1
|
Abramova A, Bride J, Oger C, Demion M, Galano JM, Durand T, Roy J. Metabolites derived from radical oxidation of PUFA: NEO-PUFAs, promising molecules for health? Atherosclerosis 2024; 398:118600. [PMID: 39341752 DOI: 10.1016/j.atherosclerosis.2024.118600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Oxidative stress plays a critical role in numerous pathological processes. Under these stress conditions, the free radical-catalyzed lipid peroxidation generates in vivo a large number of key products that are involved in many physiological and pathophysiological processes. Among these products are neuroprostanes, which arise from the peroxidation of docosahexaenoic acid (DHA), and isoprostanes, resulting from arachidonic acid (AA) and eicosapentaenoic acid (EPA) through the same peroxidation process. These non-enzymatic oxygenated metabolites newly appointed NEO-PUFAs have gained recognition as reliable markers of oxidative stress in neurogenerative and cardiovascular diseases. Moreover, some of them display a wide range of biological activities. The ability to detect and measure these metabolites offers precious insights into the mechanisms of oxidative damage and holds potential therapeutic implications for various health conditions, including neurodegenerative diseases. This review focuses on the role of neuroprostanes as biomarkers for oxidative stress and related diseases, highlighting their potential applications in medical research and treatment.
Collapse
Affiliation(s)
- Anna Abramova
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France
| | - Jamie Bride
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France
| | - Marie Demion
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France.
| | - Jérôme Roy
- Universite de Pau et des Pays de l'Adour, INRAE, NUMEA, Aquapôle, 64310, Saint-Pée-sur-Nivelle, France.
| |
Collapse
|
2
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
3
|
Antenatal and Postnatal Sequelae of Oxidative Stress in Preterm Infants: A Narrative Review Targeting Pathophysiological Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020422. [PMID: 36829980 PMCID: PMC9952227 DOI: 10.3390/antiox12020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The detrimental effects of oxidative stress (OS) can start as early as after conception. A growing body of evidence has shown the pivotal role of OS in the development of several pathological conditions during the neonatal period, which have been therefore defined as OS-related neonatal diseases. Due to the physiological immaturity of their antioxidant defenses and to the enhanced antenatal and postnatal exposure to free radicals, preterm infants are particularly susceptible to oxidative damage, and several pathophysiological cascades involved in the development of prematurity-related complications are tightly related to OS. This narrative review aims to provide a detailed overview of the OS-related pathophysiological mechanisms that contribute to the main OS-related diseases during pregnancy and in the early postnatal period in the preterm population. Particularly, focus has been placed on pregnancy disorders typically associated with iatrogenic or spontaneous preterm birth, such as intrauterine growth restriction, pre-eclampsia, gestational diabetes, chorioamnionitis, and on specific postnatal complications for which the role of OS has been largely ascertained (e.g., respiratory distress, bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leukomalacia, necrotizing enterocolitis, neonatal sepsis). Knowledge of the underlying pathophysiological mechanisms may increase awareness on potential strategies aimed at preventing the development of these conditions or at reducing the ensuing clinical burden.
Collapse
|
4
|
Krajina I, Stupin A, Šola M, Mihalj M. Oxidative Stress Induced by High Salt Diet—Possible Implications for Development and Clinical Manifestation of Cutaneous Inflammation and Endothelial Dysfunction in Psoriasis vulgaris. Antioxidants (Basel) 2022; 11:antiox11071269. [PMID: 35883760 PMCID: PMC9311978 DOI: 10.3390/antiox11071269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Although oxidative stress is recognized as an important effector mechanism of the immune system, uncontrolled formation of reactive oxygen and nitrogen species promotes excessive tissue damage and leads to disease development. In view of this, increased dietary salt intake has been found to damage redox systems in the vessel wall, resulting in endothelial dysfunction associated with NO uncoupling, inflammation, vascular wall remodeling and, eventually, atherosclerosis. Several studies have reported increased systemic oxidative stress accompanied by reduced antioxidant capacity following a high salt diet. In addition, vigorous ionic effects on the immune mechanisms, such as (trans)differentiation of T lymphocytes are emerging, which together with the evidence of NaCl accumulation in certain tissues warrants a re-examination of the data derived from in vitro research, in which the ionic influence was excluded. Psoriasis vulgaris (PV), as a primarily Th17-driven inflammatory skin disease with proven inflammation-induced accumulation of sodium chloride in the skin, merits our interest in the role of oxidative stress in the pathogenesis of PV, as well as in the possible beneficial effects that could be achieved through modulation of dietary salt intake and antioxidant supplementation.
Collapse
Affiliation(s)
- Ivana Krajina
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Ana Stupin
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia;
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Marija Šola
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Correspondence: (M.Š.); (M.M.); Tel.: +385-31-512-800 (M.M.)
| | - Martina Mihalj
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia;
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Correspondence: (M.Š.); (M.M.); Tel.: +385-31-512-800 (M.M.)
| |
Collapse
|
5
|
Rade JJ, Barton BA, Vasan RS, Kronsberg SS, Xanthakis V, Keaney JF, Hamburg NM, Kakouros N, Kickler TA. Association of Thromboxane Generation With Survival in Aspirin Users and Nonusers. J Am Coll Cardiol 2022; 80:233-250. [PMID: 35660296 DOI: 10.1016/j.jacc.2022.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Persistent systemic thromboxane generation, predominantly from nonplatelet sources, in aspirin (ASA) users with cardiovascular disease (CVD) is a mortality risk factor. OBJECTIVES This study sought to determine the mortality risk associated with systemic thromboxane generation in an unselected population irrespective of ASA use. METHODS Stable thromboxane B2 metabolites (TXB2-M) were measured by enzyme-linked immunosorbent assay in banked urine from 3,044 participants (mean age 66 ± 9 years, 53.8% women) in the Framingham Heart Study. The association of TXB2-M to survival over a median observation period of 11.9 years (IQR: 10.6-12.7 years) was determined by multivariable modeling. RESULTS In 1,363 (44.8%) participants taking ASA at the index examination, median TXB2-M were lower than in ASA nonusers (1,147 pg/mg creatinine vs 4,179 pg/mg creatinine; P < 0.0001). TXB2-M were significantly associated with all-cause and cardiovascular mortality irrespective of ASA use (HR: 1.96 and 2.41, respectively; P < 0.0001 for both) for TXB2-M in the highest quartile based on ASA use compared with lower quartiles, and remained significant after adjustment for mortality risk factors for similarly aged individuals (HR: 1.49 and 1.82, respectively; P ≤ 0.005 for both). In 2,353 participants without CVD, TXB2-M were associated with cardiovascular mortality in ASA nonusers (adjusted HR: 3.04; 95% CI: 1.29-7.16) but not in ASA users, while ASA use was associated with all-cause mortality in those with low (adjusted HR: 1.46; 95% CI: 1.14-1.87) but not elevated TXB2-M. CONCLUSIONS Systemic thromboxane generation is an independent risk factor for all-cause and cardiovascular mortality irrespective of ASA use, and its measurement may be useful for therapy modification, particularly in those without CVD.
