1
|
Astashev ME, Serov DA, Tankanag AV, Knyazeva IV, Dorokhov AA, Simakin AV, Gudkov SV. Study of the Synchronization and Transmission of Intracellular Signaling Oscillations in Cells Using Bispectral Analysis. BIOLOGY 2024; 13:685. [PMID: 39336112 PMCID: PMC11428995 DOI: 10.3390/biology13090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The oscillation synchronization analysis in biological systems will expand our knowledge about the response of living systems to changes in environmental conditions. This knowledge can be used in medicine (diagnosis, therapy, monitoring) and agriculture (increasing productivity, resistance to adverse effects). Currently, the search is underway for an informative, accurate and sensitive method for analyzing the synchronization of oscillatory processes in cell biology. It is especially pronounced in analyzing the concentration oscillations of intracellular signaling molecules in electrically nonexcitable cells. The bispectral analysis method could be applied to assess the characteristics of synchronized oscillations of intracellular mediators. We chose endothelial cells from mouse microvessels as model cells. Concentrations of well-studied calcium and nitric oxide (NO) were selected for study in control conditions and well-described stress: heating to 40 °C and hyperglycemia. The bispectral analysis allows us to accurately evaluate the proportion of synchronized cells, their synchronization degree, and the amplitude and frequency of synchronized calcium and NO oscillations. Heating to 40 °C increased cell synchronization for calcium but decreased for NO oscillations. Hyperglycemia abolished this effect. Heating to 40 °C changed the frequencies and increased the amplitudes of synchronized oscillations of calcium concentration and the NO synthesis rate. The first part of this paper describes the principles of the bispectral analysis method and equations and modifications of the method we propose. In the second part of this paper, specific examples of the application of bispectral analysis to assess the synchronization of living cells in vitro are presented. The discussion compares the capabilities of bispectral analysis with other analytical methods in this field.
Collapse
Affiliation(s)
- Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Arina V Tankanag
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Inna V Knyazeva
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Artem A Dorokhov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin av. 23, 603105 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Endothelium-Dependent Hyperpolarization (EDH) in Diabetes: Mechanistic Insights and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20153737. [PMID: 31370156 PMCID: PMC6695796 DOI: 10.3390/ijms20153737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells would contribute at least partly to the initiation and progression of microvascular complications of diabetes. In this review, we present the current knowledge about the pathophysiology and underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.
Collapse
|
3
|
Suwanjang W, Prachayasittikul S, Prachayasittikul V. Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose. PeerJ 2016; 4:e2389. [PMID: 27635352 PMCID: PMC5012261 DOI: 10.7717/peerj.2389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
8-Hydroxyquinoline and derivatives exhibit multifunctional properties, including antioxidant, antineurodegenerative, anticancer, anti-inflammatory and antidiabetic activities. In biological systems, elevation of intracellular calcium can cause calpain activation, leading to cell death. Here, the effect of 8-hydroxyquinoline and derivatives (5-chloro-7-iodo-8-hydroxyquinoline or clioquinol and 8-hydroxy-5-nitroquinoline or nitroxoline) on calpain-dependent (calpain-calpastatin) pathways in human neuroblastoma (SH-SY5Y) cells was investigated. 8-Hydroxyquinoline and derivatives ameliorated high glucose toxicity in SH-SY5Y cells. The investigated compounds, particularly clioquinol, attenuated the increased expression of calpain, even under high-glucose conditions. 8-Hydroxyquinoline and derivatives thus adversely affected the promotion of neuronal cell death by high glucose via the calpain-calpastatin signaling pathways. These findings support the beneficial effects of 8-hydroxyquinolines for further therapeutic development.
Collapse
Affiliation(s)
- Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| |
Collapse
|
4
|
High glucose enhances store-operated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling. J Mol Med (Berl) 2014; 93:511-21. [PMID: 25471481 DOI: 10.1007/s00109-014-1234-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED ORAI and stromal interaction molecule (STIM) are store-operated channel molecules that play essential roles in human physiology through a coupling mechanism of internal Ca(2+) store to Ca(2+) influx. However, the roles of ORAI and STIM in vascular endothelial cells under diabetic conditions remain unknown. Here, we investigated expression and signalling pathways of ORAI and STIM regulated by high glucose or hyperglycaemia using in vitro cell models, in vivo diabetic mice and tissues from patients. We found that ORAI1-3 and STIM1-2 were ubiquitously expressed in human vasculatures. Their expression was upregulated by chronic treatment with high glucose (HG, 25 mM D-glucose), which was accompanied by enhanced store-operated Ca(2+) influx in vascular endothelial cells. The increased expression was also observed in the aortae from genetically modified Akita diabetic mice (C57BL/6-Ins2(Akita)/J) and streptozocin-induced diabetic mice, and aortae from diabetic patients. HG-induced upregulation of ORAI and STIM genes was prevented by the calcineurin inhibitor cyclosporin A and NFATc3 siRNA. Additionally, in vivo treatment with the nuclear factor of activated T cells (NFAT) inhibitor A-285222 prevented the gene upregulation in Akita mice. However, HG had no direct effects on ORAI1-3 currents and the channel activation process through cytosolic STIM1 movement in the cells co-expressing STIM1-EYFP/ORAIs. We concluded that upregulation of STIM/ORAI through Ca(2+)-calcineurin-NFAT pathway is a novel mechanism causing abnormal Ca(2+) homeostasis and endothelial dysfunction under hyperglycaemia. KEY MESSAGE ORAI1-3 and STIM1-2 are ubiquitously expressed in vasculatures and upregulated by high glucose. Increased expression is confirmed in Akita (Ins2(Akita)/J) and STZ diabetic mice and patients. Upregulation mechanism is mediated by Ca(2+)/calcineurin/NFATc3 signalling. High glucose has no direct effects on ORAI1-3 channel activity and channel activation process.
