1
|
Cao Z, Liu Y, Wang Y, Leng P. Research progress on the role of PDGF/PDGFR in type 2 diabetes. Biomed Pharmacother 2023; 164:114983. [PMID: 37290188 DOI: 10.1016/j.biopha.2023.114983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) are basic proteins stored in the α granules of platelets. PDGFs and their receptors (PDGFRs) are widely expressed in platelets, fibroblasts, vascular endothelial cells, platelets, pericytes, smooth muscle cells and tumor cells. The activation of PDGFR plays a number of critical roles in physiological functions and diseases, including normal embryonic development, cellular differentiation, and responses to tissue damage. In recent years, emerging experimental evidence has shown that activation of the PDGF/PDGFR pathway is involved in the development of diabetes and its complications, such as atherosclerosis, diabetic foot ulcers, diabetic nephropathy, and retinopathy. Research on targeting PDGF/PDGFR as a treatment has also made great progress. In this mini-review, we summarized the role of PDGF in diabetes, as well as the research progress on targeted diabetes therapy, which provides a new strategy for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Zhanqi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yijie Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yini Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
2
|
Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca 2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021; 9:653812. [PMID: 33937254 PMCID: PMC8083964 DOI: 10.3389/fcell.2021.653812] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
In the adult, vascular smooth muscle cells (VSMC) are normally physiologically quiescent, arranged circumferentially in one or more layers within blood vessel walls. Remodelling of native VSMC to a proliferative state for vascular development, adaptation or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream of PDGF receptors is store-operated calcium entry (SOCE) mediated through the plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This SOCE was shown to play fundamental roles in the pathological remodelling of VSMC. Exciting transgenic lineage-tracing studies have revealed that the contribution of the phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant than previously appreciated, and growing evidence supports the relevance of ORAI1 signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive potential therapeutic target as it is accessible to extracellular compound inhibition. This is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs) and neointimal hyperplasia, and the recent developments in our understanding of the mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition, we discuss advances in therapeutic strategies aimed at the ORAI1 target.
Collapse
Affiliation(s)
- Heba Shawer
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Norman
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Chew W Cheng
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Marc A Bailey
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
Henderson JM, Weber C, Santovito D. Beyond Self-Recycling: Cell-Specific Role of Autophagy in Atherosclerosis. Cells 2021; 10:cells10030625. [PMID: 33799835 PMCID: PMC7998923 DOI: 10.3390/cells10030625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall and underlies the development of cardiovascular diseases, such as myocardial infarction and ischemic stroke. As such, atherosclerosis stands as the leading cause of death and disability worldwide and intensive scientific efforts are made to investigate its complex pathophysiology, which involves the deregulation of crucial intracellular pathways and intricate interactions between diverse cell types. A growing body of evidence, including in vitro and in vivo studies involving cell-specific deletion of autophagy-related genes (ATGs), has unveiled the mechanistic relevance of cell-specific (endothelial, smooth-muscle, and myeloid cells) defective autophagy in the processes of atherogenesis. In this review, we underscore the recent insights on autophagy's cell-type-dependent role in atherosclerosis development and progression, featuring the relevance of canonical catabolic functions and emerging noncanonical mechanisms, and highlighting the potential therapeutic implications for prevention and treatment of atherosclerosis and its complications.
Collapse
Affiliation(s)
- James M. Henderson
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), D-80336 Munich, Germany
- Correspondence: (C.W.); (D.S.)
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Institute for Genetic and Biomedical Research, UoS of Milan, National Research Council, I-09042 Milan, Italy
- Correspondence: (C.W.); (D.S.)
| |
Collapse
|
4
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
5
|
The quest for effective pharmacological suppression of neointimal hyperplasia. Curr Probl Surg 2020; 57:100807. [PMID: 32771085 DOI: 10.1016/j.cpsurg.2020.100807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
|
6
|
Chen Z, Wu Z, Ning W. Advances in Molecular Mechanisms and Treatment of Radiation-Induced Pulmonary Fibrosis. Transl Oncol 2019; 12:162-169. [PMID: 30342294 PMCID: PMC6197541 DOI: 10.1016/j.tranon.2018.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a common complication in patients with lung cancer and breast cancer after receiving thoracic radiotherapy. The average incidence of RIPF is 16%-28% after radiotherapy. RIPF includes a heterogeneous group of lung disorders characterized by progressive and irreversible destruction of lung architecture and disruption of gas exchange. The clinical signs of RIPF include increasing dyspnea, deteriorating lung function, and accumulation of interstitial fluid, eventually leading to respiratory failure. No medical therapy for RIPF has been approved for routine clinical use despite the apparent need for an effective treatment. Numerous signaling pathways are involved in the initiation and progression of RIPF. Also, various approaches for RIPF treatments have focused on several aspects of the current understanding of the molecular pathology of RIPF. This review used the mechanistic categories of associated cell signaling pathways, epithelial cell dysfunction and senescence, abnormal lung remodeling, and aberrant innate and adaptive immunity to review the published literature on RIPF to date and then to identify potential areas for the effective treatment of RIPF.
Collapse
Affiliation(s)
- Zhongjie Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Zhiqiang Wu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wen Ning
- State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 2018; 62:75-88. [DOI: 10.1016/j.mam.2017.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
8
|
Heldin CH, Lennartsson J, Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med 2018; 283:16-44. [PMID: 28940884 DOI: 10.1111/joim.12690] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelet-derived growth factor (PDGF) isoforms and their receptors have important roles during embryogenesis, particularly in the development of various mesenchymal cell types in different organs. In the adult, PDGF stimulates wound healing and regulates tissue homeostasis. However, overactivity of PDGF signalling is associated with malignancies and other diseases characterized by excessive cell proliferation, such as fibrotic conditions and atherosclerosis. In certain tumours, genetic or epigenetic alterations of the genes for PDGF ligands and receptors drive tumour cell proliferation and survival. Examples include the rare skin tumour dermatofibrosarcoma protuberance, which is driven by autocrine PDGF stimulation due to translocation of a PDGF gene, and certain gastrointestinal stromal tumours and leukaemias, which are driven by constitute activation of PDGF receptors due to point mutations and formation of fusion proteins of the receptors, respectively. Moreover, PDGF stimulates cells in tumour stroma and promotes angiogenesis as well as the development of cancer-associated fibroblasts, both of which promote tumour progression. Inhibitors of PDGF signalling may thus be of clinical usefulness in the treatment of certain tumours.
Collapse
Affiliation(s)
- C-H Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - J Lennartsson
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - B Westermark
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Teng Y, Wang Z, Li W, Yu J, Shan Z, Liang C, Wang S. Mitoxantrone suppresses vascular smooth muscle cell (VSMC) proliferation and balloon injury-induced neointima formation: An in vitro and in vivo study. Bosn J Basic Med Sci 2017; 17:339-348. [PMID: 28590233 DOI: 10.17305/bjbms.2017.2113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/16/2022] Open
Abstract
Neointima formation, which occurs after vascular injury due to vascular disease or interventions such as angioplasty and stent placement, is a complex process that involves multiple molecular and cellular mechanisms. The inhibition of neointima formation is vital to prevent restenosis of blood vessels. In the present study, we investigated whether the systemic administration of mitoxantrone can inhibit neointima formation, and evaluated the underlying mechanisms under in vitro and in vivo experimental conditions. In vitro, rat and human vascular smooth muscle cells (RVSMCs and HVSMCs) were stimulated with platelet-derived growth factor-BB (PDGF-BB) and treated with mitoxantrone or DMSO as a control. In vivo, 54 male Sprague-Dawley rats were subjected to carotid artery balloon injury and then intravenously administered with mitoxantrone. Cell proliferation was determined using the CCK-8 assay. Cell cycle analysis was performed using flow cytometry, and protein expression was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. We used monoclonal mouse anti-bromodeoxyuridine (BrdU) antibody for the detection of BrdU and anti-Topoisomerase II antibody for staining Type II topoisomerase (Topo II), one week after the ballon injury. In both RVSMCs and HVSMCs, mitoxantrone treatment induced Topo II degradation, as well as suppressed DNA replication, cell cycle progression, and VSMC proliferation. A reduction in intimal hyperplasia, intimal-to-medial area ratio, and Topo II level was observed in mitoxantrone-treated rats, as compared to the control (saline) group. Overall, our results indicate that systemic administration of mitoxantrone can reduce neointimal hyperplasia and, thus, represents a suitable option for restenosis treatment.
