Vara
- Biomaterial and Tissue Engineering Centre (BTEC), University Department of Surgery, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
28
|
Gulati R, Lerman A, Simari RD. Therapeutic uses of autologous endothelial cells for vascular disease. Clin Sci (Lond) 2005; 109:27-37. [PMID: 15966869 DOI: 10.1042/cs20050002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endothelial cells play important structural and functional roles in vascular homoeostasis. Perturbations in endothelial cell number and function are directly involved with the initiation and progression of multiple cardiovascular diseases, including atherosclerosis, hypertension and congestive heart failure. Attempts to modify these disorders have included pharmacological strategies to improve vascular and thus endothelial function. A goal of biological approaches to these disorders is the delivery of endothelial cells that might act to provide beneficial endothelial-derived factors. However, this approach has generally been limited by the lack of readily available autologous endothelial cells for delivery. The isolation of circulation-derived endothelial progenitor cells allows for direct access to autologous endothelial cells for preclinical and clinical studies. Preclinical studies using autologous endothelial cells have demonstrated beneficial effects when delivered in animal models of vascular injury and grafting. These effects are related to the endothelial nature of the cells and may be paracrine in nature. Ongoing studies are aimed at defining the nature of these effects and optimizing delivery strategies cognizant of these mechanisms.
Collapse
Affiliation(s)
- Rajiv Gulati
- Department of Cardiovascular Medicine, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
29
|
Abstract
Strategies that enhance the number of endothelial cells (ECs) in the vessel wall following injury may limit complications such as thrombosis, vasospasm, and neointimal formation through reconstitution of a luminal barrier and cellular secretion of paracrine factors. Proof of principle has been demonstrated by studies in which mature ECs, culture expanded from harvested vascular tissue, were seeded in the arterial wall following balloon injury. The recent identification of circulating cells capable of developing an endothelial phenotype, including progenitor cells, has raised the possibility of using blood-derived cells as therapeutic agents. This article reviews data suggesting that such cells confer vascular protective effects after injury, raising the potential for novel, autologous approaches to the treatment of vascular disease.
Collapse
Affiliation(s)
- Rajiv Gulati
- Department of Cardiovascular Medicine, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
30
|
Eton D, Yu H, Wang Y, Raines J, Striker G, Livingstone A. Endograft technology: a delivery vehicle for intravascular gene therapy. J Vasc Surg 2004; 39:1066-73. [PMID: 15111863 DOI: 10.1016/j.jvs.2003.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose of this study was to determine whether vascular smooth muscle cells (SMCs) suffused into a bilayered stent graft retain and express a retrovirally transduced gene for 7 months in vivo. METHODS SMCs harvested from dog jugular vein were retrovirally transduced to introduce genes for tissue plasminogen activator (t-PA) and beta-galactosidase. These cells were then suffused into a novel dual-layered Dacron graft and cultured for 36 to 48 hours. The grafts were mounted on a Palmaz stent and balloon- expanded in the infrarenal aorta of the SMC donor dogs (n = 6). Grafts were recovered at 1, 2, 3, 4, 5, and 7 months. A control endograft suffused with SMCs transduced with only the beta-galactosidase gene was placed in the dogs with grafts recovered at 2, 3, and 4 months. t-PA antigen concentration and expression were analyzed with an enzyme-linked immunosorbent assay. RESULTS Retained engineered SMCs (blue nuclei) were identified in the explanted grafts, neointima, and underlying aorta with X-gal staining. The t-PA antigen concentration and t-PA activity from the SMCs recovered from the grafts remained elevated for the duration of the experiment (7 months) at levels significantly higher (3.7 +/- 0.2 ng/mL per 10(5) cells per 24 hours and 1.4 +/- 0.1 IU/mL per 10(5) cells per 24 hours) than in control endografts (0.5 +/- 0.03 ng/mL per 10(5) cells per 24 hours and 0.07 +/- 0.00 IU/mL per 10(5) cells per 24 hours; P <.001). No graft stenosis was observed. CONCLUSION Retrovirally engineered vascular SMCs survived the implantation trauma, repopulated each graft, migrated into the underlying aorta, and expressed the transduced genes for the 7-month duration of the experiment. This bilayered Dacron endograft model provides a platform to study direct intravascular gene therapy.
