1
|
Deng Y, Ding W, Peng Q, Wang W, Duan R, Zhang Y. Advancement in Beneficial Effects of AVE 0991: A Brief Review. Mini Rev Med Chem 2024; 24:139-158. [PMID: 36998128 DOI: 10.2174/1389557523666230328134932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 04/01/2023]
Abstract
AVE 0991, a non-peptide analogue of Angiotensin-(1-7) [Ang-(1-7)], is orally active and physiologically well tolerated. Several studies have demonstrated that AVE 0991 improves glucose and lipid metabolism, and contains anti-inflammatory, anti-apoptotic, anti-fibrosis, and anti-oxidant effects. Numerous preclinical studies have also reported that AVE 0991 appears to have beneficial effects on a variety of systemic diseases, including cardiovascular, liver, kidney, cancer, diabetes, and nervous system diseases. This study searched multiple literature databases, including PubMed, Web of Science, EMBASE, Google Scholar, Cochrane Library, and the ClinicalTrials.gov website from the establishment to October 2022, using AVE 0991 as a keyword. This literature search revealed that AVE 0991 could play different roles via various signaling pathways. However, the potential mechanisms of these effects need further elucidation. This review summarizes the benefits of AVE 0991 in several medical problems, including the COVID-19 pandemic. The paper also describes the underlying mechanisms of AVE 0991, giving in-depth insights and perspectives on the pharmaceutical value of AVE 0991 in drug discovery and development.
Collapse
Affiliation(s)
- Yang Deng
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wangli Ding
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wei Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
2
|
Fang CY, Chen MC, Chang TH, Wu CC, Chang JP, Huang HD, Ho WC, Wang YZ, Pan KL, Lin YS, Huang YK, Chen CJ, Lee WC. Idi1 and Hmgcs2 Are Affected by Stretch in HL-1 Atrial Myocytes. Int J Mol Sci 2018; 19:ijms19124094. [PMID: 30567295 PMCID: PMC6321625 DOI: 10.3390/ijms19124094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/27/2023] Open
Abstract
Background: Lipid expression is increased in the atrial myocytes of mitral regurgitation (MR) patients. This study aimed to investigate key regulatory genes and mechanisms of atrial lipotoxic myopathy in MR. Methods: The HL-1 atrial myocytes were subjected to uniaxial cyclic stretching for eight hours. Fatty acid metabolism, lipoprotein signaling, and cholesterol metabolism were analyzed by PCR assay (168 genes). Results: The stretched myocytes had significantly larger cell size and higher lipid expression than non-stretched myocytes (all p < 0.001). Fatty acid metabolism, lipoprotein signaling, and cholesterol metabolism in the myocytes were analyzed by PCR assay (168 genes). In comparison with their counterparts in non-stretched myocytes, seven genes in stretched monocytes (Idi1, Olr1, Nr1h4, Fabp2, Prkag3, Slc27a5, Fabp6) revealed differential upregulation with an altered fold change >1.5. Nine genes in stretched monocytes (Apoa4, Hmgcs2, Apol8, Srebf1, Acsm4, Fabp1, Acox2, Acsl6, Gk) revealed differential downregulation with an altered fold change <0.67. Canonical pathway analysis, using Ingenuity Pathway Analysis software, revealed that the only genes in the “superpathway of cholesterol biosynthesis” were Idi1 (upregulated) and Hmgcs2 (downregulated). The fraction of stretched myocytes expressing Nile red was significantly decreased by RNA interference of Idi1 (p < 0.05) and was significantly decreased by plasmid transfection of Hmgcs2 (p = 0.004). Conclusions: The Idi1 and Hmgcs2 genes have regulatory roles in atrial lipotoxic myopathy associated with atrial enlargement.
Collapse
Affiliation(s)
- Chih-Yuan Fang
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Mien-Cheng Chen
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Chen Wu
- Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Jen-Ping Chang
- Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Wan-Chun Ho
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Yi-Zhen Wang
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Kuo-Li Pan
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| | - Yu-Sheng Lin
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| | - Yao-Kuang Huang
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| | - Chien-Jen Chen
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Wei-Chieh Lee
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
3
|
Outzen EM, Zaki M, Mehryar R, Abdolalizadeh B, Sajid W, Boonen HCM, Sams A, Sheykhzade M. Lipopolysaccharides, but not Angiotensin ll, lnduces Direct Pro-lnflammatory Effects in Cultured Mouse Arteries and Human Endothelial and Vascular Smooth Muscle Cells. Basic Clin Pharmacol Toxicol 2017; 120:335-347. [DOI: 10.1111/bcpt.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Emilie M. Outzen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Marina Zaki
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Rahila Mehryar
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Bahareh Abdolalizadeh
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Waseem Sajid
- Department of Diabetes Complications Biology; Novo Nordisk A/S; Maaloev Denmark
| | - Harrie C. M. Boonen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Anette Sams
- Department of Diabetes Complications Biology; Novo Nordisk A/S; Maaloev Denmark
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
4
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
5
|
Vélez JM, Chamorro GA, Calzada CC, Zuñiga CA, Vélez JJ, Ocharán E. A study of prevention and regression of cardiac hypertrophy with a prolactin inhibitor in a biological model of ventricular hypertrophy caused by aorto caval fistulae in rat. Cardiovasc Pathol 2013; 22:357-67. [PMID: 23478013 DOI: 10.1016/j.carpath.2013.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The possibility of decreasing or reverting left ventricular hypertrophy and, therefore, cardiac hypertrophy (CH) is an important medical issue. The aim of the present study was to evaluate these two possibilities with a 3-week daily dose of captopril, losartan, or bromocriptine in a preventive or corrective model. METHODS After aorto caval fistulae (ACF) surgery on adult male Wistar rats to induce CH, animals were assigned to the preventive protocol (drug treatment began immediately after surgery) or corrective protocol (hypertrophy was allowed to develop before drug treatment). After treatments, isoproterenol was administered to half of the animals to further induce CH. The groups included the passive control, the sham-operated animals, those with ACF surgery but without drug treatment, and the 3-week treatments with captopril, losartan, or the low or high dose of bromocriptine. RESULTS Three treatments, with captopril, losartan, or the high dose of bromocriptine, significantly impeded/reverted an increase in CH-related parameters in the preventive/corrective model compared to the surgically treated group without drug treatment. The same effect was found after isoproterenol administration. The present results show an avoidance/reversion of CH with these three treatments. Better results were found with the angiotensin converting enzyme inhibitor (captopril) than with the prolactin inhibitor (bromocriptine). CONCLUSIONS Treatments with captopril, losartan, and the high dose of bromocriptine were effective in preventing/reversing the manifestation of CH in the preventive/corrective rat models. Further studies are needed to identify the initial mediator, the key component, and the molecular events involved in the pathogenesis of CH.
Collapse
Affiliation(s)
- Juan M Vélez
- Intracellular Signaling Laboratory, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México
| | | | | | | | | | | |
Collapse
|
6
|
On the different roles of AT1 and AT2 receptors in stretch-induced changes of connexin43 expression and localisation. Pflugers Arch 2012; 464:535-47. [PMID: 23007463 DOI: 10.1007/s00424-012-1161-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
Cyclic mechanical stretch (CMS) and angiotensin II (ATII) play an important role in cardiac remodelling. Thus, we aimed to examine how ATII affects CMS-induced changes in localisation and expression of the gap junction protein connexin43 (Cx43). Neonatal rat cardiomyocytes cultured on gelatin-coated Flexcell cell culture plates were kept static or were exposed to CMS (110 % of resting length, 1 Hz) for 24 h with or without additional ATII (0.1 μmol/L). Moreover, inhibitors of ATII receptors (AT-R) were used (for AT(1)-R: losartan 0.1 μmol/L, for AT(2)-R: PD123177 0.1 μmol/L). Thereafter, the cardiomyocytes were investigated by immunohistology, PCR and Western blot. After 24 h of CMS, cardiomyocytes were significantly elongated and orientated 75 ± 1.6° nearly perpendicular to the stretch axis. Furthermore, CMS significantly accentuated Cx43 at the cell poles (ratio Cx43 polar/lateral static: 2.32 ± 0.17; CMS: 10.08 ± 3.2). Additional ATII application significantly reduced Cx43 polarisation (ratio Cx43 polar/lateral ATII: 4.61 ± 0.42). The combined administration of ATII and losartan to CMS further reduced Cx43 polarisation to control levels, whilst the AT(2)-R blocker PD123177 restored polarisation. Moreover, CMS and ATII application resulted in a significant Cx43 protein and Cx43 mRNA up-regulation which could be blocked by losartan but not by PD123177. Thus, CMS results in a self-organisation of the cardiomyocytes leading to elongated cells orientated transversely towards the stretch axis with enhanced Cx43 expression and Cx43 accentuation at the cell poles. ATII enhances total Cx43 mRNA and protein expression probably via AT(1)-R (=inhibitory effect of losartan) and reduces Cx43 polarisation presumably via AT(2)-R, since PD123177 (but not losartan) inhibited the negative effects of ATII on polarisation.
Collapse
|
7
|
Maeno KI, Kasai T, Kasagi S, Kawana F, Ishiwata S, Ohno M, Yamaguchi T, Narui K. Relationship between atrial conduction delay and obstructive sleep apnea. Heart Vessels 2012; 28:639-45. [PMID: 22975715 DOI: 10.1007/s00380-012-0288-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/24/2012] [Indexed: 12/19/2022]
Abstract
Prolonged P-wave duration, indicating atrial conduction delay, is a marker of left atrial abnormality and is reported as a potent precursor of atrial fibrillation (AF). Several studies have shown that obstructive sleep apnea (OSA) is associated with AF. We evaluated the relationship between OSA and prolonged P-wave duration. Consecutive subjects who underwent overnight polysomnography and showed a normal sinus rhythm, had no history of AF or ischemic heart disease, and showed no evidence of heart failure were enrolled. Apnea-hypopnea index (AHI) is defined as the number of apnea and hypopnea events per hour of sleep. P-wave duration was determined on the basis of the mean duration of three consecutive beats in lead II from a digitally stored electrocardiogram. A total of 250 subjects (middle-aged, predominantly male, mildly obese, with a mean P-wave duration of 106 ms) were enrolled. In addition to age, male gender, body mass index (BMI), hypertension, dyslipidemia, and uric acid and creatinine levels, AHI (r = 0.56; P < 0.001) had significant univariable relationship with P-wave duration. Multivariate regression analysis showed that age, BMI, male gender, and AHI (partial correlation coefficient, 0.47; P < 0.001) were significantly independently correlated to P-wave duration. Severity of OSA is significantly associated with delayed atrial conduction time. Obstructive sleep apnea may lead to progression of atrial remodeling as an AF substrate.
