1
|
Hemmati F, Akinpelu A, Nweze DC, Mistriotis P. 3D confinement alters smooth muscle cell responses to chemical and mechanical cues. APL Bioeng 2024; 8:046103. [PMID: 39464377 PMCID: PMC11512639 DOI: 10.1063/5.0225569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Smooth muscle cell (SMC) phenotypic switching is a hallmark of many vascular diseases. Although prior work has established that chemical and mechanical cues contribute to SMC phenotypic switching, the impact of three-dimensional (3D) confinement on this process remains elusive. Yet, in vivo, arterial SMCs reside within confined environments. In this study, we designed a microfluidic assay to investigate the interplay between 3D confinement and different environmental stimuli in SMC function. Our results show that tightly, but not moderately, confined SMCs acquire a contractile phenotype when exposed to collagen I. Elevated compressive forces induced by hydrostatic pressure abolish this upregulation of the contractile phenotype and compromise SMC survival, particularly in tightly confined spaces. Transforming growth factor beta 1, which promotes the contractile state in moderate confinement, fails to enhance the contractility of tightly confined cells. Fibronectin and engagement of cadherin 2 suppress the contractile phenotype of SMCs regardless of the degree of confinement. In contrast, homophilic engagement of cadherin 11 upregulates SMC-specific genes and enhances contractility in both moderately and tightly confined cells. Overall, our work introduces 3D confinement as a regulator of SMC phenotypic responses to chemical and mechanical signals.
Collapse
Affiliation(s)
- Farnaz Hemmati
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Ayuba Akinpelu
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Daniel Chinedu Nweze
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | | |
Collapse
|
2
|
Yan R, Song A, Zhang C. The Pathological Mechanisms and Therapeutic Molecular Targets in Arteriovenous Fistula Dysfunction. Int J Mol Sci 2024; 25:9519. [PMID: 39273465 PMCID: PMC11395150 DOI: 10.3390/ijms25179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The number of patients with end-stage renal disease (ESRD) requiring hemodialysis is increasing worldwide. Although arteriovenous fistula (AVF) is the best and most important vascular access (VA) for hemodialysis, its primary maturation failure rate is as high as 60%, which seriously endangers the prognosis of hemodialysis patients. After AVF establishment, the venous outflow tract undergoes hemodynamic changes, which are translated into intracellular signaling pathway cascades, resulting in an outward and inward remodeling of the vessel wall. Outward remodeling refers to the thickening of the vessel wall and the dilation of the lumen to accommodate the high blood flow in the AVF, while inward remodeling is mainly characterized by intimal hyperplasia. More and more studies have shown that the two types of remodeling are closely related in the occurrence and development of, and jointly determining the final fate of, AVF. Therefore, it is essential to investigate the underlying mechanisms involved in outward and inward remodeling for identifying the key targets in alleviating AVF dysfunction. In this review, we summarize the current clinical diagnosis, monitoring, and treatment techniques for AVF dysfunction and discuss the possible pathological mechanisms related to improper outward and inward remodeling in AVF dysfunction, as well as summarize the similarities and differences between the two remodeling types in molecular mechanisms. Finally, the representative therapeutic targets of potential clinical values are summarized.
Collapse
Affiliation(s)
- Ruiwei Yan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Ananthasubramanian P, Sahay R, Raghavan N. Investigation of the surface mechanical properties of functionalized single-walled carbon nanotube (SWCNT) reinforced PDMS nanocomposites using nanoindentation analysis. RSC Adv 2024; 14:15249-15260. [PMID: 38737970 PMCID: PMC11082875 DOI: 10.1039/d4ra02717e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Functionalizing single-walled carbon nanotubes (SWCNT) with different chemical functional groups directly enhances their chemical adhesion and dispersion in viscous polymeric resins such as polydimethylsiloxane (PDMS). Nevertheless, the ideal surface polarity (hydrophilic or hydrophobic) for SWCNT to foster stronger chemical bonding with PDMS remains uncertain. This investigation delves into the impact of enhanced SWCNT dispersion within PDMS on the surface mechanical characteristics of this flexible composite system. We use carboxylic acid-functionalized SWCNT (COOH-SWCNT) and silane-functionalized SWCNT (sily-SWCNT), recognized for their hydrophilic and hydrophobic surface polarities, respectively, as reinforcing agents at ultra-low weight percentage loadings: 0.05 wt%, 0.5 wt%, and 1 wt%. We perform quasi-static nanoindentation analysis employing a Berkovich tip to probe the localized mechanical behavior of PDMS-SWCNT films at an indentation depth of 1 μm. Plastic deformation within the samples, denoted as plastic work (Wp), as well as the elastic modulus (E), hardness (H), and contact stiffness (Sc) of the composites are examined from the force-displacement curves to elucidate the enhancement in the surface mechanical attributes of the composite films.
Collapse
Affiliation(s)
- Pavithra Ananthasubramanian
- nano-Macro Reliability Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design 8 Somapah Road Singapore 487372
| | - Rahul Sahay
- nano-Macro Reliability Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design 8 Somapah Road Singapore 487372
| | - Nagarajan Raghavan
- nano-Macro Reliability Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design 8 Somapah Road Singapore 487372
| |
Collapse
|
4
|
Cheng S, Xia IF, Wanner R, Abello J, Stratman AN, Nicoli S. Hemodynamics regulate spatiotemporal artery muscularization in the developing circle of Willis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569622. [PMID: 38077062 PMCID: PMC10705471 DOI: 10.1101/2023.12.01.569622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries, playing a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular diseases and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating differentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on the zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that the arterial expression of CoW endothelial cells (ECs) occurs after their migration from the cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors upon recruitment to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity wall shear stress. Furthermore, pulsatile blood flow is required for differentiation of human brain pdgfrb+ mural cells into VSMCs as well as VSMC differentiation on zebrafish CoW arteries. Consistently, the flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight the role of blood flow activation of endothelial klf2a as a mechanism regulating the initial VSMC differentiation on vertebrate brain arteries.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Ivan Fan Xia
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Renate Wanner
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Javier Abello
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Amber N. Stratman
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Behrmann A, Zhong D, Li L, Xie S, Mead M, Sabaeifard P, Goodarzi M, Lemoff A, Kozlitina J, Towler DA. Wnt16 Promotes Vascular Smooth Muscle Contractile Phenotype and Function via Taz (Wwtr1) Activation in Male LDLR-/- Mice. Endocrinology 2023; 165:bqad192. [PMID: 38123514 PMCID: PMC10765280 DOI: 10.1210/endocr/bqad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Wnt16 is expressed in bone and arteries, and maintains bone mass in mice and humans, but its role in cardiovascular physiology is unknown. We show that Wnt16 protein accumulates in murine and human vascular smooth muscle (VSM). WNT16 genotypes that convey risk for bone frailty also convey risk for cardiovascular events in the Dallas Heart Study. Murine Wnt16 deficiency, which causes postnatal bone loss, also reduced systolic blood pressure. Electron microscopy demonstrated abnormal VSM mitochondrial morphology in Wnt16-null mice, with reductions in mitochondrial respiration. Following angiotensin-II (AngII) infusion, thoracic ascending aorta (TAA) dilatation was greater in Wnt16-/- vs Wnt16+/+ mice (LDLR-/- background). Acta2 (vascular smooth muscle alpha actin) deficiency has been shown to impair contractile phenotype and worsen TAA aneurysm with concomitant reductions in blood pressure. Wnt16 deficiency reduced expression of Acta2, SM22 (transgelin), and other contractile genes, and reduced VSM contraction induced by TGFβ. Acta2 and SM22 proteins were reduced in Wnt16-/- VSM as was Ankrd1, a prototypic contractile target of Yap1 and Taz activation via TEA domain (TEAD)-directed transcription. Wnt16-/- VSM exhibited reduced nuclear Taz and Yap1 protein accumulation. SiRNA targeting Wnt16 or Taz, but not Yap1, phenocopied Wnt16 deficiency, and Taz siRNA inhibited contractile gene upregulation by Wnt16. Wnt16 incubation stimulated mitochondrial respiration and contraction (reversed by verteporfin, a Yap/Taz inhibitor). SiRNA targeting Taz inhibitors Ccm2 and Lats1/2 mimicked Wnt16 treatment. Wnt16 stimulated Taz binding to Acta2 chromatin and H3K4me3 methylation. TEAD cognates in the Acta2 promoter conveyed transcriptional responses to Wnt16 and Taz. Wnt16 regulates cardiovascular physiology and VSM contractile phenotype, mediated via Taz signaling.
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalian Zhong
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Li
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangkui Xie
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Mead
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Parastoo Sabaeifard
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia Kozlitina
- McDermott Center for Human Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dwight A Towler
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Zhou Y, Sharma S, Sun X, Guan X, Hou Y, Yang Z, Shi H, Zou MH, Song P, Zhou J, Wang S, Hu Z, Li C. SMYD2 regulates vascular smooth muscle cell phenotypic switching and intimal hyperplasia via interaction with myocardin. Cell Mol Life Sci 2023; 80:264. [PMID: 37615725 PMCID: PMC11071988 DOI: 10.1007/s00018-023-04883-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
The SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase that has been reported to regulate carcinogenesis and inflammation. However, its role in vascular smooth muscle cell (VSMC) homeostasis and vascular diseases has not been determined. Here, we investigated the role of SMYD2 in VSMC phenotypic modulation and vascular intimal hyperplasia and elucidated the underlying mechanism. We observed that SMYD2 expression was downregulated in injured carotid arteries in mice and phenotypically modulated VSMCs in vitro. Using an SMC-specific SMYD2 knockout mouse model, we found that SMYD2 ablation in VSMCs exacerbated neointima formation after vascular injury in vivo. Conversely, SMYD2 overexpression inhibited VSMC proliferation and migration in vitro and attenuated arterial narrowing in injured vessels in mice. SMYD2 downregulation promoted VSMC phenotypic switching accompanied with enhanced proliferation and migration. Mechanistically, genome-wide transcriptome analysis and loss/gain-of-function studies revealed that SMYD2 up-regulated VSMC contractile gene expression and suppressed VSMC proliferation and migration, in part, by promoting expression and transactivation of the master transcription cofactor myocardin. In addition, myocardin directly interacted with SMYD2, thereby facilitating SMYD2 recruitment to the CArG regions of SMC contractile gene promoters and leading to an open chromatin status around SMC contractile gene promoters via SMYD2-mediated H3K4 methylation. Hence, we conclude that SMYD2 is a novel regulator of VSMC contractile phenotype and intimal hyperplasia via a myocardin-dependent epigenetic regulatory mechanism.
Collapse
Affiliation(s)
- Yu Zhou
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA.