Collapse
Affiliation(s)
- Darwin Eton
- Department of Surgery, University of Miami School of Medicine, Miami, Fla, USA
| | | | | | | | | | | |
Collapse
|
31
|
Shirota T, Yasui H, Shimokawa H, Matsuda T. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials 2003; 24:2295-302. [PMID: 12699666 DOI: 10.1016/s0142-9612(03)00042-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rapid re-endothelialization at an atherosclerotic lesion after balloon inflation or stent deployment may be essential for reducing or preventing local thrombus formation and restenosis. In order to prevent these complications via enhanced rapid re-endothelialization, we fabricated two types of endothelial progenitor cell (EPC)-seeded intravascular stent devices. One was a photocured gelatin-coated metallic stent, and the other was a microporous thin segmented polyurethane (SPU) film-covered stent on which photocured gelatin was coated. Both devices were seeded with ex vivo expanded EPCs obtained from canine peripheral blood. Seeded EPCs formed confluent monolayers onto surfaces of both photocured gelatin-coated stent struts and SPU film, and a majority of cells remained on surfaces of stents after stent expansion. The EPC-seeded stent was expanded in a tubular hybrid vascular medial tissue composed of vascular smooth muscle cells and collagen as an arterial media mimic. After 7-day culture, EPCs, which migrated from the stent struts, proliferated and endothelialized the luminal surfaces of the hybrid vascular medial tissue. This in vitro pilot study prior to in vivo experiments suggests that on-stent cell delivery of EPCs may be novel therapeutic devices for re-endothelialization or endothelium lining or paving at an atherosclerotic arterial wall, resulting in the prevention of on-stent thrombus formation and in-stent restenosis, as well as the rapid formation of normal tissue architecture.
Collapse
Affiliation(s)
- Toshihiko Shirota
- Department of Biomedical Engineering, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
Atherosclerosis is a major cause of morbidity and mortality in Western world. Vascular occlusion caused by atherosclerosis usually requires invasive treatment, such as surgical bypass or angioplasty. However, bypass graft failure and restenosis limit the usefulness of these procedures, with 20% of patients needing a new revascularisation procedure within 6 months of angioplasty. Numerous pharmacological agents have been investigated for the prevention of restenosis but none has shown undisputed efficacy in clinical medicine. Gene transfer offers a novel approach to the treatment of restenosis because of easy accessibility of vessels and already existing gene delivery methods. It can be used to overexpress therapeutically important proteins locally without high systemic toxicity, and the therapeutic effect can be targeted to a particular pathophysiological event. Promising results have been obtained from many pre-clinical experiments using therapeutic genes or oligonucleotides to prevent restenosis. Early clinical trials have shown that plasmid- and adenovirus-mediated vascular gene transfers can be conducted safely and are well tolerated. Ex vivo gene therapy with E2F-decoy succeeded in reducing graft occlusion rate after surgical bypass in a randomised, double-blind clinical trial. In the future, further development of gene delivery methods and vectors is needed to improve the efficacy and safety of gene therapy. Also, better knowledge of vascular biology at the molecular level is needed to find optimal strategies and gene combinations to treat restenosis. Provided that these difficulties can be solved, gene therapy offers an enormous potential for clinical medicine in the future.
Collapse
Affiliation(s)
- Juha Rutanen
- A. I. Virtanen Institute, University of Kuopio, Kuopio, Finland
| | | | | |
Collapse
|
33
|
Seifalian AM, Tiwari A, Hamilton G, Salacinski HJ. Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs 2002; 26:307-20. [PMID: 11952502 DOI: 10.1046/j.1525-1594.2002.06841.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In patients requiring coronary or peripheral vascular bypass procedures, autogenous vein is currently the conduit of choice. If this is unavailable, then a prosthetic material is used. Prosthetic graft is liable to fail due to occlusion of the graft. To prevent graft occlusion, seeding of the graft lumen with endothelial cells is undertaken. Recent advances have also looked at developing a completely artificial biological graft engineered from the patient's cells with properties similar to autogenous vessels. This review encompasses the developments in the two principal technologies used in developing hybrid coronary and peripheral vascular bypass grafts, that is, seeding and tissue engineering.