Collapse
|
5
|
Affiliation(s)
- Patrizia Luppi
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA
| | | | | |
Collapse
|
6
|
Pereira AC, Olivon VC, de Oliveira AM. Impaired calcium influx despite hyper-reactivity in contralateral carotid following balloon injury: eNOS involvement. Eur J Pharmacol 2010; 642:121-7. [DOI: 10.1016/j.ejphar.2010.05.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/25/2010] [Accepted: 05/06/2010] [Indexed: 11/24/2022]
|
7
|
An Apparent Paradox: Attenuation of Phenylephrine-mediated Calcium Mobilization and Hyperreactivity to Phenylephrine in Contralateral Carotid After Balloon Injury. J Cardiovasc Pharmacol 2010; 56:162-70. [DOI: 10.1097/fjc.0b013e3181e571cd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Béliveau E, Guillemette G. Microfilament and microtubule assembly is required for the propagation of inositol trisphosphate receptor-induced Ca2+ waves in bovine aortic endothelial cells. J Cell Biochem 2009; 106:344-52. [PMID: 19097121 DOI: 10.1002/jcb.22011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ca2+ is a highly versatile second messenger that plays a key role in the regulation of numerous cell processes. One-way cells ensure the specificity and reliability of Ca2+ signals is by organizing them spatially in the form of waves that propagate throughout the cell or within a specific subcellular region. In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP3R) is responsible for the release of Ca2+ from the endoplasmic reticulum. The spatial aspect of the Ca2+ signal depends on the organization of various elements of the Ca2+ signaling toolkit and varies from tissue to tissue. Ca2+ is implicated in many of endothelium functions that thus depend on the versatility of Ca2+ signaling. In the present study, we showed that the disruption of caveolae microdomains in bovine aortic endothelial cells (BAEC) with methyl-beta-cyclodextrin was not sufficient to disorganize the propagation of Ca2+ waves when the cells were stimulated with ATP or bradykinin. However, disorganizing microfilaments with latrunculin B and microtubules with colchicine both prevented the formation of Ca2+ waves. These results suggest that the organization of the Ca2+ waves mediated by IP3R channels does not depend on the integrity of caveolae in BAEC, but that microtubule and microfilament cytoskeleton assembly is crucial.
Collapse
Affiliation(s)
- Eric Béliveau
- Faculty of Medicine and Health Sciences, Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada
| | | |
Collapse
|
9
|
Oike M, Watanabe M, Kimura C. Involvement of heparan sulfate proteoglycan in sensing hypotonic stress in bovine aortic endothelial cells. Biochim Biophys Acta Gen Subj 2008; 1780:1148-55. [PMID: 18680786 DOI: 10.1016/j.bbagen.2008.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 11/25/2022]
Abstract
Hypotonic stress (HTS) induces various responses in vascular endothelium, but the molecules involved in sensing HTS are not known. To investigate a possible role of heparan sulfate proteoglycan (HSPG) in sensing HTS, we compared the responses of control bovine aortic endothelial cells (BAECs) with those of cells treated with heparinase III, which exclusively degrades HSPG. Tyrosine phosphorylation of 125 kDa FAK induced by HTS (-30%) in control cells was abolished in heparinase III-treated BAECs. The amplitude of the volume-regulated anion channel (VRAC) current, whose activation is regulated by tyrosine kinase, was significantly reduced by the treatment with heparinase III. Also, HTS-induced ATP release through the VRAC pore and the concomitant Ca(2+) transients were significantly reduced in the heparinase III-treated BAECs. In contrast, exogenously applied ATP evoked similar Ca(2+) transients in both control and heparinase III-treated BAECs. The transient formation of actin stress fibers induced by HTS in control cells was absent in heparinase III-treated BAECs. Lysophosphatidic acid (LPA) also induced FAK phosphorylation, actin reorganization and ATP release in control BAECs, but heparinase III did not affect these LPA-induced responses. We conclude from these observations that HSPG is one of the sensory molecules of hypotonic cell swelling in BAECs.
Collapse
Affiliation(s)
- Masahiro Oike
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
10
|
Koyama T, Kimura C, Hayashi M, Watanabe M, Karashima Y, Oike M. Hypergravity induces ATP release and actin reorganization via tyrosine phosphorylation and RhoA activation in bovine endothelial cells. Pflugers Arch 2008; 457:711-9. [PMID: 18594856 DOI: 10.1007/s00424-008-0544-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 06/05/2008] [Accepted: 06/10/2008] [Indexed: 11/24/2022]
Abstract
Mechanical stresses regulate physiological and pathological functions of vascular endothelial cells. We examined, in this study, the effects of hypergravity on endothelial functions. Hypergravity (3 G) applied by low speed centrifuge immediately induced a membrane translocation of small G-protein RhoA and tyrosine phosphorylation of 125 kDa FAK in bovine aortic endothelial cells (BAECs). Hypergravity also induced a transient reorganization of actin fibers in 3 min, which was inhibited by Rho-kinase inhibitor (Y27632) and tyrosine kinase inhibitors (herbimycin A and tyrphostin 46). Furthermore, the extracellular ATP concentration ([ATP]o) was increased by 2 G and 3 G hypergravity in 5 min, and the inhibitors of Rho-kinase, tyrosine kinase, and volume-regulated anion channels (VRAC; verapamil, tamoxifen and fluoxetine) significantly suppressed [ATP]o elevation. Application of 3 G hypergravity for 1 h increased the nuclear uptake of BrdU, which was inhibited by Rho-kinase inhibitor and VARC inhibitors. Furthermore, intermittent application of 3 G hypergravity for 1 or 2 h/day stimulated endothelial migration in 5 days, and this was inhibited by suramin, a P2 antagonist. Collectively, these results indicate that hypergravity induces ATP release and actin reorganization via RhoA activation and FAK phosphorylation, thereby activating cell proliferation and migration in BAECs. These also suggest that gravity can be regarded as an extracorporeal signal that could significantly affect endothelial functions.
Collapse
Affiliation(s)
- Tetsuya Koyama
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Koncz P, Szanda G, Rajki A, Spät A. Reactive oxygen species, Ca2+ signaling and mitochondrial NAD(P)H level in adrenal glomerulosa cells. Cell Calcium 2006; 40:347-57. [PMID: 16765442 DOI: 10.1016/j.ceca.2006.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/30/2006] [Accepted: 04/12/2006] [Indexed: 12/21/2022]
Abstract
The acute effects of ultraviolet light, the superoxide-generating xanthine-xanthine oxidase system and H(2)O(2) to on calcium signaling and mitochondrial pyridine nucleotide metabolism were investigated in rat glomerulosa cells. UV light induced the formation of superoxide, that, similar to exogenously applied superoxide and H(2)O(2), decreased the level of mitochondrial NAD(P)H. Free radical scavengers antagonized this effect of UV light. Extracellularly generated superoxide elicited Ca(2+) transients and inhibited angiotensin II-induced cytoplasmic Ca(2+) signaling. Low intensity UV light did not affect basal [Ca(2+)] and failed to influence Ca(2+) signaling induced by depolarization or store depletion. UV light of the same low power reduced both cytoplasmic and mitochondrial Ca(2+) signals induced by angiotensin II. The lack of UV effect on inositol phosphate formation indicates that the inhibition of cytoplasmic Ca(2+) signaling is due to reduced Ca(2+) release from InsP(3)-sensitive stores. Decreased mitochondrial Ca(2+) uptake may be attributed to UV-induced perturbation of the perimitochondrial microdomain.