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, No 58, Zhongshan 2nd Street, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Shaligram Sharma
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Xiaonan Sun
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Xiaoqing Guan
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Yuning Hou
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
- Cancer Animal Models Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hang Shi
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Ping Song
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shenming Wang
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, No 58, Zhongshan 2nd Street, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Zuojun Hu
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, No 58, Zhongshan 2nd Street, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Chunying Li
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA.
| |
Collapse
|
7
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
8
|
Khachigian LM, Black BL, Ferdinandy P, De Caterina R, Madonna R, Geng YJ. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy. Vascul Pharmacol 2022; 146:107091. [PMID: 35896140 DOI: 10.1016/j.vph.2022.107091] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Vascular smooth muscle cells (SMC) possess a unique cytoplasticity, regulated by transcriptional, translational and phenotypic transformation in response to a diverse range of extrinsic and intrinsic pathogenic factors. The mature, differentiated SMC phenotype is physiologically typified transcriptionally by expression of genes encoding "contractile" proteins, such as SMα-actin (ACTA2), SM-MHC (myosin-11) and SM22α (transgelin). When exposed to various pathological conditions (e.g., pro-atherogenic risk factors, hypertension), SMC undergo phenotypic modulation, a bioprocess enabling SMC to de-differentiate in immature stages or trans-differentiate into other cell phenotypes. As recent studies suggest, the process of SMC phenotypic transformation involves five distinct states characterized by different patterns of cell growth, differentiation, migration, matrix protein expression and declined contractility. These changes are mediated via the action of several transcriptional regulators, including myocardin and serum response factor. Conversely, other factors, including Kruppel-like factor 4 and nuclear factor-κB, can inhibit SMC differentiation and growth arrest, while factors such as yin yang-1, can promote SMC differentiation whilst inhibiting proliferation. This article reviews recent advances in our understanding of regulatory mechanisms governing SMC phenotypic modulation. We propose the concept that transcription factors mediating this switching are important biomarkers and potential pharmacological targets for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Péter Ferdinandy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Raffaele De Caterina
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Rosalinda Madonna
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy; Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Yong-Jian Geng
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
9
|
Wen Y, Kong Y, Cao G, Xu Y, Zhang C, Zhang J, Xiao P, Wang Y. Di-n-butyl phthalate regulates vascular smooth muscle cells phenotypic switching by MiR-139-5p-MYOCD pathways. Toxicology 2022; 477:153279. [PMID: 35926758 DOI: 10.1016/j.tox.2022.153279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Di-n-butyl phthalate (DBP) is ubiquitous in environment and has been detected in almost all human bodies. Few data could be found about the effects of DBP on cardiovascular system, though its reproductive toxicities have been studied extensively. This study aimed to explore effects of DBP on phenotypic switching of vascular smooth muscle cells (VSMCs), an essential step during the formation of atherosclerosis (AS). A7r5 cells were employed and exposed to various levels of DBP (10-9, 10-8, 10-7, 10-6, and 10-5 M) or DMSO as control. CCK-8 assay was used to detect the effects of DBP on cell viability. Expressions of mRNA/miRNAs and proteins were measured by qRT-PCR and western blotting, respectively. Bioinformatic analysis and dual-luciferase reporter assay were used to analyze the combination between miR-139-5p and Myocardin (MYOCD). Results revealed that DBP at 10-7 M prompted phenotypic switching from contractile to synthetic of VSMCs by inhibiting contractile VSMCs marker genes via suppressing the expression of MYOCD. Moreover, miR-139c-5p directly targeted MYOCD 3'UTR and modulated MYOCD expression. Besides, DBP inhibited the expression of MYOCD and VSMCs marker genes by upregulating miR-139-5p. Collectively, these data suggested that DBP could promote the phenotypic switching from contractile to synthetic of VSMCs in A7r5 cells through miR-139-5p-MYOCD.
Collapse
Affiliation(s)
- Yun Wen
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yi Kong
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Guofa Cao
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yuan Xu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Chengxiang Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Pingxi Xiao
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Erdener ŞE, Küreli G, Dalkara T. Contractile apparatus in CNS capillary pericytes. NEUROPHOTONICS 2022; 9:021904. [PMID: 35106320 PMCID: PMC8785978 DOI: 10.1117/1.nph.9.2.021904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Significance: Whether or not capillary pericytes contribute to blood flow regulation in the brain and retina has long been debated. This was partly caused by failure of detecting the contractile protein α -smooth muscle actin ( α -SMA) in capillary pericytes. Aim: The aim of this review is to summarize recent developments in detecting α -SMA and contractility in capillary pericytes and the relevant literature on the biology of actin filaments. Results: Evidence suggests that for visualization of the small amounts of α -SMA in downstream mid-capillary pericytes, actin depolymerization must be prevented during tissue processing. Actin filaments turnover is mainly based on de/re-polymerization rather than transcription of the monomeric form, hence, small amounts of α -SMA mRNA may evade detection by transcriptomic studies. Similarly, transgenic mice expressing fluorescent reporters under the α -SMA promoter may yield low fluorescence due to limited transcriptional activity in mid-capillary pericytes. Recent studies show that pericytes including mid-capillary ones express several actin isoforms and myosin heavy chain type 11, the partner of α -SMA in mediating contraction. Emerging evidence also suggests that actin polymerization in pericytes may have a role in regulating the tone of downstream capillaries. Conclusions: With guidance of actin biology, innovative labeling and imaging techniques can reveal the molecular machinery of contraction in pericytes.
Collapse
Affiliation(s)
- Şefik E. Erdener
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Gülce Küreli
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Turgay Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| |
Collapse
|
11
|
Lee FK, Lee JC, Shui B, Reining S, Jibilian M, Small DM, Jones JS, Allan-Rahill NH, Lamont MR, Rizzo MA, Tajada S, Navedo MF, Santana LF, Nishimura N, Kotlikoff MI. Genetically engineered mice for combinatorial cardiovascular optobiology. eLife 2021; 10:67858. [PMID: 34711305 PMCID: PMC8555989 DOI: 10.7554/elife.67858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023] Open
Abstract
Optogenetic effectors and sensors provide a novel real-time window into complex physiological processes, enabling determination of molecular signaling processes within functioning cellular networks. However, the combination of these optical tools in mice is made practical by construction of genetic lines that are optically compatible and genetically tractable. We present a new toolbox of 21 mouse lines with lineage-specific expression of optogenetic effectors and sensors for direct biallelic combination, avoiding the multiallelic requirement of Cre recombinase -mediated DNA recombination, focusing on models relevant for cardiovascular biology. Optogenetic effectors (11 lines) or Ca2+ sensors (10 lines) were selectively expressed in cardiac pacemaker cells, cardiomyocytes, vascular endothelial and smooth muscle cells, alveolar epithelial cells, lymphocytes, glia, and other cell types. Optogenetic effector and sensor function was demonstrated in numerous tissues. Arterial/arteriolar tone was modulated by optical activation of the second messengers InsP3 (optoα1AR) and cAMP (optoß2AR), or Ca2+-permeant membrane channels (CatCh2) in smooth muscle (Acta2) and endothelium (Cdh5). Cardiac activation was separately controlled through activation of nodal/conducting cells or cardiac myocytes. We demonstrate combined effector and sensor function in biallelic mouse crosses: optical cardiac pacing and simultaneous cardiomyocyte Ca2+ imaging in Hcn4BAC-CatCh2/Myh6-GCaMP8 crosses. These experiments highlight the potential of these mice to explore cellular signaling in vivo, in complex tissue networks.
Collapse
Affiliation(s)
- Frank K Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Jane C Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Bo Shui
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Shaun Reining
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Megan Jibilian
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - David M Small
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Jason S Jones
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | | | - Michael Re Lamont
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Megan A Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Sendoa Tajada
- Departments of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Luis Fernando Santana
- Departments of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, United States
| | - Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| |
Collapse
|
12
|
Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis. Int J Mol Sci 2021; 22:ijms221910585. [PMID: 34638923 PMCID: PMC8508942 DOI: 10.3390/ijms221910585] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Arteriogenesis is one of the primary physiological means by which the circulatory collateral system restores blood flow after significant arterial occlusion in peripheral arterial disease patients. Vascular smooth muscle cells (VSMCs) are the predominant cell type in collateral arteries and respond to altered blood flow and inflammatory conditions after an arterial occlusion by switching their phenotype between quiescent contractile and proliferative synthetic states. Maintaining the contractile state of VSMC is required for collateral vascular function to regulate blood vessel tone and blood flow during arteriogenesis, whereas synthetic SMCs are crucial in the growth and remodeling of the collateral media layer to establish more stable conduit arteries. Timely VSMC phenotype switching requires a set of coordinated actions of molecular and cellular mediators to result in an expansive remodeling of collaterals that restores the blood flow effectively into downstream ischemic tissues. This review overviews the role of VSMC phenotypic switching in the physiological arteriogenesis process and how the VSMC phenotype is affected by the primary triggers of arteriogenesis such as blood flow hemodynamic forces and inflammation. Better understanding the role of VSMC phenotype switching during arteriogenesis can identify novel therapeutic strategies to enhance revascularization in peripheral arterial disease.
Collapse
|
13
|
Chen Y, Su X, Qin Q, Yu Y, Jia M, Zhang H, Li H, Pei L. New insights into phenotypic switching of VSMCs induced by hyperhomocysteinemia: Role of endothelin-1 signaling. Biomed Pharmacother 2020; 123:109758. [DOI: 10.1016/j.biopha.2019.109758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
|
14
|
Guarner-Lans V, Ramírez-Higuera A, Rubio-Ruiz ME, Castrejón-Téllez V, Soto ME, Pérez-Torres I. Early Programming of Adult Systemic Essential Hypertension. Int J Mol Sci 2020; 21:E1203. [PMID: 32054074 PMCID: PMC7072742 DOI: 10.3390/ijms21041203] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are being included in the study of developmental origins of health and disease (DOHaD) and essential systemic hypertension has also been added to this field. Epigenetic modifications are one of the main mechanisms leading to early programming of disease. Different environmental factors occurring during critical windows in the early stages of life may leave epigenetic cues, which may be involved in the programming of hypertension when individuals reach adulthood. Such environmental factors include pre-term birth, low weight at birth, altered programming of different organs such as the blood vessels and the kidney, and living in disadvantageous conditions in the programming of hypertension. Mechanisms behind these factors that impact on the programming include undernutrition, oxidative stress, inflammation, emotional stress, and changes in the microbiota. These factors and their underlying causes acting at the vascular level will be discussed in this paper. We also explore the establishment of epigenetic cues that may lead to hypertension at the vascular level such as DNA methylation, histone modifications (methylation and acetylation), and the role of microRNAs in the endothelial cells and blood vessel smooth muscle which participate in hypertension. Since epigenetic changes are reversible, the knowledge of this type of markers could be useful in the field of prevention, diagnosis or epigenetic drugs as a therapeutic approach to hypertension.