Collapse
Affiliation(s)
- Alexander M Seifalian
- Tissue Engineering Center, University Department of Surgery, Royal Free and University College Medical School, University College London and The Royal Free Hospital, U.K.
| | | | | | | |
Collapse
|
34
|
Panetta CJ, Miyauchi K, Berry D, Simari RD, Holmes DR, Schwartz RS, Caplice NM. A tissue-engineered stent for cell-based vascular gene transfer. Hum Gene Ther 2002; 13:433-41. [PMID: 11860710 DOI: 10.1089/10430340252792567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell-based gene transfer using a stent platform would provide a significant advantage in terms of site-specific gene expression in the vasculature. The current study presents a novel stent design that allows stable in vivo transgene expression over a 4-week period in the vasculature. A mesh-stent coated with fibronectin provided an excellent platform for adherent porcine smooth muscle cells (SMC). Autologous porcine SMC were stably transduced with a plasmid encoding green fluorescence protein (GFP), seeded at high density in the mesh-stent, and deployed in the porcine coronary artery. Stable in vivo GFP expression within the mesh-stent (5.2 x 10(5) GFP-positive cells/cm(2) mesh) was demonstrated 1 month after implantation in the porcine coronary artery by fluorescence microscopy and flow cytometry. No significant change in GFP positive cell number within the stent occurred over a 1-month period in vivo when compared to preinsertion. Angiographic and histologic analysis revealed mild neointimal proliferation and no inflammatory infiltrate in the stented segment. This study has implications for treatment of cardiovascular and other diseases where long-term cell-based delivery of transgene is a desirable therapeutic option.
Collapse
Affiliation(s)
- Carmelo J Panetta
- Division of Cardiovascular Diseases and Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The quest for biologic alternatives to stents and arterial grafts is a source of intense research at the basic and preclinical level. Several new devices and conduits currently under investigation may extend the uses of both stents and grafts beyond their current revascularization role into newer applications in the fields of regional pharmacology and gene therapy. This exciting prospect, although still unrealized, has general medical implications beyond cardiovascular disease. Development of such synergies between device, grafts, pharmacologic, molecular, and tissue engineering research is essential if the burgeoning data on new therapeutic genes is to be harnessed for clinical benefit.
Collapse
Affiliation(s)
- N M Caplice
- Division of Cardiovascular Diseases & Molecular Medicine Program, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Bordenave L, Rémy-Zolghadri M, Fernandez P, Bareille R, Midy D. Clinical performance of vascular grafts lined with endothelial cells. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2000; 6:267-75. [PMID: 10475090 DOI: 10.3109/10623329909078494] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The replacement of arteries with purely synthetic vascular prostheses often leads to the failure of such reconstructions when small-diameter or low-flow locations are concerned, due in part to the thrombogenicity of the internal graft surface. In order to improve long-term patency of these grafts, the concept of endothelial cell seeding has been suggested because this metabolically active endothelial surface plays major roles in preventing in vivo blood thrombosis and because vascular grafts placed in humans do not spontaneously form an endothelial monolayer whereas they do in animal models. The composite structure resulting from the combination of biologically active cells to prosthetic materials thus creates more biocompatible vascular substitutes. To achieve endothelialization of synthetic vascular grafts, previous efforts aimed at "one-stage" procedure (adding autologous endothelial cells to the graft at the time of implantation) in the 1980's seemed clinically feasible but results of reported clinical trials were controversial and mostly disappointing. An alternative method is an in vitro complete and preformed endothelial lining at the time of implantation: the "two-stage" procedure which implies harvest and culture of autologous endothelial cells. Up to date, the latter approach demonstrated its superiority in terms of significantly increased patency of the grafts that underwent endothelialization eight years earlier.
Collapse
Affiliation(s)
- L Bordenave
- INSERM U443-Université Victor Segalen Bordeaux 2, France.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Obstructive atherosclerotic vascular disease stands as one of the greatest public health threats in the world. While a number of therapies have been developed to combat vascular disease, endothelial cell delivery has emerged as a distinct therapeutic modality. In this article, we will review the anatomy of the normal blood vessel and the biology of the intact endothelium, focusing upon its centrality in vascular biology and control over the components of the vascular response to injury so as to understand better the motivation for a cell-based form of therapy. Our discussion of cell delivery for cardiovascular therapy will be divided into surgical and interventional approaches. We will briefly recount the development of artificial grafts for surgical vascular bypass before turning our attention towards endothelial cell seeded vascular grafts, in which endothelial cells effectively provide local delivery of endogenous endothelial secretory products to maintain prosthetic integrity after surgical implantation. New techniques in tissue and genetic engineering of vascular grafts and whole blood vessels will be presented. Methods for percutaneous interventions will be examined as well. We will evaluate results of endoluminal endothelial cell seeding for treatment of restenosis and gene therapy approaches to enhance endogenous re-endothelialization. Finally, we will examine some innovations in endothelial cell delivery that may lead to the development of endothelial cell implants as a novel therapy for controlling proliferative vascular arteriopathy.