Collapse
Affiliation(s)
- Jeffrey J Rade
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Bruce A Barton
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Shari S Kronsberg
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - John F Keaney
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Boston University School of Medicine, Boston, Massachusetts, USA
| | - Naomi M Hamburg
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nikolaos Kakouros
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
6
|
Obeticholic acid ameliorates hepatorenal syndrome in ascitic cirrhotic rats by down-regulating the renal 8-iso-PGF2α-activated COX-TXA2 pathway. Clin Sci (Lond) 2020; 134:2055-2073. [PMID: 32725149 DOI: 10.1042/cs20200452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUNDS/AIMS The present study explores the potential of chronic treatment with the Foresaid X receptor (FXR) agonist obeticholic acid (OCA), which inhibits oxidative stress-related pathogenesis, in ascitic cirrhotic rats with hepatorenal syndrome (HRS) developed 6 weeks after bile duct ligation (BDL). METHODS Systemic, splanchnic, and renal hemodynamics and pathogenic cascades were measured in ascitic BDL and sham rats receiving 2-weeks of either vehicle or OCA treatments (sham-OCA and BDL-OCA groups), and NRK-52E cells, rat kidney tubular epithelial cells. RESULTS Chronic OCA treatment significantly normalized portal hypertension, glomerular filtration rate, urine output, renal blood flow; decreased ascites, renal vascular resistance, serum creatinine, and the release of renal tubular damage markers, including urinary neutrophil gelatinase-associated lipocalin (uNGAL) and kidney injury moleculae-1 (uKim-1) in BDL-OCA rats. In the BDL group, inhibition of the renal oxidative stress (8-iso-PGF2α)-activated cyclooxygenase-thromboxane A2 [COX-TXA2] pathway, apoptosis, and tubular injury accompanied by a decrease in hyper-responsiveness to the vasoconstrictor 8-iso-PGF2α in perfused kidneys. In vitro experiments revealed that 8-iso-PGF2α induced oxidative stress, release of reactive oxygen species, and cell apoptosis, which were reversed by concomitant incubation with the FXR agonist. CONCLUSIONS Through the inhibition of renal 8-iso-PGF2α production and the down-regulation of the COX-TXA2 pathway, our study suggests that chronic OCA treatment can ameliorate the HRS in ascitic cirrhotic rats. Thus, OCA is an agent with antioxidative stress, antivasoconstrictive, antiapoptotic properties which benefit ascitic, cirrhotic rats with systemic, hepatic, and renal abnormalities.
Collapse
|
7
|
Caracuel L, Sastre E, Callejo M, Rodrigues-Díez R, García-Redondo AB, Prieto I, Nieto C, Salaices M, Aller MÁ, Arias J, Blanco-Rivero J. Hepatic Encephalopathy-Associated Cerebral Vasculopathy in Acute-on-Chronic Liver Failure: Alterations on Endothelial Factor Release and Influence on Cerebrovascular Function. Front Physiol 2020; 11:593371. [PMID: 33329042 PMCID: PMC7716775 DOI: 10.3389/fphys.2020.593371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
The acute-on-chronic liver failure (ACLF) is a syndrome characterized by liver decompensation, hepatic encephalopathy (HE) and high mortality. We aimed to determine the mechanisms implicated in the development of HE-associated cerebral vasculopathy in a microsurgical liver cholestasis (MHC) model of ACLF. Microsurgical liver cholestasis was induced by ligating and extracting the common bile duct and four bile ducts. Sham-operated and MHC rats were maintained for eight postoperative weeks Bradykinin-induced vasodilation was greater in middle cerebral arteries from MHC rats. Both Nω-Nitro-L-arginine methyl ester and indomethacin diminished bradykinin-induced vasodilation largely in arteries from MHC rats. Nitrite and prostaglandin (PG) F1α releases were increased, whereas thromboxane (TX) B2 was not modified in arteries from MHC. Expressions of endothelial nitric oxide synthase (eNOS), inducible NOS, and cyclooxygenase (COX) 2 were augmented, and neuronal NOS (nNOS), COX-1, PGI2 synthase, and TXA2S were unmodified. Phosphorylation was augmented for eNOS and unmodified for nNOS. Altogether, these endothelial alterations might collaborate to increase brain blood flow in HE.
Collapse
Affiliation(s)
- Laura Caracuel
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Esther Sastre
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - María Callejo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Rodrigues-Díez
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Ana B. García-Redondo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Isabel Prieto
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Departamento de Cirugía General y Digestiva, Hospital Universitario la Paz, Madrid, Spain
| | - Carlos Nieto
- Departamento de Cirugía Cardiaca, Hospital Universitario la Paz, Madrid, Spain
| | - Mercedes Salaices
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Ma Ángeles Aller
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Jaime Arias
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- *Correspondence: Javier Blanco-Rivero,
| |
Collapse
|
8
|
Kakouros N, Gluckman TJ, Conte JV, Kickler TS, Laws K, Barton BA, Rade JJ. Differential Impact of Serial Measurement of Nonplatelet Thromboxane Generation on Long-Term Outcome After Cardiac Surgery. J Am Heart Assoc 2017; 6:JAHA.117.007486. [PMID: 29097390 PMCID: PMC5721801 DOI: 10.1161/jaha.117.007486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Systemic thromboxane generation, not suppressible by standard aspirin therapy and likely arising from nonplatelet sources, increases the risk of atherothrombosis and death in patients with cardiovascular disease. In the RIGOR (Reduction in Graft Occlusion Rates) study, greater nonplatelet thromboxane generation occurred early compared with late after coronary artery bypass graft surgery, although only the latter correlated with graft failure. We hypothesize that a similar differential association exists between nonplatelet thromboxane generation and long-term clinical outcome. METHODS AND RESULTS Five-year outcome data were analyzed for 290 RIGOR subjects taking aspirin with suppressed platelet thromboxane generation. Multivariable modeling was performed to define the relative predictive value of the urine thromboxane metabolite, 11-dehydrothromboxane B2 (11-dhTXB2), measured 3 days versus 6 months after surgery on the composite end point of death, myocardial infarction, revascularization or stroke, and death alone. 11-dhTXB2 measured 3 days after surgery did not independently predict outcome, whereas 11-dhTXB2 >450 pg/mg creatinine measured 6 months after surgery predicted the composite end point (adjusted hazard ratio, 1.79; P=0.02) and death (adjusted hazard ratio, 2.90; P=0.01) at 5 years compared with lower values. Additional modeling revealed 11-dhTXB2 measured early after surgery associated with several markers of inflammation, in contrast to 11-dhTXB2 measured 6 months later, which highly associated with oxidative stress. CONCLUSIONS Long-term nonplatelet thromboxane generation after coronary artery bypass graft surgery is a novel risk factor for 5-year adverse outcome, including death. In contrast, nonplatelet thromboxane generation in the early postoperative period appears to be driven predominantly by inflammation and did not independently predict long-term clinical outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruce A Barton
- University of Massachusetts Medical School, Worcester, MA
| | - Jeffrey J Rade
- University of Massachusetts Medical School, Worcester, MA .,Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Gariepy H, Zhao J, Levy D. Differential contribution of COX-1 and COX-2 derived prostanoids to cortical spreading depression-Evoked cerebral oligemia. J Cereb Blood Flow Metab 2017; 37:1060-1068. [PMID: 27178425 PMCID: PMC5363480 DOI: 10.1177/0271678x16650217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/27/2016] [Accepted: 04/20/2016] [Indexed: 11/15/2022]
Abstract
Cortical spreading depression (CSD) is considered a significant phenomenon for human neurological conditions and one of its key signatures is the development of persistent cortical oligemia. The factors underlying this reduction in cerebral blood flow (CBF) remain incompletely understood but may involve locally elaborated vasoconstricting eicosanoids. We employed laser Doppler flowmetry in urethane-anesthetized rats, together with a local pharmacological blockade approach, to test the relative contribution of cyclooxygenase (COX)-derived prostanoids to the oligemic response following CSD. Administration of the non-selective COX inhibitor naproxen completely inhibited the oligemic response. Selective inhibition of COX-1 with SC-560 preferentially reduced the early reduction in CBF while selective COX-2 inhibition with NS-398 affected only the later response. Blocking the action of thromboxane A2 (TXA2), using the selective thromboxane synthase inhibitor ozagrel, reduced only the initial CBF decrease, while inhibition of prostaglandin F2alpha action, using the selective FP receptor antagonist AL-8810, blocked the later phase of the oligemia. Our results suggest that the long-lasting oligemia following CSD consists of at least two distinct temporal phases, mediated by preferential actions of COX-1- and COX-2-derived prostanoids: an initial phase mediated by COX-1 that involves TXA2 followed by a later phase, mediated by COX-2 and PGF2alpha.
