1
|
Dowrick JM, Taberner AJ, Han JC, Tran K. Methods for assessing cardiac myofilament calcium sensitivity. Front Physiol 2023; 14:1323768. [PMID: 38116581 PMCID: PMC10728676 DOI: 10.3389/fphys.2023.1323768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Myofilament calcium (Ca2+) sensitivity is one of several mechanisms by which force production of cardiac muscle is modulated to meet the ever-changing demands placed on the heart. Compromised Ca2+ sensitivity is associated with pathologies, which makes it a parameter of interest for researchers. Ca2+ Sensitivity is the ratio of the association and dissociation rates between troponin C (TnC) and Ca2+. As it is not currently possible to measure these rates in tissue preparations directly, methods have been developed to infer myofilament sensitivity, typically using some combination of force and Ca2+ measurements. The current gold-standard approach constructs a steady-state force-Ca2+ relation by exposing permeabilised muscle samples to a range of Ca2+ concentrations and uses the half-maximal concentration as a proxy for sensitivity. While a valuable method for steady-state investigations, the permeabilisation process makes the method unsuitable when examining dynamic, i.e., twitch-to-twitch, changes in myofilament sensitivity. The ability of the heart to transiently adapt to changes in load is an important consideration when evaluating the impact of disease states. Alternative methods have been proffered, including force-Ca2+ phase loops, potassium contracture, hybrid experimental-modelling and conformation-based fluorophore approaches. This review provides an overview of the mechanisms underlying myofilament Ca2+ sensitivity, summarises existing methods, and explores, with modelling, whether any of them are suited to investigating dynamic changes in sensitivity. We conclude that a method that equips researchers to investigate the transient change of myofilament Ca2+ sensitivity is still needed. We propose that such a method will involve simultaneous measurements of cytosolic Ca2+ and TnC activation in actively twitching muscle and a biophysical model to interpret these data.
Collapse
Affiliation(s)
- Jarrah M. Dowrick
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science and Biomedical Engineering, University of Auckland, Auckland, New Zealand
| | - June-Chiew Han
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Dvornikov AV, Bunch TA, Lepak VC, Colson BA. Fluorescence lifetime-based assay reports structural changes in cardiac muscle mediated by effectors of contractile regulation. J Gen Physiol 2023; 155:e202113054. [PMID: 36633587 PMCID: PMC9859762 DOI: 10.1085/jgp.202113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiac muscle contraction is regulated by Ca2+-induced structural changes of the thin filaments to permit myosin cross-bridge cycling driven by ATP hydrolysis in the sarcomere. In congestive heart failure, contraction is weakened, and thus targeting the contractile proteins of the sarcomere is a promising approach to therapy. However, development of novel therapeutic interventions has been challenging due to a lack of precise discovery tools. We have developed a fluorescence lifetime-based assay using an existing site-directed probe, N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD) attached to human cardiac troponin C (cTnC) mutant cTnCT53C, exchanged into porcine cardiac myofibrils. We hypothesized that IANBD-cTnCT53C fluorescence lifetime measurements provide insight into the activation state of the thin filament. The sensitivity and precision of detecting structural changes in cTnC due to physiological and therapeutic modulators of thick and thin filament functions were determined. The effects of Ca2+ binding to cTnC and myosin binding to the thin filament were readily detected by this assay in mock high-throughput screen tests using a fluorescence lifetime plate reader. We then evaluated known effectors of altered cTnC-Ca2+ binding, W7 and pimobendan, and myosin-binding drugs, mavacamten and omecamtiv mecarbil, used to treat cardiac diseases. Screening assays were determined to be of high quality as indicated by the Z' factor. We conclude that cTnC lifetime-based probes allow for precise evaluation of the thin filament activation in functioning myofibrils that can be used in future high-throughput screens of small-molecule modulators of function of the thin and thick filaments.
Collapse
Affiliation(s)
- Alexey V. Dvornikov
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Thomas A. Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Victoria C. Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Brett A. Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Martin AA, Thompson BR, Davis JP, Vang H, Hahn D, Metzger JM. Sarcomere dynamics revealed by a myofilament integrated FRET-based biosensor in live skeletal muscle fibers. Sci Rep 2022; 12:18116. [PMID: 36302792 PMCID: PMC9613882 DOI: 10.1038/s41598-022-21425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
The sarcomere is the functional unit of skeletal muscle, essential for proper contraction. Numerous acquired and inherited myopathies impact sarcomere function causing clinically significant disease. Mechanistic investigations of sarcomere activation have been challenging to undertake in the context of intact, live skeletal muscle fibers during real time physiological twitch contractions. Here, a skeletal muscle specific, intramolecular FRET-based biosensor was designed and engineered into fast skeletal muscle troponin C (TnC) to investigate the dynamics of sarcomere activation. In transgenic animals, the TnC biosensor incorporated into the skeletal muscle fiber sarcomeres by stoichiometric replacement of endogenous TnC and did not alter normal skeletal muscle contractile form or function. In intact single adult skeletal muscle fibers, real time twitch contractile data showed the TnC biosensor transient preceding the peak amplitude of contraction. Importantly, under physiological temperatures, inactivation of the TnC biosensor transient decayed significantly more slowly than the Ca2+ transient and contraction. The uncoupling of the TnC biosensor transient from the Ca2+ transient indicates the biosensor is not functioning as a Ca2+ transient reporter, but rather reports dynamic sarcomere activation/ inactivation that, in turn, is due to the ensemble effects of multiple activating ligands within the myofilaments. Together, these findings provide the foundation for implementing this new biosensor in future physiological studies investigating the mechanism of activation of the skeletal muscle sarcomere in health and disease.
Collapse
Affiliation(s)
- Ashley A Martin
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Hluechy Vang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Dongwoo Hahn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Metzger JM. The road to physiological maturation of stem cell-derived cardiac muscle runs through the sarcomere. J Mol Cell Cardiol 2022; 170:117-120. [PMID: 35752207 DOI: 10.1016/j.yjmcc.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Recent advances the cardiac biomedical sciences have been propelled forward by the development and implementation of human iPSC-derived cardiac muscle. These notable successes notwithstanding, it is well recognized in the field that a major roadblock persists in the lack of full "adult cardiac muscle-like" maturation of hiPSC-CMs. This Perspective centers focus on maturation roadblocks in the essential physiological unit of muscle, the sarcomere. Stalled sarcomere maturation must be addressed and overcome before this elegant experimental platform can reach the mountaintop of making impactful contributions in disease pathogenesis, drug discovery, and in clinical regenerative medicine.
Collapse
Affiliation(s)
- Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Sarcomere integrated biosensor detects myofilament-activating ligands in real time during twitch contractions in live cardiac muscle. J Mol Cell Cardiol 2020; 147:49-61. [PMID: 32791214 DOI: 10.1016/j.yjmcc.2020.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022]
Abstract
The sarcomere is the functional unit of cardiac muscle, essential for normal heart function. To date, it has not been possible to study, in real time, thin filament-based activation dynamics in live cardiac muscle. We report here results from a cardiac troponin C (TnC) FRET-based biosensor integrated into the cardiac sarcomere via stoichiometric replacement of endogenous TnC. The TnC biosensor provides, for the first time, evidence of multiple thin filament activating ligands, including troponin I interfacing with TnC and cycling myosin, during a cardiac twitch. Results show that the TnC FRET biosensor transient significantly precedes that of peak twitch force. Using small molecules and genetic modifiers known to alter sarcomere activation, independently of the intracellular Ca2+ transient, the data show that the TnC biosensor detects significant effects of the troponin I switch domain as a sarcomere-activating ligand. Interestingly, the TnC biosensor also detected the effects of load-dependent altered myosin cycling, as shown by a significant delay in TnC biosensor transient inactivation during the isometric twitch. In addition, the TnC biosensor detected the effects of myosin as an activating ligand during the twitch by using a small molecule that directly alters cross-bridge cycling, independently of the intracellular Ca2+ transient. Collectively, these results aid in illuminating the basis of cardiac muscle contractile activation with implications for gene, protein, and small molecule-based strategies designed to target the sarcomere in regulating beat-to-beat heart performance in health and disease.
Collapse
|
6
|
Li KL, Methawasin M, Tanner BCW, Granzier HL, Solaro RJ, Dong WJ. Sarcomere length-dependent effects on Ca 2+-troponin regulation in myocardium expressing compliant titin. J Gen Physiol 2018; 151:30-41. [PMID: 30523116 PMCID: PMC6314383 DOI: 10.1085/jgp.201812218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/01/2018] [Indexed: 11/20/2022] Open
Abstract
Increases in sarcomere length cause enhanced force generation in cardiomyocytes by an unknown mechanism. Li et al. reveal that titin-based passive tension contributes to length-dependent activation of myofilaments and that tightly bound myosin–actin cross-bridges are associated with this effect. Cardiac performance is tightly regulated at the cardiomyocyte level by sarcomere length, such that increases in sarcomere length lead to sharply enhanced force generation at the same Ca2+ concentration. Length-dependent activation of myofilaments involves dynamic and complex interactions between a multitude of thick- and thin-filament components. Among these components, troponin, myosin, and the giant protein titin are likely to be key players, but the mechanism by which these proteins are functionally linked has been elusive. Here, we investigate this link in the mouse myocardium using in situ FRET techniques. Our objective was to monitor how length-dependent Ca2+-induced conformational changes in the N domain of cardiac troponin C (cTnC) are modulated by myosin–actin cross-bridge (XB) interactions and increased titin compliance. We reconstitute FRET donor- and acceptor-modified cTnC(13C/51C)AEDANS-DDPM into chemically skinned myocardial fibers from wild-type and RBM20-deletion mice. The Ca2+-induced conformational changes in cTnC are quantified and characterized using time-resolved FRET measurements as XB state and sarcomere length are varied. The RBM20-deficient mouse expresses a more compliant N2BA titin isoform, leading to reduced passive tension in the myocardium. This provides a molecular tool to investigate how altered titin-based passive tension affects Ca2+-troponin regulation in response to mechanical stretch. In wild-type myocardium, we observe a direct association of sarcomere length–dependent enhancement of troponin regulation with both Ca2+ activation and strongly bound XB states. In comparison, measurements from titin RBM20-deficient animals show blunted sarcomere length–dependent effects. These results suggest that titin-based passive tension contributes to sarcomere length–dependent Ca2+-troponin regulation. We also conclude that strong XB binding plays an important role in linking the modulatory effect of titin compliance to Ca2+-troponin regulation of the myocardium.
Collapse
Affiliation(s)
- King-Lun Li
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Bertrand C W Tanner
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - R John Solaro
- The Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Wen-Ji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA .,Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
7
|
Ait Mou Y, Lacampagne A, Irving T, Scheuermann V, Blot S, Ghaleh B, de Tombe PP, Cazorla O. Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy. J Mol Cell Cardiol 2017; 114:345-353. [PMID: 29275006 DOI: 10.1016/j.yjmcc.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
Abstract
AIM Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD. OBJECTIVE The objective of this study is to evaluate myofilament structure and function alterations in GRMD model with spontaneous cardiac failure. METHODS AND RESULTS We have employed synchrotron X-rays diffraction to evaluate myofilament lattice spacing at various sarcomere lengths (SL) on permeabilized LV myocardium. We found a negative correlation between SL and lattice spacing in both sub-epicardium (EPI) and sub-endocardium (ENDO) LV layers in control dog hearts. In the ENDO of GRMD hearts this correlation is steeper due to higher lattice spacing at short SL (1.9μm). Furthermore, cross-bridge cycling indexed by the kinetics of tension redevelopment (ktr) was faster in ENDO GRMD myofilaments at short SL. We measured post-translational modifications of key regulatory contractile proteins. S-glutathionylation of cardiac Myosin Binding Protein-C (cMyBP-C) was unchanged and PKA dependent phosphorylation of the cMyBP-C was significantly reduced in GRMD ENDO tissue and more modestly in EPI tissue. CONCLUSIONS We found a gradient of contractility in control dogs' myocardium that spreads across the LV wall, negatively correlated with myofilament lattice spacing. Chronic stress induced by dystrophin deficiency leads to heart failure that is tightly associated with regional structural changes indexed by increased myofilament lattice spacing, reduced phosphorylation of regulatory proteins and altered myofilament contractile properties in GRMD dogs.