Collapse
Affiliation(s)
- Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.E.R.-R.); (V.C.-T.)
| | - Abril Ramírez-Higuera
- Nutrition Biochemistry Laboratory, Research and Food Development Unit. Veracruz Technological Institute, National Technological of Mexico, Veracruz 91897, Mexico;
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.E.R.-R.); (V.C.-T.)
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.E.R.-R.); (V.C.-T.)
| | - María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico 14080, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico 14080, Mexico;
| |
Collapse
|
15
|
Mangum KD, Freeman EJ, Magin JC, Taylor JM, Mack CP. Transcriptional and posttranscriptional regulation of the SMC-selective blood pressure-associated gene, ARHGAP42. Am J Physiol Heart Circ Physiol 2020; 318:H413-H424. [PMID: 31886719 PMCID: PMC7052622 DOI: 10.1152/ajpheart.00143.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022]
Abstract
We previously showed that ARHGAP42 is a smooth muscle cell (SMC)-selective, RhoA-specific GTPase activating protein that regulates blood pressure and that a minor allele single nucleotide variation within a DNAse hypersensitive regulatory element in intron1 (Int1DHS) increased ARHGAP42 expression by promoting serum response factor binding. The goal of the current study was to identify additional transcriptional and posttranscriptional mechanisms that control ARHGAP42 expression. Using deletion/mutation, gel shift, and chromatin immunoprecipitation experiments, we showed that recombination signal binding protein for immunoglobulin κ-J region (RBPJ) and TEA domain family member 1 (TEAD1) binding to a conserved core region was required for full IntDHS transcriptional activity. Importantly, overexpression of the notch intracellular domain (NICD) or plating SMCs on recombinant jagged-1 increased IntDHS activity and endogenous ARHGAP42 expression while siRNA-mediated knockdown of TEAD1 inhibited ARHGAP42 mRNA levels. Re-chromatin immunoprecipitation experiments indicated that RBPJ and TEAD1 were bound to the Int1DHS enhancer at the same time, and coimmunoprecipitation assays indicated that these factors interacted physically. Our results also suggest TEAD1 and RBPJ bound cooperatively to the Int1DHS and that the presence of TEAD1 promoted the recruitment of NICD by RBPJ. Finally, we showed that ARHGAP42 expression was inhibited by micro-RNA 505 (miR505) which interacted with the ARHGAP42 3'-untranslated region (UTR) to facilitate its degradation and by AK124326, a long noncoding RNA that overlaps with the ARHGAP42 transcription start site on the opposite DNA strand. Since siRNA-mediated depletion of AK124326 was associated with increased H3K9 acetylation and RNA Pol-II binding at the ARHGAP42 gene, it is likely that AK124326 inhibits ARHGAP42 transcription.NEW & NOTEWORTHY First, RBPJ and TEAD1 converge at an intronic enhancer to regulate ARHGAP42 expression in SMCs. Second, TEAD1 and RBPJ interact physically and bind cooperatively to the ARHGAP42 enhancer. Third, miR505 interacts with the ARHGAP42 3'-UTR to facilitate its degradation. Finally, LncRNA, AK124326, inhibits ARHGAP42 transcription.
Collapse
Affiliation(s)
- Kevin D Mangum
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Emily J Freeman
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Justin C Magin
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Joan M Taylor
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Christopher P Mack
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| |
Collapse
|
16
|
Li Q, Lu Z, Jin M, Fei X, Quan K, Liu Y, Ma L, Chu M, Wang H, Wei C. Verification and Analysis of Sheep Tail Type-Associated PDGF-D Gene Polymorphisms. Animals (Basel) 2020; 10:ani10010089. [PMID: 31935823 PMCID: PMC7022463 DOI: 10.3390/ani10010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary PDGF-D can be considered a candidate gene for selection for sheep tail type. This study investigated genetic variation of the PDGF-D gene in sheep with different tail types verified at a cellular level and revealed the molecular mechanism of PDGF-D in sheep tail fat deposition. We detected a total of two SNPs among 533 sheep. g.4122606 C > G site was significantly correlated with tail length, and g.3852134 C > T site was significantly correlated with tail width. In addition, overexpression of PDGF-D in sheep preadipocytes can promote adipogenic differentiation. The PDGF-D gene may participate in sheep tail fat deposition and could be used for molecular marker-assisted selection of sheep tail type. Abstract The aim of this study was to examine the correlation between the platelet-derived growth factor-D (PDGF-D) gene and sheep tail type character and explore the potential underlying mechanism. A total of 533 sheep were included in this study. Polymorphic sites were examined by Pool-seq, and individual genotype identification and correlation analysis between tail type data were conducted using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) method. JASPART website was used to predict transcription factor binding sites in the promoter region with and without PDGF-D gene mutation. The effect of PDGF-D on adipogenic differentiation of sheep preadipocytes was investigated. Two single nucleotide polymorphism sites were identified: g.4122606 C > G site was significantly correlated with tail length, and g.3852134 C > T site was significantly correlated with tail width. g.3852134 C > T was located in the promoter region. Six transcription factor binding sites were eliminated after promoter mutation, and three new transcription factor binding sites appeared. Expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and lipoproteinlipase (LPL) were significantly up-regulated upon PDGF-D overexpression. Oil red O staining showed increased small and large oil drops in the PDGF-D overexpression group. Together these results indicate the PDGF-D gene is an important gene controlling sheep tail shape and regulating sheep tail fat deposition to a certain degree.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Meilin Jin
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
| | - Xiaojuan Fei
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Yongbin Liu
- Inner Mongolia Academy of Animal Husbandry Science, Hohhot 010031, China
| | - Lin Ma
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
| | - Huihua Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
- Correspondence: (H.W.); (C.W.)
| | - Caihong Wei
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
- Correspondence: (H.W.); (C.W.)
| |
Collapse
|
17
|
Dogru S, Aydemir D, Salman N, Ulusu NN, Alaca BE. Impact of PDMS surface treatment in cell-mechanics applications. J Mech Behav Biomed Mater 2019; 103:103538. [PMID: 31760274 DOI: 10.1016/j.jmbbm.2019.103538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/24/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
As a widely used elastomer in cell mechanics studies, PDMS is exposed to a variety of surface treatments during cell culture preparation. Considering its viscoelastic nature in particular, effects of the aforementioned treatments on PDMS mechanical behaviour, especially at the relevant length scale of 100 μm, received limited attention. This is despite the fact that significant errors were reported in the quantification of cellular traction forces as a result of minute changes in PDMS mechanical properties. Hence, the effects of plasma oxidation, sterilization and incubation on PDMS modulus of elasticity, relaxation modulus and Poisson's ratio are studied here through tension and stress relaxation tests, with the results of the latter interpreted via the linear viscoelastic formulation. It is observed that although significant deviations from the properties of untreated PDMS are measured through this cycle of surface treatment, properties of untreated PDMS are almost recovered following incubation in cell medium. For example, the modulus of elasticity of treated PDMS was found to be 6% smaller than that of the untreated PDMS. The corresponding deviation was <3% and <1% for the relaxation modulus and time-averaged Poisson's ratio, respectively. The rate of change of the Poisson's ratio with time was also found to be reduced at the end of incubation process in cell medium. As a result, viscoelastic properties of untreated PDMS can safely be used within the error margins provided by this work.
Collapse
Affiliation(s)
- Sedat Dogru
- Dept. of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Duygu Aydemir
- Dept. of Med. Biochem., Koç University, School of Medicine, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey
| | - Naveed Salman
- Dept. of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Nuray N Ulusu
- Dept. of Med. Biochem., Koç University, School of Medicine, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey
| | - B Erdem Alaca
- Dept. of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey; Surface Science and Technology Center, KUYTAM, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
18
|
Zhang L, Zhang Y, Wu Y, Yu J, Zhang Y, Zeng F, Shi L. Role of the Balance of Akt and MAPK Pathways in the Exercise-Regulated Phenotype Switching in Spontaneously Hypertensive Rats. Int J Mol Sci 2019; 20:ijms20225690. [PMID: 31766280 PMCID: PMC6888552 DOI: 10.3390/ijms20225690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 12/26/2022] Open
Abstract
The mechanisms regulating vascular smooth muscle cell (VSMC) phenotype switching and the critical signal modulation affecting the VSMCs remain controversial. Physical exercise acts as an effective drug in preventing elevated blood pressure and improving vascular function. This study was designed to explore the influence of aerobic exercise on the suppression of VSMC phenotype switching by balancing of the Akt, also known as PKB (protein kinase B) and mitogen-activated protein kinase (MAPK) signaling pathways. Spontaneously hypertensive rats (SHRs) and normotensive rats were subjected to exercise treatment before measuring the vascular morphological and structural performances. Exercise induced reverse expression of VSMC protein markers (α-SM-actin, calponin, and osteopontin (OPN)) in spontaneously hypertensive rats. It is noteworthy that the low expression of phosphorylated Akt significantly decreased the expression of VSMC contractile phenotype markers (α-SM-actin and calponin) and increased the expression of the VSMC synthetic phenotype marker (OPN). However, the MAPK signal pathway exerts an opposite effect. VSMCs and whole vessels were treated by inhibitors, namely the p-Akt inhibitor, p-ERK inhibitor, and p-p38 MAPK inhibitors. VSMC phenotype markers were reversed. It is important to note that a significant reverse regulatory relationship was observed between the expression levels of MAPK and the contractile markers in both normotensive and spontaneously hypertensive rats. We demonstrate that aerobic exercise regulates the VSMC phenotype switching by balancing the Akt and MAPK signaling pathways in SHRs.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
| | - Jingjing Yu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Yimin Zhang
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- Correspondence: ; Tel.: +86-10-6298-9582
| |
Collapse
|
19
|
Gli signaling pathway modulates fibroblast activation and facilitates scar formation in pulmonary fibrosis. Biochem Biophys Res Commun 2019; 514:684-690. [DOI: 10.1016/j.bbrc.2019.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022]
|
20
|
Watterston C, Zeng L, Onabadejo A, Childs SJ. MicroRNA26 attenuates vascular smooth muscle maturation via endothelial BMP signalling. PLoS Genet 2019; 15:e1008163. [PMID: 31091229 PMCID: PMC6538191 DOI: 10.1371/journal.pgen.1008163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/28/2019] [Accepted: 04/27/2019] [Indexed: 12/23/2022] Open
Abstract
As small regulatory transcripts, microRNAs (miRs) act as genetic ‘fine tuners’ of posttranscriptional events, and as genetic switches to promote phenotypic switching. The miR miR26a targets the BMP signalling effector, smad1. We show that loss of miR26a leads to hemorrhage (a loss of vascular stability) in vivo, suggesting altered vascular differentiation. Reduction in miR26a levels increases smad1 mRNA and phospho-Smad1 (pSmad1) levels. We show that increasing BMP signalling by overexpression of smad1 also leads to hemorrhage. Normalization of Smad1 levels through double knockdown of miR26a and smad1 rescues hemorrhage, suggesting a direct relationship between miR26a, smad1 and vascular stability. Using an in vivo BMP genetic reporter and pSmad1 staining, we show that the effect of miR26a on smooth muscle differentiation is non-autonomous; BMP signalling is active in embryonic endothelial cells, but not in smooth muscle cells. Nonetheless, increased BMP signalling due to loss of miR26a results in an increase in acta2-expressing smooth muscle cell numbers and promotes a differentiated smooth muscle morphology. Similarly, forced expression of smad1 in endothelial cells leads to an increase in smooth muscle cell number and coverage. Furthermore, smooth muscle phenotypes caused by inhibition of the BMP pathway are rescued by loss of miR26a. Taken together, our data suggest that miR26a modulates BMP signalling in endothelial cells and indirectly promotes a differentiated smooth muscle phenotype. Our data highlights how crosstalk from BMP-responsive endothelium to smooth muscle is important for smooth muscle differentiation. The structural integrity of a blood vessel is critical to ensure proper vessel support and vascular tone. Vascular smooth cells (vSMCs) are a key component of the vessel wall and, in their mature state, express contractile proteins that help to constrict and relax the vessel in response to blood flow changes. vSMCs differentiate from immature vascular mural cells that lack contractile function. Here, we use a zebrafish model to identify a small microRNA that regulates vascular stabilization. We show that a small regulatory RNA, microRNA26a is enriched in the endothelial lining of the blood vessel wall and, through signalling, communicates to the smooth muscle cell to control its maturation. Providing a mechanistic insight into vSMC differentiation may help develop and produce feasible miR-based pharmaceutical to promote SMC differentiation.