Collapse
Affiliation(s)
- Péter Koncz
- Department of Physiology, Faculty of Medicine, Semmelweis University and Laboratory of Cellular and Molecular Physiology, Hungarian Academy of Sciences, P.O. Box 259, H-1444 Budapest, Hungary
| | | | | | | |
Collapse
|
12
|
Triggle CR, Howarth A, Cheng ZJ, Ding H. Twenty-five years since the discovery of endothelium-derived relaxing factor (EDRF): does a dysfunctional endothelium contribute to the development of type 2 diabetes? Can J Physiol Pharmacol 2006; 83:681-700. [PMID: 16333371 DOI: 10.1139/y05-069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Twenty-five years ago, the discovery of endothelium-derived relaxing factor opened a door that revealed a new and exciting role for the endothelium in the regulation of blood flow and led to the discovery that nitric oxide (NO) multi-tasked as a novel cell-signalling molecule. During the next 25 years, our understanding of both the importance of the endothelium as well as NO has greatly expanded. No longer simply a barrier between the blood and vascular smooth muscle, the endothelium is now recognized as a complex tissue with heterogeneous properties. The endothelium is the source of not only NO but also numerous vasoactive molecules and signalling pathways, some of which are still not fully characterized such as the putative endothelium-derived relaxing factor. Dysfunction of the endothelium is a key risk factor for the development of macro- and microvascular disease and, by coincidence, the discovery that NO was generated in the endothelium corresponds approximately in time with the increased incidence of type 2 diabetes. Primarily linked to dietary and lifestyle changes, we are now facing a global pandemic of type 2 diabetes. Characterized by insulin resistance and hyperglycaemia, type 2 diabetes is increasingly being diagnosed in adolescents as well as children. Is there a link between dietary-related hyperglycaemic insults to the endothelium, blood flow changes, and the development of insulin resistance? This review explores the evidence for and against this hypothesis.
Collapse
Affiliation(s)
- Chris R Triggle
- School of Medical Sciences, Bundoora West Campus, RMIT University, Victoria, Australia
| | | | | | | |
Collapse
|
13
|
Reyes-Toso CF, Linares LM, Ricci CR, Obaya-Naredo D, Pinto JE, Rodríguez RR, Cardinali DP. Melatonin restores endothelium-dependent relaxation in aortic rings of pancreatectomized rats. J Pineal Res 2005; 39:386-91. [PMID: 16207294 DOI: 10.1111/j.1600-079x.2005.00262.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In rats turned hyperglycemic by a subtotal pancreatectomy, a decreased relaxation response of aortic rings to acetylcholine (ACh) was found; this effect was amplified by preincubation in a high glucose medium (44 mmol/L). The relaxation response to ACh did not occur in endothelium-denuded rings or after the aortic rings were exposed to l-nitro-arginine methyl ester [L-NAME, a nitric oxide (NO) synthase inhibitor]. Incubation with the NO donor sodium nitroprusside (SNP) restored the impaired relaxation response seen in endothelium-denuded or L-NAME-treated aortic rings. Pancreatectomy decreased the vasorelaxation of aortic rings caused by SNP. Only in pancreatectomized rats, incubation in a high glucose medium impaired the relaxation effect of SNP. To assess whether melatonin preincubation reversed the impaired relaxation response to ACh (intact endothelium aortic rings) or to SNP (endothelium-denuded or L-NAME-treated rings) in hyperglycemic rats, cumulative dose-response curves were performed in the presence of 10(-5) mol/L melatonin. Melatonin preincubation did not modify ACh-induced relaxation of aortic rings in a normal glucose concentration but was highly effective in preventing the impairment of relaxation caused by a high glucose solution. Melatonin was also effective in restoring the impaired SNP-induced vasorelaxation seen in endothelium-denuded or L-NAME-treated aortic rings from hyperglycemic rats. The results further support the improvement by melatonin of the endothelial-mediated relaxation in blood vessels of diabetic rats.
Collapse
Affiliation(s)
- Carlos F Reyes-Toso
- Department of Physiology, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Dragomir E, Manduteanu I, Voinea M, Costache G, Manea A, Simionescu M. Aspirin rectifies calcium homeostasis, decreases reactive oxygen species, and increases NO production in high glucose-exposed human endothelial cells. J Diabetes Complications 2004; 18:289-99. [PMID: 15337503 DOI: 10.1016/j.jdiacomp.2004.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 02/13/2004] [Accepted: 03/05/2004] [Indexed: 01/04/2023]
Abstract
Aspirin's pharmacological action is mainly related to its property to inhibit prostaglandin synthesis; apart from this, aspirin has some beneficial side effects that are not completely understood, yet. Since aspirin possesses antioxidant properties and antioxidants prevent high d-glucose enhanced endothelial [Ca(2+)](i), we questioned whether aspirin also has an effect on this process as well as on high-glucose-impaired nitric oxide (NO) production. For these purposes, human endothelial cells (HECs) were cultured in normal concentration (5 mM) glucose (NG) or high concentration (33 mM) glucose (HG) and after confluence, exposed for 48 h to HG in the absence or presence of 1 mM aspirin. Then, the [Ca(2+)](i) was measured fluorimetrically using fura-2, NO production was determined by Griess reaction, superoxide anions (O(2)) was evaluated by ferricytochrome c reduction, the intracellular reactive oxygen species (ROS) were evaluated by fluorimetry, and the levels of protein kinase C (PKC) by Western blot. The results showed that HECs exposed to HG displayed: (i) increased [Ca(2+)](i); (ii) enhanced O(2) release; (iii) augmented level of intracellular ROS; and (iv) PKC translocation to the membrane fraction. By comparison, exposure to cells grown in HG to 1 mM aspirin resulted in: (i) a reduction of histamine stimulated [Ca(2+)](i) release to control level and of [Ca(2+)](i) entry by 30%; (ii) a twofold increase in NO production; (iii) a decrease of O(2)(-) accumulation in both culture medium and cell homogenate (by 60.4% and 70%, respectively); (iv) a decline of ROS to the control levels; and (v) a reduction of PKC translocation to the control levels. These data indicate that aspirin corrects the high-glucose-induced changes in cellular Ca(2+) homeostasis and NO production, via a mechanism involving the reduction of the O(2)(-) levels possible by acting on PKC-induced NADPH activity.