Collapse
Affiliation(s)
- S A Parikh
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
38
|
Maillard L, Van Belle E, Tio FO, Rivard A, Kearney M, Branellec D, Steg PG, Isner JM, Walsh K. Effect of percutaneous adenovirus-mediated Gax gene delivery to the arterial wall in double-injured atheromatous stented rabbit iliac arteries. Gene Ther 2000; 7:1353-61. [PMID: 10981661 DOI: 10.1038/sj.gt.3301255] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Though the efficacy of intravascular gene transfer has been demonstrated in native vessels following acute injury, this methodology has not been validated in complex models of vascular injury that more closely mimic clinical angioplasty procedures. Previous studies have shown that Gax gene overexpression modulates the injury-induced remodeling of the vessel in rat carotid and normal rabbit iliac arteries. Here, we evaluated the effect of the Gax gene delivery in atheromatous stented vessels. Rabbits were fed 120 g daily of 1% cholesterol diet for 3 weeks. At 1 week they underwent initial injury on the external iliac artery, then balloon angioplasty was performed at 3 weeks at the same site with a 2.5 mm diameter channel balloon catheter (three times 1 min at 6 atm). Either saline (n = 4) or the control viral construct Ad-CMVluc (5 x 109 p.f.u.) (n = 5) or Ad-CMVGax (5 x 10(9) p.f.u.) (n = 4) was delivered with a poloxamer mixture via a channel balloon (6 atm, 30 min), and a 15 mm long Palmaz-Schatz stent (PS154) was then deployed at the site (1 min, 8 atm). Arteries were analyzed 1 month later. At 1 month, the Ad-CMVGax treated arteries exhibited a lower maximal intimal area (1. 15+/-0.1 mm2) than saline (1.87+/-0.15 mm2, P = 0.007) or Ad-CMVluc-treated vessels (1.98+/-0.31 mm2, P = 0.04). Likewise Ad-CMVGax-treated vessels displayed a lower maximal percentage cross-sectional area narrowing (35.1+/-3.5%) than saline (65.3+/-9.4%, P = 0.01) or Ad-CMVluc-treated vessels (62.7+/-6.7%, P = 0.02). Angiographic analysis revealed larger minimal lumen diameter in Ad-CMVGax treated arteries (2.0+/-0.1 mm) than saline (1.14+/-0.36 mm, P = 0.06) or Ad-CMVluc-treated vessels (1.23+/-0.25 mm, P = 0.02). Overexpression of the Gax gene inhibits neointimal hyperplasia and lumen loss in atheromatous stented rabbit iliac arteries.
Collapse
Affiliation(s)
- L Maillard
- Cardiologie A, D et USCI, Laboratoire de Biotechnologie et Génétique Expérimentale, Hôpital Trousseau, Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abrahams JM, Diamond SL, Hurst RW, Zager EL, Grady MS. Topic review: surface modifications enhancing biological activity of guglielmi detachable coils in treating intracranial aneurysms. SURGICAL NEUROLOGY 2000; 54:34-40; discussion 40-1. [PMID: 11024505 DOI: 10.1016/s0090-3019(00)00269-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Endovascular therapy with Guglielmi detachable coils is an accepted treatment option for patients with intracranial aneurysms. However, an emerging technology in the realm of endovascular tools is the use of traditional Guglielmi detachable coils with biologically active substances complexed to the coil surface to enhance aneurysm occlusion. METHODS We review the literature and current trends in modified Guglielmi detachable coils. Surface modifications with extracellular matrix proteins, growth factors, ion impregnation, and genetically altered cells have been used in animal studies to improve the cellular response of Guglielmi detachable coils. Similarly, coronary artery stents have been modified in several different ways to maintain vessel patency, contrary to the goal of endovascular therapy. We comparatively reviewed this literature to add insight into the evolution of the research on modified Guglielmi detachable coils. CONCLUSIONS Guglielmi detachable coil modifications have the potential to enhance aneurysm obliteration with directed cellular responses. This may allow aneurysm occlusion with coils in less time than untreated coils, thus decreasing the risks of aneurysm enlargement and hemorrhage.