Collapse
Affiliation(s)
- Younss Ait Mou
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar; Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alain Lacampagne
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Physiologie et Médecine Expérimentale du cœur et des muscles - PHYMEDEXP, CHU Arnaud de Villeneuve, 34295 Montpellier cedex 05, France
| | - Thomas Irving
- Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, IL 60153, USA; Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Valérie Scheuermann
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Physiologie et Médecine Expérimentale du cœur et des muscles - PHYMEDEXP, CHU Arnaud de Villeneuve, 34295 Montpellier cedex 05, France
| | - Stéphane Blot
- Inserm U955-E10, IMRB, Université Paris Est, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort 94700, France
| | | | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, IL 60153, USA
| | - Olivier Cazorla
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Physiologie et Médecine Expérimentale du cœur et des muscles - PHYMEDEXP, CHU Arnaud de Villeneuve, 34295 Montpellier cedex 05, France..
| |
Collapse
|
8
|
Bohlooli Ghashghaee N, Tanner BCW, Dong WJ. Functional significance of C-terminal mobile domain of cardiac troponin I. Arch Biochem Biophys 2017; 634:38-46. [PMID: 28958680 DOI: 10.1016/j.abb.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 01/22/2023]
Abstract
Ca2+-regulation of cardiac contractility is mediated through the troponin complex, which comprises three subunits: cTnC, cTnI, and cTnT. As intracellular [Ca2+] increases, cTnI reduces its binding interactions with actin to primarily interact with cTnC, thereby enabling contraction. A portion of this regulatory switching involves the mobile domain of cTnI (cTnI-MD), the role of which in muscle contractility is still elusive. To study the functional significance of cTnI-MD, we engineered two cTnI constructs in which the MD was truncated to various extents: cTnI(1-167) and cTnI(1-193). These truncations were exchanged for endogenous cTnI in skinned rat papillary muscle fibers, and their influence on Ca2+-activated contraction and cross-bridge cycling kinetics was assessed at short (1.9 μm) and long (2.2 μm) sarcomere lengths (SLs). Our results show that the cTnI(1-167) truncation diminished the SL-induced increase in Ca2+-sensitivity of contraction, but not the SL-dependent increase in maximal tension, suggesting an uncoupling between the thin and thick filament contributions to length dependent activation. Compared to cTnI(WT), both truncations displayed greater Ca2+-sensitivity and faster cross-bridge attachment rates at both SLs. Furthermore, cTnI(1-167) slowed MgADP release rate and enhanced cross-bridge binding. Our findings imply that cTnI-MD truncations affect the blocked-to closed-state transition(s) and destabilize the closed-state position of tropomyosin.
Collapse
Affiliation(s)
- Nazanin Bohlooli Ghashghaee
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Bertrand C W Tanner
- The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Wen-Ji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
9
|
Marques MDA, Pinto JR, Moraes AH, Iqbal A, de Magalhães MTQ, Monteiro J, Pedrote MM, Sorenson MM, Silva JL, de Oliveira GAP. Allosteric Transmission along a Loosely Structured Backbone Allows a Cardiac Troponin C Mutant to Function with Only One Ca 2+ Ion. J Biol Chem 2017; 292:2379-2394. [PMID: 28049727 DOI: 10.1074/jbc.m116.765362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/28/2016] [Indexed: 01/19/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common cardiomyopathies and a major cause of sudden death in young athletes. The Ca2+ sensor of the sarcomere, cardiac troponin C (cTnC), plays an important role in regulating muscle contraction. Although several cardiomyopathy-causing mutations have been identified in cTnC, the limited information about their structural defects has been mapped to the HCM phenotype. Here, we used high-resolution electron-spray ionization mass spectrometry (ESI-MS), Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG-RD), and affinity measurements of cTnC for the thin filament in reconstituted papillary muscles to provide evidence of an allosteric mechanism in mutant cTnC that may play a role to the HCM phenotype. We showed that the D145E mutation leads to altered dynamics on a μs-ms time scale and deactivates both of the divalent cation-binding sites of the cTnC C-domain. CPMG-RD captured a low populated protein-folding conformation triggered by the Glu-145 replacement of Asp. Paradoxically, although D145E C-domain was unable to bind Ca2+, these changes along its backbone allowed it to attach more firmly to thin filaments than the wild-type isoform, providing evidence for an allosteric response of the Ca2+-binding site II in the N-domain. Our findings explain how the effects of an HCM mutation in the C-domain reflect up into the N-domain to cause an increase of Ca2+ affinity in site II, thus opening up new insights into the HCM phenotype.
Collapse
Affiliation(s)
- Mayra de A Marques
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jose Renato Pinto
- the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32304
| | - Adolfo H Moraes
- the Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil, and
| | - Anwar Iqbal
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mariana T Q de Magalhães
- the Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Jamila Monteiro
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Murilo M Pedrote
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Martha M Sorenson
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jerson L Silva
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil,
| | - Guilherme A P de Oliveira
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil,
| |
Collapse
|
10
|
In situ time-resolved FRET reveals effects of sarcomere length on cardiac thin-filament activation. Biophys J 2015; 107:682-693. [PMID: 25099807 DOI: 10.1016/j.bpj.2014.05.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
During cardiac thin-filament activation, the N-domain of cardiac troponin C (N-cTnC) binds to Ca(2+) and interacts with the actomyosin inhibitory troponin I (cTnI). The interaction between N-cTnC and cTnI stabilizes the Ca(2+)-induced opening of N-cTnC and is presumed to also destabilize cTnI-actin interactions that work together with steric effects of tropomyosin to inhibit force generation. Recently, our in situ steady-state FRET measurements based on N-cTnC opening suggested that at long sarcomere length, strongly bound cross-bridges indirectly stabilize this Ca(2+)-sensitizing N-cTnC-cTnI interaction through structural effects on tropomyosin and cTnI. However, the method previously used was unable to determine whether N-cTnC opening depends on sarcomere length. In this study, we used time-resolved FRET to monitor the effects of cross-bridge state and sarcomere length on the Ca(2+)-dependent conformational behavior of N-cTnC in skinned cardiac muscle fibers. FRET donor (AEDANS) and acceptor (DDPM)-labeled double-cysteine mutant cTnC(T13C/N51C)AEDANS-DDPM was incorporated into skinned muscle fibers to monitor N-cTnC opening. To study the structural effects of sarcomere length on N-cTnC, we monitored N-cTnC opening at relaxing and saturating levels of Ca(2+) and 1.80 and 2.2-μm sarcomere length. Mg(2+)-ADP and orthovanadate were used to examine the structural effects of noncycling strong-binding and weak-binding cross-bridges, respectively. We found that the stabilizing effect of strongly bound cross-bridges on N-cTnC opening (which we interpret as transmitted through related changes in cTnI and tropomyosin) become diminished by decreases in sarcomere length. Additionally, orthovanadate blunted the effect of sarcomere length on N-cTnC conformational behavior such that weak-binding cross-bridges had no effect on N-cTnC opening at any tested [Ca(2+)] or sarcomere length. Based on our findings, we conclude that the observed sarcomere length-dependent positive feedback regulation is a key determinant in the length-dependent Ca(2+) sensitivity of myofilament activation and consequently the mechanism underlying the Frank-Starling law of the heart.
Collapse
|
11
|
Land S, Niederer SA. A Spatially Detailed Model of Isometric Contraction Based on Competitive Binding of Troponin I Explains Cooperative Interactions between Tropomyosin and Crossbridges. PLoS Comput Biol 2015; 11:e1004376. [PMID: 26262582 PMCID: PMC4532474 DOI: 10.1371/journal.pcbi.1004376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/03/2015] [Indexed: 01/20/2023] Open
Abstract
Biophysical models of cardiac tension development provide a succinct representation of our understanding of force generation in the heart. The link between protein kinetics and interactions that gives rise to high cooperativity is not yet fully explained from experiments or previous biophysical models. We propose a biophysical ODE-based representation of cross-bridge (XB), tropomyosin and troponin within a contractile regulatory unit (RU) to investigate the mechanisms behind cooperative activation, as well as the role of cooperativity in dynamic tension generation across different species. The model includes cooperative interactions between regulatory units (RU-RU), between crossbridges (XB-XB), as well more complex interactions between crossbridges and regulatory units (XB-RU interactions). For the steady-state force-calcium relationship, our framework predicts that: (1) XB-RU effects are key in shifting the half-activation value of the force-calcium relationship towards lower [Ca2+], but have only small effects on cooperativity. (2) XB-XB effects approximately double the duty ratio of myosin, but do not significantly affect cooperativity. (3) RU-RU effects derived from the long-range action of tropomyosin are a major factor in cooperative activation, with each additional unblocked RU increasing the rate of additional RU’s unblocking. (4) Myosin affinity for short (1–4 RU) unblocked stretches of actin of is very low, and the resulting suppression of force at low [Ca2+] is a major contributor in the biphasic force-calcium relationship. We also reproduce isometric tension development across mouse, rat and human at physiological temperature and pacing rate, and conclude that species differences require only changes in myosin affinity and troponin I/troponin C affinity. Furthermore, we show that the calcium dependence of the rate of tension redevelopment ktr is explained by transient blocking of RU’s by a temporary decrease in XB-RU effects. Force generation in cardiac muscle cells is driven by changes in calcium concentration. Relatively small changes in the calcium concentration over the course of a heart beat lead to the large changes in force required to fully contract and relax the heart. This is known as ‘cooperative activation’, and involves a complex interaction of several proteins involved in contraction. Current computer models which reproduce force generation often do not represent these processes explicitly, and stochastic approaches that do tend to require large amounts of computational power to solve, which limit the range of investigations in which they can be used. We have created an new computational model that captures the underlying physiological processes in more detail, and is more efficient than stochastic approaches, while still being able to run a large range of simulations. The model is able to explain the biological processes leading to the cooperative activation of muscle. In addition, the model reproduces how this cooperative activation translates to normal muscle function to generate force from changes in calcium across three different species.