Collapse
Affiliation(s)
- Elena Dragomir
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8, BP Hasdeu Street, PO Box 35-14, 79691 Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
15
|
Tabet F, Savoia C, Schiffrin EL, Touyz RM. Differential Calcium Regulation by Hydrogen Peroxide and Superoxide in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2004; 44:200-8. [PMID: 15243301 DOI: 10.1097/00005344-200408000-00009] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the role of reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and superoxide anion (*O2-) in the regulation of vascular smooth muscle cell (VSMC) Ca2+ concentration ([Ca2+]i) and vascular contraction and assessed whether redox-dependent Ca2+ signaling and contraction are altered in hypertension. VSMCs and mesenteric arteries from Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were studied. Cells were stimulated with H2O2 (10(-4) mol/l) or LY83583 (*O2- generator, 10(-5) mol/l). [Ca2+]i and cytosolic *O2- were measured by fura-2AM and tempo-9-AC fluorescence respectively. L-type and T-type Ca2+ channels were assessed using verapamil/diltiazem and mibefradil respectively and mRNA and protein expression of these channels was assessed by real-time PCR and immunoblotting respectively. H2O2 time-dependently increased [Ca2+]i and contraction with significantly greater effects in SHR versus WKY (P < 0.001). LY83583 increased [Ca2+]i in both strains, but responses were blunted in SHR. Removal of extracellular Ca2+ abrogated [Ca2+]i responses to H2O2 and *O2-. Verapamil and diltiazem, but not mibefradil, significantly decreased H2O2 -induced [Ca2+]i responses with greater effects in SHR (P < 0.01). L-type and T-type Ca2+ channel inhibition reduced LY83583-mediated [Ca2+]i increase only in WKY cells. Both types of Ca2+ channels were expressed (mRNA and protein) in VSMCs from WKY and SHR, with greater abundance in SHR than WKY (2- to 3-fold). These results demonstrate that ROS increase vascular [Ca2+]i and contraction, primarily via extracellular Ca2+ influx. Whereas responses to H2O2 are enhanced, *O2- -mediated actions are blunted in SHR. These effects may relate to differential activation of Ca2+ channels by H2O2 and *O2-. Enhanced activation of L-type Ca2+ channels and increased Ca2+ influx by H2O2 may contribute to increased Ca2+ signaling in VSMCs from SHR.
Collapse
MESH Headings
- Aminoquinolines/metabolism
- Aminoquinolines/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/genetics
- Calcium Channels, T-Type/chemistry
- Calcium Channels, T-Type/drug effects
- Calcium Channels, T-Type/genetics
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Diltiazem/pharmacology
- Dose-Response Relationship, Drug
- Hydrogen Peroxide/metabolism
- Male
- Mesenteric Arteries/cytology
- Mesenteric Arteries/drug effects
- Mibefradil/pharmacology
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Reactive Oxygen Species/metabolism
- Superoxides/metabolism
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Fatiha Tabet
- CIHR Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
16
|
Kimura C, Oike M, Ohnaka K, Nose Y, Ito Y. Constitutive nitric oxide production in bovine aortic and brain microvascular endothelial cells: a comparative study. J Physiol 2003; 554:721-30. [PMID: 14617679 PMCID: PMC1664799 DOI: 10.1113/jphysiol.2003.057059] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vascular endothelium constitutively generates nitric oxide (NO) in large vessels and induces a relaxation of smooth muscle cells. However, little is known about the production of NO in microvessels, where smooth muscle layers are thin or absent. In this study, we have compared the constitutive production of NO in bovine brain microvascular endothelial cells (BBECs) with that in bovine aortic endothelial cells (BAECs). ATP, acetylcholine (ACh) and A23187 induced Ca(2+) transients both in BBECs and BAECs. In contrast, although ATP and A23187 evoked a similar degree of [Ca(2+)](i) increase in both types of cell, they failed to induce NO production in BBECs, as measured with an NO-sensitive fluorescent dye DAF-2, whereas in BAECs there was an increase in DAF-2 fluorescence. Hypotonic stress induced ATP release and subsequent NO production in BAECs, but not in BBECs. We have developed an in vitro model vessel system that consists of aortic smooth muscle cells embedded in a collagen gel lattice and overlaid with endothelial cells. Precontracted gels showed relaxation in response to ACh, when BAECs were overlaid. However, ACh-induced relaxation was not observed in BBEC-overlaid gels. Expression of eNOS protein as well as cellular uptake of l-[(3)H]arginine were significantly lower in BBECs than in BAECs. These results indicate that Ca(2+)-dependent NO production is at an undetectable level in BBEC, for which at least two factors, i.e. low levels of eNOS expression and l-arginine uptake, are responsible.
Collapse
Affiliation(s)
- Chiwaka Kimura
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
17
|
Hua H, Munk S, Goldberg H, Fantus IG, Whiteside CI. High glucose-suppressed endothelin-1 Ca2+ signaling via NADPH oxidase and diacylglycerol-sensitive protein kinase C isozymes in mesangial cells. J Biol Chem 2003; 278:33951-62. [PMID: 12821678 DOI: 10.1074/jbc.m302823200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
High glucose (HG) is the underlying factor contributing to long term complications of diabetes mellitus. The molecular mechanisms transforming the glomerular mesangial cell phenotype to cause nephropathy including diacylglycerol-sensitive protein kinase C (PKC) are still being defined. Reactive oxygen species (ROS) have been postulated as a unifying mechanism for HG-induced complications. We hypothesized that in HG an interaction between ROS generation, from NADPH oxidase, and PKC suppresses mesangial Ca2+ signaling in response to endothelin-1 (ET-1). In primary rat mesangial cells, growth-arrested (48 h) in 5.6 mM (NG) or 30 mm (HG) glucose, the total cell peak [Ca2+]i response to ET-1 (50 nM) was 630 +/- 102 nM in NG and was reduced to 159 +/- 15 nM in HG, measured by confocal imaging. Inhibition of PKC with phorbol ester down-regulation in HG normalized the ET-1-stimulated [Ca2+]i response to 541 +/- 74 nM. Conversely, an inhibitory peptide specific for PKC-zeta did not alter Ca2+ signaling in HG. Furthermore, overexpression of conventional PKC-beta or novel PKC-delta in NG diminished the [Ca2+]i response to ET-1, reflecting the condition observed in HG. Likewise, catalase or p47phox antisense oligonucleotide normalized the [Ca2+]i response to ET-1 in HG to 521 +/- 58 nM and 514 +/- 48 nM, respectively. Pretreatment with carbonyl cyanide m-chlorophenylhydrazone or rotenone did not restore Ca2+ signaling in HG. Detection of increased intracellular ROS in HG by dichlorofluorescein was inhibited by catalase, diphenyleneiodonium, or p47phox antisense oligonucleotide. HG increased p47phox mRNA by 1.7 +/- 0.1-fold as measured by reverse transcriptase-PCR. In NG, H2O2 increased membrane-enriched PKC-beta and -delta, suggesting activation of these isozymes. HG-enhanced immunoreactivity of PKC-delta visualized by confocal imaging was attenuated by diphenyleneiodium chloride. Thus, mesangial cell [Ca2+]i signaling in response to ET-1 in HG is attenuated through an interaction mechanism between NADPH oxidase ROS production and diacylglycerol-sensitive PKC.