Collapse
Affiliation(s)
- Yuan Teng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Dadrich M, Nicolay NH, Flechsig P, Bickelhaupt S, Hoeltgen L, Roeder F, Hauser K, Tietz A, Jenne J, Lopez R, Roehrich M, Wirkner U, Lahn M, Huber PE. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis. Oncoimmunology 2015; 5:e1123366. [PMID: 27467922 PMCID: PMC4910723 DOI: 10.1080/2162402x.2015.1123366] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 11/25/2022] Open
Abstract
Background: Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods: C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results: Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion: Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement: RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined inhibition of TGFβ and PDGF signaling is more effective in attenuating radiation-induced lung damage compared to blocking either pathway alone. We used the TGFβ-receptor I inhibitor galunisertib, an effective anticancer compound in preclinical models and the PDGFR inhibitors imatinib and SU9518, a sunitinib analog. Our signaling data suggest that the reduction of TGFβ and PDGF signaling and the attenuation of SPP1 (Osteopontin) expression may be responsible for the observed benefits. With the clinical availability of similar compounds currently in phase-I/II trials as cancer therapeutics or already approved for certain cancers or idiopathic lung fibrosis (IPF), our study suggests that the combined application of small molecule inhibitors of TGFβ and PDGF signaling may offer a promising approach to treat radiation-associated toxicity in RT of lung cancer.
Collapse
Affiliation(s)
- Monika Dadrich
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF, Heidelberg, Germany; Department of Radiology, University Hospital Center, 400 INF, Heidelberg, Germany
| | - Nils H Nicolay
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF, Heidelberg, Germany; Department of Radiation Oncology, University Hospital Center, 400 INF, Heidelberg, Germany
| | - Paul Flechsig
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF, Heidelberg, Germany; Department of Radiology, University Hospital Center, 400 INF, Heidelberg, Germany
| | - Sebastian Bickelhaupt
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Line Hoeltgen
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Falk Roeder
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF, Heidelberg, Germany; Department of Radiation Oncology, University Hospital Center, 400 INF, Heidelberg, Germany; Department of Radiation Oncology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Kai Hauser
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Alexandra Tietz
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Jürgen Jenne
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Ramon Lopez
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Manuel Roehrich
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Ute Wirkner
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Michael Lahn
- Oncology Early Clinical Investigation, Lilly Research Laboratories, Indianapolis , IN, USA
| | - Peter E Huber
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF, Heidelberg, Germany; Department of Radiation Oncology, University Hospital Center, 400 INF, Heidelberg, Germany
| |
Collapse
|
11
|
Freise C, Sommer K, Querfeld U. Protective effects of the polyphenols (+)-episesamin and sesamin against PDGF-BB-induced activation of vascular smooth muscle cells are mediated by induction of haem oxygenase-1 and inhibition of mitogenic signalling. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
12
|
Reduction of endoplasmic reticulum stress inhibits neointima formation after vascular injury. Sci Rep 2014; 4:6943. [PMID: 25373918 PMCID: PMC4221790 DOI: 10.1038/srep06943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/20/2014] [Indexed: 11/08/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and inappropriate adaptation through the unfolded protein response (UPR) are predominant features of pathological processes. However, little is known about the link between ER stress and endovascular injury. We investigated the involvement of ER stress in neointima hyperplasia after vascular injury. The femoral arteries of 7-8-week-old male mice were subjected to wire-induced vascular injury. After 4 weeks, immunohistological analysis showed that ER stress markers were upregulated in the hyperplastic neointima. Neointima formation was increased by 54.8% in X-box binding protein-1 (XBP1) heterozygous mice, a model of compromised UPR. Knockdown of Xbp1 in human coronary artery smooth muscle cells (CASMC) in vitro promoted cell proliferation and migration. Furthermore, treatment with ER stress reducers, 4-phenylbutyrate (4-PBA) and tauroursodeoxycholic acid (TUDCA), decreased the intima-to-media ratio after wire injury by 50.0% and 72.8%, respectively. Chronic stimulation of CASMC with PDGF-BB activated the UPR, and treatment with 4-PBA and TUDCA significantly suppressed the PDGF-BB-induced ER stress markers in CASMC and the proliferation and migration of CASMC. In conclusion, increased ER stress contributes to neointima formation after vascular injury, while UPR signaling downstream of XBP1 plays a suppressive role. Suppression of ER stress would be a novel strategy against post-angioplasty vascular restenosis.
Collapse
|
13
|
Strickland DK, Au DT, Cunfer P, Muratoglu SC. Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol 2014; 34:487-98. [PMID: 24504736 DOI: 10.1161/atvbaha.113.301924] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling receptor that is widely expressed. In the liver, LRP1 plays an important role in regulating the plasma levels of blood coagulation factor VIII (fVIII) by mediating its uptake and subsequent degradation. fVIII is a key plasma protein that is deficient in hemophilia A and circulates in complex with von Willebrand factor. Because von Willebrand factor blocks binding of fVIII to LRP1, questions remain on the molecular mechanisms by which LRP1 removes fVIII from the circulation. LRP1 also regulates cell surface levels of tissue factor, a component of the extrinsic blood coagulation pathway. This occurs when tissue factor pathway inhibitor bridges the fVII/tissue factor complex to LRP1, resulting in rapid LRP1-mediated internalization and downregulation of coagulant activity. In the vasculature LRP1 also plays protective role from the development of aneurysms. Mice in which the lrp1 gene is selectively deleted in vascular smooth muscle cells develop a phenotype similar to the progression of aneurysm formation in human patient, revealing that these mice are ideal for investigating molecular mechanisms associated with aneurysm formation. Studies suggest that LRP1 protects against elastin fiber fragmentation by reducing excess protease activity in the vessel wall. These proteases include high-temperature requirement factor A1, matrix metalloproteinase 2, matrix metalloproteinase-9, and membrane associated type 1-matrix metalloproteinase. In addition, LRP1 regulates matrix deposition, in part, by modulating levels of connective tissue growth factor. Defining pathways modulated by LRP1 that lead to aneurysm formation and defining its role in thrombosis may allow for more effective intervention in patients.
Collapse
Affiliation(s)
- Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease (D.K.S., D.T.A., P.C., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (S.C.M.), University of Maryland School of Medicine, Baltimore
| | | | | | | |
Collapse
|
14
|
Salabei JK, Hill BG. Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation. Redox Biol 2013; 1:542-51. [PMID: 24273737 PMCID: PMC3836280 DOI: 10.1016/j.redox.2013.10.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 01/09/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) develop a highly proliferative and synthetic phenotype in arterial diseases. Because such phenotypic changes are likely integrated with the energetic state of the cell, we hypothesized that changes in cellular metabolism regulate VSMC plasticity. VSMCs were exposed to platelet-derived growth factor-BB (PDGF) and changes in mitochondrial morphology, proliferation, contractile protein expression, and mitochondrial metabolism were examined. Exposure of VSMCs to PDGF resulted in mitochondrial fragmentation and a 50% decrease in the abundance of mitofusin 2. Synthetic VSMCs demonstrated a 20% decrease in glucose oxidation, which was accompanied by an increase in fatty acid oxidation. Results of mitochondrial function assays in permeabilized cells showed few changes due to PDGF treatment in mitochondrial respiratory chain capacity and coupling. Treatment of VSMCs with Mdivi-1—an inhibitor of mitochondrial fission—inhibited PDGF-induced mitochondrial fragmentation by 50% and abolished increases in cell proliferation; however, it failed to prevent PDGF-mediated activation of autophagy and removal of contractile proteins. In addition, treatment with Mdivi-1 reversed changes in fatty acid and glucose oxidation associated with the synthetic phenotype. These results suggest that changes in mitochondrial morphology and bioenergetics underlie the hyperproliferative features of the synthetic VSMC phenotype, but do not affect the degradation of contractile proteins. Mitochondrial fragmentation occurring during the transition to the synthetic phenotype could be a therapeutic target for hyperproliferative vascular disorders. PDGF promotes mitochondrial fragmentation in vascular smooth muscle cells. PDGF increases metabolic reliance on fatty acids. Mitochondrial fragmentation regulates proliferation and bioenergetics. PDGF-induced bioenergetic and autophagic responses regulate de-differentiation.