Collapse
Affiliation(s)
- Charlene Watterston
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Lei Zeng
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Abidemi Onabadejo
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Sarah J. Childs
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
- * E-mail:
| |
Collapse
|
21
|
Breton JD, Heydet D, Starrs LM, Veldre T, Ghildyal R. Molecular changes during TGFβ-mediated lung fibroblast-myofibroblast differentiation: implication for glucocorticoid resistance. Physiol Rep 2019; 6:e13669. [PMID: 29654633 PMCID: PMC5899214 DOI: 10.14814/phy2.13669] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/26/2022] Open
Abstract
Airway remodeling is an important process in response to repetitive inflammatory-mediated airway wall injuries. This is characterized by profound changes and reorganizations at the cellular and molecular levels of the lung tissue. It is of particular importance to understand the mechanisms involved in airway remodeling, as this is strongly associated with severe asthma leading to devastating airway dysfunction. In this study, we have investigated the transforming growth factor-β (TGFβ, a proinflammatory mediator)-activated fibroblast to myofibroblast transdifferentiation pathway, which plays a key role in asthma-related airway remodeling. We show that TGFβ induces fibroblast to myofibroblast transdifferentiation by the expression of αSMA, a specific myofibroblast marker. Furthermore, Smad2/Smad3 gene and protein expression patterns are different between fibroblasts and myofibroblasts. Such a change in expression patterns reveals an important role of these proteins in the cellular phenotype as well as their regulation by TGFβ during cellular transdifferentiation. Interestingly, our data show a myofibroblastic TGFβ-mediated increase in glucocorticoid receptor (GR) expression and a preferential localization of GR in the nucleus, compared to in fibroblasts. Furthermore, the GRβ (nonfunctional GR isoform) is increased relative to GRα (functional isoform) in myofibroblasts. These results are interesting as they support the idea of a GRβ-mediated glucocorticoid resistance observed in the severe asthmatic population. All together, we provide evidence that key players are involved in the TGFβ-mediated fibroblast to myofibroblast transdifferentiation pathway in a human lung fibroblast cell line. These players could be the targets of new treatments to limit airway remodeling and reverse glucocorticoid resistance in severe asthma.
Collapse
Affiliation(s)
- Jean-Didier Breton
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia.,ANU Medical School, The Australian National University, Canberra, Australia
| | - Déborah Heydet
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Lora M Starrs
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Tim Veldre
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Reena Ghildyal
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
22
|
Moulton KS, Li M, Strand K, Burgett S, McClatchey P, Tucker R, Furgeson SB, Lu S, Kirkpatrick B, Cleveland JC, Nemenoff RA, Ambardekar AV, Weiser-Evans MC. PTEN deficiency promotes pathological vascular remodeling of human coronary arteries. JCI Insight 2018; 3:97228. [PMID: 29467331 PMCID: PMC5916252 DOI: 10.1172/jci.insight.97228] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/23/2018] [Indexed: 01/20/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is an essential regulator of the differentiated vascular smooth muscle cell (SMC) phenotype. Our goal was to establish that PTEN loss promotes SMC dedifferentiation and pathological vascular remodeling in human atherosclerotic coronary arteries and nonatherosclerotic coronary arteries exposed to continuous-flow left ventricular assist devices (CF-LVADs). Arteries were categorized as nonatherosclerotic hyperplasia (NAH), atherosclerotic hyperplasia (AH), or complex plaque (CP). NAH coronary arteries from CF-LVAD patients were compared to NAH coronaries from non-LVAD patients. Intimal PTEN and SMC contractile protein expression was reduced compared with the media in arteries with NAH, AH, or CP. Compared with NAH, PTEN and SMC contractile protein expression was reduced in the media and intima of arteries with AH and CP. NAH arteries from CF-LVAD patients showed marked vascular remodeling and reduced PTEN and α-smooth muscle actin (αSMA) in medial SMCs compared with arteries from non-LVAD patients; this correlated with increased medial collagen deposition. Mechanistically, compared with ApoE–/– mice, SMC-specific PTEN-null/ApoE–/– double-knockout mice exhibited accelerated atherosclerosis progression and increased vascular fibrosis. By microarray and validated quantitative RT-PCR analysis, SMC PTEN deficiency promotes a global upregulation of proinflammatory and profibrotic genes. We propose that PTEN is an antiinflammatory, antifibrotic target that functions to maintain SMC differentiation. SMC loss of PTEN results in pathological vascular remodeling of human arteries. PTEN loss correlates with dedifferentiation of smooth muscle cells of human coronary arteries affected with atherosclerosis or exposed to continuous-flow left ventricular assist devices.
Collapse
Affiliation(s)
| | - Marcella Li
- Division of Cardiology, Department of Medicine
| | - Keith Strand
- Division of Renal Diseases and Hypertension, Department of Medicine
| | - Shawna Burgett
- Division of Renal Diseases and Hypertension, Department of Medicine
| | | | - Rebecca Tucker
- Division of Renal Diseases and Hypertension, Department of Medicine
| | - Seth B Furgeson
- Division of Renal Diseases and Hypertension, Department of Medicine.,School of Medicine, Consortium for Fibrosis Research and Translation
| | - Sizhao Lu
- Division of Renal Diseases and Hypertension, Department of Medicine
| | | | - Joseph C Cleveland
- School of Medicine, Consortium for Fibrosis Research and Translation.,Department of Surgery
| | - Raphael A Nemenoff
- Division of Renal Diseases and Hypertension, Department of Medicine.,School of Medicine, Consortium for Fibrosis Research and Translation.,Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine.,School of Medicine, Consortium for Fibrosis Research and Translation
| | - Mary Cm Weiser-Evans
- Division of Renal Diseases and Hypertension, Department of Medicine.,School of Medicine, Consortium for Fibrosis Research and Translation.,Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
23
|
Endogenous tissue factor pathway inhibitor in vascular smooth muscle cells inhibits arterial thrombosis. Front Med 2017; 11:403-409. [PMID: 28550640 DOI: 10.1007/s11684-017-0522-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/23/2017] [Indexed: 12/29/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) is the main inhibitor of tissue factor-mediated coagulation. TFPI is expressed by endothelial and smooth muscle cells in the vasculature. Endothelium-derived TFPI has been reported to play a regulatory role in arterial thrombosis. However, the role of endogenous TFPI in vascular smooth muscle cells (VSMCs) in thrombosis and vascular disease development has yet to be elucidated. In this TFPIFlox mice crossbred with Sma-Cre mice were utilized to establish TFPI conditional knockout mice and to examine the effects of VSMC-directed TFPI deletion on development, hemostasis, and thrombosis. The mice with deleted TFPI in VSMCs (TFPISma) reproduced viable offspring. Plasma TFPI concentration was reduced 7.2% in the TFPISma mice compared with TFPIFlox littermate controls. Plasma TFPI concentration was also detected in the TFPITie2 (mice deleted TFPI in endothelial cells and cells of hematopoietic origin) mice. Plasma TFPI concentration of the TFPITie2 mice was 80.4% lower (P < 0.001) than that of the TFPIFlox mice. No difference in hemostatic measures (PT, APTT, and tail bleeding) was observed between TFPISma and TFPIFlox mice. However, TFPISma mice had increased ferric chloride-induced arterial thrombosis compared with TFPIFlox littermate controls. Taken together, these data indicated that endogenous TFPI from VSMCs inhibited ferric chloride-induced arterial thrombosis without causing hemostatic effects.
Collapse
|
24
|
Lee MY, Park C, Ha SE, Park PJ, Berent RM, Jorgensen BG, Corrigan RD, Grainger N, Blair PJ, Slivano OJ, Miano JM, Ward SM, Smith TK, Sanders KM, Ro S. Serum response factor regulates smooth muscle contractility via myotonic dystrophy protein kinases and L-type calcium channels. PLoS One 2017; 12:e0171262. [PMID: 28152551 PMCID: PMC5289827 DOI: 10.1371/journal.pone.0171262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
Abstract
Serum response factor (SRF) transcriptionally regulates expression of contractile genes in smooth muscle cells (SMC). Lack or decrease of SRF is directly linked to a phenotypic change of SMC, leading to hypomotility of smooth muscle in the gastrointestinal (GI) tract. However, the molecular mechanism behind SRF-induced hypomotility in GI smooth muscle is largely unknown. We describe here how SRF plays a functional role in the regulation of the SMC contractility via myotonic dystrophy protein kinase (DMPK) and L-type calcium channel CACNA1C. GI SMC expressed Dmpk and Cacna1c genes into multiple alternative transcriptional isoforms. Deficiency of SRF in SMC of Srf knockout (KO) mice led to reduction of SRF-dependent DMPK, which down-regulated the expression of CACNA1C. Reduction of CACNA1C in KO SMC not only decreased intracellular Ca2+ spikes but also disrupted their coupling between cells resulting in decreased contractility. The role of SRF in the regulation of SMC phenotype and function provides new insight into how SMC lose their contractility leading to hypomotility in pathophysiological conditions within the GI tract.