Collapse
Affiliation(s)
- Hong Hua
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
18
|
Muraki K. [Analyses of Ca-related ion channel currents and their involvement in Ca mobilization in smooth muscle and endothelial cells]. Nihon Yakurigaku Zasshi 2003; 121:143-51. [PMID: 12673948 DOI: 10.1254/fpj.121.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Changes in intracellular Ca concentration ([Ca2+]i) play dominant roles in the regulation of ion channel activity. Thus, analyses of Ca-related ion channels, whose activation is responsible for and/or dependent on the changes in [Ca2+]i, are important to understand the physiological and pharmacological characteristics of smooth muscle cells (SMCs) and endothelial cells (ECs). We have clarified that, in SMCs, Ca mobilization by membrane depolarization and bioactive substances affects the activity of Ca-activated K (IK-Ca) and Cl channel currents. On the other hand, by measuring IK-Ca as an indicator of Ca mobilization, we found that palmitoylcarnitine (PC), a lipid released under ischemic conditions, mobilizes Ca in ECs via stimulation of endothelial differential gene (Edg) receptors. Moreover, sphingosine-1-phosphate, which is a lipid mediator and has a similar structure to PC, elevated [Ca2+]i in ECs via the activation of cation channels through Edg1 receptors. A myo-endothelial interaction is another regulatory factor of Ca mobilization in ECs as well as in SMCs. Nifedipine and levcromakalim, which have no effects on ion channels in ECs themselves, changed the membrane potential of ECs via a myo-endothelial pathway. These integral analyses provide better understanding of the functional roles of Ca-related ion channels and their involvement in Ca mobilization in SMCs and ECs.
Collapse
Affiliation(s)
- Katsuhiko Muraki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
19
|
Koyama T, Kimura C, Park SJ, Oike M, Ito Y. Functional implications of Ca2+ mobilizing properties for nitric oxide production in aortic endothelium. Life Sci 2002; 72:511-20. [PMID: 12467891 DOI: 10.1016/s0024-3205(02)02246-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have investigated the relationship between Ca2+ mobilization and the cellular production of nitric oxide (NO) by using fura-2 and diaminofluorescein-2 (DAF-2), an NO-sensitive dye, in bovine aortic endothelial cells (BAEC). High concentrations of ATP (100 microM) or thapsigargin (1 micro M) depleted intracellular Ca2+ store sites with a single Ca2+ transient, and induced an increase in DAF-2 fluorescence even in Ca2+-free solution, thereby indicating that store depletion leads to NO production. The same level of increase in DAF-2 fluorescence was elicited by low concentrations of ATP (1 micro M), which induced Ca2+ oscillations but did not deplete store sites, only in the presence of extracellular Ca2+. Furthermore, inhibition of ATP (1 micro M)-induced Ca2+ entry with La3+ suppressed DAF-2 fluorescence. ATP (0.3 micro M), applied in Ca2+-free, Mn2+-containing solution induced Mn2+ entry-coupled fura-2 quenching, repeating shortly after each oscillation peak. These results indicate that NO is produced preferentially by entered Ca2+, and that Ca2+ oscillations, which are induced by low levels of stimulation, play a significant role in NO production by strongly modulating Ca2+ entry.
Collapse
Affiliation(s)
- Tetsuya Koyama
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, 812-82, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
20
|
Karashima Y, Oike M, Takahashi S, Ito Y. Propofol prevents endothelial dysfunction induced by glucose overload. Br J Pharmacol 2002; 137:683-91. [PMID: 12381682 PMCID: PMC1573534 DOI: 10.1038/sj.bjp.0704912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Surgical operations often induce acute hyperglycemia, which is known to affect endothelial functions. In this study, we examined the effects of propofol, a commonly used general anaesthetic, on bovine aortic endothelial cell (BAEC) dysfunction induced by glucose overload. 2 D-glucose overload (23 mM) induced an accumulation of superoxide anion (O2-), assessed by MCLA chemiluminescence, to a similar extent as that generated by 233 microU ml(-1) xanthine oxidase (XO) and 100 micro M xanthine. Propofol inhibited this accumulation with an IC50 of 0.21 micro M, whereas much higher concentrations of propofol were required to scavenge O2- generated by 250 microU ml(-1) XO and 100 microM xanthine (IC50: 13.5 micro M). 3 D-glucose overload attenuated ATP-induced NO production which was detected using diaminofluorescence-2 (DAF-2). The inhibition was reversed by propofol with an EC50 of 0.60 microM. In contrast, inhibitions caused by xanthine/XO were not altered by propofol (1 microM). 4 D-glucose overload suppressed ATP-induced Ca2+ oscillations and capacitative Ca2+ entry (CCE), which were both restored by superoxide dismutase, indicating that O2- was responsible. Propofol restored these attenuated Ca2+ oscillations and CCE with EC50 of 0.31 and 1.0 microM, respectively. 5 D-glucose overload (23 mM) increased the intracellular glucose concentration 4 fold, compared with cells exposed to 5.75 mM glucose, and 1 micro M propofol reduced this increase to 2.8 fold. 6 We conclude from these results that anaesthetic concentrations of propofol prevent the impairment of Ca2+-dependent NO production in BAEC induced by glucose overload. This effect is mainly due to the reduction of O2- accumulation, and involves, at least in part, the inhibition of cellular glucose uptake.