Collapse
Affiliation(s)
- J M Abrahams
- Department of Neurosurgery, The Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
40
|
Auger F, Rémy-Zolghadri M, Grenier G, Germain L. Review: The Self-Assembly Approach for Organ Reconstruction by Tissue Engineering. ACTA ACUST UNITED AC 2000. [DOI: 10.1089/152489000414642] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Cloft HJ, Kallmes DF, Lin HB, Li ST, Marx WF, Hudson SB, Helm GA, Lopes MB, McGraw JK, Dion JE, Jensen ME. Bovine type I collagen as an endovascular stent-graft material: biocompatibility study in rabbits. Radiology 2000; 214:557-62. [PMID: 10671611 DOI: 10.1148/radiology.214.2.r00fe21557] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To study the biocompatibility of a bovine type I collagen preparation as a material for small-vessel stent-grafts in rabbits. MATERIALS AND METHODS A composite nitinol-collagen endovascular stent-graft with a 4-mm inner diameter was deployed in the abdominal aorta in nine rabbits. Angiography was performed, and the rabbits were sacrificed at 1, 2, and 7 days and at 1 and 3 months. The portion of the aorta containing the stent-graft was excised and was histologically evaluated. RESULTS All stent-grafts were patent at all time points. On days 1, 2, and 7 after implantation, scattered red and white blood cells adhered to the stent-graft. At 1 month, the stent-graft was endothelialized and was infiltrated with fibroblasts that deposited collagen within the interstices of the implanted collagen material. At 3 months, there was additional collagen deposition within the interstices of the stent-graft that did not narrow the lumen of the stent-grafts. CONCLUSION Type I collagen as a intravascular stent-graft material is biocompatible for at least 3 months in rabbits. It is rapidly endothelialized and does not cause reactive stenosis. As a versatile and biocompatible polymer, collagen is potentially useful in the construction of endovascular stent-grafts for use in human arteries.
Collapse
Affiliation(s)
- H J Cloft
- Dept of Radiology, University of Virginia Health Sciences Center, Charlottesville, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Eton D, Terramani TT, Wang Y, Takahashi AM, Nigro JJ, Tang L, Yu H. Genetic engineering of stent grafts with a highly efficient pseudotyped retroviral vector. J Vasc Surg 1999; 29:863-73. [PMID: 10231638 DOI: 10.1016/s0741-5214(99)70214-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this study was first to compare the gene transfer efficiency of amphotrophic murine leukemia viral vector (ampho-MuLV) with the efficiency of MuLV pseudotyped with the vesicular stomatitis virus G glycoprotein (VSVG-MuLV) in tissue of vascular origin. The second purpose of this study was to determine cell retention after the implantation of genetically engineered stent grafts. METHODS Gene transfer efficiency was ascertained with the b-galactosidase assay. The target tissues included endothelial cells (ECs), smooth muscle cells (SMCs), and human saphenous veins (HSVs). Polyurethane stent grafts were suffused with lac Z-transduced ECs and SMCs that were harvested from porcine jugular vein. The grafts were implanted into the iliac artery of each pig whose jugular vein had been harvested. Cell retention was analyzed at 1 and 4 weeks with X-Gal staining. RESULTS VSVG-MuLV transduction efficiency exceeded that of ampho-MuLV in human ECs (VSVG-MuLV, n = 24, 89% +/- 6%; ampho-MuLV, n = 18, 14% +/- 6%; P <. 001), human SMCs (VSVG-MuLV, n = 5, 92% +/- 3%; ampho-MuLV, n = 4, 17% +/- 2%; P <.001), pig ECs (VSVG-MuLV, n = 4, 81% +/- 2%; ampho-MuLV, n = 4, 13% +/- 3%; P <.001), and pig SMCs (VSVG-MuLV, n = 5, 89% +/- 3%; ampho-MuLV, n = 4, 16% +/- 1%; P <.001). As much as a 10-fold higher transduction efficiency was observed with VSVG-MuLV in HSVs. After the stent graft implantation, the engineered cells were retained and proliferated on the stent membrane, with ingrowth into the underlying intima. CONCLUSION VSVG-MuLV significantly increased the gene transfer efficiency in vascular SMCs and ECs and in organ-cultured HSVs. The cells were retained and proliferated on stent grafts for the short term in the pig.