Collapse
Affiliation(s)
- Moon Young Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- Department of Physiology, Wonkwang Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, Chonbuk, Korea
| | - Chanjae Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Paul J. Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Robyn M. Berent
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Robert D. Corrigan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Nathan Grainger
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Peter J. Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Orazio J. Slivano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Joseph M. Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Terence K. Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
25
|
Bai X, Mangum KD, Dee RA, Stouffer GA, Lee CR, Oni-Orisan A, Patterson C, Schisler JC, Viera AJ, Taylor JM, Mack CP. Blood pressure-associated polymorphism controls ARHGAP42 expression via serum response factor DNA binding. J Clin Invest 2017; 127:670-680. [PMID: 28112683 PMCID: PMC5272192 DOI: 10.1172/jci88899] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
We recently demonstrated that selective expression of the Rho GTPase-activating protein ARHGAP42 in smooth muscle cells (SMCs) controls blood pressure by inhibiting RhoA-dependent contractility, providing a mechanism for the blood pressure-associated locus within the ARHGAP42 gene. The goals of the current study were to identify polymorphisms that affect ARHGAP42 expression and to better assess ARHGAP42's role in the development of hypertension. Using DNase I hypersensitivity methods and ENCODE data, we have identified a regulatory element encompassing the ARHGAP42 SNP rs604723 that exhibits strong SMC-selective, allele-specific activity. Importantly, CRISPR/Cas9-mediated deletion of this element in cultured human SMCs markedly reduced endogenous ARHGAP42 expression. DNA binding and transcription assays demonstrated that the minor T allele variation at rs604723 increased the activity of this fragment by promoting serum response transcription factor binding to a cryptic cis-element. ARHGAP42 expression was increased by cell stretch and sphingosine 1-phosphate in a RhoA-dependent manner, and deletion of ARHGAP42 enhanced the progression of hypertension in mice treated with DOCA-salt. Our analysis of a well-characterized cohort of untreated borderline hypertensive patients suggested that ARHGAP42 genotype has important implications in regard to hypertension risk. Taken together, our data add insight into the genetic mechanisms that control blood pressure and provide a potential target for individualized antihypertensive therapies.
Collapse
MESH Headings
- Animals
- Blood Pressure
- CRISPR-Cas Systems
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation
- Humans
- Hypertension/chemically induced
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Polymorphism, Single Nucleotide
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Sodium Chloride, Dietary/adverse effects
- Sodium Chloride, Dietary/pharmacology
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
| | | | | | | | - Craig R. Lee
- McAllister Heart Institute, and
- Department of Pharmacy, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | - Akinyemi Oni-Orisan
- Department of Pharmacy, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | - Cam Patterson
- New York–Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | | | - Anthony J. Viera
- Department of Family Medicine, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | | | | |
Collapse
|
26
|
Wei X, Hou X, Li J, Liu Y. miRNA-181a/b Regulates Phenotypes of Vessel Smooth Muscle Cells Through Serum Response Factor. DNA Cell Biol 2016; 36:127-135. [PMID: 27911586 DOI: 10.1089/dna.2016.3525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The phenotypic modulation of vessel smooth muscle cells (VSMCs) plays a crucial role in the physiological and pathological conditions of vasculature in response to local environmental changes. The phenotypic transition of VSMCs is largely modulated by the serum response factor (SRF). miR-181a and miR-181b are members of the well-studied miR-181 family and both have complementary sequence in the 3' untranslated region (UTR) of SRF gene. In this article, evidence insinuates that miR-181a/b was involved in VSMCs differentiation through upregulating synthetic marker genes and downregulating contractile ones, respectively. We also confirmed the roles of the miR-181a/b in promoting SMC proliferation, migration, and synthetic phenotype transformation. In addition, miR-181a/b was indicated as directly targeting at 3' UTR of SRF by dual-luciferase assay and Western blot assay. In a word, miR-181a/b is one of the factors involved in VSMC differentiation toward a synthetic phenotype through targeting at SRF. These findings may provide a potential therapeutic approach that miR-181a/b took part in regulating the vessel disorders.
Collapse
Affiliation(s)
- Xiaoxing Wei
- 1 Research Center of Basic Medical Sciences, Medical College of Qinghai University , Xining, People's Republic of China .,2 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University , Xining, People's Republic of China
| | - Xue Hou
- 1 Research Center of Basic Medical Sciences, Medical College of Qinghai University , Xining, People's Republic of China
| | - Jianhua Li
- 1 Research Center of Basic Medical Sciences, Medical College of Qinghai University , Xining, People's Republic of China
| | - Yongnian Liu
- 1 Research Center of Basic Medical Sciences, Medical College of Qinghai University , Xining, People's Republic of China
| |
Collapse
|
27
|
Variability in vascular smooth muscle cell stretch-induced responses in 2D culture. Vasc Cell 2015; 7:7. [PMID: 26301087 PMCID: PMC4546126 DOI: 10.1186/s13221-015-0032-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/12/2015] [Indexed: 01/27/2023] Open
Abstract
The pulsatile nature of blood flow exposes vascular smooth muscle cells (VSMCs) in the vessel wall to mechanical stress, in the form of circumferential and longitudinal stretch. Cyclic stretch evokes VSMC proliferation, apoptosis, phenotypic switching, migration, alignment, and vascular remodeling. Given that these responses have been observed in many cardiovascular diseases, a defined understanding of their underlying mechanisms may provide critical insight into the pathophysiology of cardiovascular derangements. Cyclic stretch-triggered VSMC responses and their effector mechanisms have been studied in vitro using tension systems that apply either uniaxial or equibiaxial stretch to cells grown on an elastomer-bottomed culture plate and ex vivo by stretching whole vein segments with small weights. This review will focus mainly on VSMC responses to the in vitro application of mechanical stress, outlining the inconsistencies in acquired data, and comparing them to in vivo or ex vivo findings. Major discrepancies in data have been seen in mechanical stress-induced proliferation, apoptosis, and phenotypic switching responses, depending on the stretch conditions. These discrepancies stem from variations in stretch conditions such as degree, axis, duration, and frequency of stretch, wave function, membrane coating, cell type, cell passage number, culture media content, and choice of in vitro model. Further knowledge into the variables that cause these incongruities will allow for improvement of the in vitro application of cyclic stretch.
Collapse
|
28
|
Yan J, Zhang L, Sultana N, Park DS, Shekhar A, Bu L, Hu J, Razzaque S, Cai CL. A Murine Myh6MerCreMer Knock-In Allele Specifically Mediates Temporal Genetic Deletion in Cardiomyocytes after Tamoxifen Induction. PLoS One 2015. [PMID: 26204265 PMCID: PMC4512710 DOI: 10.1371/journal.pone.0133472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A mouse model that mediates temporal, specific, and efficient myocardial deletion with Cre-LoxP technology will be a valuable tool to determine the function of genes during heart formation. Mhy6 encodes a cardiac muscle specific protein: alpha-myosin heavy chain. Here, we generated a new Myh6-MerCreMer (Myh6(MerCreMer/+)) inducible Cre knock-in mouse by inserting a MerCreMer cassette into the Myh6 start codon. By crossing knock-in mice with Rosa26 reporter lines, we found the Myh6(MerCreMer/+) mice mediate complete Cre-LoxP recombination in cardiomyocytes after tamoxifen induction. X-gal staining and immunohistochemistry analysis revealed that Myh6-driven Cre recombinase was specifically activated in cardiomyocytes at embryonic and adult stages. Furthermore, echocardiography showed that Myh6(MerCreMer/+) mice maintained normal cardiac structure and function before and after tamoxifen administration. These results suggest that the new Myh6(MerCreMer/+) mouse can serve as a robust tool to dissect the roles of genes in heart development and function. Additionally, myocardial progeny during heart development and after cardiac injury can be traced using this mouse line.
Collapse
Affiliation(s)
- Jianyun Yan
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Nishat Sultana
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - David S. Park
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States of America
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States of America
| | - Lei Bu
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States of America
| | - Jun Hu
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Shegufta Razzaque
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
29
|
Modulation of cysteine-rich protein 2 expression in vascular injury and atherosclerosis. Mol Biol Rep 2015; 41:7033-41. [PMID: 25034893 DOI: 10.1007/s11033-014-3591-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Vascular smooth muscle cells (VSMCs) of the arterial wall normally display a differentiated and contractile phenotype. In response to arterial injury, VSMCs switch to a synthetic phenotype, contributing to vascular remodeling. Cysteine-rich protein 2 (CRP2) is a cytoskeletal protein expressed in VSMCs and blunts VSMC migration in part by sequestering the scaffolding protein p130Cas at focal adhesions. CRP2 deficiency in mice increases neointima formation following arterial injury. The goal of this study was to use Csrp2 promoter-lacZ transgenic mice to analyze CRP2 expression during VSMC phenotypic modulation. In a neointima formation model after carotid artery cessation of blood flow, lacZ reporter activity and smooth muscle (SM) α-actin expression in the media were rapidly downregulated 4 days after carotid ligation. Fourteen days after ligation, there was a high level expression of both Csrp2 promoter activity and SM α-actin protein expression in neointimal cells. In atherosclerosis prone mice fed an atherogenic diet, Csrp2 promoter activity was detected within complex atherosclerotic lesions. Interestingly, Csrp2 promoter activity was also present in the fibrous caps of complicated atherosclerotic lesions, indicating that CRP2 might contribute to plaque stability. These findings support the concept that CRP2 contributes to the phenotypic modulation of VSMCs during vascular disease. Modulating transcription to increase CRP2 expression during vascular injury might attenuate vascular remodeling. In addition, increased CRP2 expression at the fibrous caps of advanced lesions might also serve to protect atherosclerotic plaques from rupture.
Collapse
|
30
|
Yan J, Sultana N, Zhang L, Park DS, Shekhar A, Hu J, Bu L, Cai CL. Generation of a tamoxifen inducible Tnnt2MerCreMer knock-in mouse model for cardiac studies. Genesis 2015; 53:377-86. [PMID: 26010701 DOI: 10.1002/dvg.22861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/31/2023]
Abstract
Tnnt2, encoding thin-filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2(MerCreMer/+)) knock-in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock-in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2(MerCreMer/+) mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre-LoxP technology. The Tnnt2(MerCreMer/+) mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury.