Collapse
Affiliation(s)
- Yuji Karashima
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Anesthesiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masahiro Oike
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Author for correspondence:
| | - Shosuke Takahashi
- Department of Anesthesiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yushi Ito
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Reyes-Toso CF, Rosón MI, Albornoz LE, Damiano PF, Linares LM, Cardinali DP. Vascular reactivity in diabetic rats: effect of melatonin. J Pineal Res 2002; 33:81-6. [PMID: 12153441 DOI: 10.1034/j.1600-079x.2002.01886.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to evaluate the in vitro contractile response of rat aorta in mild and severe type I diabetes and the effect of melatonin on it. Aortic rings were obtained from male Wistar rats injected with streptozotocin 8-12 wks earlier. Rats were divided into three groups: non-diabetic rats (NDR), mildly diabetic rats (MDR) and severely diabetic rats (SDR). Dose-response curves for acetylcholine-induced, endothelium-related relaxation of aortic rings (after previous exposure to phenylephrine) and for serotonin-induced vasoconstriction were conducted in the presence or absence of 10-5 mol/L melatonin. This protocol was repeated with rings preincubated in a high glucose solution (44 mmol/L). The contractile response to phenylephrine decreased in SDR, an effect counteracted by preincubation with high glucose. Melatonin decreased phenylephrine-induced vasoconstriction in MDR and counteracted the effect of high glucose in SDR. Acetylcholine-evoked relaxation decreased significantly after exposure to a high glucose in SDR, this effect being counteracted by melatonin. Serotonin-induced vasoconstriction decreased in SDR and augmented in MDR, but only after exposure to high glucose. Melatonin reduced the maximal tension of aortic contraction after serotonin in MDR, both under basal conditions and after preincubation in a high glucose solution. The results support the existence of differences in vasomotor responses as a function of the diabetes state and of an improvement of contractile performance in diabetic rats after exposure to melatonin at a pharmacological concentration (in terms of circulating melatonin levels but not necessarily for some other fluids or tissues).
Collapse
Affiliation(s)
- Carlos F Reyes-Toso
- Departmento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
22
|
Stankevicius E, Martinez AC, Mulvany MJ, Simonsen U. Blunted acetylcholine relaxation and nitric oxide release in arteries from renal hypertensive rats. J Hypertens 2002; 20:1571-9. [PMID: 12172319 DOI: 10.1097/00004872-200208000-00020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Investigation of the effect of hypertension on endothelium-dependent relaxation and release of nitric oxide (NO) in normotensive and renal hypertensive rats. DESIGN AND METHODS Sprague-Dawley rats were randomly allocated into two groups: uninephrectomized controls and one-kidney one-clip (Goldblatt hypertension) hypertensive rats, a non-renin dependent model of hypertension. After 10 weeks and in the presence of the cyclooxygenase inhibitor indomethacin, simultaneous measurements of the NO concentration, measured with a NO-specific microelectrode and endothelium-dependent relaxation were performed in isolated rat superior mesenteric arteries. RESULTS Addition of the NO scavenger, oxyhaemoglobin, showed that basal NO concentration was unaltered in arterial segments from hypertensive rats. In norepinephrine-contracted arteries, acetylcholine increased the NO concentration and caused relaxations, and both parameters were significantly reduced in renal hypertensive arteries. Relaxations induced by the NO donor, S-nitroso-N-acetylpenicillamine were reduced. The superoxide scavenger, superoxide dismutase, and the NO synthase substrate, l-arginine, did not change the increase in NO concentration or acetylcholine relaxation in arteries from normotensive or renal hypertensive animals. In contrast, the NO synthase inhibitor, asymmetric dimethyl l-arginine, reduced the NO concentration and acetylcholine relaxation, while these responses were abolished in the presence of oxyhaemoglobin. CONCLUSIONS This study provides direct evidence that reduced endothelium-dependent relaxations in the superior mesenteric artery from renal hypertensive rats is due, at least in part, to diminished NO release. The reduced NO release and relaxation persist in the presence of excess of substrate for NO synthase.
Collapse
|
23
|
Kimura C, Cheng W, Hisadome K, Wang YP, Koyama T, Karashima Y, Oike M, Ito Y. Superoxide anion impairs contractility in cultured aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 2002; 283:H382-90. [PMID: 12063312 DOI: 10.1152/ajpheart.00574.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of superoxide anion (O) generated by xanthine plus xanthine oxidase (X/XO) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) and muscle contractility in cultured bovine aortic smooth muscle cells (BASMC). Cells were grown on collagen-coated dish for the measurement of [Ca(2+)](i). Pretreatment with X/XO inhibited ATP-induced Ca(2+) transient and Ca(2+) release-activated Ca(2+) entry (CRAC) after thapsigargin-induced store depletion, both of which were reversed by superoxide dismutase (SOD). In contrast, Ca(2+) transients induced by high-K(+) solution and Ca(2+) ionophore A-23187 were not affected by X/XO. BASMC-embedded collagen gel lattice, which was pretreated with xanthine alone, showed contraction in response to ATP, thapsigargin, high-K(+) solution, and A-23187. Pretreatment of the gel with X/XO impaired gel contraction not only by ATP and thapsigargin, but also by high-K(+) solution and A-23187. The X/XO-treated gel showed normal contraction; however, when SOD was present during the pretreatment period. These results indicate that O(2)(-) attenuates smooth muscle contraction by impairing CRAC, ATP-induced Ca(2+) transient, and Ca(2+) sensitivity in BASMC.