Collapse
Affiliation(s)
- Ken-Ichi Maeno
- Sleep Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Promyelocytic leukemia zinc finger protein activates GATA4 transcription and mediates cardiac hypertrophic signaling from angiotensin II receptor 2. PLoS One 2012; 7:e35632. [PMID: 22558183 PMCID: PMC3338737 DOI: 10.1371/journal.pone.0035632] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 03/21/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pressure overload and prolonged angiotensin II (Ang II) infusion elicit cardiac hypertrophy in Ang II receptor 1 (AT(1)) null mouse, whereas Ang II receptor 2 (AT(2)) gene deletion abolishes the hypertrophic response. The roles and signals of the cardiac AT(2) receptor still remain unsettled. Promyelocytic leukemia zinc finger protein (PLZF) was shown to bind to the AT(2) receptor and transmit the hypertrophic signal. Using PLZF knockout mice we directed our studies on the function of PLZF concerning the cardiac specific transcription factor GATA4, and GATA4 targets. METHODOLOGY AND PRINCIPAL FINDINGS PLZF knockout and age-matched wild-type (WT) mice were treated with Ang II, infused at a rate of 4.2 ng·kg(-1)·min(-1) for 3 weeks. Ang II elevated systolic blood pressure to comparable levels in PLZF knockout and WT mice (140 mmHg). WT mice developed prominent cardiac hypertrophy and fibrosis after Ang II infusion. In contrast, there was no obvious cardiac hypertrophy or fibrosis in PLZF knockout mice. An AT(2) receptor blocker given to Ang II-infused wild type mice prevented hypertrophy, verifying the role of AT(2) receptor for cardiac hypertrophy. Chromatin immunoprecipitation and electrophoretic mobility shift assay showed that PLZF bound to the GATA4 gene regulatory region. A Luciferase assay verified that PLZF up-regulated GATA4 gene expression and the absence of PLZF expression in vivo produced a corresponding repression of GATA4 protein. CONCLUSIONS PLZF is an important AT(2) receptor binding protein in mediating Ang II induced cardiac hypertrophy through an AT(2) receptor-dependent signal pathway. The angiotensin II-AT(2)-PLZF-GATA4 signal may further augment Ang II induced pathological effects on cardiomyocytes.
Collapse
|
9
|
Suter DM, Miller KE. The emerging role of forces in axonal elongation. Prog Neurobiol 2011; 94:91-101. [PMID: 21527310 DOI: 10.1016/j.pneurobio.2011.04.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/18/2011] [Accepted: 04/06/2011] [Indexed: 11/26/2022]
Abstract
An understanding of how axons elongate is needed to develop rational strategies to treat neurological diseases and nerve injury. Growth cone-mediated neuronal elongation is currently viewed as occurring through cytoskeletal dynamics involving the polymerization of actin and tubulin subunits at the tip of the axon. However, recent work suggests that axons and growth cones also generate forces (through cytoskeletal dynamics, kinesin, dynein, and myosin), forces induce axonal elongation, and axons lengthen by stretching. This review highlights results from various model systems (Drosophila, Aplysia, Xenopus, chicken, mouse, rat, and PC12 cells), supporting a role for forces, bulk microtubule movements, and intercalated mass addition in the process of axonal elongation. We think that a satisfying answer to the question, "How do axons grow?" will come by integrating the best aspects of biophysics, genetics, and cell biology.
Collapse
Affiliation(s)
- Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, United States.
| | | |
Collapse
|
10
|
Toba H, Mitani T, Takahashi T, Imai N, Serizawa R, Wang J, Kobara M, Nakata T. Inhibition of the renal renin-angiotensin system and renoprotection by pitavastatin in type1 diabetes. Clin Exp Pharmacol Physiol 2011; 37:1064-70. [PMID: 20678154 DOI: 10.1111/j.1440-1681.2010.05436.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. The aim of the present study was to investigate whether or not pitavastatin ameliorates diabetic nephropathy and if inhibition of the rennin-angiotensin-aldosterone system (RAAS) is associated with any renoprotective effects. Pitavastatin (10mg/ kg/day) and/or spironolactone (100mg/kg/day) were given by gavage for 3weeks to uninephrectomized rats with streptozotocin-induced diabetes. 2. Pitavastatin or spironolactone significantly reduced proteinuria and collagen deposition, and normalized creatinine clearance, serum creatinine levels and blood urea nitrogen concentrations. 3. Reverse transcription polymerase chain reaction analysis showed that the renal expression of collagenI, transforming growth factor-β and monocyte chemoattractant-1 were increased in diabetic rats and reduced by the pitavastatin and/or spironolactone treatment. 4. These agents also decreased angiotensin converting enzyme expression and aldosterone concentrations in the renal homogenate, but had no effect on blood glucose, haemoglobinA(1c) , and plasma total cholesterol, Na(+) , K(+) , aldosterone and NOx levels, or on systolic blood pressure measured by the tail-cuff method. Interestingly, cotreatment with pitavastatin and spironolactone did not result in additional normalization. 5. These results suggest that pitavastatin shows renoprotective effects against diabetic nephropathy mediated in part by inhibition of the renal RAAS, including the suppression of angiotensin-converting enzyme expression and aldosterone production.
Collapse
Affiliation(s)
- Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Miura SI, Karnik SS, Saku K. Review: angiotensin II type 1 receptor blockers: class effects versus molecular effects. J Renin Angiotensin Aldosterone Syst 2010; 12:1-7. [PMID: 20603272 DOI: 10.1177/1470320310370852] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Highly selective angiotensin II (Ang II) type 1 (AT(1)) receptor blockers (ARBs) are now available. The AT(1) receptor is a member of the G protein-coupled receptor (GPCR) superfamily and block the diverse effects of Ang II. Several ARBs are available for clinical use. Most ARBs have common molecular structures (biphenyl-tetrazol and imidazole groups) and it is clear that ARBs have 'class effects'. On the other hand, recent clinical studies have demonstrated that not all ARBs have the same effects, and some benefits conferred by ARBs may not be class effects, and instead may be 'molecular effects'. In addition, each ARB has been clearly shown to have specific molecular effects in basic experimental studies, and these effects may be due to small differences in the molecular structure of each ARB. However, it is controversial whether ARBs have molecular effects in a clinical setting. Although the presence of molecular effects for each ARB based on experimental studies may not directly influence the clinical outcome, this possibility has not been adequately evaluated. This review focuses on the class effects versus molecular effects of ARBs from bench to bedside.
Collapse
Affiliation(s)
- Shin-ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan.
| | | | | |
Collapse
|
12
|
Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther 2008; 120:292-316. [PMID: 18804122 PMCID: PMC7112668 DOI: 10.1016/j.pharmthera.2008.08.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 12/24/2022]
Abstract
The renin angiotensin system (RAS) is intricately involved in normal cardiovascular homeostasis. Excessive stimulation by the octapeptide angiotensin II contributes to a range of cardiovascular pathologies and diseases via angiotensin type 1 receptor (AT1R) activation. On the other hand, tElsevier Inc.he angiotensin type 2 receptor (AT2R) is thought to counter-regulate AT1R function. In this review, we describe the enhanced expression and function of AT2R in various cardiovascular disease settings. In addition, we illustrate that the RAS consists of a family of angiotensin peptides that exert cardiovascular effects that are often distinct from those of Ang II. During cardiovascular disease, there is likely to be an increased functional importance of AT2R, stimulated by Ang II, or even shorter angiotensin peptide fragments, to limit AT1R-mediated overactivity and cardiovascular pathologies.
Collapse
Key Words
- angiotensin ii
- at2 receptor
- at1 receptor
- cardiovascular disease
- ace, angiotensin converting enzyme
- ace2, angiotensin converting enzyme 2
- ang ii, angiotensin ii
- ang iii, angiotensin iii
- ang iv, angiotensin iv
- ang (1–7), angiotensin (1–7)
- atbp50, at2r-binding protein of 50 kda
- atip-1, at2 receptor interacting protein-1
- at1r, angiotensin ii type 1 receptor
- at2r, angiotensin ii type 2 receptor
- at4r, angiotensin ii type 4 receptor
- bk, bradykinin
- bp, blood pressure
- cgmp, cyclic guanine 3′,5′-monophosphate
- ecm, extracellular matrix
- enos, endothelial nitric oxide synthase
- erk-1/2, extracellular-regulated kinases-1,2
- irap, insulin-regulated aminopeptidase
- l-name, ng-nitro-l arginine methyl ester
- lvh, left ventricular hypertrophy
- mapk, mitogen-activated protein kinase
- mcp-1, monocyte chemoattractant protein-1
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mrna, messenger ribonucleic acid
- nf-κβ, nuclear transcription factor-κβ
- no, nitric oxide
- o2−, superoxide
- pc12w, rat pheochromocytoma cell line
- ras, renin angiotensin system
- ros, reactive oxygen species
- shr, spontaneously hypertensive rat
- timp-1, tissue inhibitor of metalloproteinase-1
- tnfα, tumour-necrosis factor α
- vsmc, vascular smooth muscle cell
- wky, wistar-kyoto rat
Collapse
Affiliation(s)
- Emma S Jones
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
13
|
Doi T, Sakoda T, Akagami T, Naka T, Mori Y, Tsujino T, Masuyama T, Ohyanagi M. Aldosterone induces interleukin-18 through endothelin-1, angiotensin II, Rho/Rho-kinase, and PPARs in cardiomyocytes. Am J Physiol Heart Circ Physiol 2008; 295:H1279-H1287. [PMID: 18660453 DOI: 10.1152/ajpheart.00148.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aldosterone (Aldo) is recognized as an important risk factor for cardiovascular diseases. IL-18 induces myocardial hypertrophy, loss of contractility of cardiomyocytes, and apoptosis leading myocardial dysfunction. However, so far, there have been few reports concerning the interaction between Aldo and IL-18. The present study examined the effects and mechanisms of Aldo on IL-18 expression and the roles of peroxisome proliferator-activated receptor (PPAR) agonists in rat cardiomyocytes. We used cultured rat neonatal cardiomyocytes stimulated with Aldo to measure IL-18 mRNA and protein expression, Rho-kinase, and NF-kappaB activity. We also investigated the effects of PPAR agonists on these actions. Aldo, endothelin-1 (ET-1), and angiotensin II (ANG II) increased IL-18 mRNA and protein expression. Mineralocorticoid receptor antagonists, endothelin A receptor antagonist, and ANG II receptor antagonist inhibited Aldo-induced IL-18 expression. Aldo induced ET-1 and ANG II production in cultured media. Moreover, Rho/Rho-kinase inhibitor and statin inhibited Aldo-induced IL-18 expression. On the other hand, Aldo upregulated the activities of Rho-kinase and NF-kappaB. PPAR agonists attenuated the Aldo-induced IL-18 expression and NF-kappaB activity but not the Rho-kinase activity. Our findings indicate that Aldo induces IL-18 expression through a mechanism that involves, at a minimum, ET-1 and ANG II acting via the Rho/Rho-kinase and PPAR/NF-kappaB pathway. The induction of IL-18 in cardiomyocytes by Aldo, ET-1, and ANG II might, therefore, cause a deterioration of the cardiac function in an autocrine and paracrine fashion. The inhibition of the IL-18 expression by PPAR agonists might be one of the mechanisms whereby the beneficial cardiovascular effects are exerted.
Collapse
Affiliation(s)
- Takashi Doi
- Division of Coronary Heart Disease, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya-City, Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The intracellular renin-angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens 2008; 17:168-73. [PMID: 18277150 DOI: 10.1097/mnh.0b013e3282f521a8] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The renin-angiotensin system, traditionally viewed as a circulatory system, has significantly expanded in the last two decades to include independently regulated local systems in several tissues, newly identified active products of angiotensin II, and new receptors and functions of renin-angiotensin system components. In spite of our increased understanding of the renin-angiotensin system, a role of angiotensin II in cardiac hypertrophy, through direct effects on cardiovascular tissue, is still being debated. Here, we address the cardiovascular effects of angiotensin II and the role an intracellular renin-angiotensin system might play. RECENT FINDINGS Recent studies have shown that cardiac myocytes, fibroblasts and vascular smooth muscle cells synthesize angiotensin II intracellularly. Some conditions, such as high glucose, selectively increase intracellular generation and translocation of angiotensin II to the nucleus. Intracellular angiotensin II regulates the expression of angiotensinogen and renin, generating a feedback loop. The first reaction of intracellular angiotensin II synthesis is catalyzed by renin or cathepsin D, depending on the cell type, and chymase, not angiotensin-converting enzyme, catalyzes the second step. SUMMARY These studies suggest that the intracellular renin-angiotensin system is an important component of the local system. Alternative mechanisms of angiotensin II synthesis and action suggest a need for novel therapeutic agents to block the intracellular renin-angiotensin system.