Collapse
Affiliation(s)
- Jianyun Yan
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and the Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Nishat Sultana
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and the Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and the Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - David S Park
- Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, New York, New York
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, New York, New York
| | - Jun Hu
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and the Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Lei Bu
- Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, New York, New York
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and the Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
31
|
Miano JM, Long X. The short and long of noncoding sequences in the control of vascular cell phenotypes. Cell Mol Life Sci 2015; 72:3457-88. [PMID: 26022065 DOI: 10.1007/s00018-015-1936-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022]
Abstract
The two principal cell types of importance for normal vessel wall physiology are smooth muscle cells and endothelial cells. Much progress has been made over the past 20 years in the discovery and function of transcription factors that coordinate proper differentiation of these cells and the maintenance of vascular homeostasis. More recently, the converging fields of bioinformatics, genomics, and next generation sequencing have accelerated discoveries in a number of classes of noncoding sequences, including transcription factor binding sites (TFBS), microRNA genes, and long noncoding RNA genes, each of which mediates vascular cell differentiation through a variety of mechanisms. Alterations in the nucleotide sequence of key TFBS or deviations in transcription of noncoding RNA genes likely have adverse effects on normal vascular cell phenotype and function. Here, the subject of noncoding sequences that influence smooth muscle cell or endothelial cell phenotype will be summarized as will future directions to further advance our understanding of the increasingly complex molecular circuitry governing normal vascular cell differentiation and how such information might be harnessed to combat vascular diseases.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA,
| | | |
Collapse
|
32
|
Nurnberg ST, Cheng K, Raiesdana A, Kundu R, Miller CL, Kim JB, Arora K, Carcamo-Oribe I, Xiong Y, Tellakula N, Nanda V, Murthy N, Boisvert WA, Hedin U, Perisic L, Aldi S, Maegdefessel L, Pjanic M, Owens GK, Tallquist MD, Quertermous T. Coronary Artery Disease Associated Transcription Factor TCF21 Regulates Smooth Muscle Precursor Cells That Contribute to the Fibrous Cap. PLoS Genet 2015; 11:e1005155. [PMID: 26020946 PMCID: PMC4447275 DOI: 10.1371/journal.pgen.1005155] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 01/10/2023] Open
Abstract
Recent genome wide association studies have identified a number of genes that contribute to the risk for coronary heart disease. One such gene, TCF21, encodes a basic-helix-loop-helix transcription factor believed to serve a critical role in the development of epicardial progenitor cells that give rise to coronary artery smooth muscle cells (SMC) and cardiac fibroblasts. Using reporter gene and immunolocalization studies with mouse and human tissues we have found that vascular TCF21 expression in the adult is restricted primarily to adventitial cells associated with coronary arteries and also medial SMC in the proximal aorta of mouse. Genome wide RNA-Seq studies in human coronary artery SMC (HCASMC) with siRNA knockdown found a number of putative TCF21 downstream pathways identified by enrichment of terms related to CAD, including “vascular disease,” “disorder of artery,” and “occlusion of artery,” as well as disease-related cellular functions including “cellular movement” and “cellular growth and proliferation.” In vitro studies in HCASMC demonstrated that TCF21 expression promotes proliferation and migration and inhibits SMC lineage marker expression. Detailed in situ expression studies with reporter gene and lineage tracing revealed that vascular wall cells expressing Tcf21 before disease initiation migrate into vascular lesions of ApoE-/- and Ldlr-/- mice. While Tcf21 lineage traced cells are distributed throughout the early lesions, in mature lesions they contribute to the formation of a subcapsular layer of cells, and others become associated with the fibrous cap. The lineage traced fibrous cap cells activate expression of SMC markers and growth factor receptor genes. Taken together, these data suggest that TCF21 may have a role regulating the differentiation state of SMC precursor cells that migrate into vascular lesions and contribute to the fibrous cap and more broadly, in view of the association of this gene with human CAD, provide evidence that these processes may be a mechanism for CAD risk attributable to the vascular wall. Coronary artery disease (CAD) is responsible for the majority of deaths in the Western world, and is due in part to environmental and metabolic factors. However, half of the risk for developing heart disease is genetically predetermined. Genome-wide association studies in human populations have identified over 100 sites in the genome that appear to be associated with CAD, however, the mechanisms by which variation in these regions are responsible for predisposition to CAD remain largely unknown. We have begun to study a gene that contributes to CAD risk, the TCF21 gene. Through genomic studies we show that this gene is involved in processes related to alterations in vascular gene expression, and in particular those related to the smooth muscle cell biology. With cell culture models, we show that TCF21 regulates the differentiation state of this cell type, which is believed critical for vascular disease. Using mouse genetic models of atherosclerotic vascular disease we provide evidence that this gene is expressed in precursor cells that migrate into the disease lesions and contribute to the formation of the fibrous cap that is believed to stabilize these lesions and prevent heart attacks.
Collapse
Affiliation(s)
- Sylvia T. Nurnberg
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Karen Cheng
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Azad Raiesdana
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ramendra Kundu
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Clint L. Miller
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Juyong B. Kim
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Komal Arora
- Department of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Ivan Carcamo-Oribe
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yiqin Xiong
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nikhil Tellakula
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Vivek Nanda
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nikitha Murthy
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - William A. Boisvert
- Department of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Ljubica Perisic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Silvia Aldi
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | | | - Milos Pjanic
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gary K. Owens
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Michelle D. Tallquist
- Department of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Thomas Quertermous
- Department of Medicine, Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Mack C. Fibroblasts. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Artamonov MV, Jin L, Franke AS, Momotani K, Ho R, Dong XR, Majesky MW, Somlyo AV. Signaling pathways that control rho kinase activity maintain the embryonic epicardial progenitor state. J Biol Chem 2015; 290:10353-67. [PMID: 25733666 DOI: 10.1074/jbc.m114.613190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 12/25/2022] Open
Abstract
This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism. We use outgrowth of epicardial cells from E9.5 isolated mouse proepicardium (PE) explants, wild type and Epac1 null E12.5 mouse heart explants, adult rat epicardial cells, and immortalized mouse embryonic epicardial cells as model systems to identify signaling pathways that regulate RhoA activity to maintain the epicardial progenitor state. We demonstrate that RhoA activity is suppressed in the epicardial progenitor state, that the cAMP-dependent Rap1 GTP exchange factor (GEF), Epac, known to down-regulate RhoA activity through activation of Rap1 GTPase activity increased, that Rap1 activity increased, and that expression of the RhoA antagonistic Rnd proteins known to activate p190RhoGAP increased and associated with p190RhoGAP. Finally, EMT is associated with increased p63RhoGEF and RhoGEF-H1 protein expression, increased GEF-H1 activity, with a trend in increased p63RhoGEF activity. EMT is suppressed by partial silencing of p63RhoGEF and GEF-H1. In conclusion, we have identified new signaling molecules that act together to control RhoA activity and play critical roles in the maintenance of coronary smooth muscle progenitor cells in the embryonic epicardium. We suggest that their eventual manipulation could promote revascularization after myocardial injury.
Collapse
Affiliation(s)
- Mykhaylo V Artamonov
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Li Jin
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Aaron S Franke
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Ko Momotani
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Ruoya Ho
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Xiu Rong Dong
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Mark W Majesky
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Avril V Somlyo
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| |
Collapse
|
35
|
Penke LRK, Huang SK, White ES, Peters-Golden M. Prostaglandin E2 inhibits α-smooth muscle actin transcription during myofibroblast differentiation via distinct mechanisms of modulation of serum response factor and myocardin-related transcription factor-A. J Biol Chem 2014; 289:17151-62. [PMID: 24802754 DOI: 10.1074/jbc.m114.558130] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Differentiation of lung fibroblasts into contractile protein-expressing myofibroblasts by transforming growth factor-β1 (TGF-β1) is a critical event in the pathogenesis of pulmonary fibrosis. Transcription of the contractile protein α-smooth muscle actin (α-SMA) is mediated by the transcription factor serum-response factor (SRF) along with its co-activator, myocardin-related transcription factor-A (MRTF-A). The endogenous lipid mediator prostaglandin E2 (PGE2) exerts anti-fibrotic effects, including the inhibition of myofibroblast differentiation. However, the mechanism by which PGE2 inhibits α-SMA expression is incompletely understood. Here, we show in normal lung fibroblasts that PGE2 reduced the nuclear accumulation of MRTF-A·SRF complexes and consequently inhibited α-SMA promoter activation. It did so both by independently inhibiting SRF gene expression and nuclear import of MRTF-A. We identified that p38 MAPK is critical for TGF-β1-induced SRF gene expression and that PGE2 inhibition of SRF expression is associated with its ability to inhibit p38 activation. Its inhibition of MRTF-A import occurs via activation of cofilin 1 and inactivation of vasodilator-stimulated phosphoprotein. Similar effects of PGE2 on SRF gene expression were observed in fibroblasts from the lungs of patients with idiopathic pulmonary fibrosis. Thus, PGE2 is the first substance described to prevent myofibroblast differentiation by disrupting, via distinct mechanisms, the actions of both SRF and MRTF-A.