Collapse
Affiliation(s)
- Sander Land
- Department of Biomedical Engineering, King’s College London, United Kingdom
- * E-mail:
| | - Steven A. Niederer
- Department of Biomedical Engineering, King’s College London, United Kingdom
| |
Collapse
|
12
|
Mamidi R, Gresham KS, Stelzer JE. Length-dependent changes in contractile dynamics are blunted due to cardiac myosin binding protein-C ablation. Front Physiol 2014; 5:461. [PMID: 25520665 PMCID: PMC4251301 DOI: 10.3389/fphys.2014.00461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022] Open
Abstract
Enhanced cardiac contractile function with increased sarcomere length (SL) is, in part, mediated by a decrease in the radial distance between myosin heads and actin. The radial disposition of myosin heads relative to actin is modulated by cardiac myosin binding protein-C (cMyBP-C), suggesting that cMyBP-C contributes to the length-dependent activation (LDA) in the myocardium. However, the precise roles of cMyBP-C in modulating cardiac LDA are unclear. To determine the impact of cMyBP-C on LDA, we measured isometric force, myofilament Ca2+-sensitivity (pCa50) and length-dependent changes in kinetic parameters of cross-bridge (XB) relaxation (krel), and recruitment (kdf) due to rapid stretch, as well as the rate of force redevelopment (ktr) in response to a large slack-restretch maneuver in skinned ventricular multicellular preparations isolated from the hearts of wild-type (WT) and cMyBP-C knockout (KO) mice, at SL's 1.9 μm or 2.1 μm. Our results show that maximal force was not significantly different between KO and WT preparations but length-dependent increase in pCa50 was attenuated in the KO preparations. pCa50 was not significantly different between WT and KO preparations at long SL (5.82 ± 0.02 in WT vs. 5.87 ± 0.02 in KO), whereas pCa50 was significantly different between WT and KO preparations at short SL (5.71 ± 0.02 in WT vs. 5.80 ± 0.01 in KO; p < 0.05). The ktr, measured at half-maximal Ca2+-activation, was significantly accelerated at short SL in WT preparations (8.74 ± 0.56 s−1 at 1.9 μm vs. 5.71 ± 0.40 s−1 at 2.1 μm, p < 0.05). Furthermore, krel and kdf were accelerated by 32% and 50%, respectively at short SL in WT preparations. In contrast, ktr was not altered by changes in SL in KO preparations (8.03 ± 0.54 s−1 at 1.9 μm vs. 8.90 ± 0.37 s−1 at 2.1 μm). Similarly, KO preparations did not exhibit length-dependent changes in krel and kdf. Collectively, our data implicate cMyBP-C as an important regulator of LDA via its impact on dynamic XB behavior due to changes in SL.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
13
|
Brandt PW, Poggesi C. Clusters of bound Ca(2+) initiate contraction in fast skeletal muscle. Arch Biochem Biophys 2013; 552-553:60-7. [PMID: 24374032 DOI: 10.1016/j.abb.2013.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022]
Abstract
Ca(2+)-binding to troponin C ultimately controls force in muscle leading to the expectation that the two curves, pCa/force and pCa/Ca(2+) binding, will coincide. Using an improved fluorescence apparatus to measure Ca(2+)-binding, we confirm a displacement between the position and shape of the pCa/Ca(2+)-binding and pCa/force curves. This displacement may be part of a mechanism that reduces the noise inherent in the control process. There must always be some Ca(2+)-binding events even at 10 or 100nM, well below threshold for muscle contraction. To minimize the response to such random binding events we suggest that clusters of adjacent Ca(2+)-binding sites must be filled before contraction is initiated. Clusters promote the reconfiguration of the thin filament to the "On" state; this simultaneously increases thin filaments' affinity for myosin heads and of troponin C for Ca(2+) producing the highly cooperative pCa/force curve. The cluster requirement displaces the Ca(2+)-binding from the force curve as observed. The thin filament conformational changes and the accompanying affinity increases introduce a discontinuity in the pCa/Ca(2+)-binding curve. The curve, therefore, is most appropriately fit by two separate Hill equations, a simple non-cooperative one (midpoint, pK1, n1∼1) for the foot and a second cooperative one (pK2, n2∼2.5) for the upper part. With this fit pK2 is larger than pK1 as our argument requires, in contrast to fitting to the sum of two Hill equations. It also expresses the idea that there may be three states of the thin filament.
Collapse
Affiliation(s)
- Philip W Brandt
- Department of Pathology, Columbia University, NY, NY 10032, USA
| | - Corrado Poggesi
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze 50134, Italy.
| |
Collapse
|
14
|
Little SC, Biesiadecki BJ, Kilic A, Higgins RSD, Janssen PML, Davis JP. The rates of Ca2+ dissociation and cross-bridge detachment from ventricular myofibrils as reported by a fluorescent cardiac troponin C. J Biol Chem 2012; 287:27930-40. [PMID: 22718768 DOI: 10.1074/jbc.m111.337295] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The rate-limiting step of cardiac muscle relaxation has been proposed to reside in the myofilament. Both the rates of cross-bridge detachment and Ca(2+) dissociation from troponin C (TnC) have been hypothesized to rate-limit myofilament inactivation. In this study we used a fluorescent TnC to measure both the rate of Ca(2+) dissociation from TnC and the rate of cross-bridge detachment from several different species of ventricular myofibrils. The fluorescently labeled TnC was sensitive to both Ca(2+) dissociation and cross-bridge detachment at low Ca(2+) (presence of EGTA), allowing for a direct comparison between the two proposed rates of myofilament inactivation. Unlike Ca(2+) dissociation from TnC, cross-bridge detachment varied in myofibrils from different species and was rate-limited by ADP release. At subphysiological temperatures (<20 °C), the rate of Ca(2+) dissociation from TnC was faster than the rate of cross-bridge detachment in the presence of ADP. These results support the hypothesis that cross-bridge detachment rate-limits relaxation. However, Ca(2+) dissociation from TnC was not as temperature-sensitive as cross-bridge detachment. At a near physiological temperature (35 °C) and ADP, the rate of cross-bridge detachment may actually be faster than the rate of Ca(2+) dissociation. This provides evidence that there may not be a simple, single rate-limiting step of myofilament inactivation.
Collapse
Affiliation(s)
- Sean C Little
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Yu ZB, Wei H, Jin JP. Chronic coexistence of two troponin T isoforms in adult transgenic mouse cardiomyocytes decreased contractile kinetics and caused dilatative remodeling. Am J Physiol Cell Physiol 2012; 303:C24-32. [PMID: 22538236 DOI: 10.1152/ajpcell.00026.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213-C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97-H105, 2010). Here we characterized Ca(2+)-regulated contractility of isolated adult cardiomyocytes from transgenic mice coexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT. Without the influence of extracellular matrix, coexistence of the two TnT isoforms resulted in lower shortening amplitude, slower shortening and relengthening velocities, and longer relengthening time. The level of resting cytosolic Ca(2+) was unchanged, but the peak Ca(2+) transient was lowered and the durations of Ca(2+) rising and decaying were longer in the transgenic mouse cardiomyocytes vs. the wild-type controls. Isoproterenol treatment diminished the differences in shortening amplitude and shortening and relengthening velocities, whereas the prolonged durations of relengthening and Ca(2+) transient in the transgenic cardiomyocytes remained. At rigor state, a result from depletion of Ca(2+), resting sarcomere length of the transgenic cardiomyocytes became shorter than that in wild-type cells. Inhibition of myosin motor diminished this effect of TnT function on cross bridges. The length but not width of transgenic cardiomyocytes was significantly increased compared with the wild-type controls, corresponding to longitudinal addition of sarcomeres and dilatative remodeling at the cellular level. These dominantly negative effects of normal fast TnT demonstrated that chronic coexistence of functionally distinct variants of TnT in adult cardiomyocytes reduces contractile performance with pathological consequences.
Collapse
Affiliation(s)
- Zhi-Bin Yu
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
16
|
Pinto JR, de Sousa VP, Sorenson MM. Redox state of troponin C cysteine in the D/E helix alters the C-domain affinity for the thin filament of vertebrate striated muscle. Biochim Biophys Acta Gen Subj 2010; 1810:391-7. [PMID: 21145939 DOI: 10.1016/j.bbagen.2010.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/10/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Despite a broad spectrum of structural studies, it is not yet clear whether the D/E helix of troponin C (TnC) contributes to the interaction of TnC with troponin I (TnI). Redox modifications at Cys 98 in the D/E helix were explored for clues to TnC binding to the thin filament off-state, using recombinant wild-type TnC and an engineered mutant without Cys (Cys98Leu). METHODS Recombinant proteins and rabbit psoas skinned fibres were reduced with dithiothreitol (DTT) and variously recombined. Changes in affinity of reduced or oxidised TnC for the thin filament were evaluated via TnC binding and dissociation, using a standardized test for maximal force as an index of fibre TnC content. RESULTS All oxidation and reduction effects observed were reversible and led to changes in TnC content. Oxidation (H(2)O(2)) reduced TnC affinity for the filament; reduction (DTT) increased it. Reducing other fibre proteins had no effect. Binding of the Cys-less TnC mutant was not altered by DTT, nor was dissociation of wild-type TnC from reconstituted hybrids (skeletal TnC in cardiac trabeculae). Thus when Cys 98 in the D/E helix of TnC is fully reduced, its binding affinity for the thin filament of skeletal muscle is enhanced and helps to anchor it to the filament. GENERAL SIGNIFICANCE Signal transmission between TnC and the other proteins of the regulatory complex is sensitive to the redox state of Cys 98.
Collapse
Affiliation(s)
- José Renato Pinto
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidale federal do Rio de Janeiro, Cidale Universitária, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
17
|
Ouyang Y, Mamidi R, Jayasundar JJ, Chandra M, Dong WJ. Structural and kinetic effects of PAK3 phosphorylation mimic of cTnI(S151E) on the cTnC-cTnI interaction in the cardiac thin filament. J Mol Biol 2010; 400:1036-45. [PMID: 20540949 DOI: 10.1016/j.jmb.2010.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 05/29/2010] [Accepted: 06/03/2010] [Indexed: 12/01/2022]
Abstract
Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca(2+), but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca(2+)-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca(2+)-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca(2+) by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca(2+) dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI.
Collapse
Affiliation(s)
- Yexin Ouyang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
18
|
Xing J, Jayasundar JJ, Ouyang Y, Dong WJ. Förster resonance energy transfer structural kinetic studies of cardiac thin filament deactivation. J Biol Chem 2009; 284:16432-16441. [PMID: 19369252 DOI: 10.1074/jbc.m808075200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac thin filament deactivation is initiated by Ca2+ dissociation from troponin C (cTnC), followed by multiple structural changes of thin filament proteins. These structural transitions are the molecular basis underlying the thin filament regulation of cardiac relaxation, but the detailed mechanism remains elusive. In this study Förster resonance energy transfer (FRET) was used to investigate the dynamics and kinetics of the Ca2+-induced conformational changes of the cardiac thin filaments, specifically the closing of the cTnC N-domain, the cTnC-cTnI (troponin I) interaction, and the cTnI-actin interaction. The cTnC N-domain conformational change was examined by monitoring FRET between a donor (AEDANS) attached to one cysteine residue and an acceptor (DDPM) attached the other cysteine of the mutant cTnC(L13C/N51C). The cTnC-cTnI interaction was investigated by monitoring the distance changes from residue 89 of cTnC to residues 151 and 167 of cTnI, respectively. The cTnI-actin interaction was investigated by monitoring the distance changes from residues 151 and 167 of cTnI to residue 374 of actin. FRET Ca2+ titrations and stopped-flow kinetic measurements show that different thin filament structural transitions have different Ca2+ sensitivities and Ca2+ dissociation-induced kinetics. The observed structural transitions involving the regulatory region and the mobile domain of cTnI occurred at fast kinetic rates, whereas the kinetics of the structural transitions involving the cTnI inhibitory region was slow. Our results suggest that the thin filament deactivation upon Ca2+ dissociation is a two-step process. One step involves rapid binding of the mobile domain of cTnI to actin, which is kinetically coupled with the conformational change of the N-domain of cTnC and the dissociation of the regulatory region of cTnI from cTnC. The other step involves switching the inhibitory region of cTnI from interacting with cTnC to interacting with actin. The latter processes may play a key role in regulating cross-bridge kinetics.