Collapse
|
15
|
Mondragón L, Orzáez M, Sanclimens G, Moure A, Armiñán A, Sepúlveda P, Messeguer A, Vicent MJ, Pérez-Payá E. Modulation of cellular apoptosis with apoptotic protease-activating factor 1 (Apaf-1) inhibitors. J Med Chem 2008; 51:521-9. [PMID: 18197610 DOI: 10.1021/jm701195j] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The programmed cell death or apoptosis plays both physiological and pathological roles in biology. Anomalous activation of apoptosis has been associated with malignancies. The intrinsic mitochondrial pathway of apoptosis activation occurs through a multiprotein complex named the apoptosome. We have discovered molecules that bind to a central protein component of the apoptosome, Apaf-1, and inhibits its activity. These new first-in-class apoptosome inhibitors have been further improved by modifications directed to enhance their cellular penetration to yield compounds that decrease cell death, both in cellular models of apoptosis and in neonatal rat cardiomyocytes under hypoxic conditions.
Collapse
Affiliation(s)
- L Mondragón
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dvir T, Levy O, Shachar M, Granot Y, Cohen S. Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. ACTA ACUST UNITED AC 2007; 13:2185-93. [PMID: 17518740 DOI: 10.1089/ten.2006.0364] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Deciphering the cellular signals leading to cardiac muscle assembly is a major challenge in ex vivo tissue regeneration. For the first time, we demonstrate that pulsatile interstitial fluid flow in three-dimensional neonatal cardiac cell constructs can activate ERK1/2 sixfold, as compared to static-cultivated constructs. Activation of ERK1/2 was attained under physiological shear stress conditions, without activating the p38 cell death signal above its basic level. Activation of the ERK1/2 signaling cascade induced synthesis of high levels of contractile and cell-cell contact proteins by the cardiomyocytes, while its inhibition diminished the inducing effects of pulsatile flow. The pulsed medium-induced cardiac cell constructs showed improved cellularity and viability, while the regenerated cardiac tissue demonstrated some ultra-structural features of the adult myocardium. The cardiomyocytes were elongated and aligned into myofibers with defined Z-lines and multiple high-ordered sarcomeres. Numerous intercalated disks were positioned between adjacent cardiomyocytes, and deposits of collagen fibers surrounded the myofibrils. The regenerated cardiac tissue exhibited high density of connexin 43, a major protein involved in electrical cellular connections. Our research thus demonstrates that by judiciously applying fluid shear stress, cell signaling cascades can be augmented with subsequent profound effects on cardiac tissue regeneration.
Collapse
Affiliation(s)
- Tal Dvir
- Department of Biotechnology Engineering, Ben-Gurion University of Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
17
|
Hanke CJ, Holmes BB, Xu Y, Nithipatikom K, Campbell WB. Endothelium-derived steroidogenic factor enhances angiotensin II-stimulated aldosterone release by bovine zona glomerulosa cells. Endocrinology 2007; 148:317-23. [PMID: 17053027 PMCID: PMC7539562 DOI: 10.1210/en.2006-0884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Endothelium-derived steroidogenic factor (EDSF) is an endothelial peptide that stimulates aldosterone release from bovine adrenal zona glomerulosa (ZG) cells. The regulation of aldosterone release by combinations of EDSF and angiotensin II (AII) or EDSF and ACTH was investigated. Endothelial cells (ECs) and EC-conditioned media (ECCM) increased aldosterone release from ZG cells, an activity attributed to EDSF. AII (10(-12) to 10(-8) M) and ACTH (10(-12) to 10(-9) M) also stimulated the release of aldosterone from ZG cells. The stimulation by AII, but not ACTH, was greatly enhanced when ZG cells were coincubated with ECs. AII was metabolized by ECs to peptides identified by mass spectrometry as angiotensin (1-7) and angiotensin IV. There was very little metabolism of AII by ZG cells. Neither of these two AII metabolites altered aldosterone release from ZG cells, so they could not account for the enhanced response with ECs. AII-induced aldosterone release from ZG cells was enhanced by ECCM but not cell-free conditioned medium. This enhanced response was not due to increased EDSF release from ECs by AII. The synergistic effect of EDSF and AII was apparent when AII was added during or after the generation of ECCM and not observed when the AII component of the enhancement was blocked by the AII antagonist, losartan. These studies indicate that EDSF enhances the steroidogenic effect of AII. In the adrenal gland, ECs are in close anatomical relationship with ZG cells and may sensitize ZG cells to the steroidogenic action of AII by releasing EDSF.
Collapse
Affiliation(s)
- Craig J Hanke
- Department of Human Biology, University of Wisconsin-Green Bay, Wisconsin 54301, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
There are multiple factors for the etiology of atrial fibrillation (AF), including stretch, autonomic imbalance, hyperthyroidism, and inflammation. Of these factors for AF, stretch and inflammation increase the angiotensin II level, thereby inducing calcium over load, and inducing ectopic focal activities that initiate AF. Angiotensin II activates the Erk cascade through the AT(1)R and induces interstitial fibrosis of the atria, which compromises intra-atrial conduction. Short atrial refractoriness and slow conduction form multiple re-entry, before maintaining AF. Anti-arrhythmic drugs used for downstream therapy can suppress the focal activities and re-entry, but cannot prevent the development of a structural substrate. In contrast, angiotensin-converting enzyme, angiotensin II type 1 receptor blocker and statins might constitute upstream therapy through the prevention of structural remodeling that promotes AF.
Collapse
Affiliation(s)
- Koichiro Kumagai
- Department of Cardiology, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
19
|
Shibasaki Y, Nishiue T, Masaki H, Tamura K, Matsumoto N, Mori Y, Nishikawa M, Matsubara H, Iwasaka T. Impact of the angiotensin II receptor antagonist, losartan, on myocardial fibrosis in patients with end-stage renal disease: assessment by ultrasonic integrated backscatter and biochemical markers. Hypertens Res 2006; 28:787-95. [PMID: 16471172 DOI: 10.1291/hypres.28.787] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myocardial fibrosis commonly occurs in patients with end-stage renal disease (ESRD) and has proven to be an important predictor for cardiovascular events. In experimental settings, angiotensin II type 1 receptor (AT1-R) antagonists have been shown to have anti-fibrotic effects on the myocardium independent of their antihypertensive effects. In this study, to investigate whether the AT1-R antagonist losartan would have such anti-fibrotic effects in patients, we administered losartan or, for purpose of comparison, the angiotensin-converting enzyme enalapril or Ca2+-antagonist amlodipine to patients with ESRD. Thirty-nine ESRD patients with hypertension were randomly assigned to receive losartan (n=13), enalapril (n=13), or amlodipine (n=13). Ultrasonic integrated backscatter (IBS) and serological markers of collagen type I synthesis and degradation were used to assess the degree of myocardial fibrosis just before and after 6 months of treatment. There were no significant differences in antihypertensive effects among the three agents. In the enalapril- and amlodipine-treated groups, the mean calibrated IBS values increased significantly after 6 months of treatment (enalapril: -31.6 +/- 1.3 to -29.4 +/- 1.2 dB, p=0.011; amlodipine: -30.6 +/- 1.4 to -27.2 +/- 1.2 dB, p=0.012). However, the mean calibrated IBS values in the losartan-treated group did not increase after 6 months of treatment (-31.2 +/- 1.7 to -31.3 +/- 1.4 dB, p=0.88). The ratio of the serum concentration of procollagen type I carboxy-terminal peptide to the serum concentration of collagen type I pyridinoline cross-linked carboxy-terminal telopeptide was significantly reduced in the losartan-treated group (42.6 +/- 4.6 to 34.4 +/- 3.6, p=0.038). The present study indicates that losartan more effectively suppresses myocardial fibrosis in patients with ESRD than does enalapril or amlodipine despite a comparable antihypertensive effect among the three drugs.
Collapse
|
20
|
Gilbert JS, Lang AL, Nijland MJ. Maternal nutrient restriction and the fetal left ventricle: decreased angiotensin receptor expression. Reprod Biol Endocrinol 2005; 3:27. [PMID: 16018810 PMCID: PMC1187921 DOI: 10.1186/1477-7827-3-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 07/14/2005] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Adequate maternal nutrition during gestation is requisite for fetal nutrition and development. While a large group of epidemiological studies indicate poor fetal nutrition increases heart disease risk and mortality in later life, little work has focused on the effects of impaired maternal nutrition on fetal heart development. We have previously shown that 50% global nutrient restriction from 28-78 days of gestation (early to mid-pregnancy; term = 147 days) in sheep at mid-gestation retards fetal growth while protecting growth of heart and results in hypertensive male offspring at nine months of age. In the present study, we evaluate LV gene transcription using RNA protection assay and real-time reverse transcriptase polymerase chain reaction, and protein expression using western blot, of VEGF and AT1 and AT2 receptors for AngII at mid-gestation in fetuses from pregnant ewes fed either 100% (C) or 50% (NR) diet during early to mid-gestation. RESULTS No difference between the NR (n = 6) and C (n = 6) groups was found in gene transcription of the AngII receptors. Immunoreactive AT1 (1918.4 +/- 154.2 vs. 3881.2 +/- 494.9; P < 0.01) and AT2 (1729.9 +/- 293.6 vs. 3043.3 +/- 373.2; P < 0.02) was decreased in the LV of NR fetuses compared to C fetuses. The LV of fetuses exposed to NR had greater transcription of mRNA for VEGF (5.42 +/- 0.85 vs. 3.05 +/- 0.19; P < 0.03) than respective C LV, while no change was observed in immunoreactive VEGF. CONCLUSION The present study demonstrates that VEGF, AT1 and AT2 message and protein are not tightly coupled, pointing to post-transcriptional control points in the mid gestation NR fetus. The present data also suggest that the role of VEGF and the renin-angiotensin system receptors during conditions inducing protected cardiac growth is distinct from the role these proteins may play in normal fetal cardiac growth. The present findings may help explain epidemiological studies that indicate fetuses with low birth weight carry an increased risk of mortality from coronary and cardiovascular disease, particularly if these individuals have reduced cardiovascular reserve due to an epigenetic decrease in vascularization.