Collapse
Affiliation(s)
- Helaine Gariepy
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jun Zhao
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dan Levy
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Kakouros N, Nazarian SM, Stadler PB, Kickler TS, Rade JJ. Risk Factors for Nonplatelet Thromboxane Generation After Coronary Artery Bypass Graft Surgery. J Am Heart Assoc 2016; 5:e002615. [PMID: 27068626 PMCID: PMC4943242 DOI: 10.1161/jaha.115.002615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Persistent thromboxane (TX) generation while receiving aspirin therapy is associated with an increased risk of cardiovascular events. The Reduction in Graft Occlusion Rates (RIGOR) study found that aspirin‐insensitive TXA2 generation, indicated by elevated urine 11‐dehydro‐TXB2 (UTXB2) 6 months after coronary artery bypass graft surgery, was a potent risk factor for vein graft thrombosis and originated predominantly from nonplatelet sources. Our goal was to identify risks factors for nonplatelet TXA2 generation. Methods and Results Multivariable modeling was performed by using clinical and laboratory variables obtained from 260 RIGOR subjects with verified aspirin‐mediated inhibition of platelet TXA2 generation. The strongest variable associated with UTXB2 6 months after surgery, accounting for 47.2% of the modeled effect, was urine 8‐iso‐prostaglandin (PG)F2α, an arachidonic acid metabolite generated nonenzymatically by oxidative stress (standardized coefficient 0.442, P<0.001). Age, sex, race, lipid therapy, creatinine, left ventricular ejection fraction, and aspirin dose were also significantly associated with UTXB2 (P<0.03), although they accounted for only 4.8% to 10.2% of the modeled effect. Urine 8‐iso‐PGF2α correlated with risk of vein graft occlusion (odds ratio 1.67, P=0.001) but was not independent of UTXB2. In vitro studies revealed that endothelial cells generate TXA2 in response to oxidative stress and direct exposure to 8‐iso‐PGF2α. Conclusions Oxidative stress–induced formation of 8‐iso‐PGF2α is strongly associated with nonplatelet thromboxane formation and early vein graft thrombosis after coronary artery bypass graft surgery. The endothelium is potentially an important source of oxidative stress–induced thromboxane generation. These findings suggest therapies that reduce oxidative stress could be useful in reducing cardiovascular risks associated with aspirin‐insensitive thromboxane generation.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey J Rade
- University of Massachusetts Medical School, Worcester, MA Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Bauer J, Ripperger A, Frantz S, Ergün S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol 2015; 171:3115-31. [PMID: 24646155 DOI: 10.1111/bph.12677] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Isoprostanes are free radical-catalysed PG-like products of unsaturated fatty acids, such as arachidonic acid, which are widely recognized as reliable markers of systemic lipid peroxidation and oxidative stress in vivo. Moreover, activation of enzymes, such as COX-2, may contribute to isoprostane formation. Indeed, formation of isoprostanes is considerably increased in various diseases which have been linked to oxidative stress, such as cardiovascular disease (CVD), and may predict the atherosclerotic burden and the risk of cardiovascular complications in the latter patients. In addition, several isoprostanes may directly contribute to the functional consequences of oxidant stress via activation of the TxA2 prostanoid receptor (TP), for example, by affecting endothelial cell function and regeneration, vascular tone, haemostasis and ischaemia/reperfusion injury. In this context, experimental and clinical data suggest that selected isoprostanes may represent important alternative activators of the TP receptor when endogenous TxA2 levels are low, for example, in aspirin-treated individuals with CVD. In this review, we will summarize the current understanding of isoprostane formation, biochemistry and (patho) physiology in the cardiovascular context.
Collapse
Affiliation(s)
- Jochen Bauer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Mah E, Pei R, Guo Y, Masterjohn C, Ballard KD, Taylor BA, Taylor AW, Traber MG, Volek JS, Bruno RS. Greater γ-tocopherol status during acute smoking abstinence with nicotine replacement therapy improved vascular endothelial function by decreasing 8-iso-15(S)-prostaglandin F2α. Exp Biol Med (Maywood) 2014; 240:527-33. [PMID: 25361769 DOI: 10.1177/1535370214556948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022] Open
Abstract
Nicotine replacement therapy (NRT) improves the long-term success rate of smoking cessation, but induces oxidative stress and inflammatory responses that may delay the restoration of vascular endothelial function (VEF). No studies have examined co-therapy of NRT-assisted smoking abstinence with γ-tocopherol (γ-T), a vitamin E form with antioxidant and anti-inflammatory activities, on improvements in VEF. In a randomized, double-blind, placebo-controlled study, healthy smokers (25 ± 1 y old; mean ± SEM) received NRT and abstained from smoking for 24 h with placebo (n = 12) or oral administration of γ-T-rich mixture of tocopherols (γ-TmT; n = 11) that provided 500 mg γ-T. Brachial artery flow-mediated dilation (FMD), and biomarkers of nitric oxide metabolism, antioxidant status, inflammation, and lipid peroxidation [8-iso-prostaglandin F2α stereoisomers (8-iso-15(R)-PGF2α and 8-iso-15(S)-PGF2α)] were measured prior to and after 24 h of smoking abstinence. Smoking abstinence with NRT regardless of γ-TmT similarly decreased urinary naphthol (P < 0.05) without affecting plasma cotinine. γ-TmT increased plasma γ-T by 4-times and the urinary metabolite of γ-T, γ-carboxyethyl-chromanol, by three times. Smoking abstinence with γ-TmT, but not smoking abstinence alone, increased FMD without affecting plasma nitrate/nitrite or the ratio of asymmetric dimethylarginine/arginine. Urinary 8-iso-15(S)-PGF2α decreased only in those receiving γ-TmT and was inversely correlated to FMD (R = -0.43, P < 0.05). Circulating markers of inflammation were unaffected by smoking abstinence or γ-TmT. Short-term NRT-assisted smoking abstinence with γ-TmT, but not NRT-assisted smoking abstinence alone, improved VEF by decreasing 8-iso-15(S)-PGF2α, a vasoconstrictor that was otherwise unaffected by NRT-assisted smoking abstinence.