Collapse
Affiliation(s)
- Loka R K Penke
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Steven K Huang
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Eric S White
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Marc Peters-Golden
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
36
|
Doyle AJ, Redmond EM, Gillespie DL, Knight PA, Cullen JP, Cahill PA, Morrow DJ. Differential expression of Hedgehog/Notch and transforming growth factor-β in human abdominal aortic aneurysms. J Vasc Surg 2014; 62:464-70. [PMID: 24768363 DOI: 10.1016/j.jvs.2014.02.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/23/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The molecular mechanisms leading to the development of abdominal aortic aneurysms (AAAs) remain poorly understood. The aim of this study was to determine the expression of Sonic Hedgehog (SHh), transforming growth factor β (TGF-β), and Notch signaling components in human aneurysmal and nonaneurysmal aorta in vivo. METHODS Paired tissue samples were obtained from aneurysmal and nonaneurysmal (control) segments of the aortic wall of eight patients with suitable anatomy undergoing open repair of infrarenal AAAs. Protein and messenger RNA (mRNA) expression levels were determined by Western blot and quantitative real-time polymerase chain reaction analysis. RESULTS Aneurysm development resulted in a significant reduction in vascular smooth muscle (vSMC) differentiation genes α-actin and SMC22α at both mRNA and protein levels. In parallel experiments, an 80.0% ± 15% reduction in SHh protein expression was observed in aneurysmal tissue compared with control. SHh and Ptc-1 mRNA levels were also significantly decreased, by 82.0% ± 10% and 75.0% ± 5%, respectively, in aneurysmal tissue compared with nonaneurysmal control tissue. Similarly, there was a 50.0% ± 9% and 60.0% ± 4% reduction in Notch receptor 1 intracellular domain and Hrt-2 protein expression, respectively, in addition to significant reductions in Notch 1, Notch ligand Delta like 4, and Hrt-2 mRNA expression in aneurysmal tissue compared with nonaneurysmal tissue. There was no change in Hrt-1 expression observed in aneurysmal tissue compared with control. In parallel experiments, we found a 2.2 ± 0.2-fold and a 5.6 ± 2.2-fold increase in TGF-β mRNA and protein expression, respectively, in aneurysmal tissue compared with nonaneurysmal tissue. In vitro, Hedgehog signaling inhibition with cyclopamine in human aortic SMCs resulted in decreased Hedgehog/Notch signaling component and vSMC differentiation gene expression. Moreover, cyclopamine significantly increased TGF-β1 mRNA expression by 2.6 ± 0.9-fold. CONCLUSIONS These results suggest that SHh/Notch and TGF-β signaling are differentially regulated in aneurysmal tissue compared with nonaneurysmal tissue. Changes in these signaling pathways and the resulting changes in vSMC content may play a causative role in the development of AAAs.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/physiopathology
- Female
- Gene Expression
- Hedgehog Proteins/biosynthesis
- Hedgehog Proteins/genetics
- Humans
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Receptors, Notch/biosynthesis
- Receptors, Notch/genetics
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/genetics
Collapse
Affiliation(s)
- Adam J Doyle
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
| | - Eileen M Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
| | - David L Gillespie
- Heart and Vascular Center, South Coast Health Systems, Fall River/New Bedford, Mass
| | - Peter A Knight
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
| | - John P Cullen
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - David J Morrow
- Department of Surgery, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
37
|
Sachse G, Faulhaber J, Seniuk A, Ehmke H, Pongs O. Smooth muscle BK channel activity influences blood pressure independent of vascular tone in mice. J Physiol 2014; 592:2563-74. [PMID: 24687584 DOI: 10.1113/jphysiol.2014.272880] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The large conductance voltage- and Ca(2+)-activated K(+) (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKβ1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKβ1 knockout (BKβ1(-/-)) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKβ1(-/-) mice independent of genetic background, BKβ1(-/-) strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKβ1(+/+) controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKβ1(-/-) strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKβ1(+/+) strain A level. In contrast, loss of BKβ1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKβ1 expression increased blood pressure in BKβ1(-/-) strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways.
Collapse
Affiliation(s)
- Gregor Sachse
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie, Falkenried 94, D-20251, Hamburg, Germany Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Jörg Faulhaber
- Institut für Zelluläre und Integrative Physiologie, UKE, Martinistr. 52, D-20246, Hamburg, Germany
| | - Anika Seniuk
- Institut für Zelluläre und Integrative Physiologie, UKE, Martinistr. 52, D-20246, Hamburg, Germany
| | - Heimo Ehmke
- Institut für Zelluläre und Integrative Physiologie, UKE, Martinistr. 52, D-20246, Hamburg, Germany
| | - Olaf Pongs
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie, Falkenried 94, D-20251, Hamburg, Germany Institut für Physiologie (Geb 56), Universität des Saarlandes, 66421, Homburg/Saar, Germany
| |
Collapse
|
38
|
Yoshida T, Hayashi M. Role of Krüppel-like factor 4 and its binding proteins in vascular disease. J Atheroscler Thromb 2014; 21:402-13. [PMID: 24573018 DOI: 10.5551/jat.23044] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Krüppel-like factor 4(KLF4) is a zinc-finger transcription factor that plays a key role in cellular differentiation and proliferation during normal development and in various diseases, such as cancer. The results of recent studies have revealed that KLF4 is expressed in multiple vascular cell types, including phenotypically modulated smooth muscle cells(SMCs), endothelial cells and monocytes/macrophages and contributes to the progression of vascular diseases by activating or repressing the transcription of multiple genes via its associations with a variety of partner proteins. For example, KLF4 decreases the expression of markers of SMC differentiation by interacting with serum response factor, ELK1 and histone deacetylases. KLF4 also suppresses SMC proliferation by associating with p53. In addition, KLF4 enhances arterial medial calcification in concert with RUNX2. Furthermore, endothelial KLF4 represses arterial inflammation by binding to nuclear factor-κB. This article summarizes the role of KLF4 in vascular disease with a particular focus on in vivo studies and reviews recent progress in our understanding of the regulatory mechanisms involved in KLF4- mediated gene transcription.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Apheresis and Dialysis Center, School of Medicine, Keio University
| | | |
Collapse
|
39
|
Whitesell TR, Kennedy RM, Carter AD, Rollins EL, Georgijevic S, Santoro MM, Childs SJ. An α-smooth muscle actin (acta2/αsma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells. PLoS One 2014; 9:e90590. [PMID: 24594685 PMCID: PMC3940907 DOI: 10.1371/journal.pone.0090590] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/02/2014] [Indexed: 11/18/2022] Open
Abstract
Mural cells of the vascular system include vascular smooth muscle cells (SMCs) and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma), which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.
Collapse
Affiliation(s)
- Thomas R. Whitesell
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Regan M. Kennedy
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Alyson D. Carter
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Evvi-Lynn Rollins
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Sonja Georgijevic
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Massimo M. Santoro
- VIB Vesalius Research Center, University of Leuven (KU Leuven), Leuven, Belgium
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Stefanska M, Costa G, Lie-A-Ling M, Kouskoff V, Lacaud G. Smooth muscle cells largely develop independently of functional hemogenic endothelium. Stem Cell Res 2014; 12:222-32. [PMID: 24270161 DOI: 10.1016/j.scr.2013.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022] Open
Abstract
Vascular smooth muscle cells represent a major component of the cardiovascular system. In vitro studies have shown that FLK1(+) cells derived from embryonic stem (ES) cells can differentiate into both endothelial and smooth muscle cells. These FLK1(+) cells also contain a mesodermal precursor, the hemangioblast, able to produce endothelial, blood and smooth muscle cells. The generation of blood precursors from the hemangioblast was recently shown to occur through a transient cell population of specialised endothelium, a hemogenic endothelium. To date, the lineage relationship between this cell population and smooth muscle cell progenitors has not been investigated. In this study, we generated a reporter ES cell line in which expression of the fluorescent protein H2B-VENUS is driven by the α-smooth muscle actin (α-SMA) regulatory sequences. We demonstrated that this reporter cell line efficiently trace smooth muscle development during ES cell differentiation. Although some smooth muscle cells are associated with broad endothelial development, we established that smooth muscle cells are mostly generated independently from a specialised functional hemogenic endothelium. This study provides new and important insights into hematopoietic and vascular development, which may help in driving further progress towards the development of bioengineered vascular grafts for regenerative medicine.
Collapse
Affiliation(s)
- Monika Stefanska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Guilherme Costa
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
| |
Collapse
|
41
|
Fan Z, Li C, Qin C, Xie L, Wang X, Gao Z, Qiangbacuozhen, Wang T, Yu L, Liu H. Role of the PI3K/AKT pathway in modulating cytoskeleton rearrangements and phenotype switching in rat pulmonary arterial vascular smooth muscle cells. DNA Cell Biol 2013; 33:12-9. [PMID: 24283363 DOI: 10.1089/dna.2013.2022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pulmonary arterial smooth muscle cell (PASMC) phenotype switching, which is characterized by changes in smooth muscle (SM)-specific gene expression, contributes to vascular remodeling in pulmonary hypertension. In addition, it has been shown that the transcription of SM-specific genes is modulated by cytoskeleton rearrangement. However, the intracellular mechanisms and signaling pathways that regulate these relationships are largely unknown. In the present study, we aimed to investigate the roles that phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB), also known as AKT, play in modulating the cytoskeleton and phenotype of rat PASMCs. To observe the downstream effects of inhibiting or enhancing PI3K/AKT pathway activity, we used various approaches to manipulate protein function and gene expression. Treatment of PASMCs with platelet-derived growth factor (PDGF)-BB or PIK3CA-adenovirus induced cytoskeleton rearrangements and downregulated SM22α and α-SM actin gene expression. Inhibition of PI3K led to blocking of AKT phosphorylation and attenuated the PDGF-BB-induced downregulation of F-actin and SM-specific genes, the downstream effector of PI3K. The decrease in SM22α and α-SM actin mRNA levels induced by PDGF-BB was markedly and reproducibly blocked by LY294002. PI3K/AKT pathway plays a vital role in the modulation of PASMCs cytoskeleton rearrangement and phenotype switching.
Collapse
Affiliation(s)
- Zhiyu Fan
- 1 Pulmonary Vascular Remodeling Research Unit, West China Institute of Women's and Children's Health, West China Second University Hospital, Sichuan University , Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol 2013; 70:9-18. [PMID: 24189039 DOI: 10.1016/j.yjmcc.2013.10.019] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 12/27/2022]
Abstract
Cardiac fibrosis is a substantial problem in managing multiple forms of heart disease. Fibrosis results from an unrestrained tissue repair process orchestrated predominantly by the myofibroblast. These are highly specialized cells characterized by their ability to secrete extracellular matrix (ECM) components and remodel tissue due to their contractile properties. This contractile activity of the myofibroblast is ascribed, in part, to the expression of smooth muscle α-actin (αSMA) and other tension-associated structural genes. Myofibroblasts are a newly generated cell type derived largely from residing mesenchymal cells in response to both mechanical and neurohumoral stimuli. Several cytokines, chemokines, and growth factors are induced in the injured heart, and in conjunction with elevated wall tension, specific signaling pathways and downstream effectors are mobilized to initiate myofibroblast differentiation. Here we will review the cell fates that contribute to the myofibroblast as well as nodal molecular signaling effectors that promote their differentiation and activity. We will discuss canonical versus non-canonical transforming growth factor-β (TGFβ), angiotensin II (AngII), endothelin-1 (ET-1), serum response factor (SRF), transient receptor potential (TRP) channels, mitogen-activated protein kinases (MAPKs) and mechanical signaling pathways that are required for myofibroblast transformation and fibrotic disease. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
|
43
|
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:295-317. [PMID: 23737174 DOI: 10.1002/cphy.c100026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension is a multifactorial disease characterized by sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). Central to the pathobiology of this disease is the process of vascular remodelling. This process involves structural and functional changes to the normal architecture of the walls of pulmonary arteries (PAs) that lead to increased muscularization of the muscular PAs, muscularization of the peripheral, previously nonmuscular, arteries of the respiratory acinus, formation of neointima, and formation of plexiform lesions. Underlying or contributing to the development of these lesions is hypertrophy, proliferation, migration, and resistance to apoptosis of medial cells and this article is concerned with the cellular and molecular mechanisms of these processes. In the first part of the article we focus on the concept of smooth muscle cell phenotype and the difficulties surrounding the identification and characterization of the cell/cells involved in the remodelling of the vessel media and we review the general mechanisms of cell hypertrophy, proliferation, migration and apoptosis. Then, in the larger part of the article, we review the factors identified thus far to be involved in PH intiation and/or progression and review and discuss their effects on pulmonary artery smooth muscle cells (PASMCs) the predominant cells in the tunica media of PAs.