Collapse
Affiliation(s)
- Jun Xing
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Jayant J Jayasundar
- From the School of Chemical Engineering and Bioengineering, Pullman, Washington 99164
| | - Yexin Ouyang
- From the School of Chemical Engineering and Bioengineering, Pullman, Washington 99164
| | - Wen-Ji Dong
- From the School of Chemical Engineering and Bioengineering, Pullman, Washington 99164; Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164.
| |
Collapse
|
19
|
Xing J, Chinnaraj M, Zhang Z, Cheung HC, Dong WJ. Structural studies of interactions between cardiac troponin I and actin in regulated thin filament using Förster resonance energy transfer. Biochemistry 2009; 47:13383-93. [PMID: 19053249 DOI: 10.1021/bi801492x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ca(2+)-induced interaction between cardiac troponin I (cTnI) and actin plays a key role in the regulation of cardiac muscle contraction and relaxation. In this report we have investigated changes of this interaction in response to strong cross-bridge formation between myosin S1 and actin and PKA phosphorylation of cTnI within reconstituted thin filament. The interaction was monitored by measuring Förster resonance energy transfer (FRET) between the fluorescent donor 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid (AEDANS) attached to the residues 131, 151, 160 167, 188, and 210 of cTnI and the nonfluorescent acceptor 4-(dimethylamino)phenylazophenyl-4'-maleimide (DABM) attached to cysteine 374 of actin. The FRET distance measurements showed that bound Ca(2+) induced large increases in the distances from actin to the cTnI sites, indicating a Ca(2+)-triggered separation of cTnI from actin. Strongly bound myosin S1 induced additional increases in these distances in the presence of bound Ca(2+). The two ligand-induced increases were independent of each other. These two-step changes in distances provide a direct link of structural changes at the interface between cTnI and actin to the three-state model of thin filament regulation of muscle contraction and relaxation. When cTnC was inactivated through mutations of key residues within the 12-residue Ca(2+)-binding loop, strongly bound S1 alone induced increases in the distances in spite of the fact that the filaments no longer bound regulatory Ca(2+). These results suggest bound Ca(2+) or strongly bound S1 alone can partially activate thin filament, but full activation requires both bound Ca(2+) and strongly bound S1. The distributions of the FRET distances revealed different structural dynamics associated with different regions of cTnI in different biochemical states. The second actin-binding region appears more rigid than the inhibitory/regulatory region. In the Mg(2+) state, the regulatory region appears more flexible than the inhibitory region, and in the Ca(2+) state the inhibitory region becomes more flexible. PKA phosphorylation of cTnI at Ser23 and Ser24 distance from actin to cTnI residue 131 by 2.2-5.2 A in different biochemical states and narrowed the distributions of the distances from actin to the inhibitory and regulatory regions of cTnI. The observed phosphorylation effects are likely due to an intramolecular interaction of the phosphorylated N-terminal segment and the inhibitory region of cTnI.
Collapse
Affiliation(s)
- Jun Xing
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 354294, USA
| | | | | | | | | |
Collapse
|
20
|
Modulation of troponin C affinity for the thin filament by different cross-bridge states in skinned skeletal muscle fibers. Pflugers Arch 2008; 456:1177-87. [PMID: 18386050 DOI: 10.1007/s00424-008-0480-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
Abstract
In vertebrate skeletal muscle, the C-domain of troponin C (TnC) serves as an anchor; the N-domain regulates the position of troponin-tropomyosin on the thin filament after changes in intracellular Ca2+. Another type of thin-filament regulation is provided by cross-bridges. In this study, we use skinned fibers reconstituted with chicken recombinant TnC (rTnC) to examine TnC-thin filament affinity when cross-bridges containing different ligands are formed. Dissociation and equilibrium binding of apo-TnC (i.e., lacking divalent cations) under different conditions were monitored by a standard test for maximum tension (P (o)). After 10 min in low-Mg2+ relaxing solution, rTnC dissociation (i.e., tension loss) was 80% vs only 45% in rigor. In rigor, adding myosin subfragment 1 (S1) reduced dissociation approximately twofold, whereas stretching to reduce filament overlap increased dissociation to nearly the value for relaxed fibers. Dissociation of rTnC after addition of Pi or MgADP to form A.M.Pi or A.M.ADP cross-bridges was significantly greater than with rigor (A.M) bridges. The increase in P (o) during equilibration with different concentrations of rTnC showed that the affinity for rTnC binding to the thin filament increased progressively with stronger cross-bridges: rTnC concentrations for half-maximal reconstitution (K (0.5)) were 8.1, 3.7, 2.9, and 1.1 microM for A + M.ADP.Pi, A.M.Pi, A.M, and A.M + S1. Cross-bridges containing MgADP(-) (A.M.ADP) were also less effective than rigor bridges in promoting rTnC binding. We conclude that cross-bridge state and number both modulate TnC affinity for the thin filament and that the TnC C-domain is a central element in this pathway.
Collapse
|
21
|
Dong WJ, Jayasundar JJ, An J, Xing J, Cheung HC. Effects of PKA phosphorylation of cardiac troponin I and strong crossbridge on conformational transitions of the N-domain of cardiac troponin C in regulated thin filaments. Biochemistry 2007; 46:9752-61. [PMID: 17676764 PMCID: PMC2547119 DOI: 10.1021/bi700574n] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulation of cardiac muscle function is initiated by binding of Ca2+ to troponin C (cTnC) which induces a series of structural changes in cTnC and other thin filament proteins. These structural changes are further modulated by crossbridge formation and fine-tuned by phosphorylation of cTnI. The objective of the present study is to use a new Förster resonance energy transfer-based structural marker to distinguish structural and kinetic effects of Ca2+ binding, crossbridge interaction, and protein kinase A phosphorylation of cTnI on the conformational changes of the cTnC N-domain. The FRET-based structural marker was generated by attaching AEDANS to one cysteine of a double-cysteine mutant cTnC(13C/51C) as a FRET donor and attaching DDPM to the other cysteine as the acceptor. The doubly labeled cTnC mutant was reconstituted into the thin filament by adding cTnI, cTnT, tropomyosin, and actin. Changes in the distance between Cys13 and Cys51 induced by Ca2+ binding/dissociation were determined by FRET-sensed Ca2+ titration and stopped-flow studies, and time-resolved fluorescence measurements. The results showed that the presence of both Ca2+ and strong binding of myosin head to actin was required to achieve a fully open structure of the cTnC N-domain in regulated thin filaments. Equilibrium and stopped-flow studies suggested that strongly bound myosin head significantly increased the Ca2+ sensitivity and changed the kinetics of the structural transition of the cTnC N-domain. PKA phosphorylation of cTnI impacted the Ca2+ sensitivity and kinetics of the structural transition of the cTnC N-domain but showed no global structural effect on cTnC opening. These results provide an insight into the modulation mechanism of strong crossbridge and cTnI phosphorylation in cardiac thin filament activation/relaxation processes.
Collapse
Affiliation(s)
- Wen-Ji Dong
- The School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA.
| | | | | | | | | |
Collapse
|
22
|
Sousa VP, Pinto JR, Sorenson MM. Ionic interventions that alter the association of troponin C C-domain with the thin filaments of vertebrate striated muscle. Biochim Biophys Acta Gen Subj 2006; 1760:272-82. [PMID: 16300900 DOI: 10.1016/j.bbagen.2005.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/13/2005] [Accepted: 09/27/2005] [Indexed: 11/29/2022]
Abstract
The regulatory complex of vertebrate skeletal muscle integrates information about cross-bridge binding, divalent cations and other intracellular ionic conditions to control activation of muscle contraction. Relatively little is known about the role of the troponin C (TnC) C-domain in the absence of Ca2+. Here, we use a standardized condition for measuring isometric tension in rabbit psoas skinned fibers to track TnC attachment and detachment in the absence of Ca2+ under different conditions of ionic strength, pH and MgATP. In the presence of MgATP and Mg2+, TnC detaches more readily and has a 1.5- to 2-fold lower affinity for the intact thin filament at pH 8 and 250 mM K+ than at pH 6 or in 30 mM K+; changes in affinity are fully reversible. The response to ionic strength is lost when Mg2+ and MgATP are absent, whereas the response to pH persists, suggesting that weaker electrostatic TnC-TnI-TnT interactions can be overridden by strongly bound cross-bridges. In solution, titration of a fluorescent C-domain mutant (F154W TnC) with Mg2+ reveals no significant changes in Mg2+ affinity with pH or ionic strength, suggesting that these parameters influence TnC binding by acting directly on electrostatic forces between TnC and TnI rather than by changing Mg2+ binding to C-domain sites III and IV.
Collapse
Affiliation(s)
- Valeria P Sousa
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | |
Collapse
|
23
|
Vandenboom R, Weihe EK, Hannon JD. Dynamics of crossbridge-mediated activation in the heart. J Muscle Res Cell Motil 2005; 26:247-57. [PMID: 16322913 DOI: 10.1007/s10974-005-9042-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Both intracellular calcium and strongly bound crossbridges contribute to thin filament activation in the heart, but the magnitude and the duration of the effects due to crossbridges are not well characterized. In this study, crossbridge attachment was altered in tetanized ferret papillary muscles and changes in the rate constant for the recovery of force (k (TR)) and unloaded shortening velocity (V (U)) were measured to track thin filament activation. k (TR) decreased as the time the muscles spent at low levels of crossbridge attachment (shortening deactivation) increased (0.02 s=17.9+/-2.3 s(-1), 0.32 s=3.3+/-0.4 s(-1); half-time=0.052 s; P<0.05). Furthermore, the deactivation was reversible and k (TR) recovered when muscles were allowed to regenerate force isometrically during the same tetanus. V (U) also decreased when the preceding load was lower (isometric load, V (U)=1.93+/-0.26 muscle lengths/s (ML/s); zero load, V (U)=0.93+/-0.14 ML/s, P<0.05) and as the length of time the muscle spent unloaded increased (>60% decline after 0.3 s). In addition, V (U) recovered when the muscle was allowed to regenerate force isometrically. These results indicate that crossbridge attachment increases thin filament activation as reflected in measurements of V (U) and k (TR). This 'extra' activation by crossbridges appears to be a dynamic process that decays during unloaded shortening and redevelops during isometric contraction.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
24
|
Bell MG, Lankford EB, Gonye GE, Ellis-Davies GCR, Martyn DA, Regnier M, Barsotti RJ. Kinetics of cardiac thin-filament activation probed by fluorescence polarization of rhodamine-labeled troponin C in skinned guinea pig trabeculae. Biophys J 2005; 90:531-43. [PMID: 16258047 PMCID: PMC1367058 DOI: 10.1529/biophysj.105.072769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A genetically engineered cardiac TnC mutant labeled at Cys-84 with tetramethylrhodamine-5-iodoacetamide dihydroiodide was passively exchanged for the endogenous form in skinned guinea pig trabeculae. The extent of exchange averaged nearly 70%, quantified by protein microarray of individual trabeculae. The uniformity of its distribution was verified by confocal microscopy. Fluorescence polarization, giving probe angle and its dispersion relative to the fiber long axis, was monitored simultaneously with isometric tension. Probe angle reflects underlying cTnC orientation. In steady-state experiments, rigor cross-bridges and Ca2+ with vanadate to inhibit cross-bridge formation produce a similar change in probe orientation as that observed with cycling cross-bridges (no Vi). Changes in probe angle were found at [Ca2+] well below those required to generate tension. Cross-bridges increased the Ca2+ dependence of angle change (cooperativity). Strong cross-bridge formation enhanced Ca2+ sensitivity and was required for full change in probe position. At submaximal [Ca2+], the thin filament regulatory system may act in a coordinated fashion, with the probe orientation of Ca2+-bound cTnC significantly affected by Ca2+ binding at neighboring regulatory units. The time course of the probe angle change and tension after photolytic release [Ca2+] by laser photolysis of NP-EGTA was Ca2+ sensitive and biphasic: a rapid component approximately 10 times faster than that of tension and a slower rate similar to that of tension. The fast component likely represents steps closely associated with Ca2+ binding to site II of cTnC, whereas the slow component may arise from cross-bridge feedback. These results suggest that the thin filament activation rate does not limit the tension time course in cardiac muscle.
Collapse
Affiliation(s)
- Marcus G Bell
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania 19131, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Okada JI, Sugiura S, Nishimura S, Hisada T. Three-dimensional simulation of calcium waves and contraction in cardiomyocytes using the finite element method. Am J Physiol Cell Physiol 2004; 288:C510-22. [PMID: 15496481 DOI: 10.1152/ajpcell.00261.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the characteristics and underlying mechanisms of Ca(2+) wave propagation, we developed a three-dimensional (3-D) simulator of cardiac myocytes, in which the sarcolemma, myofibril, and Z-line structure with Ca(2+) release sites were modeled as separate structures using the finite element method. Similarly to previous studies, we assumed that Ca(2+) diffusion from one release site to another and Ca(2+)-induced Ca(2+) release were the basic mechanisms, but use of the finite element method enabled us to simulate not only the wave propagation in 3-D space but also the active shortening of the myocytes. Therefore, in addition to the dependence of the Ca(2+) wave propagation velocity on the sarcoplasmic reticulum Ca(2+) content and affinity of troponin C for Ca(2+), we were able to evaluate the influence of active shortening on the propagation velocity. Furthermore, if the initial Ca(2+) release took place in the proximity of the nucleus, spiral Ca(2+) waves evolved and spread in a complex manner, suggesting that this phenomenon has the potential for arrhythmogenicity. The present 3-D simulator, with its ability to study the interaction between Ca(2+) waves and contraction, will serve as a useful tool for studying the mechanism of this complex phenomenon.