Collapse
Affiliation(s)
- Eunice Mah
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Ruisong Pei
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yi Guo
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | | - Kevin D Ballard
- Department of Preventive Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, CT 06102, USA
| | - Beth A Taylor
- Department of Preventive Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, CT 06102, USA
| | - Alan W Taylor
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Jeff S Volek
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Richard S Bruno
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Wen SH, Ling YH, Liu WF, Qiu YX, Li YS, Wu Y, Shen JT, Xia ZY, Liu KX. Role of 15-F2t-isoprostane in intestinal injury induced by intestinal ischemia/reperfusion in rats. Free Radic Res 2014; 48:907-18. [DOI: 10.3109/10715762.2014.926010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Chen SP, Chung YT, Liu TY, Wang YF, Fuh JL, Wang SJ. Oxidative stress and increased formation of vasoconstricting F2-isoprostanes in patients with reversible cerebral vasoconstriction syndrome. Free Radic Biol Med 2013; 61:243-8. [PMID: 23608464 DOI: 10.1016/j.freeradbiomed.2013.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/28/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
The pathophysiology of reversible cerebral vasoconstriction syndrome (RCVS) is unknown. Oxidative stress is detrimental to endothelial function and vascular reactivity. We hypothesized that the oxidative stress marker 8-iso-prostaglandin F2α, which is also a potent vasoconstrictor, might contribute to the pathogenesis of RCVS. Recruited participants included 103RCVS patients, 53 patients with primary headache with acute severe attacks, and 54 healthy controls. Subjects recruited prior to 2009 were discovery cohort, whereas those after 2009, replication cohort. Urine samples were obtained from all patients at registration and from 79 patients with RCVS again at remission stage. Urine 8-iso-prostaglandin F2α was analyzed by liquid chromatography-tandem mass spectrometry. Patients with RCVS received magnetic resonance angiography and transcranial color-coded sonography. In RCVS patients, the urine 8-iso-prostaglandin F2α level was higher than that in the other groups in discovery, replication, and combined cohorts (RCVS, 0.29±0.18; primary headache with acute severe attacks, 0.21±0.19; control, 0.18±0.09ng/mg creatinine; P<0.001), and it was positively correlated with the flow velocities of major intracranial arteries, especially within the first week of disease onset (middle cerebral artery, Spearman's correlation coefficient [rs]=0.580, P=0.002; anterior cerebral artery, rs=0.472, P=0.042; posterior cerebral artery, rs=0.457, P=0.022; basilar artery, rs= 0.530, P=0.002). The 8-iso-prostaglandin F2α level decreased from the ictalto remission stage in RCVS patients (0.31±0.21 vs 0.16±0.10ng/mg creatinine, P<0.001). 8-Iso-prostaglandin F2α was higher in patients with RCVS and correlated with the severity of vasoconstrictions. Further studies are required to explore its potential pathogenic role.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| | - Yu-Ting Chung
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Tsung-Yun Liu
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan; Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei.
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
15
|
Dokken BB, Piermarini CV, Teachey MK, Gura MT, Dameff CJ, Heller BD, Krate J, Ashgar AM, Querin L, Mitchell JL, Hilwig RW, Kern KB. Glucagon-like peptide-1 preserves coronary microvascular endothelial function after cardiac arrest and resuscitation: potential antioxidant effects. Am J Physiol Heart Circ Physiol 2012; 304:H538-46. [PMID: 23241323 DOI: 10.1152/ajpheart.00282.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) has protective effects in the heart. We hypothesized that GLP-1 would mitigate coronary microvascular and left ventricular (LV) dysfunction if administered after cardiac arrest and resuscitation (CAR). Eighteen swine were subjected to ventricular fibrillation followed by resuscitation. Swine surviving to return of spontaneous circulation (ROSC) were randomized to receive an intravenous infusion of either human rGLP-1 (10 pmol·kg(-1)·min(-1); n = 8) or 0.9% saline (n = 8) for 4 h, beginning 1 min after ROSC. CAR caused a decline in coronary flow reserve (CFR) in control animals (pre-arrest, 1.86 ± 0.20; 1 h post-ROSC, 1.3 ± 0.05; 4 h post-ROSC, 1.25 ± 0.06; P < 0.05). GLP-1 preserved CFR for up to 4 h after ROSC (pre-arrest, 1.31 ± 0.17; 1 h post-ROSC, 1.5 ± 0.01; 4 h post-ROSC, 1.55 ± 0.22). Although there was a trend toward improvement in LV relaxation in the GLP-1-treated animals, overall LV function was not consistently different between groups. 8-iso-PGF(2α), a measure of reactive oxygen species load, was decreased in post-ROSC GLP-1-treated animals [placebo, control (NS): 38.1 ± 1.54 pg/ml; GLP-1: 26.59 ± 1.56 pg/ml; P < 0.05]. Infusion of GLP-1 after CAR preserved coronary microvascular and LV diastolic function. These effects may be mediated through a reduction in oxidative stress.
Collapse
Affiliation(s)
- Betsy B Dokken
- Department of Medicine, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jamil J, Wright A, Harrison N, Kegey E, Flowers AF, Flyod NJ, Kotera C, Guy A, Galano JM, Durand T, Njie-Mbye YF, Ohia SE, Opere CA. Regulation of [³H]d-aspartate release by the 5-F(2t)-isoprostane and its 5-epimer in isolated bovine retina. Neurochem Res 2011; 37:574-82. [PMID: 22081406 DOI: 10.1007/s11064-011-0645-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 11/25/2022]
Abstract
We have evidence that 15-F₂-isoprostanes (15-F₂-IsoPs) regulate excitatory neurotransmitter release in ocular tissues. Although 5-F₂-IsoPs are abundantly produced in mammals, their pharmacological actions on neurotransmitter release remain unknown. In the present study, we compared the effect of the 5-F₂-IsoP epimer pair, 5-F(2t)-IsoP (C5-OH in β-position) and 5-epi-5-F(2t)-IsoP (C5-OH in α-position), on K⁺-evoked [³H]D-aspartate release in isolated bovine retina. We further examined the role of prostanoid receptors on the inhibitory action of 5-epi-5-F(2t)-IsoP on [³H]D-aspartate overflow. Isolated bovine retina were prepared for studies of K⁺-evoked release of [³H]D-aspartate using the superfusion method. 5-epi-5-F(2t)-IsoP (0.01 nM to 1 μM), attenuated K⁺-evoked [³H]D-aspartate release in a concentration-dependent manner, with the inhibitory effect of 26.9% (P < 0.001; IC₂₅ = 0.2 μM) being achieved at 1 μM concentration. Its 5-(S)-OH-epimer, 5-F(2t)-IsoP (0.1 nM-1 μM), exhibited an inhibitory biphasic action, yielding a maximal response of 35.7% (P < 0.001) at 10 nM concentration of the drug (IC₂₅ value of 3 nM). Although the prostanoid-receptor antagonists, AH 6809 (10 μM; EP₁₋₃/DP) and BAY-u3405 (10 μM; DP/Tx) exhibited no effect on 5-epi-5-F(2t)-IsoP (10 nM-1 μM)-mediated inhibition, SC-19220 (1 μM; EP₁) completely reversed 5-epi-5-F(2t)-IsoP (0.1 μM and 1 μM)-induced attenuation of K⁺-evoked [³H]D-aspartate release. Similarly, both SC-51322 (10 μM; EP₁ and AH 23848 (1 μM; EP₄) reversed the inhibitory action elicited by 5-epi-5-F(2t)-IsoP (0.1 μM) on the neurotransmitter release. We conclude that the 5-F₂-IsoP epimer pair, 5-F(2t)-IsoP and 5-epi-5-F(2t)-IsoP, attenuate K⁺-induced [³H]D-aspartate release in isolated bovine retina presumably via prostanoid receptor dependent mechanisms. The trans-orientation of the allylic hydroxyl group at position C5 accounts for the apparent biphasic response exhibited by 5-F(2t)-IsoP on excitatory neurotransmitter release.