Collapse
MESH Headings
- Adenosine Triphosphate/pharmacology
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Calcium/metabolism
- Cattle
- Cells, Cultured
- Collagen/physiology
- Enzyme Inhibitors/pharmacology
- Gels
- Imidazoles
- Intracellular Fluid/metabolism
- Ionophores/pharmacology
- Luminescent Measurements
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Potassium/pharmacology
- Pyrazines
- Superoxide Dismutase/metabolism
- Superoxides/analysis
- Superoxides/metabolism
- Superoxides/pharmacology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Xanthine/metabolism
- Xanthine Oxidase/metabolism
Collapse
Affiliation(s)
- Chiwaka Kimura
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Endothelial cells (EC) form a unique signal-transducing surface in the vascular system. The abundance of ion channels in the plasma membrane of these nonexcitable cells has raised questions about their functional role. This review presents evidence for the involvement of ion channels in endothelial cell functions controlled by intracellular Ca(2+) signals, such as the production and release of many vasoactive factors, e.g., nitric oxide and PGI(2). In addition, ion channels may be involved in the regulation of the traffic of macromolecules by endocytosis, transcytosis, the biosynthetic-secretory pathway, and exocytosis, e.g., tissue factor pathway inhibitor, von Willebrand factor, and tissue plasminogen activator. Ion channels are also involved in controlling intercellular permeability, EC proliferation, and angiogenesis. These functions are supported or triggered via ion channels, which either provide Ca(2+)-entry pathways or stabilize the driving force for Ca(2+) influx through these pathways. These Ca(2+)-entry pathways comprise agonist-activated nonselective Ca(2+)-permeable cation channels, cyclic nucleotide-activated nonselective cation channels, and store-operated Ca(2+) channels or capacitative Ca(2+) entry. At least some of these channels appear to be expressed by genes of the trp family. The driving force for Ca(2+) entry is mainly controlled by large-conductance Ca(2+)-dependent BK(Ca) channels (slo), inwardly rectifying K(+) channels (Kir2.1), and at least two types of Cl( -) channels, i.e., the Ca(2+)-activated Cl(-) channel and the housekeeping, volume-regulated anion channel (VRAC). In addition to their essential function in Ca(2+) signaling, VRAC channels are multifunctional, operate as a transport pathway for amino acids and organic osmolytes, and are possibly involved in endothelial cell proliferation and angiogenesis. Finally, we have also highlighted the role of ion channels as mechanosensors in EC. Plasmalemmal ion channels may signal rapid changes in hemodynamic forces, such as shear stress and biaxial tensile stress, but also changes in cell shape and cell volume to the cytoskeleton and the intracellular machinery for metabolite traffic and gene expression.
Collapse
Affiliation(s)
- B Nilius
- Department of Physiology, KU Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | |
Collapse
|
25
|
Kimura C, Oike M, Koyama T, Ito Y. Alterations of Ca2+ mobilizing properties in migrating endothelial cells. Am J Physiol Heart Circ Physiol 2001; 281:H745-54. [PMID: 11454579 DOI: 10.1152/ajpheart.2001.281.2.h745] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endothelial migration is one of the major events of pathological neovascularization. We compared the characteristics of Ca2+ mobilization in nonconfluent, confluent, and migrating endothelial cells. Migration of endothelial cells was induced by wounding the confluent cell monolayer. The basal intracellular Ca2+ concentration was lower in migrating cells and higher in confluent cells than in nonconfluent cells. Thapsigargin (TG)-induced Ca2+ leak and TG-evoked Ca2+ entry were accelerated in migrating cells, whereas the latter was suppressed in confluent cells. The ATP-induced Ca2+ transient was also much larger in migrating cells than in confluent cells. These alterations were also observed in a cell as an intracellular polarization, i.e., the leading edge showed an acceleration of TG-evoked Ca2+ entry and an augmentation of the ATP-induced Ca2+ transient. Endothelial migration was significantly suppressed by TG or cyclopiazonic acid. These observations suggest that the alterations of Ca2+ store site-related Ca2+ mobilizations, i.e., Ca2+ sequestration, release, and TG-evoked Ca2+ entry, may be involved in the cellular mechanisms of endothelial migration.
Collapse
Affiliation(s)
- C Kimura
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
26
|
Koyama T, Oike M, Ito Y. Involvement of Rho-kinase and tyrosine kinase in hypotonic stress-induced ATP release in bovine aortic endothelial cells. J Physiol 2001; 532:759-69. [PMID: 11313444 PMCID: PMC2278586 DOI: 10.1111/j.1469-7793.2001.0759e.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Hypotonic stress induces ATP release followed by Ca2+ oscillations in bovine aortic endothelial cells (BAECs). We have investigated the cellular mechanism of the hypotonic stress-induced ATP release. Hypotonic stress induced tyrosine phosphorylation of at least two proteins, of 110 and 150 kDa. Inhibition of tyrosine kinase by the tyrosine kinase inhibitors herbimycin A and tyrphostin 46 prevented ATP release and ATP-mediated Ca2+ oscillations induced by hypotonic stress. ATP release was also inhibited by the pretreatment of the cells with botulinum toxin C3, and augmented by lysophosphatidic acid. Furthermore, pre-treating the cells with Y-27632, a selective inhibitor of Rho-kinase, also suppressed the hypotonic stress-induced ATP release and Ca2+ oscillations, indicating that Rho-mediated activation of Rho-kinase may be involved in the hypotonic ATP release. Hypotonic stress also induced a transient rearrangement of the actin cytoskeleton, which was suppressed by the tyrosine kinase inhibitors Y-27632 and cytochalasin B. However, pretreatment of the cell with cytochalasin B inhibited neither the hypotonic stress-induced ATP release nor the Ca2+ oscillations. These results indicate that tyrosine kinase and the Rho-Rho-kinase pathways are involved in hypotonic stress-induced ATP release and actin rearrangement, but actin polymerization is not required for ATP release in BAECs.
Collapse
Affiliation(s)
- T Koyama
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
27
|
Kimura C, Oike M, Koyama T, Ito Y. Impairment of endothelial nitric oxide production by acute glucose overload. Am J Physiol Endocrinol Metab 2001; 280:E171-8. [PMID: 11120671 DOI: 10.1152/ajpendo.2001.280.1.e171] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of acute glucose overload (pretreatment for 3 h with 23 mM D-glucose) on the cellular productivity of nitric oxide (NO) in bovine aortic endothelial cells (BAEC). We had previously reported (Kimura C, Oike M, and Ito Y. Circ Res, 82: 677-685, 1998) that glucose overload impairs Ca(2+) mobilization due to an accumulation of superoxide anions (O(2)(-)) in BAEC. In control cells, ATP induced an increase in NO production, assessed by diaminofluorescein 2 (DAF-2), an NO-sensitive fluorescent dye, mainly due to Ca(2+) entry. In contrast, ATP-induced increase in DAF-2 fluorescence was impaired by glucose overload, which was restored by superoxide dismutase, but not by catalase or deferoxamine. Furthermore, pyrogallol, an O(2)(-) donor, also attenuated ATP-induced increase in DAF-2 fluorescence. In contrast, a nonspecific intracellular Ca(2+) concentration increase induced by the Ca(2+) ionophore A-23187, which depletes the intracellular store sites, elevated DAF-2 fluorescence in both control and high D-glucose-treated cells in Ca(2+)-free solution. These results indicate that glucose overload impairs NO production by the O(2)(-)-mediated attenuation of Ca(2+) entry.