Collapse
Affiliation(s)
- Jun-ichi Okada
- Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency, Saitama, Japan.
| | | | | | | |
Collapse
|
26
|
Yasuda SI, Sugiura S, Yamashita H, Nishimura S, Saeki Y, Momomura SI, Katoh K, Nagai R, Sugi H. Unloaded shortening increases peak of Ca2+ transients but accelerates their decay in rat single cardiac myocytes. Am J Physiol Heart Circ Physiol 2003; 285:H470-5. [PMID: 12714336 DOI: 10.1152/ajpheart.00012.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is of paramount importance to investigate the relation between the time-dependent change in intracellular Ca2+ concentration ([Ca2+]i) (Ca2+ transients) and the mechanical activity of isolated single myocytes to understand the regulatory mechanisms of heart function. However, because of technical difficulties in performing mechanical measurements with single myocytes, the simultaneous recording of Ca2+ transients and mechanical activity has mainly been performed with multicellular cardiac preparations that give conflicting results concerning Ca2+ transients during isometric twitches and during twitches with unloaded shortening. In the present study, we coupled intracellular Ca2+ measurement optics with a force measurement system using carbon fibers to examine the relation between Ca2+ transients and the mechanical activity of rat single ventricular myocytes over a wide range of load. To minimize the possible load dependence of sarcoplasmic reticulum Ca2+ loading, contraction mode was switched at every twitch from unloaded shortening to isometric contraction. During a twitch with unloaded shortening, the Ca2+ transients exhibited a higher peak and a higher rate of decay than transients during an isometric twitch. Similarly, when we changed the contraction mode in every pair of twitches, Ca2+ transients were dependent only on the mode of contraction. Mechanical uncoupling with 2,3-butanedione monoxime abolished this dependence on the mode of contraction. Our results suggest that Ca2+ transients reflect the affinity of troponin C for Ca2+, which is influenced by the change in strain on the thin filament but not by the length change per se.
Collapse
Affiliation(s)
- So-ichiro Yasuda
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Kerrick WGL. The off rate of Ca(2+) from troponin C is regulated by force-generating cross bridges in skeletal muscle. J Appl Physiol (1985) 2002; 92:2409-18. [PMID: 12015355 DOI: 10.1152/japplphysiol.00376.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of dissociation of force-generating cross bridges on intracellular Ca(2+), pCa-force, and pCa-ATPase relationships were investigated in mouse skeletal muscle. Mechanical length perturbations were used to dissociate force-generating cross bridges in either intact or skinned fibers. In intact muscle, an impulse stretch or release, a continuous length vibration, a nonoverlap stretch, or an unloaded shortening during a twitch caused a transient increase in intracellular Ca(2+) compared with that in isometric controls and resulted in deactivation of the muscle. In skinned fibers, sinusoidal length vibrations shifted pCa-force and pCa-actomyosin ATPase rate relationships to higher Ca(2+) concentrations and caused actomyosin ATPase rate to decrease at submaximal Ca(2+) and increase at maximal Ca(2+) activation. These results suggest that dissociation of force-generating cross bridges during a twitch causes the off rate of Ca(2+) from troponin C to increase (a decrease in the Ca(2+) affinity of troponin C), thus decreasing the Ca(2+) sensitivity and resulting in the deactivation of the muscle. The results also suggest that the Fenn effect only exists at maximal but not submaximal force-activating Ca(2+) concentrations.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | |
Collapse
|
28
|
Nakae Y, Fujita S, Namiki A. Isoproterenol enhances myofilament Ca(2+) sensitivity during hypothermia in isolated guinea pig beating hearts. Anesth Analg 2001; 93:846-52. [PMID: 11574344 DOI: 10.1097/00000539-200110000-00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Isoproterenol is often required to treat acute left ventricular dysfunction during separation from cardiopulmonary bypass for cardiac surgery. We hypothesized that heart rate and intracellular Ca(2+) concentration ([Ca(2+)]i) homeostasis may be important factors when isoproterenol improves the cardiac function during hypothermia. Accordingly, we investigated the effect of isoproterenol on the cardiac functional variables, [Ca(2+)]i, and myofilament Ca(2+) sensitivity under spontaneous beating during hypothermia. Intact guinea pig hearts were perfused with a modified Krebs-Ringer solution (baseline) and Krebs-Ringer solution containing isoproterenol (1 nM) at 37 degrees C, 32 degrees C, and 27 degrees C while all cardiac variables and [Ca(2+)]i were recorded. Isoproterenol increased developed left ventricular pressure (LVP), maximum rate of increase in LVP, and coronary inflow at 27 degrees C, and it also increased heart rate and maximum rate of decrease in LVP at each temperature (P < 0.05). Isoproterenol produced a leftward shift of the curve of developed LVP as a function of available [Ca(2+)]i at 32 degrees C and 27 degrees C (P < 0.05), without changing available [Ca(2+)]i. Isoproterenol improves the cardiac function, especially systolic ventricular function, by enhancement of myofilament Ca(2+) sensitivity under spontaneous beating during hypothermia in intact guinea pig hearts. IMPLICATIONS Enhancement of myofilament Ca(2+) sensitivity is involved in the improvement of cardiac function by isoproterenol under spontaneous beating during hypothermia.
Collapse
Affiliation(s)
- Y Nakae
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | |
Collapse
|
29
|
Liou YM. Effects of sarcomere length and Ca(2+) binding on h reactivity of myofilament bound troponin C in porcine skinned cardiac muscle fibers. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:385-8. [PMID: 11492964 DOI: 10.2170/jjphysiol.51.385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Length dependence of cardiac Ca(2+) activation is an essential component of the Frank-Starling relation. The aim of this study is to examine the length effects on the Ca(2+)-induced conformational changes of filament-bound cTnC in skinned cardiac muscle fibers. The two cysteine residues (Cys-35 and Cys-84) in the regulatory domain of cTnC allow for the attachment of conformational probes to this region. Their incorporation with the fluorescent probe, 7-diethylamino-3-[4'-maleimidylphenyl]-4-methylcoumarin (CPM), was used to determine the varying cTnC conformations in cardiac fibers. The data obtained show that the length-dependent Ca(2+)-mediated conformational changes require strong-binding cross-bridges for cardiac activation.
Collapse
Affiliation(s)
- Y M Liou
- Department of Zoology, Institute of Biochemistry, National Chung-Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
30
|
Nakae Y, Fujita S, Namiki A. Morphine Enhances Myofilament Ca2+ Sensitivity in Intact Guinea Pig Beating Hearts. Anesth Analg 2001. [DOI: 10.1213/00000539-200103000-00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Nakae Y, Fujita S, Namiki A. Morphine enhances myofilament CA(2+) sensitivity in intact guinea pig beating hearts. Anesth Analg 2001; 92:602-8. [PMID: 11226085 DOI: 10.1097/00000539-200103000-00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED We investigated whether morphine alters intracellular Ca(2+) concentration ([Ca(2+)](i)), left ventricular pressure (LVP), and myofilament Ca(2+) sensitivity under physiologic conditions in intact guinea pig beating hearts and whether delta(1), delta(2), and kappa opioid stimulations are related to the direct cardiac effects of morphine. Transmural LV phasic [Ca(2+)](i) was measured from fluorescence signals at 385 nm and 456 nm. The Ca(2+) transients during each contraction were defined as available [Ca(2+)](i). The hearts were perfused with modified Krebs-Ringer solution containing morphine in the absence and presence of delta(1) (BNTX), delta(2) (NTB), and kappa (nor-BNI) antagonists, while developed LVP and available [Ca(2+)](i) were recorded. Morphine (1 microM) decreased available [Ca(2+)](i) by 44 +/- 12 nM without decreasing developed LVP at 2.5 mM of [CaCl(2)](e) (P < 0.05). Morphine (1 microM) caused a leftward shift in the curve of developed LVP as a function of available [Ca(2+)](i) (P < 0.05). BNTX (1 microM), but not nor-BNI (1 microM) or NTB (0.1 microM) blocked morphine (1 microM) effects to decrease available [Ca(2+)](i). Morphine decreases available [Ca(2+)](i) but not LVP, and it enhances myofilament Ca(2+) sensitivity under physiologic conditions at clinical concentrations in intact isolated beating guinea pig hearts. The delta(1) opioid stimulation modifies the effects of morphine on Ca(2+) transients and myofilament Ca(2+) sensitivity. IMPLICATIONS Morphine modifies myofilament Ca(2+) sensitivity and Ca(2+) transients in guinea pig hearts at concentrations that are clinically relevant.
Collapse
Affiliation(s)
- Y Nakae
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Japan.
| | | | | |
Collapse
|
32
|
Martyn DA, Regnier M, Xu D, Gordon AM. Ca2+ - and cross-bridge-dependent changes in N- and C-terminal structure of troponin C in rat cardiac muscle. Biophys J 2001; 80:360-70. [PMID: 11159408 PMCID: PMC1301239 DOI: 10.1016/s0006-3495(01)76020-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Linear dichroism of 5'-tetramethylrhodamine (5'ATR)-labeled cardiac troponin C (cTnC) was measured to monitor cTnC structure during Ca2+-activation of force in rat skinned myocardium. Mono-cysteine mutants allowed labeling at Cys-84 (cTnC(C84), near the D/E helix linker); Cys-35 (cTnC(C35), at nonfunctional site I); or near the C-terminus with a cysteine inserted at site 98 (cTnC-C35S,C84S,S98C, cTnC(C98)). With 5'ATR-labeled cTnC(C84) and cTnC(C98) dichroism increased with increasing [Ca2+], while rigor cross-bridges caused dichroism to increase more with 5'ATR-labeled cTnC(C84) than cTnC(C98). The pCa50 values and n(H) from Hill analysis of the Ca2+-dependence of force and dichroism were 6.4 (+/-0.02) and 1.08 (+/-0.04) for force and 6.3 (+/-0.04) and 1.02 (+/-0.09) (n = 5) for dichroism in cTnC(C84) reconstituted trabeculae. Corresponding data from cTnC(C98) reconstituted trabeculae were 5.53 (+/-0.03) and 3.1 (+/-0.17) for force, and 5.39 (+/-0.03) and 1.87 (+/-0.17) (n = 5) for dichroism. The contribution of active cycling cross-bridges to changes in cTnC structure was determined by inhibition of force to 6% of pCa 4.0 controls with 1.0 mM sodium vanadate (Vi). With 5'ATR-labeled cTnC(C84) Vi caused both the pCa50)of dichroism and the maximum value at pCa 4.0 to decrease, while with 5'ATR-labeled cTnC(C98) the pCa50 of dichroism decreased with no change of dichroism at pCa 4.0. The dichroism of 5'ATR-labeled cTnC(C35) was insensitive to either Ca2+ or strong cross-bridges. These data suggest that both Ca2+ and cycling cross-bridges perturb the N-terminal structure of cTnC at Cys-84, while C-terminal structure is altered by site II Ca2+-binding, but not cross-bridges.