Collapse
Affiliation(s)
- Jamal Jamil
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University Medical Center, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Boutaud O, Roberts LJ. Mechanism-based therapeutic approaches to rhabdomyolysis-induced renal failure. Free Radic Biol Med 2011; 51:1062-7. [PMID: 21034813 PMCID: PMC3116013 DOI: 10.1016/j.freeradbiomed.2010.10.704] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Rhabdomyolysis-induced renal failure represents up to 15% of all cases of acute renal failure. Many studies over the past 4 decades have demonstrated that accumulation of myoglobin in the kidney is central in the mechanism leading to kidney injury. However, some discussion exists regarding the mechanism mediating this oxidant injury. Although the free-iron-catalyzed Fenton reaction has been proposed to explain the tissue injury, more recent evidence strongly suggests that the main cause of oxidant injury is myoglobin redox cycling and generation of oxidized lipids. These molecules can propagate tissue injury and cause renal vasoconstriction, two of the three main conditions associated with acute renal failure. This review presents the evidence supporting the two mechanisms of oxidative injury, describes the central role of myoglobin redox cycling in the pathology of renal failure associated with rhabdomyolysis, and discusses the value of therapeutic interventions aiming at inhibiting myoglobin redox cycling for the treatment of rhabdomyolysis-induced renal failure.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
18
|
Role of prostanoid production and receptors in the regulation of retinal endogenous amino acid neurotransmitters by 8-isoprostaglandin E2, ex vivo. Neurochem Res 2011; 34:2170-80. [PMID: 19513831 DOI: 10.1007/s11064-009-0013-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2009] [Indexed: 12/11/2022]
Abstract
The role of enzymes and receptors of the prostanoid pathway in the inhibitory effect of 8-isoprostaglandin E2 (8-isoPGE2) on endogenous amino acid neurotransmitter levels was examined, ex vivo. Freshly isolated bovine eyeballs were injected intravitreally with IsoPs, incubated in Krebs buffer for 30 min and retina prepared for HPLC-ECD detection of amino acids. 8-isoPGE2 attenuated retinal glutamate and its metabolite, glutamine and glycine in a concentration-dependent manner. The nonselective cyclooxygenase (COX)-inhibitor, flurbiprofen, COX-2 selective inhibitor, NS-398 and thromboxane (Tx) synthase inhibitor, furegrelate had no effect on both basal amino acid levels and the inhibitory effects of 8-isoPGE2 (1-100 μM) on the retinal amino acids. Whereas the TP-receptor antagonist SQ-29548(10 μM) exhibited no effect, SC-19220(EP1; 30 μM), AH-6809(EP(1-3); 30 μM) and AH-23848(EP4; 30 μM) reversed the inhibitory effects of 8-isoPGE2 (0.01-100 μM) on glutamate, glutamine and glycine levels. We conclude that prostanoid EP-receptors regulate the inhibitory effect of 8-isoPGE2 on basal levels of endogenous amino acids in bovine retina, ex vivo.
Collapse
|
19
|
Rivera JC, Sapieha P, Joyal JS, Duhamel F, Shao Z, Sitaras N, Picard E, Zhou E, Lachapelle P, Chemtob S. Understanding retinopathy of prematurity: update on pathogenesis. Neonatology 2011; 100:343-53. [PMID: 21968165 DOI: 10.1159/000330174] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinopathy of prematurity (ROP), an ocular disease characterized by the onset of vascular abnormalities in the developing retina, is the major cause of visual impairment and blindness in premature neonates. ROP is a complex condition in which various factors participate at different stages of the disease leading to microvascular degeneration followed by neovascularization, which in turn predisposes to retinal detachment. Current ablative therapies (cryotherapy and laser photocoagulation) used in the clinic for the treatment of ROP have limitations and patients can still have long-term effects even after successful treatment. New treatment modalities are still emerging. The most promising are the therapies directed against VEGF; more recently the use of preventive dietary supplementation with ω-3 polyunsaturated fatty acid may also be promising. Other than pharmacologic and nutritional approaches, cell-based strategies for vascular repair are likely to arise from advances in regenerative medicine using stem cells. In addition to all of these, a greater understanding of other factors involved in regulating pathologic retinal angiogenesis continues to emerge, suggesting potential targets for therapeutic approaches. This review summarizes an update on the current state of knowledge on ROP from our and other laboratories, with particular focus on the role of nitro-oxidative stress and notably trans-arachidonic acids in microvascular degeneration, semaphorin 3 operating as vasorepulsive molecules in the avascular hypoxic retina and in turn impairing revascularization, succinate and its receptor GPR91 in neuron-mediated retinal neovascularization, and ω-3 lipids as modulators of preretinal neovascularization.
Collapse
Affiliation(s)
- José Carlos Rivera
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Qué., Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Isoprostane, an “Intermediate Phenotype” for Oxidative Stress. J Am Coll Cardiol 2010; 56:1338-50. [DOI: 10.1016/j.jacc.2010.03.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/12/2010] [Accepted: 03/04/2010] [Indexed: 02/07/2023]
|
21
|
Sapieha P, Joyal JS, Rivera JC, Kermorvant-Duchemin E, Sennlaub F, Hardy P, Lachapelle P, Chemtob S. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest 2010; 120:3022-32. [PMID: 20811158 DOI: 10.1172/jci42142] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a major complication of preterm birth. It encompasses a spectrum of pathologies that affect vision, from mild disease that resolves spontaneously to severe disease that causes retinal detachment and subsequent blindness. The pathologies are characterized by an arrest in normal retinal vascular development associated with microvascular degeneration. The resulting ischemia and retinal hypoxia lead to excessive abnormal compensatory blood vessel growth. However, this neovascularization can lead to fibrous scar formation and culminate in retinal detachment. Present therapeutic modalities to limit the adverse consequences of aberrant neovascularization are invasive and/or tissue-destructive. In this Review, we discuss current concepts on retinal microvascular degeneration, neovascularization, and available treatments, as well as present future perspectives toward more profound elucidation of the pathogenesis of ROP.
Collapse
Affiliation(s)
- Przemyslaw Sapieha
- Department of Ophthalmology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ting HJ, Khasawneh FT. Platelet function and Isoprostane biology. Should isoprostanes be the newest member of the orphan-ligand family? J Biomed Sci 2010; 17:24. [PMID: 20370921 PMCID: PMC2854111 DOI: 10.1186/1423-0127-17-24] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 04/06/2010] [Indexed: 12/19/2022] Open
Abstract
While there have been many reports investigating the biological activity and signaling mechanisms of isoprostanes, their role in biology, particularly in platelets, appears to still be underestimated. Moreover, whether these lipids have their own receptors is still debated, despite multiple reports that discrete receptors for isporpstanes do exist on platelets, vascular tissues, amongst others. This paper provides a review of the important literature of isoprostanes and provides reasoning that isoprostanes should be classified as orphan ligands until their receptor(s) is/are identified.