Collapse
Key Words
- ADP, adenine dinucleotide phosphate
- ATP5A1, ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1
- ATP5B, ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide
- Atherosclerosis
- CPT1, carnitine palmitoyl transferase 1
- DMEM, Delbucco's Eagle Modified Medium
- Drp1, dynamin-related protein 1
- EDTA, ethylenediaminetetraacetic acid
- EGTA, ethylene glycol tetraacetic acid
- Extracellular flux
- FBS, fetal bovine serum
- FCCP, Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
- Fis1, mitochondrial fission 1 protein
- Fusion
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- LC3, (microtubule-associated protein 1 light chain 3)
- MOPS, 3-(N-morpholino)propanesulfonic acid
- Metabolism
- NDUFB8, NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 8
- NP-40, noniodet P40
- Opa1, optic atrophy 1
- Oxidative phosphorylation
- PCNA, proliferating cell nuclear antigen
- PDGF-BB, platelet-derived growth factor-BB
- PVDF, polyvinylidene fluoride
- Restenosis
- SDHB, succinate dehydrogenase subunit B
- SDS, sodium dodecyl sulfate
- TMPD, N,N,N′,N′-tetramethyl-p-phenylenediamine
- VSMC, vascular smooth muscle cells
Collapse
Affiliation(s)
- Joshua K. Salabei
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G. Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Correspondence to: Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Delia Baxter Building, Room 404A, 580 South Preston Street, Louisville, KY 40202 United States. Tel.: +1 502 852 1015; fax: +1 502 852 3663.
| |
Collapse
|
15
|
Heldin CH. Targeting the PDGF signaling pathway in the treatment of non-malignant diseases. J Neuroimmune Pharmacol 2013; 9:69-79. [PMID: 23793451 DOI: 10.1007/s11481-013-9484-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
Abstract
Platelet-derived growth factor (PDGF) is a family of mesenchymal mitogens with important functions during the embryonal development and in the control of tissue homeostasis in the adult. The PDGF isoforms exert their effects by binding to α-and β-tyrosine kinase receptors. Overactivity of PDGF signaling has been linked to the development of certain malignant and non-malignant diseases, including atherosclerosis and various fibrotic diseases. Different types of PDGF antagonists have been developed, including inhibitory monoclonal antibodies and DNA aptamers against PDGF isoforms and receptors, and receptor tyrosine kinase inhibitors. Beneficial effects have been recorded using such inhibitors in preclinical models and in patients with certain malignant as well as non-malignant diseases. The present communication summarizes the use of PDGF antagonists in the treatment of non-malignant diseases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd, Science for Life Laboratory, Uppsala University, Box 595, SE-75124, Uppsala, Sweden,
| |
Collapse
|
16
|
Balah A, Mühl H, Pfeilschifter J, Akool ES. Molecular mechanisms of PDGF-AA expression induced by the dsRNA-mimetic poly (I:C) and IL-18. Biochem Biophys Res Commun 2013; 435:691-5. [PMID: 23702484 DOI: 10.1016/j.bbrc.2013.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/10/2013] [Indexed: 01/13/2023]
Abstract
Several animal studies suggest a role of platelet-derived growth factors (PDGFs) particularly A and B in atherosclerosis. Previously, it has been shown that viral infections have the ability to initiate and accelerate atherosclerosis in animal models. Recently, it has been reported that IL-18 has a pro-atherogenic character. Moreover, viral infections have been shown to be associated with induction of IL-18 bioactivity. By using human predendritic KG1 cells, we sought to assess PDGF-AA production under the influence of IL-18 and the byproduct of viral replication, dsRNA-mimetic poly (I:C). Here we demonstrate that poly (I:C) and IL-18 have the ability to induce PDGF-AA expression. In addition, costimulation of KG-1 cells with both IL-18 plus poly (I:C) shows an additive effect on PDGF-AA production. Furthermore, we demonstrate that neither p38 nor SAPK/JNK is required for PDGF-AA production by both PIC and IL-18. However, the expression of PDGF-AA has been found to be associated with increased activation of NF-κB and enhancement of DNA-binding capacity of NF-κB as shown by electrophoretic mobility shift assay (EMSA) and supershift analysis. Collectively, this study demonstrates that the byproduct of viral replication, dsRNA [poly (I:C)], and IL-18 have the ability to induce PDGF-AA in NF-κB-dependent manner. Furthermore, dsRNA act in an additive way with IL-18 to induce PDGF-AA which plays a major role in atherosclerosis. These data might help to understand the pro-atherogenic character of IL-18 and molecular mechanisms of viral infection-induced atherosclerosis.
Collapse
Affiliation(s)
- Amany Balah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | | | | |
Collapse
|
17
|
Salabei JK, Cummins TD, Singh M, Jones SP, Bhatnagar A, Hill BG. PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochem J 2013; 451:375-88. [PMID: 23421427 PMCID: PMC4040966 DOI: 10.1042/bj20121344] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vascular injury and chronic arterial diseases result in exposure of VSMCs (vascular smooth muscle cells) to increased concentrations of growth factors. The mechanisms by which growth factors trigger VSMC phenotype transitions remain unclear. Because cellular reprogramming initiated by growth factors requires not only the induction of genes involved in cell proliferation, but also the removal of contractile proteins, we hypothesized that autophagy is an essential modulator of VSMC phenotype. Treatment of VSMCs with PDGF (platelet-derived growth factor)-BB resulted in decreased expression of the contractile phenotype markers calponin and α-smooth muscle actin and up-regulation of the synthetic phenotype markers osteopontin and vimentin. Autophagy, as assessed by LC3 (microtubule-associated protein light chain 3 α; also known as MAP1LC3A)-II abundance, LC3 puncta formation and electron microscopy, was activated by PDGF exposure. Inhibition of autophagy with 3-methyladenine, spautin-1 or bafilomycin stabilized the contractile phenotype. In particular, spautin-1 stabilized α-smooth muscle cell actin and calponin in PDGF-treated cells and prevented actin filament disorganization, diminished production of extracellular matrix, and abrogated VSMC hyperproliferation and migration. Treatment of cells with PDGF prevented protein damage and cell death caused by exposure to the lipid peroxidation product 4-hydroxynonenal. The results of the present study demonstrate a distinct form of autophagy induced by PDGF that is essential for attaining the synthetic phenotype and for survival under the conditions of high oxidative stress found to occur in vascular lesions.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Aldehydes/pharmacology
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Autophagy/drug effects
- Autophagy/genetics
- Biomarkers/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Gene Expression Regulation/drug effects
- Macrolides/pharmacology
- Male
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Osteopontin/genetics
- Osteopontin/metabolism
- Oxidative Stress
- Phenotype
- Platelet-Derived Growth Factor/pharmacology
- Primary Cell Culture
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Vimentin/genetics
- Vimentin/metabolism
- Calponins
Collapse
Affiliation(s)
- Joshua K. Salabei
- Diabetes and Obesity Center and Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Timothy D. Cummins
- Diabetes and Obesity Center and Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Mahavir Singh
- Diabetes and Obesity Center and Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Steven P. Jones
- Diabetes and Obesity Center and Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202
| | - Aruni Bhatnagar
- Diabetes and Obesity Center and Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202
| | - Bradford G. Hill
- Diabetes and Obesity Center and Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202
| |
Collapse
|
18
|
Velez G, Weingarden AR, Lei H, Kazlauskas A, Gao G. SU9518 inhibits proliferative vitreoretinopathy in fibroblast and genetically modified Müller cell-induced rabbit models. Invest Ophthalmol Vis Sci 2013; 54:1392-7. [PMID: 23341018 DOI: 10.1167/iovs.12-10320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Proliferative vitreoretinopathy (PVR) is a complication of retinal detachment that can lead to surgical failure and vision loss. Previous studies suggest that a variety of retinal cells, including RPE and Müller glia, may be responsible. Platelet-derived growth factor receptor alpha (PDGFRα) has been strongly implicated in the pathogenesis, and found to be intrinsic to the development of PVR in rabbit models. We examine whether SU9518, a tyrosine kinase inhibitor with PDGFRα specificity, can inhibit the development of PVR in fibroblast and Müller cell rabbit models of PVR. METHODS SU9518 was injected in rabbit eyes along with fibroblasts, Müller cells (MIO-M1), or Müller cells transfected to increase their expression of PDGFRα (MIO-M1α). Indirect ophthalmoscopy and histopathology were used to assess efficacy and toxicity. RESULTS SU9518 was an effective inhibitor of PVR in both fibroblast and Müller cell models of PVR. No toxic effects were identified by indirect ophthalmoscopy or histopathology. CONCLUSIONS SU9518 is an effective and safe inhibitor of PVR in rabbit models, and could potentially be used in humans for the treatment of this and other proliferative diseases of the retina involving fibrosis and gliosis. Further animal studies need to be performed to examine retinal toxicity and sustained delivery mechanisms.