Collapse
Affiliation(s)
- Jeffrey S Gilbert
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Alvin L Lang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Mark J Nijland
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
21
|
Itoh T, Takahashi K, Yamauchi Y, Takahashi K, Ueyama S, Schaffer SW, Azuma J. Taurine transporter in cultured neonatal cardiomyocytes: a response to cardiac hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 526:33-40. [PMID: 12908581 DOI: 10.1007/978-1-4615-0077-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Takashi Itoh
- Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Spurrell BE, Murphy TV, Hill MA. Intraluminal pressure stimulates MAPK phosphorylation in arterioles: temporal dissociation from myogenic contractile response. Am J Physiol Heart Circ Physiol 2003; 285:H1764-73. [PMID: 12805020 DOI: 10.1152/ajpheart.00468.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the MAPK family of enzymes, p42/44 and p38, have been implicated in both the regulation of contractile function and growth responses in vascular smooth muscle. We determined whether such kinases are activated during the arteriolar myogenic response after increases in intraluminal pressure. Particular emphasis was placed on temporal aspects of activation to determine whether such phosphorylation events parallel the known time course for myogenic contraction. Experiments used single cannulated arterioles isolated from the cremaster muscle of rats with some vessels loaded with the fluorescent Ca2+-sensitive dye fura 2 (2 microM). The p42/44 inhibitor PD-98059 (50 microM) caused vasodilation but did not prevent pressure-induced myogenic constriction. The vasodilator response was accompanied by decreased smooth muscle intracellular Ca2+. Western blotting revealed a significant increase in the level of phosphorylation of p42/44 15 min after the application of a 30- to 100-mmHg pressure step. Phosphorylation of p42/44 was a late event that appeared to be temporally dissociated from contraction, which was complete within 1-5 min. EGF (80 nM) caused marked phosphorylation of p42/44 but only acted as a weak vasoconstrictor. The p38 inhibitor SB-203580 (10 microM) did not alter baseline diameter, nor did it prevent myogenic vasoconstriction. Consistent with these observations, SB-203580 did not cause a measurable change in intracellular Ca2+. The results demonstrate activation of the p42/44 class of MAPK resulting from increased transmural pressure. Such activation is, however, dissociated from the acute pressure-induced vasoconstrictor response in terms of time course and may represent the activation of compensatory, but parallel, pathways, including those related to growth and remodeling.
Collapse
Affiliation(s)
- Brian E Spurrell
- Microvascular Biology Group, School of Medical Sciences, RMIT University, Plenty Rd., Bundoora, Victoria 3083, Australia
| | | | | |
Collapse
|
23
|
Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K, Saku K. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol 2003; 41:2197-204. [PMID: 12821247 DOI: 10.1016/s0735-1097(03)00464-9] [Citation(s) in RCA: 371] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED The purpose of the present study was to evaluate the effect of angiotensin II type 1 receptor (AT1R) antagonist on chronic structural remodeling in atrial fibrillation (AF). BACKGROUND We previously reported that an AT1R antagonist, candesartan, prevents acute electrical remodeling in a rapid pacing model. However, the effect of candesartan on chronic structural remodeling in AF is unclear. METHODS Sustained AF was induced in 20 dogs (10 in a control group and 10 in a candesartan group) by rapid pacing of the right atrium (RA) at 400 beats/min for five weeks. Candesartan was administered orally (10 mg/kg/day) for one week before rapid pacing and was continued for five weeks. The AF duration, atrial effective refractory period (AERP) at four sites in the RA, and intra-atrial conduction time (CT) from the RA appendage to the other three sites were measured every week. RESULTS The mean AF duration in the control group after five weeks was significantly longer than that with candesartan (1,333 +/- 725 vs. 411 +/- 301 s, p < 0.01). The degree of AERP shortening after five weeks was not significantly different between the two groups. The CT from the RA appendage to the low RA after five weeks with candesartan was significantly shorter than that in the control (43 +/- 14 vs. 68 +/- 10 ms, p < 0.05). The candesartan group had a significantly lower percentage of interstitial fibrosis than the control group (7 +/- 2% vs. 16 +/- 1% at the RA appendage, p < 0.001). CONCLUSIONS Candesartan can prevent the promotion of AF by suppressing the development of structural remodeling.
Collapse
Affiliation(s)
- Koichiro Kumagai
- Department of Cardiology, School of Medicine, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Yayama K, Matsuoka S, Nagaoka M, Shimazu E, Takano M, Okamoto H. Down-regulation of bradykinin B2-receptor mRNA in the heart in pressure-overload cardiac hypertrophy in the rat. Biochem Pharmacol 2003; 65:1017-25. [PMID: 12623134 DOI: 10.1016/s0006-2952(03)00008-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To determine the potential role of the cardiac kallikrein-kinin system in the development of cardiac hypertrophy, we studied the expression patterns of kallikrein, kininogen, and bradykinin receptor mRNA in the heart by polymerase chain reaction during the development of pressure-overload-induced left ventricular hypertrophy (LVH) in rats. The abdominal aortic constriction produced LVH after 7, 14, and 28 days. Neither mRNA levels for high-molecular-weight (H-) or low-molecular-weight (L-) kininogens and T-kininogen, nor those for tissue kallikreins, changed during LVH. B(2)-receptor mRNA levels in the left ventricles decreased 4 and 7 days after aortic constriction, subsequently returning to the levels in sham-operated animals. B(2)-receptor densities in cardiac membrane preparations obtained 4 days after aortic constriction significantly decreased compared to preparations from sham-operated rats, whereas the receptor affinity was unchanged. Down-regulation of B(2)-receptor mRNA levels was abolished by oral administration of an angiotensin II type 1 (AT1) receptor antagonist, candesartan, for 4 days after aortic constriction. Both cardiomyocytes and nonmyocytes obtained from neonatal rat hearts expressed B(2)-receptor mRNA in vitro, and the levels were not changed in either cell type by culture with 1 microM angiotensin II (Ang II). However, when a mixture of cardiomyocytes and nonmyocytes was cultured with 1 microM Ang II, B(2)-receptor mRNA levels decreased within 12 hr; this in vitro effect of Ang II was inhibited by the AT1-receptor antagonist losartan. These results indicate that the mechanical load in the myocardium caused by pressure-overload rapidly produces a down-regulation of B(2)-receptor expression during the initial stage of LVH, probably mediated by activating the AT1-receptor.
Collapse
Affiliation(s)
- Katsutoshi Yayama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Mukawa H, Toki Y, Miyazaki Y, Matsui H, Okumura K, Ito T. Angiotensin II type 2 receptor blockade partially negates antihypertrophic effects of type 1 receptor blockade on pressure-overload rat cardiac hypertrophy. Hypertens Res 2003; 26:89-95. [PMID: 12661917 DOI: 10.1291/hypres.26.89] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated the effects of angiotensin II type 2 (AT2) receptor blockade on the antihypertrophic effects of type 1 receptor (AT1) blockade in pressure-overload cardiac hypertrophy in adult rats. Cardiac hypertrophy was induced by banding the abdominal aorta above the renal arteries. The rats were treated with either an AT1 receptor antagonist TCV-116 (TCV, 10 mg/kg/day), an AT2 receptor antagonist PD123319 (PD, 20 mg/kg/day), or both for 4 weeks after the aortic banding. We measured systolic and diastolic blood pressure (BP), body weight (BW), left ventricular weight (LVW), and serum and cardiac angiotensin converting enzyme (ACE) activities. Aortic banding increased BP and LVW/BW, and TCV reversed both these increases. PD affected neither BP nor LVW/BW. TCV+PD reversed the increase in BP but not LVW/BW. Thus, PD was considered to counteract the antihypertrophic effect of TCV without affecting BP. All three treatments reduced cardiac ACE activity without affecting serum ACE activity. Our data demonstrated that AT2 receptor blockade negates the antihypertrophic effects of AT1 receptor blockade in an adult rat model of pressure-overload cardiac hypertrophy. AT2 receptors may mediate the signaling pathways involved in growth inhibition, which could counteract mediation of the cellular growth signaling pathways by AT1 receptors.
Collapse
MESH Headings
- Angiotensin Receptor Antagonists
- Animals
- Antihypertensive Agents/pharmacology
- Aorta, Abdominal/physiopathology
- Aorta, Abdominal/surgery
- Benzimidazoles/pharmacology
- Biphenyl Compounds/pharmacology
- Blood Pressure/drug effects
- Body Weight
- Heart Rate/drug effects
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Imidazoles/pharmacology
- Male
- Myocardium/enzymology
- Organ Size
- Peptidyl-Dipeptidase A/blood
- Pyridines/pharmacology
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/metabolism
- Tetrazoles
Collapse
Affiliation(s)
- Hiroaki Mukawa
- Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Gupta S, Purcell NH, Lin A, Sen S. Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J Cell Biol 2002; 159:1019-28. [PMID: 12486112 PMCID: PMC2173971 DOI: 10.1083/jcb.200207149] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) regulates expression of a variety of genes involved in immune responses, inflammation, proliferation, and programmed cell death (apoptosis). Here, we show that in rat neonatal ventricular cardiomyocytes, activation of NF-kappaB is involved in the hypertrophic response induced by myotrophin, a hypertrophic activator identified from spontaneously hypertensive rat heart and cardiomyopathic human hearts. Myotrophin treatment stimulated NF-kappaB nuclear translocation and transcriptional activity, accompanied by IkappaB-alpha phosphorylation and degradation. Consistently, myotrophin-induced NF-kappaB activation was enhanced by wild-type IkappaB kinase (IKK) beta and abolished by the dominant-negative IKKbeta or a general PKC inhibitor, calphostin C. Importantly, myotrophin-induced expression of two hypertrophic genes (atrial natriuretic factor [ANF] and c-myc) and also enhanced protein synthesis were partially inhibited by a potent NF-kappaB inhibitor, pyrrolidine dithio-carbamate (PDTC), and calphostin C. Expression of the dominant-negative form of IkappaB-alpha or IKKbeta also partially inhibited the transcriptional activity of ANF induced by myotrophin. These findings suggest that the PKC-IKK-NF-kappaB pathway may play a critical role in mediating the myotrophin-induced hypertrophic response in cardiomyocytes.
Collapse
MESH Headings
- Alkaloids
- Animals
- Animals, Newborn
- Benzophenanthridines
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Genes, Dominant
- Growth Substances/metabolism
- Hypertrophy
- I-kappa B Proteins/metabolism
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins/metabolism
- Luciferases/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Myocardium/cytology
- Myocardium/pathology
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Naphthalenes/metabolism
- Phenanthridines/metabolism
- Phosphorylation
- Protein Binding
- Protein Kinase C/metabolism
- Protein Transport
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
27
|
Bader M. Role of the local renin-angiotensin system in cardiac damage: a minireview focussing on transgenic animal models. J Mol Cell Cardiol 2002; 34:1455-62. [PMID: 12431444 DOI: 10.1006/jmcc.2002.2077] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The local generation of all components of the renin-angiotensin system (RAS) in the heart has been the basis for the postulation of a tissue RAS in this organ. Since angiotensin II is involved in the induction of cardiac hypertrophy and fibrosis the local generation of this peptide may be of highest clinical importance. Several transgenic animal models have been generated to evaluate the functional importance of the cardiac RAS. We have established a new hypertensive mouse model lacking local angiotensinogen expression in the heart. In these animals, cardiac weight and collagen synthesis are increased compared to normotensive control mice but to a lesser extent than in mice with equally enhanced blood pressure but intact cardiac angiotensinogen generation. Thus, we have shown that local synthesis of this protein is involved but not essential in the development of cardiac hypertrophy and fibrosis.