Collapse
Affiliation(s)
- Harold J Ting
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | | |
Collapse
|
23
|
Abstract
The identification of nitric oxide ((*)NO) as an endogenously produced free radical mediator of endothelial-dependent relaxation and host defense has fundamentally changed concepts of cell signal transduction. Ligand-receptor oriented paradigms of cell signaling were originally centered on the concept of a high affinity and specific interaction between a ligand and its receptor, resulting in the activation of secondary signaling events such as gene expression or modulation of catalytic protein function. While (*)NO ligation of the heme iron of soluble guanylate cyclase is consistent with this perspective, the readily diffusible and broadly reactive (*)NO is increasingly appreciated to react with a vast array of target molecules that mediate paracrine vasodilator actions, inhibition of thrombosis and neointimal proliferation, and both pro- and antiinflammatory signaling reactions that are not affected by inhibitors of soluble guanylate cyclase. There is an expanding array of functionally significant "off target" collateral reactions mediated by (*)NO that are guanylate cyclase-independent and rather are dictated by anatomic distribution and the formation of secondary (*)NO-derived species. These reactions are a critical element of redox-regulated signaling and are addressed herein in the context of the oxidation of unsaturated fatty acids to vascular and inflammatory signaling mediators. Because of their abundance and the intrinsic reactivity of unsaturated lipid intermediates and eicosanoid metabolism enzymes with (*)NO and other oxides of nitrogen, lipid signaling mechanisms are a significant target for regulation by (*)NO in the vascular compartment. This convergence of (*)NO and lipid signaling pathways thus adds another level of regulation to physiological responses such as vasodilation, thrombosis, and inflammation. Herein, interactions between (*)NO and lipid signaling events are placed in the context of cardiovascular regulation.
Collapse
Affiliation(s)
- Volker Rudolph
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
24
|
Kaviarasan S, Muniandy S, Qvist R, Ismail IS. F(2)-isoprostanes as novel biomarkers for type 2 diabetes: a review. J Clin Biochem Nutr 2009; 45:1-8. [PMID: 19590700 PMCID: PMC2704321 DOI: 10.3164/jcbn.08-266] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/16/2009] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress (OS) has been implicated as one of the major underlying mechanisms behind many acute and chronic diseases. However, the measurement of free radicals or their end products is complicated. Isoprostanes, derived from the non-enzymatic peroxidation of arachidonic acid are now considered to be reliable biomarkers of oxidant stress in the human body. Isoprostanes are involved in many of the human diseases such as type 2 diabetes. In type 2 diabetes elevated levels of F2-Isoprostanes (F2-IsoPs) have been observed. The measurement of bioactive F2-IsoPs levels offers a unique noninvasive analytical tool to study the role of free radicals in physiology, oxidative stress-related diseases, and acute or chronic inflammatory conditions. Measurement of oxidative stress by various other methods lacks specificity and sensitivity. This review aims to shed light on the implemention of F2-IsoPs measurement as a gold-standard biomarker of oxidative stress in type 2 diabetics.
Collapse
Affiliation(s)
- Subramanian Kaviarasan
- Department of Medicine, University of Malaya Medical Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
25
|
Signorini C, Ciccoli L, Leoncini S, Carloni S, Perrone S, Comporti M, Balduini W, Buonocore G. Free iron, total F-isoprostanes and total F-neuroprostanes in a model of neonatal hypoxic-ischemic encephalopathy: neuroprotective effect of melatonin. J Pineal Res 2009; 46:148-54. [PMID: 19141088 DOI: 10.1111/j.1600-079x.2008.00639.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Oxidative stress due to free radical formation and initiation of abnormal oxidative reactions is involved in several diseases of newborns, such as hypoxic-ischemic encephalopathy. Melatonin, an endogenously produced indoleamine primarily formed in the pineal gland, is a potent free radical scavenger as well as an indirect antioxidant. The present study was conducted to evaluate the formation of oxidative damage mediators and the possible effect of melatonin treatment in a model of hypoxic-ischemic encephalopathy in 7-day-old rats. Pups were subjected to permanent ligation of the right common carotid artery and exposed for 2.5 hr to a nitrogen-oxygen mixture (92% and 8%, respectively) (hypoxia-ischemia, HI). Melatonin was injected intraperitoneally to a group of rats at the dose of 15 mg/kg 30 min before starting the ischemic procedure (HI-Melatonin). After 24 hr of treatment, in homogenized cerebral cortex, desferoxamine (DFO)-chelatable free iron, total F(2)-isoprostanes and total F(4)-neuroprostanes, originating from the free radical-catalyzed peroxidation of arachidonic and docosahexaenoic acids, respectively, were determined. HI induced a significant increase in DFO-chelatable iron, total F(2)-isoprostanes and F(4)-neuroprostanes in both right and left side of the cerebral cortex. In HI-Melatonin-treated animals the levels of free iron, F(2)-isoprostanes, and F(4)-neuroprostanes were significantly lower than that in HI rats and the values were similar to controls. These data show the important neuroprotective role of melatonin in reducing oxidative damage resulting from HI. Melatonin could represent a potential safe approach to perinatal brain damage in humans.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Neppl RL, Lubomirov LT, Momotani K, Pfitzer G, Eto M, Somlyo AV. Thromboxane A2-induced bi-directional regulation of cerebral arterial tone. J Biol Chem 2008; 284:6348-60. [PMID: 19095646 DOI: 10.1074/jbc.m807040200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin light chain phosphatase plays a critical role in modulating smooth muscle contraction in response to a variety of physiologic stimuli. A downstream target of the RhoA/Rho-kinase and nitric oxide (NO)/cGMP/cyclic GMP-dependent kinase (cGKI) pathways, myosin light chain phosphatase activity reflects the sum of both calcium sensitization and desensitization pathways through phosphorylation and dephosphorylation of the myosin phosphatase targeting subunit (MYPT1). As cerebral blood flow is highly spatio-temporally modulated under normal physiologic conditions, severe perturbations in normal cerebral blood flow, such as in cerebral vasospasm, can induce neurological deficits. In nonpermeabilized cerebral vessels stimulated with U-46619, a stable mimetic of endogenous thromboxane A2 implicated in the etiology of cerebral vasospasm, we observed significant increases in contractile force, RhoA activation, regulatory light chain phosphorylation, as well as phosphorylation of MYPT1 at Thr-696, Thr-853, and surprisingly Ser-695. Inhibition of nitric oxide signaling completely abrogated basal MYPT1 Ser-695 phosphorylation and significantly increased and potentiated U-46619-induced MYPT1 Thr-853 phosphorylation and contractile force, indicating that NO/cGMP/cGKI signaling maintains basal vascular tone through active inhibition of calcium sensitization. Surprisingly, a fall in Ser-695 phosphorylation did not result in an increase in phosphorylation of the Thr-696 site. Although activation of cGKI with exogenous cyclic nucleotides inhibited thromboxane A2-induced MYPT1 membrane association, RhoA activation, contractile force, and regulatory light chain phosphorylation, the anticipated decreases in MYPT1 phosphorylation at Thr-696/Thr-853 were not observed, indicating that the vasorelaxant effects of cGKI are not through dephosphorylation of MYPT1. Thus, thromboxane A2 signaling within the intact cerebral vasculature induces "buffered" vasoconstrictions, in which both the RhoA/Rho-kinase calcium-sensitizing and the NO/cGMP/cGKI calcium-desensitizing pathways are activated.
Collapse
Affiliation(s)
- Ronald L Neppl
- Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
27
|
Jahn U, Galano JM, Durand T. Beyond prostaglandins--chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew Chem Int Ed Engl 2008; 47:5894-955. [PMID: 18649300 DOI: 10.1002/anie.200705122] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are important constituents in all organisms. They fulfil many functions, ranging from modulating the structure of membranes to acting as precursors of physiologically important molecules, such as the prostaglandins, which for a long time were the most prominent cyclic PUFA metabolites. However, since the beginning of the 1990s a large variety of cyclic metabolites have been discovered that form under autoxidative conditions in vivo to a much larger extent than do prostaglandins. These compounds--isoprostanes, neuroprostanes, phytoprostanes, and isofurans--proved subsequently to be ubiquitous in nature. They display a wide range of biological activities, and isoprostanes have become the currently most reliable indicators of oxidative stress in humans. In a relatively short time, the structural variety, properties, and applications of the autoxidatively formed cyclic PUFA derivatives have been uncovered.