Collapse
Affiliation(s)
- Gisela Velez
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Biotech 5, 381 Plantation Street, Suite 250, Worcester, MA 01605, USA.
| | | | | | | | | |
Collapse
|
19
|
Zhang L, Ma J, Shen T, Wang S, Ma C, Liu Y, Ran Y, Wang L, Liu L, Zhu D. Platelet-derived growth factor (PDGF) induces pulmonary vascular remodeling through 15-LO/15-HETE pathway under hypoxic condition. Cell Signal 2012; 24:1931-9. [PMID: 22735810 DOI: 10.1016/j.cellsig.2012.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/16/2012] [Accepted: 06/16/2012] [Indexed: 11/30/2022]
Abstract
15-lipoxygenase (15-LO) is known to play an important role in chronic pulmonary hypertension. Accumulating evidence for its down-stream participants in the vasoconstriction and remodeling processes of pulmonary arteries, while how hypoxia regulates 15-LO/15-hydroxyeicosatetraenoic acid (15-HETE) to mediate hypoxic pulmonary hypertension is still unknown. Platelet-derived growth factor (PDGF) is an important vascular regulator whose concentration increases under hypoxic condition in the lungs of both humans and mice with pulmonary hypertension. The present study was carried out to determine whether hypoxia advances the pulmonary vascular remodeling through the PDGF/15-LO/15-HETE pathway. We found that pulmonary arterial medial thickening caused by hypoxia was alleviated after a treatment of the hypoxic rats with imatinib, which was associated with down-regulations of 15-LO-2 expression and 15-HETE production. Moreover, the increases in cell proliferation and endogenous 15-HETE content by hypoxia were attenuated by the inhibitors of PDGF-β receptor in pulmonary artery smooth muscle cells (PASMCs). The effects of PDGF-BB on cell proliferation and survival were weakened after the administration of 15-LO inhibitors or 15-LO RNA interference. These results suggest that hypoxia promotes PASMCs proliferation and survival, contributing to pulmonary vascular medial hypertrophy, which is likely to be mediated via the PDGF-BB/15-LO-2/15-HETE pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Daqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
McKeown L, Moss NK, Turner P, Li J, Heath N, Burke D, O’Regan D, Gilthorpe MS, Porter KE, Beech DJ. Platelet-derived growth factor maintains stored calcium through a nonclustering Orai1 mechanism but evokes clustering if the endoplasmic reticulum is stressed by store depletion. Circ Res 2012; 111:66-76. [PMID: 22556336 PMCID: PMC3605802 DOI: 10.1161/circresaha.111.263616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Calcium entry through Orai1 channels drives vascular smooth muscle cell migration and neointimal hyperplasia. The channels are activated by the important growth factor platelet-derived growth factor (PDGF). Channel activation is suggested to depend on store depletion, which redistributes and clusters stromal interaction molecule 1 (STIM1), which then coclusters and activates Orai1. OBJECTIVE To determine the relevance of STIM1 and Orai1 redistribution in PDGF responses. METHODS AND RESULTS Vascular smooth muscle cells were cultured from human saphenous vein. STIM1 and Orai1 were tagged with green and red fluorescent proteins to track them in live cells. Under basal conditions, the proteins were mobile but mostly independent of each other. Inhibition of sarco-endoplasmic reticulum calcium ATPase led to store depletion and dramatic redistribution of STIM1 and Orai1 into coclusters. PDGF did not evoke redistribution, even though it caused calcium release and Orai1-mediated calcium entry in the same time period. After chemical blockade of Orai1-mediated calcium entry, however, PDGF caused redistribution. Similarly, mutagenic disruption of calcium flux through Orai1 caused PDGF to evoke redistribution, showing that calcium flux through the wild-type channels had been filling the stores. Acidification of the extracellular medium to pH 6.4 caused inhibition of Orai1-mediated calcium entry and conferred capability for PDGF to evoke complete redistribution and coclustering. CONCLUSIONS The data suggest that PDGF has a nonclustering mechanism by which to activate Orai1 channels and maintain calcium stores replete. Redistribution and clustering become important, however, when the endoplasmic reticulum stress signal of store depletion arises, for example when acidosis inhibits Orai1 channels.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Calcium/metabolism
- Calcium Channels/metabolism
- Cells, Cultured
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Hydrogen-Ion Concentration
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Video
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- ORAI1 Protein
- Platelet-Derived Growth Factor/metabolism
- Protein Transport
- Recombinant Fusion Proteins/metabolism
- Saphenous Vein/metabolism
- Stress, Physiological
- Stromal Interaction Molecule 1
- Thapsigargin/pharmacology
- Time Factors
- Transfection
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Lynn McKeown
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicholas K Moss
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul Turner
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jing Li
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikki Heath
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Dermot Burke
- Leeds Teaching Hospitals, General Infirmary, Great George Street, Leeds, LS1 3EX
| | - David O’Regan
- Leeds Teaching Hospitals, General Infirmary, Great George Street, Leeds, LS1 3EX
| | - Mark S Gilthorpe
- Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Karen E Porter
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Beech
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
21
|
Endothelium derived nitric oxide synthase negatively regulates the PDGF-survivin pathway during flow-dependent vascular remodeling. PLoS One 2012; 7:e31495. [PMID: 22355372 PMCID: PMC3280303 DOI: 10.1371/journal.pone.0031495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/09/2012] [Indexed: 01/22/2023] Open
Abstract
Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (−/−)) is associated with activation of the platelet derived growth factor (PDGF) signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (−/−) mice. Moreover, nitric oxide (NO) negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.
Collapse
|
22
|
Hassan SE, Bekarev M, Kim MY, Lin J, Piperdi S, Gorlick R, Geller DS. Cell surface receptor expression patterns in osteosarcoma. Cancer 2011; 118:740-9. [PMID: 21751203 DOI: 10.1002/cncr.26339] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Although the presence of numerous cell signaling receptors in osteosarcoma is known, their simultaneous characterization has not been performed to date. The current study sought to characterize and quantify the expression of cell surface receptors across a variety of osteosarcoma cell lines. METHODS Standard (n = 4) and patient-derived (n = 10) osteosarcoma cell lines were cultured and labeled with antibodies to epidermal growth factor receptor, human epidermal growth factor receptor (HER)-2, HER-3, HER-4, insulin-like growth factor 1 receptor (IGF-1R), IGF-2R, insulin receptor (IR), vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, c-Met, fibroblast growth factor receptor (FGFR)-2, FGFR-3, and platelet-derived growth factor receptor (PDGFR)-β. Cell surface examination was performed using flow cytometry, and the geometric fluorescent mean for each receptor was calculated and compared against a positive control. RESULTS Significant overexpression of IGF-2R was shown in all cell lines, with an average geometric mean above the upper expression quartile. A variable expression pattern was seen for c-Met, PDGFR-β, IR, IGFR-1, HER-2, and VEGFR-3 with expression values for the remaining receptors mainly in the lower quartile. An apparent association between the expression of IGF-1R and HER-2 and between the expression of PDGFR-β and IR was demonstrated. CONCLUSION IGF-2R was consistently overexpressed on the cell surface across all tested osteosarcoma cell lines. Substantial, although variable, expression of c-Met, HER-2, IGF-1R, VEGFR-3, IR, and PDGFR-β was demonstrated as well, suggesting that these receptors may contribute to osteosarcoma aggressiveness and biological heterogeneity and may serve as potential targets within a subset of tumors. Associated receptor expression may provide new insight into common regulatory factors or pathways. Targeting either common factors or targeting multiple specific receptors may have therapeutic relevance.