Collapse
Affiliation(s)
- C Kimura
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
28
|
Kimura C, Oike M, Ito Y. Hypoxia-induced alterations in Ca(2+) mobilization in brain microvascular endothelial cells. Am J Physiol Heart Circ Physiol 2000; 279:H2310-8. [PMID: 11045967 DOI: 10.1152/ajpheart.2000.279.5.h2310] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the possible cellular mechanisms of the ischemia-induced impairments of cerebral microcirculation, we investigated the effects of hypoxia/reoxygenation on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in bovine brain microvascular endothelial cells (BBEC). In the cells kept in normal air, ATP elicited Ca(2+) oscillations in a concentration-dependent manner. When the cells were exposed to hypoxia for 6 h and subsequent reoxygenation for 45 min, the basal level of [Ca(2+)](i) was increased from 32.4 to 63.3 nM, and ATP did not induce Ca(2+) oscillations. Hypoxia/reoxygenation also inhibited capacitative Ca(2+) entry (CCE), which was evoked by thapsigargin (Delta[Ca(2+)](i-CCE): control, 62.3 +/- 3.1 nM; hypoxia/reoxygenation, 17.0 +/- 1.8 nM). The impairments of Ca(2+) oscillations and CCE, but not basal [Ca(2+)](i), were restored by superoxide dismutase and the inhibitors of mitochondrial electron transport, rotenone and thenoyltrifluoroacetone (TTFA). By using a superoxide anion (O(2)(-))-sensitive luciferin derivative MCLA, we confirmed that the production of O(2)(-) was induced by hypoxia/reoxygenation and was prevented by rotenone and TTFA. These results indicate that hypoxia/reoxygenation generates O(2)(-) at mitochondria and impairs some Ca(2+) mobilizing properties in BBEC.
Collapse
Affiliation(s)
- C Kimura
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
29
|
Oike M, Kimura C, Koyama T, Yoshikawa M, Ito Y. Hypotonic stress-induced dual Ca(2+) responses in bovine aortic endothelial cells. Am J Physiol Heart Circ Physiol 2000; 279:H630-8. [PMID: 10924062 DOI: 10.1152/ajpheart.2000.279.2.h630] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the effects of hypotonic stress on intracellular calcium concentration ([Ca(2+)](i)) in bovine aortic endothelial cells. Reducing extracellular osmolarity by 5% to 40% elicited a steep Ca(2+) transient both in normal Krebs and Ca(2+)-free solutions. The hypotonic stress-induced Ca(2+) transient was inhibited by phospholipase C inhibitors (neomycin and U-73122), a P(2)-receptor antagonist (suramin), and an ATP-hydrolyzing enzyme (apyrase), suggesting that the hypotonic stress-induced Ca(2+) transient is mediated by ATP. A luciferin-luciferase assay confirmed that 40% hypotonic stress released 91.0 amol/cell of ATP in 10 min. When the hypotonic stress-induced fast Ca(2+) transient was inhibited by neomycin, suramin, or apyrase, a gradual [Ca(2+)](i) increase was observed instead. This hypotonic stress-induced gradual [Ca(2+)](i) increase was inhibited by a phospholipase A(2) inhibitor, 4-bromophenacyl bromide. Furthermore, exogenously applied arachidonic acid induced a gradual [Ca(2+)](i) increase with an ED(50) of 13.3 microM. These observations indicate that hypotonic stress induces a dual Ca(2+) response in bovine aortic endothelial cells, i.e., an ATP-mediated fast Ca(2+) transient and an arachidonic acid-mediated gradual Ca(2+) increase, the former being the predominant response in normal conditions.
Collapse
Affiliation(s)
- M Oike
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Recent evidence suggests that oxidant stress plays a major role in several aspects of vascular biology. Oxygen free radicals are implicated as important factors in signaling mechanisms leading to vascular pathologies such as postischemic reperfusion injury and atherosclerosis. The role of intracellular Ca(2+) in these signaling events is an emerging area of vascular research that is providing insights into the mechanisms mediating these complex physiological processes. This review explores sources of free radicals in the vasculature, as well as effects of free radicals on Ca(2+) signaling in vascular endothelial and smooth muscle cells. In the endothelium, superoxides enhance and peroxides attenuate agonist-stimulated Ca(2+) responses, suggesting differential signaling mechanisms depending on radical species. In smooth muscle cells, both superoxides and peroxides disrupt the sarcoplasmic reticulum Ca(2+)-ATPase, leading to both short- and long-term effects on smooth muscle Ca(2+) handling. Because vascular Ca(2+) signaling is altered by oxidant stress in ischemia-related disease states, understanding these pathways may lead to new strategies for preventing or treating arterial disease.
Collapse
Affiliation(s)
- K M Lounsbury
- Department of Pharmacology, University of Vermont School of Medicine, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
31
|
Koyama T, Oike M, Komiyama S, Ito Y. Superoxide anion impairs Ca(2+) mobilization in cultured human nasal epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L1089-95. [PMID: 10600877 DOI: 10.1152/ajplung.1999.277.6.l1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of superoxide anion (O(-2)) on the intracellular Ca(2+) concentration in cultured human nasal epithelial cells. The cells were exposed to O(-2) by pretreatment with xanthine (X) and xanthine oxidase (XO); control cells were treated with X alone. When Ca(2+)-containing Krebs solution was reperfused in the thapsigargin-treated, store-depleted cells, reapplication-induced intracellular Ca(2+) concentration elevation was significantly smaller in X/XO-treated cells than in the control cells, suggesting that O(-2) impairs Ca(2+) release-activated Ca(2+) entry (CRAC). Bath application of ATP induced a steep Ca(2+) transient in both control and X/XO-treated cells. However, the concentration-response curve of the ATP-induced Ca(2+) transient was shifted to a higher concentration in X/XO-treated cells. The impairments of CRAC and ATP-induced Ca(2+) transient induced by X/XO were reversed by superoxide dismutase. Furthermore, all these X/XO-induced effects were also observed in cells pretreated with pyrogallol, also an O(-2) donor. These results indicate that O(-2) impairs at least two mechanisms involved in Ca(2+) mobilization in human nasal epithelial cells, i.e., CRAC and ATP-induced Ca(2+) release.
Collapse
Affiliation(s)
- T Koyama
- Department of Pharmacology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|