Collapse
Affiliation(s)
- Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 16610 Prague 6, Czech Republic.
| | | | | |
Collapse
|
28
|
Jahn U, Galano JM, Durand T. Jenseits von Prostaglandinen - Chemie und Biologie radikalisch gebildeter cyclischer oxygenierter Metabolite von mehrfach ungesättigten Fettsäuren. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Elsner P, Jetter P, Brödner K, Helmchen G. Stereoselective Synthesis of acis-1,2-Dialkylcyclopentane Building Block and Its Application in Isoprostane Synthesis (5-ent-F2c-IsoP). European J Org Chem 2008. [DOI: 10.1002/ejoc.200800010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Khasawneh FT, Huang JS, Mir F, Srinivasan S, Tiruppathi C, Le Breton GC. Characterization of isoprostane signaling: evidence for a unique coordination profile of 8-iso-PGF(2alpha) with the thromboxane A(2) receptor, and activation of a separate cAMP-dependent inhibitory pathway in human platelets. Biochem Pharmacol 2008; 75:2301-15. [PMID: 18455148 DOI: 10.1016/j.bcp.2008.03.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/18/2008] [Accepted: 03/24/2008] [Indexed: 12/18/2022]
Abstract
Since isoprostanes are thought to participate in the pathogenesis of thrombosis, presumably through their interaction with thromboxane receptors (TPRs), we examined the ability of 8-iso-PGF(2alpha) to bind/signal through TPRs. Using TPR expressing HEK cells, it was found that 8-iso-PGF(2alpha) mobilized calcium and bound TPRs with a dissociation constant (K(d)) of 57 nM. Interestingly, site-directed-mutagenesis revealed that 8-iso-PGF(2alpha) has a unique coordination profile with TPRs. Thus, while Phe184 and Asp193 are shared by both 8-iso-PGF(2alpha) and classical TPR ligands, Phe196 was found to be required only for 8-iso-PGF(2alpha) binding. Functional studies also revealed interesting results. Namely, that 8-iso-PGF(2alpha) signals in human platelets through both a stimulatory (TPR-dependent) and an inhibitory (cAMP-dependent) pathway. Consistent with the existence of two signaling pathways, platelets were also found to possess two separate binding sites for 8-iso-PGF(2alpha). While the stimulatory site is represented by TPRs, the second cAMP inhibitory site is presently unidentified, but does not involve receptors for PGI(2), PGD(2) or PGE(2). In summary, these studies provide the first documentation that: (1) 8-iso-PGF(2alpha) coordinates with Phe184, Asp193 and Phe196 on platelet TPRs; (2) Phe196 serves as a unique TPR binding site for 8-iso-PGF(2alpha); (3) 8-iso-PGF(2alpha) signals through both stimulatory and inhibitory pathways in platelets; (4) 8-iso-PGF(2alpha) inhibits human platelet activation through a cAMP-dependent mechanism; (5) 8-iso-PGF(2alpha) interacts with platelets at two separate binding sites. Collectively, these results provide evidence for a novel isoprostane function in platelets which is mediated through a cAMP-coupled receptor.
Collapse
Affiliation(s)
- Fadi T Khasawneh
- Department of Pharmacology, The University of Illinois at Chicago, 835 S Wolcott Avenue, M/C 868, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kooli A, Kermorvant-Duchemin E, Sennlaub F, Bossolasco M, Hou X, Honoré JC, Dennery PA, Sapieha P, Varma D, Lachapelle P, Zhu T, Tremblay S, Hardy P, Jain K, Balazy M, Chemtob S. trans-Arachidonic acids induce a heme oxygenase-dependent vasorelaxation of cerebral microvasculature. Free Radic Biol Med 2008; 44:815-25. [PMID: 18082639 DOI: 10.1016/j.freeradbiomed.2007.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 10/24/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
Abstract
Nitrative stress is an important regulator of vascular tone. We have recently described that trans-arachidonic acids (TAA) are major products of NO(2)(.)-mediated isomerization of arachidonic acid in cell membranes and that nitrative stress increases TAA levels leading to neural microvascular degeneration. In the present study, we explored whether TAA exert acute effects on neuromicrovascular tone and investigated potential mechanisms thereof. TAA induced an endothelium-dependent vasorelaxation of rat brain pial microvasculature. This vasorelaxation was independent of nitric oxide, prostanoids, lipoxygenase products, and CYP(450) metabolite trans-hydroxyeicosatetraenoic acids. However, inhibition of heme oxygenase (using zinc protoporphyrin IX) and of dependent soluble guanylate cyclase (sGC; using ODQ) significantly diminished (by approximately 70%) the TAA-induced vasorelaxation. Consistent with these findings, TAA stimulated heme oxygenase (HO)-2-dependent bilirubin (using siRNA HO-2) and cGMP formation, and the HO product carbon monoxide (using CO-releasing CORM-2) reproduced the sGC-dependent cGMP formation and vasorelaxation. Further exploration revealed that TAA-induced vasorelaxation and bilirubin formation (HO activation) were nearly abrogated by large-conductance calcium-dependent potassium channels (BK(Ca)) (using TEA and iberiotoxin). Opening of BK(Ca) with the selective activator NS1619 induced a concentration-dependent vasorelaxation, which was inhibited by HO and sGC inhibitors. Coimmunoprecipitation suggested a molecular complex interaction between BK(Ca) and HO-2 (but not HO-1). Collectively, these findings identify new properties of TAA, specifically cerebral vasorelaxation through interactive activation of BK(Ca) with HO-2 and, in turn, sGC. Our findings provide new insights into the characterization of nitrative stress-derived TAA products, by showing they can act as acute mediators of nitrative stress on neurovascular tone.
Collapse
Affiliation(s)
- Amna Kooli
- Department of Paediatrics, Research Center of Hôpital Ste-Justine, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci (Lond) 2008; 114:1-17. [PMID: 18047465 DOI: 10.1042/cs20070113] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular-related diseases are the leading cause of death in the world in both men and women. In addition to the environmental and genetic factors, early life conditions are now also considered important contributing elements to these pathologies. The concept of 'fetal' or 'developmental' origins of adult diseases has received increased recognition over the last decade, yet the mechanism by which altered perinatal environment can lead to dysfunction mostly apparent in the adult are incompletely understood. This review will focus on the mechanisms and pathways that epidemiological studies and experimental models have revealed underlying the adult cardiovascular phenotype dictated by the perinatal experience, as well as the probable key causal or triggering elements. Programmed elevated blood pressure in the adult human or animal is characterized by vascular dysfunction and microvascular rarefaction. Developmental mechanisms that have been more extensively studied include glucocorticoid exposure, the role of the kidneys and the renin-angiotensin system. Other pathophysiological pathways have been explored, such as the role of the brain and the sympathetic nervous system, oxidative stress and epigenetic changes. As with many complex diseases, a unifying hypothesis linking the perinatal environment to elevated blood pressure and vascular dysfunction in later life cannot be presumed, and a better understanding of those mechanisms is critical before clinical trials of preventive or 'deprogramming' measures can be designed.