Collapse
Affiliation(s)
- Sheref E Hassan
- Department of Orthopaedic Surgery, Montefiore Medical Center and The Children's Hospital at Montefiore, Bronx, New York 10467, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Luo Y, Zhang M, Zhang J, Zhang J, Chen C, Chen YE, Xiong JW, Zhu X. Platelet-derived growth factor induces Rad expression through Egr-1 in vascular smooth muscle cells. PLoS One 2011; 6:e19408. [PMID: 21559360 PMCID: PMC3084842 DOI: 10.1371/journal.pone.0019408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/05/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ras associated with diabetes (Rad) inhibits vascular lesion formation by reducing the attachment and migration of vascular smooth muscle cells (VSMCs). However, the transcriptional regulation of Rad in VSMCs is unclear. METHODOLOGY AND PRINCIPAL FINDINGS We found that Platelet-Derived Growth Factor (PDGF)induced Rad expression in a time- and dose-dependent manner in rat aortic smooth muscle cells (RASMCs) using quantitative real-time PCR. By serial deletion analysis of the Rad promoter, we identified that two GC-rich early growth response-1 (Egr-1) binding sites are essential for PDGF-induced Rad promoter activation. Overexpression of Egr-1 in RASMCs strongly stimulated Rad expression while the Egr-1 corepressor, NGFI-A binding protein 2 (NAB2), repressed PDGF-induced Rad up-regulation in a dose-dependent manner. Direct binding of Egr-1 to the Rad promoter region was further confirmed by chromatin immunoprecipitation assays. CONCLUSIONS Our results demonstrate that Rad is regulated by PDGF through the transcriptional factor Egr-1 in RASMCs.
Collapse
Affiliation(s)
- Yan Luo
- The Institute of Molecular Medicine, Peking University, Beijing, China
| | - Meiling Zhang
- The Institute of Molecular Medicine, Peking University, Beijing, China
| | - Ji Zhang
- The Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jifeng Zhang
- The Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chunlei Chen
- The Institute of Molecular Medicine, Peking University, Beijing, China
| | - Y. Eugene Chen
- The Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jing-Wei Xiong
- The Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaojun Zhu
- The Institute of Molecular Medicine, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Osherov AB, Gotha L, Cheema AN, Qiang B, Strauss BH. Proteins mediating collagen biosynthesis and accumulation in arterial repair: novel targets for anti-restenosis therapy. Cardiovasc Res 2011; 91:16-26. [PMID: 21245059 DOI: 10.1093/cvr/cvr012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Events contributing to restenosis after coronary interventions include platelet aggregation, inflammatory cell infiltration, growth factor release, and accumulation of smooth muscle cells (SMCs) and extracellular matrix (ECM). The ECM is composed of various collagen subtypes and proteoglycans and over time constitutes the major component of the mature restenotic plaque. The pathophysiology of collagen accumulation in the ECM during arterial restenosis is reviewed. Factors regulating collagen synthesis and degradation, including various cytokines and growth factors involved in the process, may be targets for therapies aimed at prevention of in-stent restenosis.
Collapse
Affiliation(s)
- Azriel B Osherov
- Schulich Heart Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room A-253, Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | |
Collapse
|
25
|
Targeting non-malignant disorders with tyrosine kinase inhibitors. Nat Rev Drug Discov 2011; 9:956-70. [PMID: 21119733 DOI: 10.1038/nrd3297] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Receptor and non-receptor tyrosine kinases are involved in multiple proliferative signalling pathways. Imatinib, one of the first tyrosine kinase inhibitors (TKIs) to be approved, revolutionized the treatment of chronic myelogenous leukaemia, and other TKIs with different spectra of kinase inhibition are used to treat renal cell carcinoma, non-small-cell lung cancer and colon cancer. Studies also support the potential use of TKIs as anti-proliferative agents in non-malignant disorders such as cardiac hypertrophy, and in benign-proliferative disorders including pulmonary hypertension, lung fibrosis, rheumatoid disorders, atherosclerosis, in-stent restenosis and glomerulonephritis. In this Review, we provide an overview of the most recent developments--both experimental as well as clinical--regarding the therapeutic potential of TKIs in non-malignant disorders.
Collapse
|
26
|
Zhuang D, Balani P, Pu Q, Thakran S, Hassid A. Suppression of PKG by PDGF or nitric oxide in differentiated aortic smooth muscle cells: obligatory role of protein tyrosine phosphatase 1B. Am J Physiol Heart Circ Physiol 2010; 300:H57-63. [PMID: 21057040 DOI: 10.1152/ajpheart.00225.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment of aortic smooth muscle cells with PDGF induces the upregulation of protein tyrosine phosphatase 1B (PTP1B). PTP1B, in turn, decreases the function of several growth factor receptors, thus completing a negative feedback loop. Studies have reported that PDGF induces the downregulation of PKG as part of a repertoire of dedifferentiation of vascular smooth muscle cells. Other studies have reported that chronic nitric oxide (NO) treatment also induces the downregulation of PKG. In the present study, we tested the hypothesis that the downregulation of PKG by PDGF or NO in differentiated rat aortic smooth muscle cells can be attributed to the upregulation of PTP1B. We found that treatment with PDGF or NO induced an upregulation of PTP1B levels. Overexpression of PTP1B induced a marked downregulation of PKG mRNA and protein levels, whereas the expression of dominant negative PTP1B or short interfering RNA directed against PTP1B blocked the capacity of PDGF or NO to decrease PKG levels. We conclude that the upregulation of PTP1B by PDGF or NO is both necessary and sufficient to induce the downregulation of PKG via an effect on PKG mRNA levels.
Collapse
Affiliation(s)
- Daming Zhuang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
27
|
Protein kinase Cδ mediates MCP-1 mRNA stabilization in vascular smooth muscle cells. Mol Cell Biochem 2010; 344:73-9. [PMID: 20607592 DOI: 10.1007/s11010-010-0530-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine that promotes atherosclerosis and is a mediator of the response to arterial injury. We previously demonstrated that platelet-derived growth factor (PDGF) and angiotensin II (Ang) induce the accumulation of MCP-1 mRNA in vascular smooth muscle cells mainly by increasing mRNA stability. In the present study, we have examined the signaling pathways involved in this stabilization of MCP-1 mRNA. The effect of PDGF (BB isoform) and Ang on MCP-1 mRNA stability was mediated by the PDGF β and angiotensin II receptor AT1R, respectively, and did not involve transactivation between the two receptors. The effect of PDGF-BB was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of phosphoinositol 3-kinase (PI3K), Src, or NADPH oxidase (NADPHox). In contrast, the effect of Ang was blocked by inhibitors of Src, and PKC, but not by inhibitors of PI3 K, or NADPHox. The effect of PDGF BB on MCP-1 mRNA stability was blocked by siRNA directed against PKCδ and protein kinase D (PKD), whereas the effect of Ang was blocked only by siRNA directed against PKCδ. These results suggest that the enhancement of MCP-1 mRNA stability by PDGF-BB and Ang are mediated by distinct "proximal" signaling pathways that converge on activation of PKCδ. This study identifies a novel role for PKCδ in mediating mRNA stability in smooth muscle cells.