Collapse
Affiliation(s)
- Tamara Tajsic
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
44
|
Turner EC, Huang CL, Govindarajan K, Caplice NM. Identification of a Klf4-dependent upstream repressor region mediating transcriptional regulation of the myocardin gene in human smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1191-201. [PMID: 24060351 DOI: 10.1016/j.bbagrm.2013.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/28/2013] [Accepted: 09/13/2013] [Indexed: 01/25/2023]
Abstract
Phenotypic switching of smooth muscle cells (SMCs) plays a central role in the development of vascular diseases such as atherosclerosis and restenosis. However, the factors regulating expression of the human myocardin (Myocd) gene, the master gene regulator of SMC differentiation, have yet to be identified. In this study, we sought to identify the critical factors regulating Myocd expression in human SMCs. Using deletion/genetic reporter analyses, an upstream repressor region (URR) was localised within the Myocd promoter, herein termed PrmM. Bioinformatic analysis revealed three evolutionary conserved Klf4 sites within the URR and disruption of those elements led to substantial increases in PrmM-directed gene expression. Furthermore, ectopic expression established that Klf4 significantly decreased Myocd mRNA levels and PrmM-directed gene expression while electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays confirmed specific binding of endogenous Klf4, and not Klf5 or Klf2, to the URR of PrmM. Platelet-derived growth factor BB (PDGF-BB), a potent inhibitor of SMC differentiation, reduced Myocd mRNA levels and PrmM-directed gene expression in SMCs. A PDGF-BB-responsive region (PRR) was also identified within PrmM, overlapping with the previously identified URR, where either siRNA knockdown of Klf4 or the combined disruption of the Klf4 elements completely abolished PDGF-BB-mediated repression of PrmM-directed gene expression in SMCs. Moreover, ChIP analysis established that PDGF-BB-induced repression of Myocd gene expression is most likely regulated by enhanced binding of Klf4 and Klf5 to a lesser extent, to the PRR of PrmM. Taken together, these data provide critical insights into the transcriptional regulation of the Myocd gene in vascular SMCs, including during SMC differentiation.
Collapse
Affiliation(s)
- Elizebeth C Turner
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland.
| | | | | | | |
Collapse
|
45
|
Wang SS, Huang HY, Chen SZ, Li X, Liu Y, Zhang WT, Tang QQ. Early growth response 2 (Egr2) plays opposing roles in committing C3H10T1/2 stem cells to adipocytes and smooth muscle-like cells. Int J Biochem Cell Biol 2013; 45:1825-32. [DOI: 10.1016/j.biocel.2013.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/27/2013] [Accepted: 06/02/2013] [Indexed: 12/20/2022]
|
46
|
Bai X, Lenhart KC, Bird KE, Suen AA, Rojas M, Kakoki M, Li F, Smithies O, Mack CP, Taylor JM. The smooth muscle-selective RhoGAP GRAF3 is a critical regulator of vascular tone and hypertension. Nat Commun 2013; 4:2910. [PMID: 24335996 PMCID: PMC4237314 DOI: 10.1038/ncomms3910] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/11/2013] [Indexed: 12/13/2022] Open
Abstract
Although hypertension is a worldwide health issue, an incomplete understanding of its aetiology has hindered our ability to treat this complex disease. Here we identify arhgap42 (also known as GRAF3) as a Rho-specific GAP expressed specifically in smooth muscle cells (SMCs) in mice and humans. We show that GRAF3-deficient mice exhibit significant hypertension and increased pressor responses to angiotensin II and endothelin-1; these effects are prevented by treatment with the Rho-kinase inhibitor, Y27632. RhoA activity and myosin light chain phosphorylation are elevated in GRAF3-depleted SMCs in vitro and in vivo, and isolated vessel segments from GRAF3-deficient mice show increased contractility. Taken together, our data indicate that GRAF3-mediated inhibition of RhoA activity in vascular SMCs is necessary for maintaining normal blood pressure homoeostasis. Moreover, these findings provide a potential mechanism for a hypertensive locus recently identified within arhgap42 and provide a foundation for the future development of innovative hypertension therapies.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kaitlin C. Lenhart
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kim E. Bird
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alisa A. Suen
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mauricio Rojas
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Masao Kakoki
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Feng Li
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Oliver Smithies
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P. Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M. Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
47
|
Tomasek JJ, Haaksma CJ, Schwartz RJ, Howard EW. Whole animal knockout of smooth muscle alpha-actin does not alter excisional wound healing or the fibroblast-to-myofibroblast transition. Wound Repair Regen 2012; 21:166-76. [PMID: 23253249 DOI: 10.1111/wrr.12001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 10/15/2012] [Indexed: 01/14/2023]
Abstract
The contractile phenotype and function of myofibroblasts have been proposed to play a critical role in wound closure. It has been hypothesized that smooth muscle α-actin expressed in myofibroblasts is critical for its formation and function. We have used smooth muscle α-actin-null mice to test this hypothesis. Full-thickness excisional wounds closed at a similar rate in smooth muscle α-actin-null and wild-type mice. In addition, fibroblasts in smooth muscle α-actin-null granulation tissue when immunostained with a monoclonal antibody that recognizes all muscle actin isoforms exhibited a myofibroblast-like distribution and a stress fiber-like pattern, showing that these cells acquired the myofibroblast phenotype. Dermal fibroblasts from smooth muscle α-actin-null and wild-type mice formed stress fibers and supermature focal adhesions, and generated similar amounts of contractile force in response to transforming growth factor-β1. Smooth muscle γ-actin and skeletal muscle α-actin were expressed in smooth muscle α-actin-null myofibroblasts, as shown by immunostaining, real-time polymerase chain reaction, and mass spectrometry. These results show that smooth muscle α-actin is not necessary for myofibroblast formation and function and for wound closure, and that smooth muscle γ-actin and skeletal muscle α-actin may be able to functionally compensate for the lack of smooth muscle α-actin in myofibroblasts.
Collapse
Affiliation(s)
- James J Tomasek
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | |
Collapse
|
48
|
Sohni A, Mulas F, Ferrazzi F, Luttun A, Bellazzi R, Huylebroeck D, Ekker SC, Verfaillie CM. TGFβ1-induced Baf60c regulates both smooth muscle cell commitment and quiescence. PLoS One 2012; 7:e47629. [PMID: 23110084 PMCID: PMC3482188 DOI: 10.1371/journal.pone.0047629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/13/2012] [Indexed: 02/02/2023] Open
Abstract
Smooth muscle cells (SMCs) play critical roles in a number of diseases; however, the molecular mechanism underlying their development is unclear. Although the role of TGFβ1 signaling in SMC development is well established, the downstream molecular signals are not fully understood. We used several rat multipotent adult progenitor cell ((r)MAPC) lines that express levels of Oct4 mRNA similar to hypoblast stem cells (HypoSC), and can differentiate robustly to mesodermal and endodermal cell types. TGFβ1 alone, or with PDGF-BB, induces differentiation of rMAPCs to SMCs, which expressed structural SMC proteins, including α-smooth muscle actin (αSMA), and contribute to the SMC coat of blood vessels in vivo. A genome-wide time-course transcriptome analysis revealed that transcripts of Baf60c, part of the SWI/SNF actin binding chromatin remodeling complex D-3 (SMARCD3/BAF60c), were significantly induced during MAPC-SMC differentiation. We demonstrated that BAF60c is a necessary co-regulator of TGFβ1 mediated induction of SMC genes. Knock-down of Baf60c decreased SMC gene expression in rMAPCs whereas ectopic expression of Baf60c was sufficient to commit rMAPCs to SMCs in the absence of exogenous cytokines. TGFβ1 activates Baf60c via the direct binding of SMAD2/3 complexes to the Baf60c promoter region. Chromatin- and co-immunoprecipitation studies demonstrated that regulation of SMC genes by BAF60c is mediated via interaction with SRF binding CArG box-containing promoter elements in SMC genes. We noted that compared with TGFβ1, Baf60c overexpression in rMAPC yielded SMC with a more immature phenotype. Similarly, Baf60c induced an immature phenotype in rat aortic SMCs marked by increased cell proliferation and decreased contractile marker expression. Thus, Baf60c is important for TGFβ-mediated commitment of primitive stem cells (rMAPCs) to SMCs and is associated with induction of a proliferative state of quiescent SMCs. The MAPC-SMC differentiation system may be useful for identification of additional critical (co-)regulators of SMC development.
Collapse
Affiliation(s)
- Abhishek Sohni
- Stem Cell Institute, Department of Development and Regeneration, K.U.Leuven, Leuven, Belgium
- Genetics Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Francesca Mulas
- Center for Tissue Engineering, University of Pavia, Pavia, Italy
| | - Fulvia Ferrazzi
- Dipartimento di Informatica e Sistemistica, University of Pavia, Pavia, Italy
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, K.U.Leuven, Leuven, Belgium
| | - Riccardo Bellazzi
- Center for Tissue Engineering, University of Pavia, Pavia, Italy
- Dipartimento di Informatica e Sistemistica, University of Pavia, Pavia, Italy
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, K.U.Leuven, Leuven, Belgium
| | - Stephen C. Ekker
- Genetics Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Catherine M. Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, K.U.Leuven, Leuven, Belgium
- Genetics Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
49
|
Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 2012; 125:3061-73. [PMID: 22797927 DOI: 10.1242/jcs.093005] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akiko Mammoto
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
50
|
Kuwahara K, Nishikimi T, Nakao K. Transcriptional regulation of the fetal cardiac gene program. J Pharmacol Sci 2012; 119:198-203. [PMID: 22786561 DOI: 10.1254/jphs.12r04cp] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Reactivation of the fetal cardiac gene program in adults is a reliable marker of cardiac hypertrophy and heart failure. Normally, genes within this group are expressed in the fetal ventricles during development, but are silent after birth. However, their expression is re-induced in the ventricular myocardium in response to various cardiovascular diseases, and potentially plays an important role in the pathological process of cardiac remodeling. Thus, analysis of the molecular mechanisms that govern the expression of fetal cardiac genes could lead to the discovery of transcriptional regulators and signaling pathways involved in both cardiac differentiation and cardiac disease. In this review we will summarize what is currently known about the transcriptional regulation of the fetal cardiac gene program.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|