Collapse
Affiliation(s)
- D Eton
- Division of Vascular Surgery, Department of Surgery, University of Southern California, Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Bertrand OF, Sipehia R, Mongrain R, Rodés J, Tardif JC, Bilodeau L, Côté G, Bourassa MG. Biocompatibility aspects of new stent technology. J Am Coll Cardiol 1998; 32:562-71. [PMID: 9741494 DOI: 10.1016/s0735-1097(98)00289-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stent implantation represents a major step forward since the introduction of coronary angioplasty. As indications continue to expand, better understanding of the early and late biocompatibility issues appears critical. Persisting challenges to the use of intracoronary stents include the prevention of early thrombus formation and late neointima development. Different metals and designs have been evaluated in animal models and subsequently in patients. Polymer coatings have been proposed to improve the biocompatibility of metallic stents or to serve as matrix for drug delivery and they are currently undergoing clinical studies. The promises of a biodegradable stent have not yet been fulfilled although encouraging results have recently been reported. Continuous low dose-rate brachytherapy combining the scaffolding effect of the stent with localized radiation therapy has witnessed the development and early clinical testing of radioactive stents. The combined efforts of basic scientists and clinicians will undoubtedly contribute to the improvement of stent biocompatibility in the future.
Collapse
Affiliation(s)
- O F Bertrand
- Research Center, Montreal Heart Institute, Division of Experimental Medicine, McGill University, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Adenovirus-Mediated Transfer of Tissue-Type Plasminogen Activator Augments Thrombolysis in Tissue-Type Plasminogen Activator–Deficient and Plasminogen Activator Inhibitor-1–Overexpressing Mice. Blood 1997. [DOI: 10.1182/blood.v90.4.1527.1527_1527_1534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Impaired fibrinolysis, resulting from increased plasminogen activator inhibitor-1 (PAI-1) or reduced tissue-type plasminogen activator (t-PA) plasma levels, may predispose the individual to subacute thrombosis in sepsis and inflammation. The objective of these studies was to show that adenovirus-mediated gene transfer could increase systemic plasma t-PA levels and thrombolytic capacity in animal model systems. Recombinant adenovirus vectors were constructed that express either human wild type or PAI-1–resistant t-PA from the cytomegalovirus (CMV) promoter. Both t-PA-deficient (t-PA−/−) and PAI-1–overexpressing transgenic mice were infected by intravenous injection of these viruses. Intravenous injection of recombinant adenovirus resulted in liver gene transfer, t-PA synthesis, and secretion into the plasma. Virus dose, human t-PA antigen, and activity concentrations in plasma and extent of lysis of a 125I-fibrin–labeled pulmonary embolism were all closely correlated. Plasma t-PA antigen and activity were increased approximately 1,000-fold above normal levels. Clot lysis was significantly increased in mice injected with a t-PA–expressing virus, but not in mice injected with saline or an irrelevant adenovirus. Comparable levels of enzyme activity and clot lysis were obtained with wild type and inhibitor-resistant t-PA viruses. Adenovirus-mediated t-PA gene transfer was found to augment clot lysis as early as 4 hours after infection, but expression levels subsided within 7 days. Adenovirus-mediated transfer of a t-PA gene can effectively increase plasma fibrinolytic activity and either restore (in t-PA–deficient mice) or augment (in PAI-1–overexpressing mice) the thrombolytic capacity in simple animal models of defective fibrinolysis.