Collapse
Affiliation(s)
- D A Martyn
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
33
|
Pearlstone JR, Chandra M, Sorenson MM, Smillie LB. Biological function and site II Ca2+-induced opening of the regulatory domain of skeletal troponin C are impaired by invariant site I or II Glu mutations. J Biol Chem 2000; 275:35106-15. [PMID: 10952969 DOI: 10.1074/jbc.m001000200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the roles of site I and II invariant Glu residues 41 and 77 in the functional properties and calcium-induced structural opening of skeletal muscle troponin C (TnC) regulatory domain, we have replaced them by Ala in intact F29W TnC and in wild-type and F29W N domains (TnC residues 1-90). Reconstitution of intact E41A/F29W and E77A/F29W mutants into TnC-depleted muscle skinned fibers showed that Ca(2+)-induced tension is greatly reduced compared with the F29W control. Circular dichroism measurements of wild-type N domain as a function of pCa (= -log[Ca(2+)]) demonstrated that approximately 90% of the total change in molar ellipticity at 222 nm ([theta](222 nm)) could be assigned to site II Ca(2+) binding. With E41A, E77A, and cardiac TnC N domains this [theta](222 nm) change attributable to site II was reduced to < or =40% of that seen with wild type, consistent with their structures remaining closed in +Ca(2+). Furthermore, the Ca(2+)-induced changes in fluorescence, near UV CD, and UV difference spectra observed with intact F29W are largely abolished with E41A/F29W and E77A/F29W TnCs. Taken together, the data indicate that the major structural change in N domain, including the closed to open transition, is triggered by site II Ca(2+) binding, an interpretation relevant to the energetics of the skeletal muscle TnC and cardiac TnC systems.
Collapse
Affiliation(s)
- J R Pearlstone
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
34
|
Fujita S, Smart SC, Stowe DF. Enhanced contractile responsiveness to cytosolic Ca(2+) by delta-2 opioid agonist deltorphin in intact guinea pig hearts. J Mol Cell Cardiol 2000; 32:1647-59. [PMID: 10966827 DOI: 10.1006/jmcc.2000.1199] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opioid receptor subtypes, delta and kappa, are found in cardiac tissue and may play a role in cardiac function. We explored if the synthetic opioid delta(2)[D-Ala(2)]-deltorphin (DTP) and mu peptide agonist [D-Ala(2)]-enkephalin (DAMGO) alter the left ventricular pressure (LVP) [Ca(2+)](i) relationship in isolated guinea pig hearts. LV phasic [Ca(2+)](i) was measured from dual fluorescence signals using indo 1. Ca(2+) transients were corrected and calibrated to nM [Ca(2+)](i). Diastolic (d), systolic (s) [Ca(2+)](i), and s-d[Ca(2+)](i) were plotted v LVP at 0.3 to 6.8 mM [CaCl(2)](e)to assess the association of contractility to Ca(2+). Also given were naltriben (NTB) and CTOP, delta(2) and mu antagonists, and nifedipine (NIF) and thapsigargin (THAP). From a control of 880+/-95 nM (SEM), DTP decreased s-d[Ca(2+)](max) to 525+/-82 nM after DTP and to 405+/-84 nM after NIF, whereas THAP increased s-d[Ca(2+)](max)to 1605+/-275 nM. NTB, 795+/-33 nM, NTB+DTP, 820+/-98 nM, DAMGO, 970+/-82 nM, and DAMGO+CTOP, 830+/-93 nM, gave values similar to controls. From a control value of 61+/-4 mm Hg, LVP(max)was increased by DTP to 73+/-3 mmHg and by THAP to 77+/-2 mmHg, was unchanged by DAMGO at 48+/-6 mmHg, and was decreased by NIF to 24+/-2 mmHg. Compared to the control value of 594+/-18 nM, less s-d[Ca(2+)](i) was required to attain 50% s-dLVP(max)(curve left shift) with increasing [CaCl(2)](e) for DTP, 407+/-17 nM, and more was required for THAP, 737+/-35 nM. DTP raised the slope max of s-dLVP(max)(100%) v. s-d[Ca(2+)](i)by 2.7-fold. This indicates DTP enhances cardiac performance by enhancing responsiveness to cytosolic Ca(2+)rather than by raising diastolic Ca(2+) and subsequently released Ca(2+), as does THAP.
Collapse
Affiliation(s)
- S Fujita
- Department of Anesthesiology, Anesthesiology Research Laboratories, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
35
|
Nakae Y, Fujita S, Namiki A. Propofol inhibits Ca(2+) transients but not contraction in intact beating guinea pig hearts. Anesth Analg 2000; 90:1286-92. [PMID: 10825309 DOI: 10.1097/00000539-200006000-00006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED We investigated whether propofol inhibits Ca(2+) transients and left ventricular pressure (LVP) in intact beating guinea pig hearts at clinical concentrations and whether an inhibition of Ca(2+) transients by propofol results from an impairment of sarcolemmal or of sarcoplasmic reticulum (SR) function. By using a Langendorff's preparation, transmural left ventricular phasic intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured by the fluorescence ratio of indo-1 emission at 385 nm and 456 nm and was calibrated to Ca(2+) transients (in nM). The Ca(2+) transients during each contraction were defined as available [Ca(2+)](i). Sixty hearts were perfused with modified Krebs-Ringer's solution containing lipid vehicle and propofol (1 and 10 microM) in the absence and presence of ryanodine, thapsigargin, and nifedipine, while developed LVP and available [Ca(2+)](i) were recorded. Propofol (10 microM) decreased available [Ca(2+)](i) by 11.0% +/- 1.3% without decreasing developed LVP (% of control, P < 0.05). Propofol (10 microM) caused a leftward shift in the curve of developed LVP as a function of available [Ca(2+)](i). Propofol (10 microM) with nifedipine (1 microM), but not with ryanodine (1 microM) or thapsigargin (1 microM), decreased available [Ca(2+)](i) by 15.5% +/- 1.7% (P < 0.05). Propofol decreases available [Ca(2+)](i) without decreasing cardiac contraction, and it enhances myofilament Ca(2+) sensitivity in intact beating hearts at clinical concentrations. The inhibition of available [Ca(2+)](i) by propofol may be mainly mediated by an impairment of sarcoplasmic reticulum Ca(2+) handling rather than the sarcolemmal L-type Ca(2+) current. IMPLICATIONS This is the first study of the effects of propofol on intracellular Ca(2+) concentration and myofilament Ca(2+) sensitivity under physiologic conditions in intact isolated beating guinea pig hearts.
Collapse
Affiliation(s)
- Y Nakae
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | |
Collapse
|
36
|
Abstract
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
37
|
Stowe DF, Fujita S, An J, Paulsen RA, Varadarajan SG, Smart SC. Modulation of myocardial function and [Ca2+] sensitivity by moderate hypothermia in guinea pig isolated hearts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H2321-32. [PMID: 10600852 DOI: 10.1152/ajpheart.1999.277.6.h2321] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac hypothermia alters contractility and intracellular Ca2+ concentration ([Ca2+]i) homeostasis. We examined how left ventricular pressure (LVP) is altered as a function of cytosolic [Ca2+]i over a range of extracellular CaCl2 concentration ([CaCl2]e) during perfusion of isolated, paced guinea pig hearts at 37 degrees C, 27 degrees C, and 17 degrees C. Transmural LV phasic [Ca2+] was measured using the Ca2+ indicator indo 1 and calibrated (in nM) after correction was made for autofluorescence, temperature, and noncytosolic Ca2+. Noncytosolic [Ca2+]i, cytosolic diastolic and systolic [Ca2+]i, phasic [Ca2+]i, and systolic Ca2+ released per beat (area Ca2+) were plotted as a function of 0.3-4.5 mM [CaCl2]e, and indexes of contractility [LVP, maximal rates of LVP development (+dLVP/dt) and relaxation (-dLVP/dt), and the integral of the LVP curve per beat (LVParea)] were plotted as a function of [Ca2+]i. Hypothermia increased systolic [Ca2+]i and slightly changed systolic LVP but increased diastolic LVP and [Ca2+]i. The relationship of diastolic and noncytosolic [Ca2+] to [CaCl2]e was shifted upward at 17 degrees C and 27 degrees C, whereas that of phasic [Ca2+]) to [CaCl2]e was shifted upward at 17 degrees C but not at 27 degrees C. The relationships of phasic [Ca2+]i to developed LVP, +dLVP/dt, and LVP(area) were progressively reduced by hypothermia so that maximal Ca2+-activated LVP decreased and hearts were desensitized to Ca2+. Thus mild hypothermia modestly increases diastolic and noncytosolic Ca2+ with little effect on systolic Ca2+ or released (area) Ca2+, whereas moderate hypothermia markedly increases diastolic, noncytosolic, peak systolic, and released Ca2+ and results in reduced maximal Ca2+-activated LVP and myocardial sensitivity to systolic Ca2+.
Collapse
Affiliation(s)
- D F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Wang Y, Xu Y, Guth K, Kerrick WG. Troponin C regulates the rate constant for the dissociation of force-generating myosin cross-bridges in cardiac muscle. J Muscle Res Cell Motil 1999; 20:645-53. [PMID: 10672512 DOI: 10.1023/a:1005559613516] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is well known that cardiac troponin C (cTnC) regulates the association of force-generating myosin cross-bridges. We report here evidence for an additional role for cTnC. This hypothesis states that Ca2+ binds more strongly to cTnC when force-generating myosin cross-bridges are attached to actin and that removal of this bound Ca2+ accelerates the dissociation of force-generating myosin cross-bridges. Intact Fura-2-loaded rat papillary muscles and skinned (permeabilized) ventricular preparations were used. The preparations were mounted in the Guth Muscle Research System which is capable of measuring simultaneously fluorescence and force in response to length perturbations. All mechanical perturbations of muscle length (isotonic shortening, quick stretches and releases, and length vibrations) which cause dissociation of force-generating myosin cross-bridges during a twitch resulted in Ca2+ being released from troponin as judged from changes in the Ca2+ transients (Fura-2 (340/380) fluorescence ratio). Thus dissociation of force-generating myosin cross-bridges cause Ca2+ to be released from cTnC. Conversely, it would be expected that removal of strongly bound Ca2+ from cTnC would result in an increase in the rate of dissociation of force-generating myosin cross-bridges. To test this hypothesis actomyosin ATPase (NADH fluorescence change) and isometric force were measured in skinned cardiac preparations. The ratio of the ATPase/Force is proportional to the rate constant (gapp) for the dissociation of force-generating myosin cross-bridges. The data showed that decreasing the amount of Ca2+ bound to cTnC in skinned cardiac fibers caused an increase in the ratio of ATPase/Force, the rate of dissociation (gapp) of force-generating myosin cross-bridges.
Collapse
Affiliation(s)
- Y Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine, FL 33101-6430, USA
| | | | | | | |
Collapse
|
39
|
Rust EM, Albayya FP, Metzger JM. Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins. J Clin Invest 1999; 103:1459-67. [PMID: 10330428 PMCID: PMC408456 DOI: 10.1172/jci6377] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The direct effects of expressing hypertrophic cardiomyopathy-associated (HCM-associated) mutant troponin T (TnT) proteins on the force generation of single adult cardiac myocytes have not been established. Replication-defective recombinant adenovirus vectors were generated for gene transfer of HCM-associated I79N and R92Q mutant cardiac TnT cDNAs into fully differentiated adult cardiac myocytes in primary culture. We tested the hypothesis that the mutant TnT proteins would be expressed and incorporated into the cardiac sarcomere and would behave as dominant-negative proteins to directly alter calcium-activated force generation at the level of the single cardiac myocyte. Interestingly, under identical experimental conditions, the ectopic expression of the mutant TnTs was significantly less ( approximately 8% of total) than that obtained with expression of wild-type TnT ( approximately 35%) in the myocytes. Confocal imaging of immunolabeled TnT showed a regular periodic pattern of localization of ectopic mutant TnT that was not different than that in normal controls, suggesting that mutant TnT incorporation had no deleterious effects on sarcomeric architecture. Direct measurements of isometric force production in single cardiac myocytes demonstrated marked desensitization of submaximal calcium-activated tension, with unchanged maximum tension generation in mutant TnT-expressing myocytes compared with control myocytes. Collectively, these results demonstrate an impaired expression of the mutant protein and a disabling of cardiac contraction in the submaximal range of myoplasmic calcium concentrations. Our functional results suggest that development of new pharmacological, chemical, or genetic approaches to sensitize the thin-filament regulatory protein system could ameliorate force deficits associated with expression of I79N and R92Q in adult cardiac myocytes.