Collapse
|
28
|
Liu Y, Li W, Ye C, Lin Y, Cheang TY, Wang M, Zhang H, Wang S, Zhang L, Wang S. Gambogic Acid Induces G0/G1 Cell Cycle Arrest and Cell Migration Inhibition Via Suppressing PDGF Receptor β Tyrosine Phosphorylation and Rac1 Activity in Rat Aortic Smooth Muscle Cells. J Atheroscler Thromb 2010; 17:901-13. [DOI: 10.5551/jat.3491] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yong Liu
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Wen Li
- Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - CaiSheng Ye
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Ying Lin
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Tuck-Yun Cheang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Mian Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Hui Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - SanMing Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - LongJuan Zhang
- Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - ShenMing Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
29
|
Li M, Abdollahi A, Gröne HJ, Lipson KE, Belka C, Huber PE. Late treatment with imatinib mesylate ameliorates radiation-induced lung fibrosis in a mouse model. Radiat Oncol 2009; 4:66. [PMID: 20025728 PMCID: PMC2802357 DOI: 10.1186/1748-717x-4-66] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 12/21/2009] [Indexed: 02/20/2023] Open
Abstract
Background We have previously shown that small molecule PDGF receptor tyrosine kinase inhibitors (RTKI) can drastically attenuate radiation-induced pulmonary fibrosis if the drug administration starts at the time of radiation during acute inflammation with present but limited effects against acute inflammation. To rule out interactions of the drug with acute inflammation, we investigated here in an interventive trial if a later drug administration start at a time when the acute inflammation has subsided - has also beneficial antifibrotic effects. Methods Whole thoraces of C57BL/6 mice were irradiated with 20 Gy and treated with the RTKI imatinib starting either 3 days after radiation (during acute inflammation) or two weeks after radiation (after the acute inflammation has subsided as demonstrated by leucocyte count). Lungs were monitored and analyzed by clinical, histological and in vivo non-invasive computed tomography as a quantitative measure for lung density and lung fibrosis. Results Irradiation induced severe lung fibrosis resulting in markedly reduced mouse survival vs. non-irradiated controls. Both early start of imatinib treatment during inflammation and late imatinib start markedly attenuated the development of pulmonary fibrosis as demonstrated by clinical, histological and qualitative and quantitative computed tomography results such as reduced lung density. Both administration schedules resulted in prolonged lifespans. The earlier drug treatment start resulted in slightly stronger beneficial antifibrotic effects along all measured endpoints than the later start. Conclusions Our findings show that imatinib, even when administered after the acute inflammation has subsided, attenuates radiation-induced lung fibrosis in mice. Our data also indicate that the fibrotic fate is not only determined by the early inflammatory events but rather a complex process in which secondary events at later time points are important. Because of the clinical availability of imatinib or similar compounds, a meaningful attenuation of radiation-induced lung fibrosis in patients seems possible.
Collapse
Affiliation(s)
- Minglun Li
- Department of Radiation Oncology German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Jandt E, Mutschke O, Mahboobi S, Uecker A, Platz R, Berndt A, Böhmer FD, Figulla HR, Werner GS. Stent-based release of a selective PDGF-receptor blocker from the bis-indolylmethanon class inhibits restenosis in the rabbit animal model. Vascul Pharmacol 2009; 52:55-62. [PMID: 19951743 DOI: 10.1016/j.vph.2009.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 11/19/2009] [Accepted: 11/23/2009] [Indexed: 11/26/2022]
Abstract
Long-term success of modern therapies for myocardial ischemia is limited by restenosis, with proliferation and migration of vascular smooth muscle cells (VSMC) as key events. Since findings in recent years indicate, that the Platelet Derived Growth Factor (PDGF) is an important selective factor in mitogenic and motogenic pathways of VSMC, different concepts for reducing restenosis by inhibiting PDGF signaling have been investigated, with local delivery of small receptor kinase inhibitors looking most promising. We tested the stent-based delivery of the PDGF-receptor inhibitor D-65495, a bis(1H-2-indolyl)methanone, in the rabbit iliac artery model of restenosis. New Zealand white rabbits underwent balloon dilation of iliac arteries for implantation of D-65495-coated or non-coated (solvent, either DMSO or 90%THF / 10% DMSO) coronary stents. After 4 weeks stents were removed and neointima formation in medial and proximal/ distal stent sections was histomorphometrically and immunohistochemically analyzed. Arteries with D-65495 eluting stents showed an up to 50% reduced restenosis compared to control stents. Also, the neointimal area was reduced, but there were no significant differences in injury score. Importantly, endothelialization was similar for control stents as well as for D-65495-coated stents, suggesting absence of a general cytostatic effect of the inhibitor. The impact of D-65495 on PDGF-receptor signaling in the vessel wall was indirectly assessed by immunohistochemical staining for activated protein kinase Akt, and PCNA as a proliferation marker and revealed some reduction for the inhibitor-treated vessels. In conclusion, the application of D-65495 caused a significant decrease in neointima formation, further supporting the concept of using locally released PDGF-receptor kinase inhibitors as anti-restenotic agents.
Collapse
Affiliation(s)
- Enrico Jandt
- Clinic for Internal Medicine III, Friedrich-Schiller-University Jena, Erlanger Alle 101, D-07747 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang XP, Pei ZH, Ren J. MAKING UP OR BREAKING UP: THE TORTUOUS ROLE OF PLATELET-DERIVED GROWTH FACTOR IN VASCULAR AGEING. Clin Exp Pharmacol Physiol 2009; 36:739-47. [DOI: 10.1111/j.1440-1681.2009.05182.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Pu Q, Chang Y, Zhang C, Cai Y, Hassid A. Chronic insulin treatment suppresses PTP1B function, induces increased PDGF signaling, and amplifies neointima formation in the balloon-injured rat artery. Am J Physiol Heart Circ Physiol 2008; 296:H132-9. [PMID: 19011046 DOI: 10.1152/ajpheart.00370.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We tested the hypothesis that hyperinsulinemia induces the suppression of protein tyrosine phosphatase 1B (PTP1B) function, leading to enhanced PDGF receptor (PDGFR) signaling and neointimal hyperplasia. Rats were implanted with insulin-releasing pellets or sham pellets. Blood glucose levels, insulin levels, food and water intake, body weights, and blood pressures were measured. Neointimal hyperplasia was assessed by computerized morphometry 14 days after carotid balloon injury. PTP1B protein expression in injured arteries was determined via Western blot analysis, whereas PTP1B activity was determined via an immunophosphatase assay. Serum insulin levels were two- to threefold greater in hyperinsulinemic rats, whereas systolic blood pressures, food and water intake, serum triglyceride levels, plasma cortisol levels, and urinary catecholamine levels were not affected. Fourteen days after injury, neointima-to-media area ratios were 0.89 +/- 0.23 and 1.35 +/- 0.22 in control and hyperinsulinemic rats, respectively (P < 0.01). PTP1B protein levels and total PTP1B activity in injured carotid arteries from the insulin-treated group were significantly decreased 7 or 14 days after injury, whereas PTP1B specific activity was decreased only 14 days after injury. These findings were associated with decreased PTP1B mRNA levels and increased PDGFR tyrosyl phosphorylation in insulin-treated rats. These observations support the hypothesis that hyperinsulinemia induces the suppression of PTP1B function, leading to enhanced PDGFR signaling and neointimal hyperplasia.
Collapse
Affiliation(s)
- Qinghua Pu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-alpha signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR-beta signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial-mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts.
Collapse
|
34
|
Zhuang D, Pu Q, Ceacareanu B, Chang Y, Dixit M, Hassid A. Chronic insulin treatment amplifies PDGF-induced motility in differentiated aortic smooth muscle cells by suppressing the expression and function of PTP1B. Am J Physiol Heart Circ Physiol 2008; 295:H163-73. [PMID: 18456732 DOI: 10.1152/ajpheart.01105.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperinsulinemia plays a major role in the pathogenesis of vascular disease. Restenosis occurs at an accelerated rate in hyperinsulinemia and is dependent on increased vascular smooth muscle cell movement from media to neointima. PDGF plays a critical role in mediating neointima formation in models of vascular injury. We have reported that PDGF increases the levels of protein tyrosine phosphatase PTP1B and that PTP1B suppresses PDGF-induced motility in cultured cells and that it attenuates neointima formation in injured carotid arteries. Others have reported that insulin enhances the mitogenic and motogenic effects of PDGF in cultured smooth muscle cells and that hyperinsulinemia promotes vascular remodeling. In the present study, we tested the hypothesis that insulin amplifies PDGF-induced cell motility by suppressing the expression and function of PTP1B. We found that chronic but not acute treatment of cells with insulin enhances PDGF-induced motility in differentiated cultured primary rat aortic smooth muscle cells and that it suppresses PDGF-induced upregulation of PTP1B protein. Moreover, insulin suppresses PDGF-induced upregulation of PTP1B mRNA levels, PTP1B enzyme activity, and binding of PTP1B to the PDGF receptor-beta, and it enhances PDGF-induced PDGF receptor phosphotyrosylation. Treatment with insulin induces time-dependent upregulation of phosphatidylinositol 3-kinase (PI3-kinase)-delta and activation of Akt, an enzyme downstream of PI3-kinase. Finally, inhibition of PI3-kinase activity, or its function, by pharmacological or genetic means rescues PTP1B activity in insulin-treated cells. These observations uncover novel mechanisms that explain how insulin amplifies the motogenic capacity of the pivotal growth factor PDGF.