Collapse
|
45
|
Adenovirus-Mediated Transfer of Tissue-Type Plasminogen Activator Augments Thrombolysis in Tissue-Type Plasminogen Activator–Deficient and Plasminogen Activator Inhibitor-1–Overexpressing Mice. Blood 1997. [DOI: 10.1182/blood.v90.4.1527] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractImpaired fibrinolysis, resulting from increased plasminogen activator inhibitor-1 (PAI-1) or reduced tissue-type plasminogen activator (t-PA) plasma levels, may predispose the individual to subacute thrombosis in sepsis and inflammation. The objective of these studies was to show that adenovirus-mediated gene transfer could increase systemic plasma t-PA levels and thrombolytic capacity in animal model systems. Recombinant adenovirus vectors were constructed that express either human wild type or PAI-1–resistant t-PA from the cytomegalovirus (CMV) promoter. Both t-PA-deficient (t-PA−/−) and PAI-1–overexpressing transgenic mice were infected by intravenous injection of these viruses. Intravenous injection of recombinant adenovirus resulted in liver gene transfer, t-PA synthesis, and secretion into the plasma. Virus dose, human t-PA antigen, and activity concentrations in plasma and extent of lysis of a 125I-fibrin–labeled pulmonary embolism were all closely correlated. Plasma t-PA antigen and activity were increased approximately 1,000-fold above normal levels. Clot lysis was significantly increased in mice injected with a t-PA–expressing virus, but not in mice injected with saline or an irrelevant adenovirus. Comparable levels of enzyme activity and clot lysis were obtained with wild type and inhibitor-resistant t-PA viruses. Adenovirus-mediated t-PA gene transfer was found to augment clot lysis as early as 4 hours after infection, but expression levels subsided within 7 days. Adenovirus-mediated transfer of a t-PA gene can effectively increase plasma fibrinolytic activity and either restore (in t-PA–deficient mice) or augment (in PAI-1–overexpressing mice) the thrombolytic capacity in simple animal models of defective fibrinolysis.
Collapse
|
46
|
Sugawara Y, Sakata Y, Minowada S, Hamada H, Yoshida Y, Sato O, Deguchi J, Kimura H, Namba T, Makuuchi M, Miyata T. Adenovirus-mediated transfer of tissue-type plasminogen activator gene to human endothelial cells. Surgery 1997; 122:91-100. [PMID: 9225920 DOI: 10.1016/s0039-6060(97)90269-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Seeding of vascular grafts with genetically engineered human endothelial cells (hECs) secreting antithrombogenic or fibrinolytic agents has considerable clinical potential. METHODS An adenoviral vector was used to transfer the human tissue-type plasminogen activator (htPA) gene to hECs, and the ability of the transduced hECs to secrete htPA was examined. Cultured hECs on plates were incubated with various concentrations of recombinant adenoviruses containing the htPA or LacZ gene for various times to determine the optimal transfer conditions. Transduced hECs were seeded onto fibronectin-coated expanded polytetrafluoroethylene grafts (4 mm in diameter), some of which were exposed to pulsatile flow in vitro. RESULTS Effective transduction of the htPA gene into hECs (htPAhECs) was achieved with viral soup at a multiplicity of infection of 30 after incubation for 1 day, which yielded 4.8 +/- 0.20 x 10(3) ng/10(6) cells/6 hr htPA antigen on plates (n = 3), 2.2 +/- 2.0 x 10(3) ng/10(6) cells/6 hr on grafts (n = 6), and 6.8 +/- 1.7 x 10(2) ng/10(6) cells/6 hr on perfused grafts (n = 6). The retention of htPAhECs by perfused grafts was 84.0% +/- 3.0%, comparable with the noninfected (82.1% +/- 8.0%) and mock-infected (94.2% +/- 0.4%) hEC values. CONCLUSIONS By adenoviral vector-mediated gene transfer, 10(2-3)-fold enhancement of htPA secretion was demonstrated, which did not affect cell retention by grafts.