Collapse
Affiliation(s)
- E M Rust
- Department of Physiology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0622, USA
| | | | | |
Collapse
|
40
|
Swartz DR, Zhang D, Yancey KW. Cross bridge-dependent activation of contraction in cardiac myofibrils at low pH. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1460-7. [PMID: 10330228 DOI: 10.1152/ajpheart.1999.276.5.h1460] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Striated muscle contracts in the absence of calcium at low concentrations of MgATP ([MgATP]), and this has been termed rigor activation because rigor cross bridges attach and activate adjacent actin sites. This process is well characterized in skeletal muscle but not in cardiac muscle. Rigor cross bridges are also thought to increase calcium binding to troponin C and play a synergistic role in activation. We tested the hypothesis that cross bridge-dependent activation results in an increase in contractile activity at normal and low pH values. Myofibrillar ATPase activity was measured as a function of pCa and [MgATP] at pH 7.0, and the data showed that, at pCa values of >/=5.5, there was a biphasic relationship between activity and [MgATP]. Peak activity occurred at 10-50 microM MgATP, and [MgATP] for peak activity was lower with increased pCa. The ATPase activity of rat cardiac myofibrils as a function of [MgATP] at a pCa of 9.0 was measured at several pH levels (pH 5.4-7.0). The ATPase activity as a function of [MgATP] was biphasic with a maximum at 8-10 microM MgATP. Lower pH did not result in a substantial decrease in myofibrillar ATPase activity even at pH 5.4. The extent of shortening, as measured by Z-line spacing, was greatest at 8 microM MgATP and less at both lower and higher [MgATP], and this response was observed at all pH levels. These studies suggest that the peak ATPase activity associated with low [MgATP] was coupled to sarcomere shortening. These results support the hypothesis that cross bridge-dependent activation of contraction may be responsible for contracture in the ischemic heart.
Collapse
Affiliation(s)
- D R Swartz
- Anatomy Department, Indiana University Medical School, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
41
|
Martyn DA, Freitag CJ, Chase PB, Gordon AM. Ca2+ and cross-bridge-induced changes in troponin C in skinned skeletal muscle fibers: effects of force inhibition. Biophys J 1999; 76:1480-93. [PMID: 10049329 PMCID: PMC1300125 DOI: 10.1016/s0006-3495(99)77308-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Changes in skeletal troponin C (sTnC) structure during thin filament activation by Ca2+ and strongly bound cross-bridge states were monitored by measuring the linear dichroism of the 5' isomer of iodoacetamidotetramethylrhodamine (5'IATR), attached to Cys98 (sTnC-5'ATR), in sTnC-5'ATR reconstituted single skinned fibers from rabbit psoas muscle. To isolate the effects of Ca2+ and cross-bridge binding on sTnC structure, maximum Ca2+-activated force was inhibited with 0.5 mM AlF4- or with 30 mM 2,3 butanedione-monoxime (BDM) during measurements of the Ca2+ dependence of force and dichroism. Dichroism was 0.08 +/- 0.01 (+/- SEM, n = 9) in relaxing solution (pCa 9.2) and decreased to 0.004 +/- 0.002 (+/- SEM, n = 9) at pCa 4.0. Force and dichroism had similar Ca2+ sensitivities. Force inhibition with BDM caused no change in the amplitude and Ca2+ sensitivity of dichroism. Similarly, inhibition of force at pCa 4.0 with 0.5 mM AlF4- decreased force to 0.04 +/- 0.01 of maximum (+/- SEM, n = 3), and dichroism was 0.04 +/- 0.03 (+/- SEM, n = 3) of the value at pCa 9.2 and unchanged relative to the corresponding normalized value at pCa 4.0 (0.11 +/- 0.05, +/- SEM; n = 3). Inhibition of force with AlF4- also had no effect when sTnC structure was monitored by labeling with either 5-dimethylamino-1-napthalenylsulfonylaziridine (DANZ) or 4-(N-(iodoacetoxy)ethyl-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (NBD). Increasing sarcomere length from 2.5 to 3.6 microm caused force (pCa 4.0) to decrease, but had no effect on dichroism. In contrast, rigor cross-bridge attachment caused dichroism at pCa 9.2 to decrease to 0.56 +/- 0.03 (+/- SEM, n = 5) of the value at pCa 9. 2, and force was 0.51 +/- 0.04 (+/- SEM, n = 6) of pCa 4.0 control. At pCa 4.0 in rigor, dichroism decreased further to 0.19 +/- 0.03 (+/- SEM, n = 6), slightly above the pCa 4.0 control level; force was 0.66 +/- 0.04 of pCa 4.0 control. These results indicate that cross-bridge binding in the rigor state alters sTnC structure, whereas cycling cross-bridges have little influence at either submaximum or maximum activating [Ca2+].
Collapse
Affiliation(s)
- D A Martyn
- Department of Bioengineering, University of Washington, Seattle, Washington 98195 USA.
| | | | | | | |
Collapse
|
42
|
Jiang Y, Julian FJ. Effects of ramp shortening during linear phase of relaxation on [Ca2+]i in intact skeletal muscle fibers. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C152-60. [PMID: 9886931 DOI: 10.1152/ajpcell.1999.276.1.c152] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of shortening distance at Vu, the unloaded shortening speed, and filament overlap on the amount of extra Ca2+ released during relaxation in muscle, as indicated by the bump area, were studied. Single, intact frog skeletal muscle fibers at 3 degreesC were used. The myoplasmic free Ca2+ concentration ([Ca2+]i) was estimated by using fura 2 salt injected into the myoplasm. Ramps were applied, either at full overlap with different sizes or at varying overlaps with a fixed size, in the linear phase of relaxation. At full overlap, a plot of bump area vs. ramp size was fit by using a sigmoidal curve with one-half of the bump area equal to 25.9 nm. With a fixed ramp size of 100 nm/half-sarcomere, the plot of bump area vs. mean sarcomere length (SLm) was fit by a straight line intersecting the SLm axis at approximately 3.5 micrometers, close to just no overlap. The results suggest that the transition in the distribution of attached cross bridges from the isometric case to one appropriate for unloaded shortening at Vu is completed within 50 nm/half-sarcomere and support the view that attached cross bridges in the overlap zone influence the affinity of Ca2+ for troponin C in the thin filament.
Collapse
Affiliation(s)
- Y Jiang
- Department of Anesthesia Research Laboratories, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
43
|
Hazard AL, Kohout SC, Stricker NL, Putkey JA, Falke JJ. The kinetic cycle of cardiac troponin C: calcium binding and dissociation at site II trigger slow conformational rearrangements. Protein Sci 1998; 7:2451-9. [PMID: 9828012 PMCID: PMC2143865 DOI: 10.1002/pro.5560071123] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The goal of this study is to characterize the kinetic mechanism of Ca2+ activation and inactivation of cardiac troponin C (cTnC), the Ca2+ signaling protein which triggers heart muscle contraction. Previous studies have shown that IAANS covalently coupled to Cys84 of wild-type cTnC is sensitive to conformational change caused by Ca2+ binding to the regulatory site II; the present study also utilizes the C35S mutant, in which Cys84 is the lone cysteine, to ensure the specificity of IAANS labeling. Site II Ca2+ affinities for cTnC-wt, cTnC-C35S, cTnC-wt-IAANS2, and cTnC-C35S-IAANS were similar (KD = 2-5 microM at 25 degrees C; KD = 2-8 microM at 4 degrees C), indicating that neither the IAANS label nor the C35S mutation strongly perturbs site II Ca2+ affinity. To directly determine the rate of Ca2+ dissociation from site II, the Ca2+-loaded protein was rapidly mixed with a spectroscopically sensitive chelator in a stopped flow spectrometer. The resulting site II Ca2+ off-rates were k(off) = 700-800 s(-1) (4 degrees C) for both cTnC-wt and cTnC-C35S, yielding calculated macroscopic site II Ca2+ on-rates of k(on) = k(off)/KD = 2-4 x 10(8) M(-1) s(-1) (4 degrees C). As observed for Ca2+ affinities, neither the C35S mutation nor IAANS labeling significantly altered the Ca2+ on- and off-rates. Using IAANS fluorescence as a monitor of the protein conformational state, the intramolecular conformational changes (delta) induced by Ca2+ binding and release at site II were found to be significantly slower than the Ca2+ on- and off-rates. The conformational rate constants measured for cTnC-wt-IAANS2 and cTnC-C35S-IAANS were k(delta on) = 120-210 s(-1) and k(delta off) = 90-260 s(-1) (4 degrees C) . Both conformational events were slowed in cTnC-wt-IAANS2 relative to cTnC-C35S-IAANS, presumably due to the bulky IAANS probe coupled to Cys35. Together, the results provide a nearly complete kinetic description of the Ca2+ activation cycle of isolated cTnC, revealing rapid Ca2+ binding and release at site II accompanied by slow conformational steps that are likely to be retained by the full troponin complex during heart muscle contraction and relaxation.
Collapse
Affiliation(s)
- A L Hazard
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | | | | | | | |
Collapse
|
44
|
Jiang Y, Patterson MF, Morgan DL, Julian FJ. Basis for late rise in fura 2 R signal reporting [Ca2+]i during relaxation in intact rat ventricular trabeculae. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1273-82. [PMID: 9612214 DOI: 10.1152/ajpcell.1998.274.5.c1273] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intact rat ventricular trabeculae were injected with the salt form of fura 2, and the fura 2 ratio signal (R) was used to report intracellular Ca2+ concentration ([Ca2+]i). The fixed end relaxation phase of a twitch is associated with a slowing of the decay of the R signal, or even a reversal, to form a distinct bump, indicating a transient rise in [Ca2+]i. The bump is most prominent at 30 degrees C, and motion artifact is not its cause. Increasing doses of 2,3-butanedione monoxime caused progressive attenuation of the twitch and bump. Increasing the bathing Ca2+ concentration potentiated the twitch and enhanced the bump. Imposed muscle shortening during relaxation caused a much quicker force decline, and this led to the appearance of a much more prominent associated bump. The amplitude of the bump depends on the amplitude of twitch force and the rate of relaxation. These findings can be explained, as in skeletal muscle, by making cross-bridge attachment and Ca2+ binding to troponin C strongly cooperative; therefore, the bump during fast relaxation is produced by a reversal of this cooperatively, leading to rapid dissociation of Ca2+ from troponin C into the myoplasm.
Collapse
Affiliation(s)
- Y Jiang
- Department of Anesthesia Research Laboratories, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
45
|
Li MX, Gagné SM, Spyracopoulos L, Kloks CP, Audette G, Chandra M, Solaro RJ, Smillie LB, Sykes BD. NMR studies of Ca2+ binding to the regulatory domains of cardiac and E41A skeletal muscle troponin C reveal the importance of site I to energetics of the induced structural changes. Biochemistry 1997; 36:12519-25. [PMID: 9376356 DOI: 10.1021/bi971222l] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ca2+ binding to the N-domain of skeletal muscle troponin C (sNTnC) induces an "opening" of the structure [Gagné, S. M., et al. (1995) Nat. Struct. Biol. 2, 784-789], which is typical of Ca2+-regulatory proteins. However, the recent structures of the E41A mutant of skeletal troponin C (E41A sNTnC) [Gagné, S. M., et al. (1997) Biochemistry 36, 4386-4392] and of cardiac muscle troponin C (cNTnC) [Sia, S. K., et al. (1997) J. Biol. Chem. 272, 18216-18221] reveal that both of these proteins remain essentially in the "closed" conformation in their Ca2+-saturated states. Both of these proteins are modified in Ca2+-binding site I, albeit differently, suggesting a critical role for this region in the coupling of Ca2+ binding to the induced structural change. To understand the mechanism and the energetics involved in the Ca2+-induced structural transition, Ca2+ binding to E41A sNTnC and to cNTnC have been investigated by using one-dimensional 1H and two-dimensional {1H,15N}-HSQC NMR spectroscopy. Monitoring the chemical shift changes during Ca2+ titration of E41A sNTnC permits us to assign the order of stepwise binding as site II followed by site I and reveals that the mutation reduced the Ca2+ binding affinity of the site I by approximately 100-fold [from KD2 = 16 microM [sNTnC; Li, M. X., et al. (1995) Biochemistry 34, 8330-8340] to 1.3 mM (E41A sNTnC)] and of the site II by approximately 10-fold [from KD1 = 1.7 microM (sNTnC) to 15 microM (E41A sNTnC)]. Ca2+ titration of cNTnC confirms that cNTnC binds only one Ca2+ with a determined dissociation constant KD of 2.6 microM. The Ca2+-induced chemical shift changes occur over the entire sequence in cNTnC, suggesting that the defunct site I is perturbed when site II binds Ca2+. These measurements allow us to dissect the mechanism and energetics of the Ca2+-induced structural changes.