Collapse
Affiliation(s)
- Daming Zhuang
- Dept. of Physiology, Univ. of Tennessee, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
35
|
Alvarez RH, Kantarjian HM, Cortes JE. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc 2006; 81:1241-57. [PMID: 16970222 DOI: 10.4065/81.9.1241] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platelet-derived growth factor (PDGF) is mainly believed to be an important mitogen for connective tissue, especially for fibroblasts that serve in wound healing. However, PDGF also has important roles during embryonal development, and its overexpression has been linked to different types of fibrotic disorders and malignancies. Platelet-derived growth factor is synthesized by many different cell types, and its expression is broad. Its synthesis is in response to external stimuli, such as exposure to low oxygen tension, thrombin, or stimulation by other cytokines and growth factors. In addition, PDGF may function in autocrine stimulation of tumor cells, regulation of interstitial fluid pressure, and angiogenesis. Recently, several drugs were developed that are potent inhibitors of the tyrosine kinase activity of PDGF receptors. Thus, it is important to understand the physiology of PDGF and its receptors and the role of PDGF in different diseases. This review summarizes the physiologic activity of PDGF, the expression of PDGF during embryonal development, and the roles of PDGF expression in nonmalignant disease and in different tumors.
Collapse
Affiliation(s)
- Ricardo H Alvarez
- Department of Internal Medicine, The University of Texas at Houston Medical School, Houston, USA
| | | | | |
Collapse
|
36
|
Mallawaarachchi CM, Weissberg PL, Siow RCM. Antagonism of platelet‐derived growth factor by perivascular gene transfer attenuates adventitial cell migration after vascular injury: new tricks for old dogs? FASEB J 2006; 20:1686-8. [PMID: 16790526 DOI: 10.1096/fj.05-5435fje] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Migration of adventitial fibroblasts contributes to vascular remodeling after angioplasty. This study has used perivascular gene transfer of a truncated platelet-derived growth factor PDGF receptor (PDGFXR) to investigate whether antagonism of PDGF signaling alters adventitial cell migration after balloon injury in rat carotid arteries. Adenoviruses coordinating expression of beta-galactosidase (LacZ) and PDGFXR or LacZ and green fluorescent protein (GFP) were applied to the perivascular surface of arteries and balloon injury performed 4 days later. Vessels were excised at 3, 7, and 14 days to determine morphology and gene expression. Uninjured arteries only expressed LacZ positive cells in the adventitial compartment; however, after injury in LacZ and GFP transfected arteries, LacZ positive cells contributed to the population of cells within the media and neointima at 7-14 days. Overexpression of PDGFXR and LacZ resulted in a significant reduction in the number of LacZ labeled cells in the neointima after vascular injury, concomitant with reduced remodeling, collagen content, expression of matrix metalloproteinase-2, and increased levels of tissue inhibitors of metalloproteinase-1 and -2. We provide evidence that perivascular antagonism of PDGF attenuates remodeling and contribution of adventitial fibroblasts to neointima formation after balloon angioplasty. Perivascular gene transfer may represent a therapeutic strategy to reduce the incidence of restenosis.
Collapse
Affiliation(s)
- Chandike M Mallawaarachchi
- Cardiovascular Division, School of Clinical Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | | | | |
Collapse
|
37
|
Li M, Ping G, Plathow C, Trinh T, Lipson KE, Hauser K, Krempien R, Debus J, Abdollahi A, Huber PE. Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells. BMC Cancer 2006; 6:79. [PMID: 16556328 PMCID: PMC1458351 DOI: 10.1186/1471-2407-6-79] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 03/24/2006] [Indexed: 11/10/2022] Open
Abstract
Background Several small receptor tyrosine kinase inhibitors (RTKI) have entered clinical cancer trials alone and in combination with radiotherapy or chemotherapy. The inhibitory spectrum of these compounds is often not restricted to a single target. For example Imatinib/Gleevec (primarily a bcr/abl kinase inhibitor) or SU11248 (mainly a VEGFR inhibitor) are also potent inhibitors of PDGFR and other kinases. We showed previously that PDGF signaling inhibition attenuates radiation-induced lung fibrosis in a mouse model. Here we investigate effects of SU9518, a PDGFR inhibitor combined with ionizing radiation in human primary fibroblasts and endothelial cells in vitro, with a view on utilizing RTKI for antifibrotic therapy. Methods Protein levels of PDGFR-α/-β and phosphorylated PDGFR in fibroblasts were analyzed using western and immunocytochemistry assays. Functional proliferation and clonogenic assays were performed (i) to assess PDGFR-mediated survival and proliferation in fibroblasts and endothelial cells after SU9518 (small molecule inhibitor of PDGF receptor tyrosine kinase); (ii) to test the potency und selectivity of the PDGF RTK inhibitor after stimulation with PDGF isoforms (-AB, -AA, -BB) and VEGF+bFGF. In order to simulate in vivo conditions and to understand the role of radiation-induced paracrine PDGF secretion, co-culture models consisting of fibroblasts and endothelial cells were employed. Results In fibroblasts, radiation markedly activated PDGF signaling as detected by enhanced PDGFR phosphorylation which was potently inhibited by SU9518. In fibroblast clonogenic assay, SU9518 reduced PDGF stimulated fibroblast survival by 57%. Likewise, SU9518 potently inhibited fibroblast and endothelial cell proliferation. In the co-culture model, radiation of endothelial cells and fibroblast cells substantially stimulated proliferation of non irradiated fibroblasts and vice versa. Importantly, the RTK inhibitor significantly inhibited this paracrine radiation-induced fibroblast and endothelial cell activation. Conclusion Radiation-induced autocrine and paracrine PDGF signaling plays an important role in fibroblast and endothelial cell proliferation. SU9518, a PDGFR tyrosine kinase inhibitor, reduces radiation-induced fibroblast and endothelial cell activation. This may explain therapeutic anticancer effects of Imatinib/Gleevec, and at the same time it could open a way of attenuating radiation-induced fibrosis.
Collapse
Affiliation(s)
- Minglun Li
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Tuebingen, Germany
| | - Gong Ping
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
| | - Christian Plathow
- University of Heidelberg Medical School, Heidelberg, Germany
- Department of Diagnostic Radiology, University Hospital Tuebingen, Germany
| | - Thuy Trinh
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
| | | | - Kai Hauser
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Department of Mathematics, University of California, Berkeley, CA, USA
| | - Robert Krempien
- Department of Clinical Radiology, University Hospital Heidelberg, Germany
| | - Juergen Debus
- Department of Clinical Radiology, University Hospital Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
38
|
Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Gröne HJ, Lipson KE, Huber PE. Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. ACTA ACUST UNITED AC 2005; 201:925-35. [PMID: 15781583 PMCID: PMC2213091 DOI: 10.1084/jem.20041393] [Citation(s) in RCA: 294] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pulmonary fibrosis is the consequence of a variety of diseases with no satisfying treatment option. Therapy-induced fibrosis also limits the efficacy of chemotherapy and radiotherapy in numerous cancers. Here, we studied the potential of platelet-derived growth factor (PDGF) receptor tyrosine kinase inhibitors (RTKIs) to attenuate radiation-induced pulmonary fibrosis. Thoraces of C57BL/6 mice were irradiated (20 Gy), and mice were treated with three distinct PDGF RTKIs (SU9518, SU11657, or Imatinib). Irradiation was found to induce severe lung fibrosis resulting in dramatically reduced mouse survival. Treatment with PDGF RTKIs markedly attenuated the development of pulmonary fibrosis in excellent correlation with clinical, histological, and computed tomography results. Importantly, RTKIs also prolonged the life span of irradiated mice. We found that radiation up-regulated expression of PDGF (A–D) isoforms leading to phosphorylation of PDGF receptor, which was strongly inhibited by RTKIs. Our findings suggest a pivotal role of PDGF signaling in the pathogenesis of pulmonary fibrosis and indicate that inhibition of fibrogenesis, rather than inflammation, is critical to antifibrotic treatment. This study points the way to a potential new approach for treating idiopathic or therapy-related forms of lung fibrosis.