Collapse
Affiliation(s)
- Y Sugawara
- Second Department of Surgery, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Van Belle E, Tio FO, Chen D, Maillard L, Chen D, Kearney M, Isner JM. Passivation of metallic stents after arterial gene transfer of phVEGF165 inhibits thrombus formation and intimal thickening. J Am Coll Cardiol 1997; 29:1371-9. [PMID: 9137238 DOI: 10.1016/s0735-1097(97)00049-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES This study sought to test the hypothesis that direct gene transfer of an endothelial cell mitogen could passivate metallic stents by accelerating endothelialization of the prosthesis. BACKGROUND Thrombosis and restenosis comprise the principal clinical manifestations of compromised biocompatibility of endovascular stents. Previous studies have demonstrated that endothelial recovery at sites of balloon injury is a critical determinant of consequent intimal thickening and mural thrombus. We therefore investigated the potential for an endothelial cell mitogen delivered as plasmid DNA to optimize stent biocompatibility. METHODS Naked plasmid DNA encoding vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF) (phVEGF165) was delivered locally using a hydrogel-coated balloon angioplasty catheter to 16 rabbit iliac arteries in which metallic stents had been placed at the site of balloon injury; the contralateral iliac artery of each rabbit was balloon injured and stented but not transfected. RESULTS Stent endothelialization was accelerated by phVEGF165 gene transfer (87.38 +/- 5.06% vs. 33.13 +/- 9.73% [mean +/- SEM] of the planimetered stent surface in the treated vs. contralateral limb, p = 0.005). This was associated with a significant reduction in mural thrombus (3.7 +/- 2.4% vs. 32.7 +/- 9.7%, p = 0.01) at day 7 and intimal thickening (maximal intimal area 0.61 +/- 0.09 vs. 1.44 +/- 0.12 mm2, p < 0.0001) at day 28. No benefit was observed from pCMV-luciferase in 14 similarly instrumented control rabbits. CONCLUSIONS These findings indicate that arterial gene transfer of naked plasmid DNA encoding for an endothelial cell mitogen may successfully passivate endovascular stents by accelerating stent endothelialization, thereby reducing in-stent thrombus and obstruction due to intimal thickening.
Collapse
Affiliation(s)
- E Van Belle
- Department of Medicine, (Cardiology), St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Sackman JE, Wymore AM, Reddick TT, Freeman MB, Stevens SL, Goldman MH. Retroviral mediated gene transduction alters integrin expression on vascular endothelial cells. J Surg Res 1997; 69:45-50. [PMID: 9202645 DOI: 10.1006/jsre.1997.5025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetically recombinant endothelial cells (rEC) may improve the patency of small diameter vascular grafts by preventing thrombosis or limiting neointimal hyperplasia. Previous work has shown that rEC have reduced adhesion to vascular bypass grafts in vivo. Poor adhesion may be due to altered adhesion (integrin) receptors. This study evaluated the expression of the alpha 5 beta 1 (fibronectin), alpha 2 beta 1 (collagen IV), and alpha v beta 3 (vitronectin) integrin subunits on rEC. Human umbilical vein EC or canine jugular vein EC were transduced with neoR, neoR and human tPA or hygromycin resistance genes using retroviral vectors. Naive EC and EC exposed to empty viral particles (mEC) were controls. Naive EC, mEC, and all rEC's were evaluated for alpha and beta subunits for each integrin receptor studied using immunoblotting. Blotting for alpha 2, alpha 5, and alpha v exhibited expression of the alpha integrin subunits in all cells. The beta 1 and beta 3 subunits were present in mEC and nEC but were absent or truncated in all rEC. The decreased adhesion of rEC's to synthetic vascular grafts may be accounted for by their altered beta 1 and beta 3 integrin subunit expression. The beta subunit is critical for organization of the cytoskeleton and cellular signal transduction. Diminished beta subunit expression in rEC is neither vector specific nor related to retroviral exposure alone. Alteration of beta integrin expression may be to associated with the over-expression of phosphotransferase genes such as neoR or hygromycin B used as selectable markers in gene transfer protocols.
Collapse
Affiliation(s)
- J E Sackman
- Department of Surgery, University of Tennessee Medical Center, Knoxville 37920, USA
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Sackman JE, Cezeaux JL, Reddick TT, Freeman MB, Stevens SL, Goldman MH. Evaluation of the Effect of Retroviral Gene Transduction on Vascular Endothelial Cell Adhesion. ACTA ACUST UNITED AC 1996; 2:223-34. [DOI: 10.1089/ten.1996.2.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jill E. Sackman
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Tennessee 37920
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37901
| | - Judy L. Cezeaux
- Department of Mechanical and Aerospace Engineering and Engineering Science. University of Tennessee, Knoxville, Tennessee 37996
| | - Tonya T. Reddick
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Tennessee 37920
| | - Michael B. Freeman
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Tennessee 37920
| | - Scott L. Stevens
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Tennessee 37920
| | - Mitchell H. Goldman
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Tennessee 37920
| |
Collapse
|