Collapse
MESH Headings
- Angiotensin II/deficiency
- Angiotensin II/pharmacology
- Animals
- Animals, Genetically Modified
- Cardiomegaly/etiology
- Cardiomegaly/physiopathology
- Fibrosis
- Heart/drug effects
- Hypertension/complications
- Hypertension/genetics
- Hypertension/physiopathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Myocardial Infarction/etiology
- Myocardium/metabolism
- Myocardium/pathology
- Organ Specificity
- Peptidyl-Dipeptidase A/physiology
- Rats
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/deficiency
- Receptors, Angiotensin/physiology
- Renin-Angiotensin System/physiology
- Stress, Mechanical
- Ventricular Remodeling
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), D-13092, Berlin-Buch, Germany.
| |
Collapse
|
28
|
Baetz D, Haworth RS, Avkiran M, Feuvray D. The ERK pathway regulates Na(+)-HCO(3)(-) cotransport activity in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2002; 283:H2102-9. [PMID: 12384488 DOI: 10.1152/ajpheart.01071.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sarcolemmal Na(+)-HCO cotransporter (NBC) is stimulated by intracellular acidification and acts as an acid extruder. We examined the role of the ERK pathway of the MAPK cascade as a potential mediator of NBC activation by intracellular acidification in the presence and absence of angiotensin II (ANG II) in adult rat ventricular myocytes. Intracellular pH (pH(i)) was recorded with the use of seminaphthorhodafluor-1. The NH method was used to induce an intracellular acid load. NBC activation was significantly decreased with the ERK inhibitors PD-98059 and U-0126. NBC activity after acidification was increased in the presence of ANG II (pH(i) range of 6.75-7.00). ANG II plus PD-123319 (AT(2) antagonist) still increased NBC activity, whereas ANG II plus losartan (AT(1) antagonist) did not affect it. ERK phosphorylation (measured by immunoblot analysis) during intracellular acidification was increased by ANG II, an effect that was abolished by losartan and U-0126. In conclusion, the MAPK(ERK)-dependent pathway facilitates the rate of pH(i) recovery from acid load through NBC activity and is involved in the AT(1) receptor-mediated stimulation of such activity by ANG II.
Collapse
Affiliation(s)
- Delphine Baetz
- Laboratoire de Physiologie Cellulaire and Centre National de la Recherche Scientifique, Hôpital Marie Lannelongue-Université Paris XI, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
29
|
Uchiyama-Tanaka Y, Matsubara H, Mori Y, Kosaki A, Kishimoto N, Amano K, Higashiyama S, Iwasaka T. Involvement of HB-EGF and EGF receptor transactivation in TGF-beta-mediated fibronectin expression in mesangial cells. Kidney Int 2002; 62:799-808. [PMID: 12164862 DOI: 10.1046/j.1523-1755.2002.00537.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Gq-coupled receptors are known to transactivate epidermal growth factor receptor (EGFR) via the Ca2+ and PKC pathways to phosphorylate extracellular signal-regulated kinase (ERK). METHODS We studied the involvement of EGFR in transforming growth factor-beta (TGF-beta)-mediated fibronectin (FN) expression using glomerular mesangial cells. RESULTS TGF-beta up-regulated FN mRNA accumulation in a time- and dose-dependent manner, which was completely inhibited by phosphatidylcholine-phospholipase C (PC-PLC) inhibitor and PKC inhibitors (calphostin-C and staurosporin). The EGFR inhibitor AG1478 completely abolished TGF-beta-mediated FN expression. ERK inactivation by PD98059, and p38MAPK inhibitor SB203580 also showed significant inhibitory effects. Addition of neutralizing anti-heparin-binding EGF-like growth factor (HB-EGF) antibody, pretreatment with heparin and the metalloproteinase (MMP) inhibitor batimastat blocked FN expression. In mesangial cells stably transfected with a chimera containing HB-EGF and alkaline phosphatase (ALP) genes, ALP activity in incubation medium was rapidly increased by TGF-beta (2.1-fold at 0.5 min) and reached a 3.7-fold increase at two minutes, which was abolished by calphostin-C or batimastat. TGF-beta phosphorylated EGFR, ERK and p38MAPK in a PKC- and MMP-dependent manner. Smad2 phosphorylation by TGF-beta was not affected by AG1478, and HB-EGF did not activate Smad2. FN mRNA stability was not affected by TGF-beta. Cycloheximde did not interfere with TGF-beta-mediated FN expression. CONCLUSIONS The present study demonstrated that HB-EGF processed and released via PC-PLC-PKC signaling is an intermediate molecule for TGF-beta-mediated EGFR transactivation, and subsequent activation of ERK and p38MAPK is involved in FN expression via transcriptional regulation without requiring new protein synthesis.
Collapse
Affiliation(s)
- Yoko Uchiyama-Tanaka
- Department of Medicine II, Kansai Medical University, Moriguchi, Osaka 570-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Carson JA, Nettleton D, Reecy JM. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J 2002; 16:207-9. [PMID: 11744623 DOI: 10.1096/fj.01-0544fje] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Delineating the molecular mechanisms that are responsive to work overload is crucial to understanding the adaptive processes controlling skeletal muscle mass. We have examined the molecular events associated with increased workload by using microarray analysis to begin to define the mechanotransduction responsive transcription programs in skeletal muscle. Microarray analysis identified 112 mRNAs that were expressed differentially in the soleus muscle of sham-operated vs. gastrocnemius-ablated rats. These genes can be classified into cell proliferation, autocrine/paracrine, extracellular matrix, immune response, intracellular signaling, metabolism, neural, protein synthesis/degradation, structural, and transcription. These findings dramatically increase the number of known, differentially expressed mRNA during early skeletal muscle hypertrophy. In toto, our findings indicate that work overload induced skeletal muscle hypertrophy alters autocrine/paracrine signaling, intracellular signaling, and transcription factor expression, which likely results in a dramatic change in cellular metabolism, cell proliferation, and muscle structure. These data enhance our understanding of the complex molecular mechanisms controlling skeletal muscle mass in response to increased physical activity.
Collapse
Affiliation(s)
- James A Carson
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
31
|
Matsubara H. [Angiotensin II type 2 (AT2) receptor signal and cardiovascular action]. Nihon Yakurigaku Zasshi 2002; 119:95-102. [PMID: 11862763 DOI: 10.1254/fpj.119.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Due to the discovery of nonpeptic ligands, the receptors for angiotensin (Ang) II are classified into two subtypes (AT1-R and AT2-R). AT1-R mediates most of the cardiovascular actions of Ang II. AT2-R is expressed at very high levels in the developing fetus. Its expression is very low in the cardiovascular system of the adult. The expression of AT2-R can be modulated by pathological states associated with tissue remodeling or inflammation. In failing hearts or neointima formation after vascular injury, AT2-R is reexpressed in cells proliferating in interstitial regions or neointima and exerts an inhibitory effect on Ang II-induced mitogen signals or synthesis of extracellular matrix proteins, resulting in attenuation of the tissue remodeling. An extreme form of cell growth inhibition ends in programmed cell death, and this process, which is initiated by the withdrawal of growth factors, is also enhanced by AT2-R. Cardiac myocyte- or vascular smooth muscle-specific mice that overexpress AT2-R display an inhibition of Ang II-induced chronotropic or pressor actions, suggesting the role of AT2-R on the activity of cardiac pacemaker cells and the maintenance of vascular resistance. AT2-R also activates the kinin/nitric oxide/cGMP system in the cardiovascular and renal systems, resulting in AT2-R-mediated cardioprotection, vasodilation and pressure natriuresis. These effects, transmitted by AT2-R, are mainly exerted by stimulation of protein tyrosine or serine/threonine phosphatases in a Gi-protein-dependent manner. The expression level of AT2-R is much higher in human hearts than in rodent hearts, and the AT2-R-mediated actions are likely enhanced, especially by clinical application of AT1-R antagonists. Thus, in this review, the regulation of AT2-R expression, its cellular localization, its pathological role in cardiovascular and kidney diseases, and pharmacotherapeutic effects of AT2-R stimulation are discussed.
Collapse
Affiliation(s)
- Hiroaki Matsubara
- Department of Medicine II, Cardiovascular Center, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8507, Japan.
| |
Collapse
|
32
|
Huang K, Dai G. The effect and mechanism of forsinopril on ventricular hypertrophy of SHR and left ventricular pressure overloading rat. Curr Med Sci 2002; 22:17-20. [PMID: 12658773 DOI: 10.1007/bf02904778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2001] [Indexed: 10/19/2022]
Abstract
The effects and mechanism of long-term angiotensin converting enzyme inhibitor (ACEI) Forsinopril on left ventricular hypertrophy of spontaneous hypertension rat (SHR) and left ventricular pressure overloading rat were studied. The left ventricular index (left ventricle weight/body weight) was used to evaluate left ventricular hypertrophy and the in situ hybridization to investigate the TGF-beta 1 gene expression in left ventricle. The results showed that Forsinopril significantly decreased the left ventricular index of both SHR and left ventricle pressure overloading rat. Forsinopril reduced the integral photic density of TGF-beta 1 gene statement from 2.836 +/- 0.314 to 1.91 +/- 0.217 (P < 0.01, n = 8) of SHR rat and from 3.071 +/- 0.456 to 2.376 +/- 0.379 (P < 0.01, n = 8) of left ventricular pressure overloading rat respectively. It was concluded that Forsinopril could prevent the occurrence of left ventricular hypertrophy and reduce the TGF-beta 1 gene expression in left ventricle of both SHR and left ventricular pressure overloading rat significantly.
Collapse
Affiliation(s)
- Kai Huang
- Cardiovascular Disease Institute, Xiehe Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022
| | | |
Collapse
|
33
|
Yayama K, Hiyoshi H, Okamoto H. Expressions of bradykinin B2-receptor, kallikrein and kininogen mRNAs in the heart are altered in pressure-overload cardiac hypertrophy in mice. Biol Pharm Bull 2001; 24:34-8. [PMID: 11201242 DOI: 10.1248/bpb.24.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin-converting enzyme inhibitors prevent cardiac hypertrophy in vivo, and a component of this ameliorative effect has been attributed to accumulation of kinins in cardiac tissues. However, little is known regarding the levels of kallikrein-kinin components in the heart during the development of cardiac hypertrophy. The objectives of the present study were to define the effects of pressure-overload cardiac hypertrophy on cardiac levels of kininogen, kallikrein and bradykinin B2 receptor mRNAs. The pressure-overload induced by aortic constriction produced cardiac hypertrophy in mice after 14 and 28d, assessed from the increased ratios of heart weight to body weight and elevation of brain natriuretic peptide mRNA in the heart. B2 receptor mRNA rapidly decreased in the heart within 7 d after the operation, subsequently returning to those of sham-operated animals. In contrast, levels of both low-molecular-weight kininogen and tissue kallikrein mRNAs were increased 7, 14 and 28 d after aortic constriction. These findings suggest that the mechanical load or stretch in cardiac tissue by pressue-overload rapidly produces the downregulation of B2 receptor expression during the initial stage which may allow the promotion of cardiac hypertrophy induced by a mediation of hypertophic factors such as angiotensin II, while upregulation of kininogen and kallikrein mRNAs during the chronic stage may lead to an enhancement of local kinin generation in the heart, from which further progression of cardiac hypertrophy during later stages may be regulated.