Collapse
Affiliation(s)
- Amir Abdollahi
- Department of Radiation Oncology, German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Platelet-derived growth factor (PDGF) was identified in a search for serum factors that stimulate smooth muscle cell (SMC) proliferation. During the development of lesions of atherosclerosis that can ultimately lead to vessel occlusion, SMC are stimulated by inflammatory factors to migrate from their normal location in the media. They accumulate within the forming lesion where they contribute to lesion expansion by proliferation and deposition of extracellular matrix. Different genetic manipulations in vascular cells combined with various inhibitory strategies have provided strong evidence for PDGF playing a prominent role in the migration of SMC into the neointima following acute injury and in atherosclerosis. Other activities of PDGF identified in vivo suggest additional functions for PDGF in the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Elaine W Raines
- Department of Pathology, Harborview Medical Center, University of Washington, Box 359675, 325 9th Avenue, Seattle, WA 98104, USA.
| |
Collapse
|
40
|
Chang Y, Zhuang D, Zhang C, Hassid A. Increase of PTP levels in vascular injury and in cultured aortic smooth muscle cells treated with specific growth factors. Am J Physiol Heart Circ Physiol 2004; 287:H2201-8. [PMID: 15271661 DOI: 10.1152/ajpheart.00520.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Migration and proliferation of vascular smooth muscle cells are key events in injury-induced neointima formation. Several growth factors and ANG II are thought to be involved in neointima formation. A recent report indicated that vascular injury is associated with increased mRNA levels of protein tyrosine phosphatase (PTP)-1B (PTP-1B). In the present study, we tested the following hypotheses: 1) rat carotid artery injury induces the expression of PTP-1B, Src homology-2 domain phosphatase (SHP-2), and PTP-proline, glutamate, serine, and threonine sequence (PEST) protein; and 2) polypeptide growth factors as well as ANG II increase the levels of tyrosine phosphatases in cultured rat aortic smooth muscle cells. We found that vascular injury induced by balloon catheter increases the protein levels of aforementioned phosphatases and that these effects occur in a PTP specific, as well as temporally and regionally specific, manner. Moreover, treatment of cultured primary rat aortic smooth muscle cells with PDGF or bFGF, but not with IGF1, EGF, or ANG II, increases PTP-1B, SHP-2, and PTP-PEST protein levels. These results suggest that increased PDGF and bFGF levels, occurring after vascular injury, may induce expression of several PTPs.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Aorta/drug effects
- Aorta/enzymology
- Carotid Arteries/drug effects
- Carotid Arteries/enzymology
- Carotid Artery Injuries/enzymology
- Cells, Cultured
- Fibroblast Growth Factor 2/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Platelet-Derived Growth Factor/pharmacology
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/metabolism
- Rats
- Rats, Sprague-Dawley
- Time Factors
Collapse
Affiliation(s)
- Yingzi Chang
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
41
|
Englesbe MJ, Davies MG, Hawkins SM, Hsieh PCH, Daum G, Kenagy RD, Clowes AW. Arterial injury repair in nonhuman primates-the role of PDGF receptor-beta. J Surg Res 2004; 119:80-4. [PMID: 15126086 DOI: 10.1016/j.jss.2003.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Indexed: 12/13/2022]
Abstract
BACKGROUND This study documents the time course of the response to injury of the saphenous artery in baboons and the role of the platelet-derived growth factor-beta. Fundamental differences with the well-characterized rat arterial injury model have been found. MATERIALS AND METHODS Thirty-eight baboons received a unilateral balloon injury to the saphenous artery and were treated with a chimeric blocking antibody to PDGFR-beta or vehicle control for 7, 14, or 28 days. The arteries were evaluated morphologically and for cell proliferation. RESULTS Both medial and intimal smooth muscle cell proliferation were elevated 7 days after injury and were back close to baseline at 14 days. Unlike the rat, blockade of PDGFR-beta inhibited medial proliferation over 80% at 7 and 14 days, while intimal proliferation was only inhibited at 14 days (>95%). Also, unlike the rat, the baboon arterial media, as well as the intima, increased in size by 14 days after injury. Blockade of PDGFR-beta completely inhibited both intimal and medial growth at 14 days, but there was less of an effect on intimal growth at 28 days. CONCLUSION Blockade of PDGFR-beta may be a clinical approach to inhibit intimal hyperplasia in humans, but this study raises concerns about the long-term efficacy of this treatment.
Collapse
Affiliation(s)
- Michael J Englesbe
- Department of Surgery, Division of Vascular Surgery, University of Washington Medical Center, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Englesbe MJ, Deou J, Bourns BD, Clowes AW, Daum G. Interleukin-1beta inhibits PDGF-BB-induced migration by cooperating with PDGF-BB to induce cyclooxygenase-2 expression in baboon aortic smooth muscle cells. J Vasc Surg 2004; 39:1091-6. [PMID: 15111866 DOI: 10.1016/j.jvs.2004.01.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Smooth muscle cell (SMC) migration from the media into the intima is pivotal for intimal formation after vascular injury. Platelet-derived growth factor (PDGF)-BB is a potent chemoattractant for SMCs in vitro and in vivo. We investigated whether interleukin (IL)-1beta affects migration in response to PDGF-BB. Our data suggest that IL-1beta is inhibitory and that this effect is mediated by cyclooxygenase (COX)-2. We further addressed the role of the mitogen-activated protein kinase p38, which is activated by PDGF-BB and by IL-1beta. METHODS Baboon aortic SMCs were prepared with the explant method. Migration was measured in a Boyden chamber assay through filters coated with monomeric collagen. COX2 expression and phosphorylation of p38 MAPK were analyzed by Western blotting. RESULTS PDGF-BB (10 ng/mL) stimulates migration 3.8-fold, and IL-1beta (0.1 ng/mL) reduces this response by 40%. The inhibitory effect of IL-1beta is abolished by the COX inhibitor, indomethacin (10 micromol/L), the specific COX2 inhibitor, NS398 (10 micromol/L), and the p38 MAPK inhibitor SB203580 (3 micromol/L). We found that IL-1beta and PDGF-BB synergize to stimulate COX2 expression. We further demonstrated that p38 MAPK is activated by IL-1beta and PDGF with different kinetics and that p38 MAPK is required for maximal COX2 expression in response to IL-1beta plus PDGF-BB. CONCLUSION IL-1beta inhibits PDGF-BB-induced migration by cooperating with PDGF-BB to induce COX2 through activation of p38 MAPK. Whether this effect of IL-1beta modulates intimal growth after vascular injury remains to be elucidated.
Collapse
|
43
|
Vamvakopoulos JE, Aavik E, Häyry P. Healing the vasculature: angioprotective therapy moves from the bench to the clinic. Transplant Rev (Orlando) 2004. [DOI: 10.1016/j.trre.2004.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Lemström KB, Nykänen AI, Tikkanen JM, Krebs R, Sihvola RK, Kallio EA, Olivier R, Koskinen PK. Role of angiogenic growth factors in transplant coronary artery disease. Ann Med 2004; 36:184-93. [PMID: 15181974 DOI: 10.1080/07853890310025243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Transplant coronary artery disease (TxCAD) as a manifestation of chronic rejection is a major limitation to long-term survival of heart transplant recipients. Although the exact molecular and cellular mechanisms contributing to neointimal formation are unknown, it has been generally believed that smooth muscle cells (SMC) of donor origin migrate from the media into the subendothelial layer of the vascular wall, where SMC proliferate and synthesize extracellular matrix resulting in intimal thickening. However, recent observations indicate that hematopoietic and vascular progenitor cells derived from recipient bone marrow may contribute to the arteriosclerotic lesion formation in the coronary arteries of the transplant. On the other hand, studies on postnatal hematopoiesis indicate that angiogenic growth factors such as vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) may regulate the recruitment of these cells into distant organs. Furthermore, embryonic VEGFR-2 /CD34+ stem cells may serve as vascular progenitor cells and their differentiation into endothelial cells and SMC may be regulated by VEGF and platelet-derived growth factor (PDGF), respectively. In this review, we discuss the role of angiogenic growth factors such as VEGF, Ang, and PDGF in the recruitment of hematopoietic and vascular progenitor cells in TxCAD and suggest novel therapies targeted at homing, differentiation and proliferation of these cells in the allograft.
Collapse
Affiliation(s)
- Karl B Lemström
- Cardiopulmonary Research Group, Transplantation Laboratory, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Heldin CH, Eriksson U, Ostman A. New members of the platelet-derived growth factor family of mitogens. Arch Biochem Biophys 2002; 398:284-90. [PMID: 11831861 DOI: 10.1006/abbi.2001.2707] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, SE-751 24, Sweden
| | | | | |
Collapse
|