Collapse
Affiliation(s)
- M X Li
- MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Swartz DR, Moss RL, Greaser ML. Characteristics of troponin C binding to the myofibrillar thin filament: extraction of troponin C is not random along the length of the thin filament. Biophys J 1997; 73:293-305. [PMID: 9199794 PMCID: PMC1180931 DOI: 10.1016/s0006-3495(97)78070-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Troponin C (TnC) is the Ca(2+)-sensing subunit of troponin responsible for initiating the cascade of events resulting in contraction of striated muscle. This protein can be readily extracted from myofibrils with low-ionic-strength EDTA-containing buffers. The properties of TnC extraction have not been characterized at the structural level, nor have the interactions of TnC with the native myofibrillar thin filament been studied. To address these issues, fluorescein-labeled TnC, in conjunction with high-resolution digital fluorescence microscopy, was used to characterize TnC binding to myofibrils and to determine the randomness of TnC extraction. Fluorescein-5-maleimide TnC (F5M TnC) retained biological activity, as evidenced by reconstitution of Ca(2+)-dependent ATPase activity in extracted myofibrils and binding to TnI in a Ca(2+)-sensitive manner. The binding of F5M TnC to highly extracted myofibrils at low Ca2+ was restricted to the overlap region under rigor conditions, and the location of binding was not influenced by F5M TnC concentration. The addition of myosin subfragment 1 to occupy all actin sites resulted in F5M TnC being bound in both the overlap and nonoverlap regions. However, very little F5M TnC was bound to myofibrils under relaxing conditions. These results suggest that strong binding of myosin heads enhances TnC binding. At high Ca2+, the pattern of F5M TnC binding was concentration dependent: binding was restricted to the overlap region at low F5M TnC concentration, whereas the binding propagated into the nonoverlap region at higher levels. Analysis of fluorescence intensity showed the greatest binding of F5M TnC at high Ca2+ with S1, and these conditions were used to characterize partially TnC-extracted myofibrils. Comparison of partially extracted myofibrils showed that low levels of extraction were associated with greater F5M TnC being bound in the nonoverlap region than in the overlap region relative to higher levels of extraction. These results show that TnC extraction is not random along the length of the thin filament, but occurs more readily in the nonoverlap region. This observation, in conjunction with the influence of rigor heads on the pattern of F5M TnC binding, suggests that strong myosin binding to actin stabilizes TnC binding at low Ca2+.
Collapse
Affiliation(s)
- D R Swartz
- Indiana University Medical School, Department of Anatomy, Indianapolis 46202, USA.
| | | | | |
Collapse
|
47
|
Ding XL, Akella AB, Sonnenblick EH, Rao VG, Gulati J. Molecular basis of depression of Ca2+ sensitivity of tension by acid pH in cardiac muscles of the mouse and the rat. J Card Fail 1996; 2:319-26. [PMID: 8989647 DOI: 10.1016/s1071-9164(96)80019-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Acid pH decreases the Ca2+ sensitivity of myocardial tension generation, and recent studies have suggested that regulatory proteins are involved. The current study defines the molecular basis of this effect on troponin C (TnC) and troponin I (TnI) and also addresses previous differences between the rat and mouse. METHODS AND RESULTS Endogenous cardiac TnC and cardiac TnI in isolated trabeculae from mice and rats were exchanged with their fast-twitch skeletal muscle counterparts. A cardiac-skeletal TnC chimera was used to define the target region for proton action on cardiac TnC. Finally, cardiac TnC and skeletal TnC were genetically modified by insertion of a tryptophan for phenylalanine-26 to probe the pH effects with fluorescence spectroscopy. The pH 6.2 effects on Ca2+ sensitivity of force development in mouse and rat cardiotrabeculae are largely accounted for by the proton influences on TnC (23%) and TnI (53%). In cardiac TnC, residues 1 to 41 provide the target region. Comparison of the Ca(2+)-induced fluorescence in isolated cardiac TnC and skeletal TnC also indicated a greater pH effect in the cardiac isoform. CONCLUSIONS The studies provide firm evidence that both TnC and TnI moieties are involved in the mechanism of acidosis causing reduction in the Ca sensitivity of force development in the myocardium. The findings rule out the possibility of interspecies variations in the underlying mechanisms. The genetically designed TnCs and a chimera demonstrate that the observed TnC-mediated difference in the pH effects on Ca2+ sensitivity of tension between cardiac and skeletal muscles is preserved in these isolated proteins. The N-terminal amino acid residues 1 to 41 in cardiac TnC are established as the pH sensor of this protein in the mouse as in the rat.
Collapse
Affiliation(s)
- X L Ding
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
48
|
Zhao Y, Swamy PM, Humphries KA, Kawai M. The effect of partial extraction of troponin C on the elementary steps of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J 1996; 71:2759-73. [PMID: 8913613 PMCID: PMC1233762 DOI: 10.1016/s0006-3495(96)79469-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The elementary steps of the cross-bridge cycle in which troponin C (TnC) was partially extracted were investigated by sinusoidal analysis in rabbit psoas muscle fibers. The effects of MgATP and phosphate on the rate constants of exponential processes were studied at 200 mM ionic strength, pCa 4.20, pH 7.00, and at 20 degrees C. The results were analyzed with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, S is MgATP, D is MgADP, and P is phosphate (Pi). When TnC was extracted so that the average remaining tension was 11% (range 8-15%), K1 (MgATP association constant) increased to 7x, k2 (rate constant of cross-bridge detachment) increased to 1.55x, k-2 (reversal of detachment) decreased to 0.27x, and K2 (= k2/k-2: equilibrium constant of cross-bridge detachment) increased to 6.6x, k4 (rate constant of force generation) decreased to 0.4x, k-4 (reversal of force generation) increased to 2x, K4 (= k4/k-4) decreased to 0.17x, and K5 (Pi association constant) did not change. The activation factor alpha, which represents the fraction of cross-bridges participating in the cycling, decreased from 1 to 0.14 with TnC extraction. The fact that K1 increased with TnC extraction implies that the condition of the thin filament modifies the contour of the substrate binding site on the myosin head and is consistent with the Fenn effect. The fact that alpha decreased to 0.14 is consistent with the steric blocking mechanism (recruitment hypothesis) and indicates that some of the cross-bridges disappear from the active cycling pool. The fact that the equilibrium constants changed is consistent with the cooperative activation mechanism (graded activation hypothesis) among thin-filament regulatory units that consist of troponin (TnC, Tnl, TnT), tropomyosin, and seven actin molecules, and possibly include cross-bridges.
Collapse
Affiliation(s)
- Y Zhao
- Department of Anatomy, College of Medicine, University of lowa, lowa City 52242, USA
| | | | | | | |
Collapse
|
49
|
Metzger JM. Myosin binding-induced cooperative activation of the thin filament in cardiac myocytes and skeletal muscle fibers. Biophys J 1995; 68:1430-42. [PMID: 7787029 PMCID: PMC1282038 DOI: 10.1016/s0006-3495(95)80316-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Myosin binding-induced activation of the thin filament was examined in isolated cardiac myocytes and single slow and fast skeletal muscle fibers. The number of cross-bridge attachments was increased by stepwise lowering of the [MgATP] in the Ca(2+)-free solution bathing the preparations. The extent of thin filament activation was determined by monitoring steadystate isometric tension at each MgATP concentration. As pMgATP (where pMgATP is -log [MgATP]) was increased from 3.0 to 8.0, isometric tension increased to a peak value in the pMgATP range of 5.0-5.4. The steepness of the tension-pMgATP relationship, between the region of the curve where tension was zero and the peak tension, is hypothesized to be due to myosin-induced cooperative activation of the thin filament. Results showed that the steepness of the tension-pMgATP relationship was markedly greater in cardiac as compared with either slow or fast skeletal muscle fibers. The steeper slope in cardiac myocytes provides evidence of greater myosin binding-induced cooperative activation of the thin filament in cardiac as compared with skeletal muscle, at least under these experimental conditions of nominal free Ca2+. Cooperative activation is also evident in the tension-pCa relation, and is dependent upon thin filament molecular interactions, which require the presence of troponin C. Thus, it was determined whether myosin-based cooperative activation of the thin filament also requires troponin C. Partial extraction of troponin C reduced the steepness of the tension-pMgATP relationship, with the effect being significantly greater in cardiac than in skeletal muscle. After partial extraction of troponin C, muscle type differences in the steepness of the tension-pMgATP relationship were no longer apparent, and reconstitution with purified troponin C restored the muscle lineage differences. These results suggest that, in the absence of Ca2+, myosin-mediated activation of the thin filament is greater in cardiac than in skeletal muscle, and this apparent cooperativity requires the presence of troponin C on thin filament regulatory strands.
Collapse
Affiliation(s)
- J M Metzger
- Department of Physiology, University of Michigan School of Medicine, Ann Arbor 48109, USA
| |
Collapse
|
50
|
Brotto MA, Fogaça RT, Creazzo TL, Godt RE, Nosek TM. The effect of 2,3-butanedione 2-monoxime (BDM) on ventricular trabeculae from the avian heart. J Muscle Res Cell Motil 1995; 16:1-10. [PMID: 7751400 DOI: 10.1007/bf00125305] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
2,3-butanedione 2-monoxime (BDM, 3-30 mM) decreased twitch force of intact ventricular trabeculae isolated from 19-day embryonic chick hearts in a dose-dependent manner. The responses to BDM were rapid and reversible. In an attempt to determine the cellular basis for the inhibitory effect of BDM, experiments were carried out on skinned muscle fibres and isolated myocytes. In trabeculae skinned with Triton X-100, BDM depressed maximum calcium activated force (Fmax) with an IC50 of 14 mM. At 3 mM BDM, the proportional decrease in twitch force in intact tissue was similar to that of Fmax in skinned tissue. At higher BDM concentrations (10 and 30 mM), however, the proportional decrease in twitch force was greater than that of Fmax. BDM (up to 10 mM) had no effect on the normalized force-pCa relationship. In saponin-skinned preparations, BDM (3 and 30 mM) released calcium from the fully loaded sarcoplasmic reticulum to a slightly greater extent in the absence of calcium (pCa 8.5) than in the presence of a fixed level of free calcium (pCa 5.5). Whole cell patch clamping of freshly isolated chick myocytes demonstrated that BDM caused a dose-dependent decrease in the T- and L-type calcium current. Therefore, at low BDM concentrations (3 mM), the decrease in twitch force can be ascribed predominantly to depression of the contractile apparatus while, at higher concentrations of BDM, there is an additional inhibitory effect of BDM on excitation-contraction coupling.
Collapse
Affiliation(s)
- M A Brotto
- Department of Physiology, Medical College of Georgia, Augusta 30912, USA
| | | | | | | | | |
Collapse
|