Collapse
Affiliation(s)
- K Yayama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakulin University, Japan
| | | | | |
Collapse
|
34
|
El-Sabban ME, Hassan KA, Birbari AE, Bitar KM, Bikhazi AB. Angiotensin II binding and extracellular matrix remodelling in a rat model of myocardial infarction. J Renin Angiotensin Aldosterone Syst 2000; 1:369-78. [PMID: 11967826 DOI: 10.3317/jraas.2000.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Clinical evidence points to a role for angiotensin II (Ang II) in the post-infarction remodelling of cardiac hypertrophy. The present study was designed to investigate the remodelling process in an animal model of myocardial infarction (MI) using the following criteria: 1) histological studies to examine the re-vascularisation process and collagen deposition in different regions of the myocardium; 2) histological evidence to investigate the cell type distribution using cell-specific markers; 3) histological and Western blot analysis to localise Ang II receptor subtypes (AT(1)-receptor and AT(2)-receptor) and to study their regulation; 4) kinetics of the binding of Ang II to its receptors in a heart perfusion model; and 5) to assess the effect of the Ang II antagonist (losartan) on these parameters. MI was induced by ligation of the left anterior descending coronary artery of Sprague-Dawley rats. Four different animal groups were established: 1) sham-operated, non-treated; 2) sham-operated, treated with losartan; 3) myocardial infarct, non-treated; and 4) myocardial infarct, treated with losartan. In infarcted rat hearts, fibroblasts and collagen types I and III increased in the remnant viable region of the left ventricle compared with sham-operated rats. One month of losartan treatment in myocardial infarcted rats revealed insignificant changes in fibroblasts and collagen types I and III compared with sham controls. Also, myocardial infarction increased AT(1)-receptor protein levels compared with sham-operated controls, as judged by Western blotting. In losartan-treated myocardial infarct animals, no changes were detected at the level of AT(1)-receptor expression compared with non-treated myocardial infarct rats. Binding studies of Ang II on endothelial cell lining and directly on myocytes in sham-operated and infarcted perfused rat hearts revealed that, in myocardial infarcted-animals, Ang II binding affinity increased both in the endothelium and in myofibres. This may be considered a major putative effect of the peptide in potentiating the pharmacodynamics of hypertrophy. In losartan-treated myocardial infarcted-animals, a marked increase in the binding affinities of Ang II for the AT(2)-receptor subtype was observed. Hence, potential cardioprotective effects of the AT(1)-receptor antagonist are proposed.
Collapse
Affiliation(s)
- M E El-Sabban
- Department of Human Morphology, Amercian University of Beirut, Beirut, 11-0236, Lebanon
| | | | | | | | | |
Collapse
|
35
|
Tamura K, Chen YE, Lopez-Ilasaca M, Daviet L, Tamura N, Ishigami T, Akishita M, Takasaki I, Tokita Y, Pratt RE, Horiuchi M, Dzau VJ, Umemura S. Molecular mechanism of fibronectin gene activation by cyclic stretch in vascular smooth muscle cells. J Biol Chem 2000; 275:34619-27. [PMID: 10930408 DOI: 10.1074/jbc.m004421200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibronectin plays an important role in vascular remodeling. A functional interaction between mechanical stimuli and locally produced vasoactive agents is suggested to be crucial for vascular remodeling. We examined the effect of mechanical stretch on fibronectin gene expression in vascular smooth muscle cells and the role of vascular angiotensin II in the regulation of the fibronectin gene in response to stretch. Cyclic stretch induced an increase in vascular fibronectin mRNA levels that was inhibited by actinomycin D and CV11974, an angiotensin II type 1 receptor antagonist; cycloheximide and PD123319, an angiotensin II type 2 receptor antagonist, did not affect the induction. In transfection experiments, fibronectin promoter activity was stimulated by stretch and inhibited by CV11974 but not by PD123319. DNA-protein binding experiments revealed that cyclic stretch enhanced nuclear binding to the AP-1 site, which was partially supershifted by antibody to c-Jun. Site-directed mutation of the AP-1 site significantly decreased the cyclic stretch-mediated activation of fibronectin promoter. Furthermore, antisense c-jun oligonucleotides decreased the stretch-induced stimulation of the fibronectin promoter activity and the mRNA expression. These results suggest that cyclic stretch stimulates vascular fibronectin gene expression mainly via the activation of AP-1 through the angiotensin II type 1 receptor.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Base Sequence
- Cells, Cultured
- DNA Primers
- Dactinomycin/pharmacology
- Fibronectins/genetics
- Gene Expression Regulation
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Promoter Regions, Genetic
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/genetics
- Receptors, Angiotensin/metabolism
- Renin-Angiotensin System/genetics
- Transcription Factor AP-1/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- K Tamura
- Cardiovascular Research, Department of Internal Medicine II, Yokohama City University School of Medicine, Yokohama 236, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rouet-Benzineb P, Gontero B, Dreyfus P, Lafuma C. Angiotensin II induces nuclear factor- kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway. J Mol Cell Cardiol 2000; 32:1767-78. [PMID: 11013121 DOI: 10.1006/jmcc.2000.1211] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat neonatal ventricular cardiomyocytes (RNVM) possess G protein-coupled AT(1)receptors for angiotensin II (AngII) that activate multiple intracellular pathways. To elucidate potential signaling mechanisms involved, we focussed on the nuclear transcription factor-kappa B (NF- kappa B) in RNVM culture. Using specific antibody to NF- kappa Bp65, immunolocalization of NF- kappa B was cytoplasmic in unstimulated cardiomyocytes, whereas NF- kappa B was translocated into the RNVM nucleus in response to AngII. This translocation was inhibited in the presence of calphostin C, a specific inhibitor of protein kinase C (PKC). Western blot analysis showed an increase of NF- kappa B in AngII-stimulated cardiomyocyte nuclear extracts as compared to controls. Biomolecular interaction analysis (BIA analysis) of NF- kappa B activation showed that only AngII-nuclear extracts bound to NF- kappa B consensus sequence with a high degree of affinity. This DNA-binding capacity was completely lost in calphostin C-treated cells. At transcriptional level in RNVM, AngII mediates the upregulation of matrix gelatinase (MMP-9), which is totally inhibited by calphostin C treatment. In conclusion, cardiomyocyte nuclear NF- kappa B translocation in response to Ang II via PKC pathway activates cardiomyocyte-specific transcription of MMP-9 and may activate transcription from responsive genes which are involved in cardiac hypertrophy process and/or cardiac remodeling.
Collapse
Affiliation(s)
- P Rouet-Benzineb
- INSERM Unité U492, Faculté de Médecine, 8 rue du Général Sarrail, Créteil, 94010, France.
| | | | | | | |
Collapse
|
37
|
Jugdutt BI, Xu Y, Balghith M, Moudgil R, Menon V. Cardioprotection induced by AT1R blockade after reperfused myocardial infarction: association with regional increase in AT2R, IP3R and PKCepsilon proteins and cGMP. J Cardiovasc Pharmacol Ther 2000; 5:301-11. [PMID: 11150400 DOI: 10.1054/jcpt.2000.19245] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND We hypothesized that the cardioprotective effect of angiotensin II (AngII) type 1 receptor (AT(1)R) blockade during in vivo ischemia-reperfusion (IR) might be associated with an increase in AngII type 2 receptor (AT(2)R) protein, as well as 1,4,5-inositol trisphosphate type 2 receptor (IP(3)R) and protein kinase C(epsilon) (PKC(epsilon)) proteins and cyclic guanosine 3',5' monophosphate (cGMP). METHODS AND RESULTS We studied the effects of the AT(1)R blocker, candesartan, on in vivo left ventricular (LV) systolic and diastolic function and remodeling (echocardiogram/Doppler) and hemodynamics during canine reperfused anterior infarction (90-minute ischemia, 120-minute reperfusion), and ex vivo infarct size and AT(1)R/AT(2)R, IP(3)R, and PKC(epsilon) proteins (immunoblots), and cGMP (enzyme immunoassay). Compared with controls, candesartan (1 mg/kg intravenously over 30-minute preischemia) inhibited the AngII pressor response, decreased preload and afterload, improved LV systolic and diastolic function, limited LV remodeling, decreased infarct size (55% vs 27% risk; P <.000003), markedly increased AT(2)R, IP(3)R, and PKC(epsilon) proteins in the infarct zone, but not the AT(1)R protein, and increased infarct more than noninfarct cGMP. CONCLUSIONS The overall results suggest that cardioprotective effects of AT(1)R blockade on acute IR injury might involve AT(2)R activation and downstream signaling via IP(3)R, PKC(epsilon), and cGMP.
Collapse
MESH Headings
- Angiotensin Receptor Antagonists
- Animals
- Benzimidazoles/pharmacology
- Biphenyl Compounds
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Cyclic GMP/metabolism
- Dogs
- Female
- Hemodynamics
- Infusions, Intravenous
- Inositol 1,4,5-Trisphosphate Receptors
- Isoenzymes/metabolism
- Male
- Myocardial Contraction/drug effects
- Myocardial Ischemia/complications
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Protein Kinase C/metabolism
- Protein Kinase C-epsilon
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/physiology
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/physiology
- Signal Transduction
- Tetrazoles/pharmacology
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- B I Jugdutt
- Cardiology Division of the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
38
|
Murasawa S, Matsubara H, Mori Y, Masaki H, Tsutsumi Y, Shibasaki Y, Kitabayashi I, Tanaka Y, Fujiyama S, Koyama Y, Fujiyama A, Iba S, Iwasaka T. Angiotensin II Initiates Tyrosine Kinase Pyk2-dependent Signalings Leading to Activation of Rac1-mediated c-Jun NH2-terminal Kinase. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61453-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Oliviéro P, Chassagne C, Kolar F, Adamy C, Marotte F, Samuel JL, Rappaport L, Ostadal B. Effect of pressure overload on angiotensin receptor expression in the rat heart during early postnatal life. J Mol Cell Cardiol 2000; 32:1631-45. [PMID: 10966826 DOI: 10.1006/jmcc.2000.1198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of cardiac hypertrophy during neonatal life and in adults implies different processes. The angiotensin II (Ang II) system is involved in the development of cardiac hypertrophy in adults, but its role in neonates remains unclear. The aim of this study was to estimate the influence of increased hemodynamic load on the developmental pattern of the AT1/AT2 receptor expression in the heart. Two-day-old rats submitted to abdominal aortic constriction (AC) or sham operation were sacrificed 2 h, and 1, 3, and 8 days after surgery. Ang II was evaluated in sera and immunohistology was performed to define the cardiac hypertrophy process. The Ang II receptor subtypes 1 and 2 were quantified at the receptor and mRNA levels by(125)I-Ang II binding and RT-PCR, respectively. Ang II content in sera increased transiently 2 h after surgery in the AC group. In sham-operated, AT1 and AT2 decreased throughout the period studied at both mRNA and receptor levels. However, the AT1 mRNA level decrease was more pronounced than that of AT2 (by 57% and 27%, respectively). AC not only prevented the postnatal decrease in AT mRNA level but resulted in an increase in AT1 mRNA 8 days after surgery (P<0.05). Besides in the AC groups, AT2 mRNA levels but not those of AT1 mRNA were linearly correlated with the left ventricular mass. At the receptor level, a significant transient (1 day after surgery) increase in both AT1 and AT2 was observed. In conclusion, our data demonstrated that imposition of pressure overload soon after birth altered the pattern of AT receptor expression.
Collapse
Affiliation(s)
- P Oliviéro
- U127 INSERM, IFR-Circulation Paris VII, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Busche S, Gallinat S, Bohle RM, Reinecke A, Seebeck J, Franke F, Fink L, Zhu M, Sumners C, Unger T. Expression of angiotensin AT(1) and AT(2) receptors in adult rat cardiomyocytes after myocardial infarction. A single-cell reverse transcriptase-polymerase chain reaction study. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:605-11. [PMID: 10934163 PMCID: PMC1850144 DOI: 10.1016/s0002-9440(10)64571-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effector hormone of the renin-angiotensin system, angiotensin II, plays a major role in cardiovascular regulation. In rats, both angiotensin receptor subtypes, AT(1) and AT(2), are up-regulated after myocardial infarction but previous studies failed to identify the cell types which express the AT(2) receptor in the heart. To address this question we established a single-cell reverse transcriptase-polymerase chain reaction for AT(1) and AT(2) receptors to determine whether these receptor subtypes are expressed in adult rat cardiomyocytes before and 1 day after myocardial infarction. By laser-assisted cell picking, section profiles of single cells without genomic DNA contamination were isolated. After dividing samples into two identical aliquots, polymerase chain reaction amplification for AT(1) and AT(2) receptors was carried out and polymerase chain reaction products were subjected to gel electrophoresis. Compared to control (n = 4) and sham-operated animals (n = 4), the number of cardiomyocytes expressing the AT(1) receptor mRNA 1 day after myocardial infarction (n = 4) was not changed (42% and 33% versus 45%, respectively). On the other hand, AT(2) receptor mRNA was expressed in 8% and 13%, respectively, of cardiomyocytes gained from control (n = 4) and sham-operated animals (n = 4) and in 14% isolated after myocardial infarction (n = 4). These results demonstrate for the first time that the AT(2) receptor is expressed in adult cardiomyocytes in vivo. They further suggest that the previously observed up-regulation of cardiac AT(1) and AT(2) receptors after myocardial infarction involves cell types other than cardiomyocytes.
Collapse
Affiliation(s)
- S Busche
- Institute of Pharmacology, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dostal DE. The cardiac renin-angiotensin system: novel signaling mechanisms related to cardiac growth and function. REGULATORY PEPTIDES 2000; 91:1-11. [PMID: 10967197 DOI: 10.1016/s0167-0115(99)00123-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Angiotensin II, the effector peptide of the renin-angiotensin system, has been demonstrated to be involved in the regulation of cellular growth of several tissues in response to developmental, physiological, and pathological processes. The recent identification of renin-angiotensin system components and localization of angiotensin II receptors in cardiac tissue suggests that locally synthesized Ang II can modulate functional and growth responses in cardiac tissue. In this review, regulation of the cardiac RAS is discussed, with an emphasis on growth-related Ang II signal transduction systems.
Collapse
Affiliation(s)
- D E Dostal
- Cardiovascular Research Institute, Division of Molecular Cardiology, Texas A&M University System Health Science Center, 1901 South 1st Street, Temple, TX 76504, USA.
| |
Collapse
|
42
|
Xu Y, Menon V, Jugdutt BI. Cardioprotection after angiotensin II type 1 blockade involves angiotensin II type 2 receptor expression and activation of protein kinase C-epsilon in acutely reperfused myocardial infarction in the dog. Effect of UP269-6 and losartan on AT1 and AT2-receptor expression and IP3 receptor and PKCepsilon proteins. J Renin Angiotensin Aldosterone Syst 2000; 1:184-95. [PMID: 11967812 DOI: 10.3317/jraas.2000.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To determine whether cardioprotection after chronic angiotensin II (Ang II) type 1 (AT(1)) receptor blockade involves Ang II type 2 (AT(2)) receptor expression and protein kinase C-epsilon (PKC(epsilon)) activation, we measured in vivo haemodynamics and left ventricular (LV) remodelling and dysfunction (echocardiogram/ Doppler) and ex vivo AT(1)/AT(2)-receptor expression, IP(3)R (1, 4, 5-inositol trisphosphate type 2 receptor) and PKC(epsilon) proteins in dogs with acutely reperfused (90 minutes ischaemia, 90 minutes reperfusion) myocardial infarction (MI) following seven days of AT(1)-receptor blockade with oral losartan or UP269-6. The animals were randomised to sham; sham + losartan or UP269-6; MI alone; MI + losartan; MI + UP269-6. More marked AT(1)-receptor blockade with UP269-6 (greater inhibition of Ang II pressor responses) was associated with a smaller increase in preload, less systolic and diastolic dysfunction, less infarct expansion, and smaller LV diastolic and systolic volumes. However, both AT(1)-receptor antagonists decreased infarct size. Importantly, MI decreased AT(1)-receptor and AT(2)-receptor expression while MI after AT(1)-receptor antagonism increased AT(1)-receptor (mRNA, not protein) and AT(2)-receptor (mRNA and protein) expression as well as IP(3)R and PKC(epsilon) proteins and cyclic guanosine 3', 5' monophosphate (cGMP). These results suggest that cardioprotection induced by chronic AT(1)-receptor antagonism involves enhanced AT(2)-receptor expression and possibly downstream signalling through IP(3)R, PKC(epsilon) and cGMP.
Collapse
MESH Headings
- Angiotensin Receptor Antagonists
- Animals
- Blood Volume/drug effects
- Calcium Channels/metabolism
- Cardiotonic Agents/therapeutic use
- Cyclic GMP/metabolism
- Dogs
- Enzyme Activation/physiology
- Female
- Hemodynamics/drug effects
- Inositol 1,4,5-Trisphosphate Receptors
- Isoenzymes/metabolism
- Losartan/therapeutic use
- Male
- Myocardial Infarction/drug therapy
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Reperfusion
- Myocardium/metabolism
- Protein Kinase C/metabolism
- Protein Kinase C-epsilon
- Pyrimidines/therapeutic use
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Tetrazoles/therapeutic use
- Time Factors
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Y Xu
- Department of Medicine and the Cardiovascular Research Group, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| | | | | |
Collapse
|
43
|
Gallinat S, Busche S, Raizada MK, Sumners C. The angiotensin II type 2 receptor: an enigma with multiple variations. Am J Physiol Endocrinol Metab 2000; 278:E357-74. [PMID: 10710489 DOI: 10.1152/ajpendo.2000.278.3.e357] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since it was discovered ten years ago, the angiotensin II (ANG II) type 2 (AT(2)) receptor has been an enigma. This receptor binds ANG II with a high affinity but is not responsible for mediating any of the classical physiological actions of this peptide, all of which involve the ANG II type 1 (AT(1)) receptor. Furthermore, the AT(2) receptor exhibits dramatic differences in biochemical and functional properties and in patterns of expression compared with the AT(1) receptor. During the past decade, much information has been gathered about the AT(2) receptor, and the steadily increasing number of publications indicates a growing interest in this new and independent area of research. A number of studies suggest a role of AT(2) receptors in brain, renal, and cardiovascular functions and in the processes of apoptosis and tissue regeneration. Despite these advances, nothing stands out as the major singular function of these receptors. The study of AT(2) receptors has reached a crossroads, and innovative approaches must be considered so that unifying mechanisms as to the function of these unique receptors can be put forward. In this review we will discuss the advances that have been made in understanding the biology of the AT(2) receptor. Furthermore, we will consider how these discoveries, along with newer experimental approaches, may eventually lead to the elusive physiological and pathophysiological functions of these receptors.
Collapse
Affiliation(s)
- S Gallinat
- Department of Physiology, College of Medicine, and University of Florida Brain Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
44
|
Stanley AG, Patel H, Knight AL, Williams B. Mechanical strain-induced human vascular matrix synthesis: the role of angiotensin II. J Renin Angiotensin Aldosterone Syst 2000; 1:32-5. [PMID: 11967796 DOI: 10.3317/jraas.2000.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
INTRODUCTION Reduced vascular compliance in patients with hypertension results from an increase in extra-cellular matrix (ECM) protein deposition in blood vessels. At least two key factors, namely mechanical strain and neurohumoral mediators, for example Angiotensin II (Ang II), promote fibrogenesis within vessel walls; however potential interactions between these have not been clearly defined. This work examined the direct effect of mechanical strain on matrix mRNA expression and protein synthesis by human vascular smooth muscle (VSM) cells and identified the importance of renin-angiotensin system (RAS) activation in stretch-induced matrix production. METHODS Human VSM cells were exposed either to a cyclical mechanical strain regimen or to Ang II in the presence or absence of the Ang II receptor (AT(1) R) antagonist losartan or its more potent metabolite EXP3174. Analysis of matrix mRNA expression (Northerns) and protein synthesis (ELISA) and cellular AT(1)-receptor protein expression (Westerns) were determined. RESULTS Ang II increased both collagen alpha1 (92%, SEM +/- 20%) mRNA expression and fibronectin (21% +/- 6%) protein synthesis in static VSM cells compared with unstimulated controls. The effect of Ang II was attenuated by antagonism of the AT(1)-receptor (AT(1) R). Similarly, mechanical strain induced an increase in both collagen alpha1 (102% +/- 30%) mRNA expression and fibronectin (50% +/-21%) protein synthesis. Surprisingly, in the absence of exogenous Ang II, AT(1)-receptor blockade attenuated this stretch-induced increase in matrix synthesis. Mechanical strain also induced an increase in total cellular AT(1)-receptor protein (30.7% +/- 3.5%) compared with static cells. CONCLUSION Both mechanical strain and Ang II increased matrix gene expression and protein synthesis by human VSM cells. The effect of strain was attenuated by AT(1)-receptor antagonism. Our results further suggest that mechanical strain may sensitise human VSM cells to the fibrogenic actions of Ang II, perhaps via upregulation of the AT(1)-receptor.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin II/physiology
- Angiotensin Receptor Antagonists
- Cells, Cultured
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Extracellular Matrix Proteins/biosynthesis
- Gene Expression/drug effects
- Gene Expression/physiology
- Humans
- Losartan/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/metabolism
- Stress, Mechanical
Collapse
Affiliation(s)
- A G Stanley
- Cardiovascular Research Institute, Leicester Royal Infirmary, Leicester, LE2 7LX, UK.
| | | | | | | |
Collapse
|
45
|
Ozono R, Matsumoto T, Shingu T, Oshima T, Teranishi Y, Kambe M, Matsuura H, Kajiyama G, Wang ZQ, Moore AF, Carey RM. Expression and localization of angiotensin subtype receptor proteins in the hypertensive rat heart. Am J Physiol Regul Integr Comp Physiol 2000; 278:R781-9. [PMID: 10712301 DOI: 10.1152/ajpregu.2000.278.3.r781] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cellular localization of the AT(2) receptor and the regulation of its expression in hypertrophied left ventricle are not well known. We compared the expression of the cardiac AT(1) and AT(2) receptor in spontaneously hypertensive rats/Izumo strain (SHR/Izm) and Wistar Kyoto rats/Izumo strain (WKY/Izm), ages 4, 12, and 20 wk, by means of immunohistochemistry and Western blot analysis. In SHR/Izm, compared with WKY/Izm, blood pressure (161 +/- 2 vs. 120 +/- 2 mmHg at 12 wk, P </= 0.01, and 199 +/- 3 vs. 123 +/- 3 mmHg at 20 wk, P </= 0.01) and heart-to-body weight ratio (3.76 +/- 0.07 vs. 3.06 +/- 0.06 mg/g at 12 wk, P </= 0.01, and 3.90 +/- 0.08 vs. 3.01 +/- 0.12 mg/g at 20 wk, P </= 0.01) were significantly elevated. There was no difference in these values between the two strains at 4 wk of age. Histologically, 20-wk-old SHR/Izm demonstrated myocardial hypertrophy, a thickening of the smooth muscle layer of the intracardiac arteries, and perivascular fibrosis. By immunohistochemistry, the AT(2) receptor was localized to cardiomyocytes and vascular endothelial cells, but not in the vascular smooth muscle cells. No major AT(2) receptor signal was observed in perivascular fibrosis at any age in either strain of rats. No difference was detected in this localization between the two strains. By Western blotting, a single 44-kDa band for the AT(2) receptor and a single 60-kDa band for the AT(1) receptor were detected in ventricles from both strains of rats at all ages. Densitometric analysis demonstrated that the AT(2) receptor 44-kDa band was decreased by 20% at 12 wk and 32% at 20 wk (P < 0.01) in SHR/Izm compared with WKY/Izm. The intensity of the AT(1) receptor 60-kDa band was increased by 57% in 20-wk-old SHR/Izm compared with WKY/Izm (P < 0.05). There was no significant difference in the intensity of the 44- or 60-kDa bands in 4-wk-old animals of either strain. We demonstrated a decrease in the AT(2) receptor and an increase in the AT(1) receptor protein with no change in their localizations in hypertrophied left ventricular myocytes of SHR/Izm.
Collapse
Affiliation(s)
- R Ozono
- Department of Clinical Laboratory Medicine, Hiroshima University School of Medicine, Hiroshima, Japan 734.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee AA, Delhaas T, McCulloch AD, Villarreal FJ. Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 1999; 31:1833-43. [PMID: 10525421 DOI: 10.1006/jmcc.1999.1017] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different patterns of extracellular matrix (ECM) remodeling in the heart are thought to be dependent on altered mechanical and chemical conditions and can contribute to cardiac dysfunction. Cardiac fibroblasts are the primary regulators of the ECM and may respond to mechanical factors in vitro. We hypothesized that different types of in vitro strains, e.g. tensile or compressive, can stimulate different functional responses in cultured adult rat cardiac fibroblasts. In this study, we first showed that a single step in strain applied by a uniaxial stretch system stimulated collagen III and fibronectin mRNA levels and transforming growth factor-beta(1) (TGF-beta(1)) activity in the adult phenotype of rat cardiac fibroblasts. Two-dimensional deformations were measured by tracking fluorescent microspheres attached to the substrate and cultured cells. For 10% uniaxial strain, mean principal strains were 0. 104 +/- 0.018 in the direction of stretch and -0.042 +/- 0.013 in the perpendicular direction, verifying that the fibroblasts were simultaneously subjected to tensile (positive) and compressive (negative) strains. Furthermore, these cells were also subjected to area change and to shear. In order to examine the distinct effects of different types of deformation on cardiac fibroblasts, an equibiaxial stretch system was used to apply either pure tensile or compressive area strains, in the absence of shear. Magnitudes of equibiaxial strain were selected to apply local cell area changes identical to those applied in the uniaxial system. Results showed that pure tensile and compressive area strains induced divergent responses in ECM mRNA levels. TGF-beta(1) activity was dependent on the magnitude of applied area strain regardless of the mode of deformation. These findings demonstrate that adult cardiac fibroblasts may respond differently to varied types of mechanical loading, suggesting that ECM remodeling may be locally regulated by specific mechanical stimuli in the heart.
Collapse
Affiliation(s)
- A A Lee
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | | | | | | |
Collapse
|
47
|
Tsutsumi Y, Matsubara H, Masaki H, Kurihara H, Murasawa S, Takai S, Miyazaki M, Nozawa Y, Ozono R, Nakagawa K, Miwa T, Kawada N, Mori Y, Shibasaki Y, Tanaka Y, Fujiyama S, Koyama Y, Fujiyama A, Takahashi H, Iwasaka T. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest 1999; 104:925-35. [PMID: 10510333 PMCID: PMC408562 DOI: 10.1172/jci7886] [Citation(s) in RCA: 414] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1999] [Accepted: 08/25/1999] [Indexed: 11/17/2022] Open
Abstract
Angiotensin II (Ang II) is a potent vasopressor peptide that interacts with 2 major receptor isoforms - AT1 and AT2. Although blood pressure is increased in AT2 knockout mice, the underlying mechanisms remain undefined because of the low levels of expression of AT2 in the vasculature. Here we overexpressed AT2 in vascular smooth muscle (VSM) cells in transgenic (TG) mice. Aortic AT1 was not affected by overexpression of AT2. Chronic infusion of Ang II into AT2-TG mice completely abolished the AT1-mediated pressor effect, which was blocked by inhibitors of bradykinin type 2 receptor (icatibant) and nitric oxide (NO) synthase (L-NAME). Aortic explants from TG mice showed greatly increased cGMP production and diminished Ang II-induced vascular constriction. Removal of endothelium or treatment with icatibant and L-NAME abolished these AT2-mediated effects. AT2 blocked the amiloride-sensitive Na(+)/H(+) exchanger, promoting intracellular acidosis in VSM cells and activating kininogenases. The resulting enhancement of aortic kinin formation in TG mice was not affected by removal of endothelium. Our results suggest that AT2 in aortic VSM cells stimulates the production of bradykinin, which stimulates the NO/cGMP system in a paracrine manner to promote vasodilation. Selective stimulation of AT2 in the presence of AT1 antagonists is predicted to have a beneficial clinical effect in controlling blood pressure.
Collapse
MESH Headings
- Actins/genetics
- Amiloride/pharmacology
- Angiotensin II/pharmacology
- Animals
- Aorta/physiology
- Blood Pressure/physiology
- Bradykinin/analogs & derivatives
- Bradykinin/pharmacology
- Bradykinin/physiology
- Bradykinin Receptor Antagonists
- Cell Membrane/physiology
- Cyclic GMP/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Imidazoles/pharmacology
- Kinins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- NG-Nitroarginine Methyl Ester
- Promoter Regions, Genetic
- Pyridines/pharmacology
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/deficiency
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/physiology
- Recombinant Fusion Proteins/metabolism
- Tunica Media/physiology
- Vasoconstriction
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Y Tsutsumi
- Department of Medicine II, Kansai Medical University, Moriguchi, Osaka 570, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gruden G, Thomas S, Burt D, Zhou W, Chusney G, Gnudi L, Viberti G. Interaction of angiotensin II and mechanical stretch on vascular endothelial growth factor production by human mesangial cells. J Am Soc Nephrol 1999; 10:730-7. [PMID: 10203356 DOI: 10.1681/asn.v104730] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The antiproteinuric effect of angiotensin-converting enzyme inhibitors underscores the importance of a hemodynamic injury and the renin-angiotensin system in the proteinuria of various glomerular diseases. Vascular endothelial growth factor (VEGF), a potent promoter of vascular permeability, is induced in mesangial cells by both mechanical stretch and TGF-beta1. This study investigates the effect of TGF-beta blockade, angiotensin II (AngII), and the interaction between AngII and stretch on human mesangial cell VEGF production. Exposure to AngII (1 microM) induced a significant increase in VEGF mRNA and protein levels (1.5+/-0.1 and 1.7+/-0.3, respectively, fold increase over control, P<0.05). The AngII receptor (AT1) antagonist Losartan (10 microM) prevented AngII-induced, but not stretch-induced, VEGF protein secretion (AngII 1.7+/-0.3, AngII + Losartan 1.0+/-0.1, P<0.05; stretch 2.4+/-0.4, stretch + Losartan 2.6+/-0.5). Stretch-induced VEGF production was also unaffected by the addition of an anti-TGF-beta neutralizing antibody (stretch 2.85+/-0.82 versus stretch + anti-TGF-beta 2.84+/-0.01, fold increase over control). Simultaneous exposure to both AngII and stretch for 12 h had an additive effect on VEGF production (AngII 1.6+/-0.1, stretch 2.6+/-0.27, AngII + stretch 3.1+/-0.35). Conversely, preexposure to stretch magnified AngII-induced VEGF protein secretion (unstretched + AngII 1.3+/-0.0, stretched + AngII 1.9+/-0.1, P<0.01) with a parallel 1.5-fold increase in AT1 receptor levels. AngII and stretch can both independently induce VEGF production; in addition, mechanical stretch upregulates the AT1 receptor, enhancing the cellular response to AngII.
Collapse
Affiliation(s)
- G Gruden
- Department of Endocrinology, Diabetes and Internal Medicine, GKT School of Medicine, King's College London, Guy's Hospital Campus, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The increase in vascular wall stress imposed by hypertension has been strongly implicated in the pathogenesis of cardiovascular disease. Much of this chronic cyclical mechanical strain is experienced by the vascular smooth (VSM) cells of the vascular media. The cellular mechanisms whereby VSM cells sense and respond to changing mechanical forces are poorly understood. This review focuses on an emerging field of cardiovascular research in which the direct effects of mechanical strain on VSM cells and isolated blood vessels in organ culture have been characterized, in vitro. Cyclical mechanical strain profoundly influences cultured VSM cell orientation, growth and phenotype. Mechanical strain also increases the secretory function of VSM cells leading to increased extracellular matrix protein production. Vasoactive mediators such as angiotensin II potentiate these effects. Mechanical strain increases VSM cell release of platelet derived growth factor, transforming growth factor beta1, fibroblast growth factor and vascular endothelial growth factor, which act in autocrine or paracrine loops to influence VSM and endothelial cell growth and function. Mechanical strain may also activate local tissue renin-angiotensin systems and regulate expression of angiotensin II receptors within the cardiovascular system. The mechanism whereby VSM cells transduce mechanical stimuli into an intracellular signal and biological response, i.e. 'mechanotransduction', is strongly dependent on integrins. Moreover, specific matrix protein:integrin engagements lead to differential VSM cells responses via the selective activation of numerous intracellular signalling pathways including; mitogen-activated protein kinase, focal adhesion kinase and c-Src. The study of vascular mechanotransduction has begun to delineate the complex cellular basis of cardiovascular structural and functional modification in hypertension.
Collapse
Affiliation(s)
- B Williams
- Cardiovascular Research Institute, University of Leicester, UK.
| |
Collapse
|
50
|
Tamura K, Nyui N, Tamura N, Fujita T, Kihara M, Toya Y, Takasaki I, Takagi N, Ishii M, Oda K, Horiuchi M, Umemura S. Mechanism of angiotensin II-mediated regulation of fibronectin gene in rat vascular smooth muscle cells. J Biol Chem 1998; 273:26487-96. [PMID: 9756884 DOI: 10.1074/jbc.273.41.26487] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study was performed to investigate a mechanism of angiotensin II (Ang II)-mediated activation of the fibronectin (FN) gene in rat vascular smooth muscle cells. Actinomycin D and CV11974 completely inhibited Ang II-mediated increase in FN mRNA levels. Inhibitors of protein kinase C (PKC), protein-tyrosine kinase (PTK), phosphatidylinositol-specific phospholipase C, Ras, phosphatidylinositol 3-kinase, p70 S6 kinase, and Ca2+/calmodulin kinase also decreased Ang II-induced activation of FN mRNA. In contrast, cycloheximide; PD123319; or inhibitors of Gi, protein kinase A, or mitogen-activated protein kinase kinase did not affect the induction. FN promoter contained a putative AP-1 binding site (rFN/AP-1; -463 to -437), and the results of a transient transfection and electrophoretic mobility shift assay showed that Ang II enhanced rFN/AP-1 activity. CV11974 and inhibitors of PKC or PTK suppressed Ang II-mediated increases in rFN/AP-1 activity, although neither PD123319 nor a protein kinase A inhibitor affected the induction. Furthermore, mutation of rFN/AP-1 that disrupted nuclear binding suppressed Ang II-induced transcription in the native FN promoter (-1908 to +136) context. Thus, Ang II activates transcription of the FN gene through the Ang II type 1 receptor in vascular smooth muscle cells, at least in part, via the activation of AP-1 by a signaling mechanism dependent on PKC and PTK.
Collapse
Affiliation(s)
- K Tamura
- Department of Internal Medicine II, Yokohama City University School of Medicine, Yokohama 236, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|