Collapse
|
33
|
Rogers MS. Prediction of pre-eclampsia in early pregnancy. WOMEN'S HEALTH (LONDON, ENGLAND) 2007; 3:571-582. [PMID: 19804034 DOI: 10.2217/17455057.3.5.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pre-eclampsia is a multisystem disorder of pregnancy, usually characterized by the appearance of high blood pressure and the excretion of protein in the urine of a previously healthy woman. Symptoms and signs vary in intensity from woman to woman; from a borderline rise in blood pressure, to convulsions (eclampsia), stroke and death. The disease remits following removal of the placenta and so the mainstay of current treatment is timely delivery. A pathophysiological framework of the disease has been established, beginning with failures in placental development, inducing oxidative stress and release of compounds that lead to endothelial activation, vasoconstriction and glomerular endotheliosis. A combination of epidemiological, biophysical and biochemical tests now allow most patients at-risk to be identified by midpregnancy, whilst minimizing false-positive prediction. It is hoped that earlier classification of patients at-risk of the disease, on the basis of pathophysiological changes, will enable specific therapies to be developed targeting these changes.
Collapse
Affiliation(s)
- Mike S Rogers
- The Chinese University of Hong Kong, Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| |
Collapse
|
34
|
Daray FM, Colombo JR, Kibrik JR, Errasti AE, Pelorosso FG, Nowak W, Cracowski JL, Rothlin RP. Involvement of endothelial thromboxane A2 in the vasoconstrictor response induced by 15-E2t-isoprostane in isolated human umbilical vein. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 373:367-75. [PMID: 16738877 DOI: 10.1007/s00210-006-0074-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 04/13/2006] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to evaluate the contractile response of several E- and F-ring isoprostanes (IsoP) in human umbilical vein (HUV) and to investigate the role of the endothelium on the effect of 15-E2t-IsoP, the most potent vasoconstrictor isoprostane, in human vessels. HUV rings with or without endothelium were suspended in an organ bath for recording the isometric tension in response to different agonists. The inhibitors to be evaluated were applied 30 min before the addition of the agonist. All of the compounds tested produced concentration-dependent contractions when tested on HUV rings with endothelium. Although these compounds were equieffective, significant differences were observed in their potency, with U46619 being the most potent followed by 15-E2t-IsoP > 15-E1t-IsoP = 15-F2t-IsoP > 15-F1t-IsoP = 9-epi-15-F2t-IsoP in descending rank order of potency. 15-E2t-IsoP was the most potent of the isoprostanes evaluated and, therefore, the one employed in the present study. When intact endothelium HUV rings were used, 15-E2t-IsoP-induced contraction was unaffected by the endothelin-converting enzyme inhibitor, phosphoramidon (10 microM), suggesting that short-term endothelin-1 release is not involved in this response. However, the non-selective cyclooxygenase (COX) inhibitor, indomethacin (10 and 30 microM), and the COX-2 selective inhibitor, NS-398 (3, 10 and 30 microM) produced inhibitory effects on 15-E2t-IsoP-induced contraction of HUV rings with endothelium. These results indicate that COX-derived contractile prostanoids are involved in this effect. Furthermore, the apparent pKb values estimated for indomethacin (5.5) and NS-398 (5.4) suggest that the prostanoids involved are derived from the COX-2 isoenzyme pathway. On HUV rings with endothelium, the phospholipase A2 inhibitor, oleyloxyethyl phosphorylcholine (30 and 100 microM), induced an inhibitory effect on 15-E2t-IsoP-induced contraction, suggesting that the phospholipase A2 pathway is also involved in this effect. In addition, the thromboxane A2 synthase inhibitor furegrelate (10 and 30 microM) also inhibited 15-E2t-IsoP-induced contraction of HUV rings with endothelium, indicating that thromboxane A2 is one of the contractile prostanoids involved in this response. Endothelium denudation clearly diminished the vasoconstrictor potency of 15-E2t-IsoP, demonstrating that the endothelium releases a vasoconstrictor factor in response to 15-E2t-IsoP. The absence of an inhibitory effect at the highest concentration of furegrelate (30 microM) on 15-E2t-IsoP-induced contraction of HUV rings without endothelium suggested that endothelium is the source of thromboxane A2. We conclude that prostanoids derived from the COX-2 isoenzyme pathway participate in 15-E2t-IsoP-induced vasoconstriction of isolated HUV rings. Our results also indicate that endothelial thromboxane A2 is one of the prostanoids involved in this effect.
Collapse
Affiliation(s)
- Federico Manuel Daray
- Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 9, CP 1121 Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Brault S, Gobeil F, Fortier A, Honoré JC, Joyal JS, Sapieha PS, Kooli A, Martin E, Hardy P, Ribeiro-da-Silva A, Peri K, Lachapelle P, Varma D, Chemtob S. Lysophosphatidic acid induces endothelial cell death by modulating the redox environment. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1174-83. [PMID: 17122328 DOI: 10.1152/ajpregu.00619.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidant stress plays a significant role in hypoxic-ischemic injury to the susceptible microvascular endothelial cells. During oxidant stress, lysophosphatidic acid (LPA) concentrations increase. We explored whether LPA caused cytotoxicity to neuromicrovascular cells and the potential mechanisms thereof. LPA caused a dose-dependent death of porcine cerebral microvascular as well as human umbilical vein endothelial cells; cell death appeared oncotic rather than apoptotic. LPA-induced cell death was mediated via LPA(1) receptor, because the specific LPA(1) receptor antagonist THG1603 fully abrogated LPA's effects. LPA decreased intracellular GSH levels and induced a p38 MAPK/JNK-dependent inducible nitric oxide synthase (NOS) expression. Pretreatment with the antioxidant GSH precursor N-acetyl-cysteine (NAC), as well as with inhibitors of NOS [N(omega)-nitro-l-arginine (l-NNA); 1400W], significantly prevented LPA-induced endothelial cell death (in vitro) to comparable extents; as expected, p38 MAPK (SB203580) and JNK (SP-600125) inhibitors also diminished cell death. LPA did not increase indexes of oxidation (isoprostanes, hydroperoxides, and protein nitration) but did augment protein nitrosylation. Endothelial cytotoxicity by LPA in vitro was reproduced ex vivo in brain and in vivo in retina; THG1603, NAC, l-NNA, and combined SB-203580 and SP600125 prevented the microvascular rarefaction. Data implicate novel properties for LPA as a modulator of the cell redox environment, which partakes in endothelial cell death and ensued neuromicrovascular rarefaction.
Collapse
Affiliation(s)
- Sonia Brault
- Department of Pediatrics, Research Center, Hôpital Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, Québec, Canada H3T 1C5
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nishida N, Blood AB, Hunter CJ, Bragg S, Williams J, Pearce WJ, Power GG. Role of prostanoids in the regulation of cerebral blood flow during normoxia and hypoxia in the fetal sheep. Pediatr Res 2006; 60:524-9. [PMID: 16988195 DOI: 10.1203/01.pdr.0000242268.99726.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The fetal cardiovascular responses to hypoxia include decreased peripheral blood flow and increased cerebral, cardiac, and adrenal blood flow. Prostanoids, metabolites of cyclooxygenase enzyme activity, have potent effects on vascular tone in both the adult and the fetus. To examine the role of prostanoids in the regulation of fetal cerebral blood flow (CBF) during acute hypoxic stress, eight near term fetal sheep were studied after infusing vehicle or diclofenac, a cyclooxygenase inhibitor, followed by a 30-min period of hypoxia (arterial Po(2) 12 Torr). In the control experiments, CBF, measured continuously with laser Doppler flowmetry, increased to 148% of baseline values (p < 0.01) and cerebral vascular resistance decreased to 70% of baseline values after 30 min of hypoxic stress. During diclofenac infusion, hypoxia resulted in a CBF increase to only 129% of baseline, a significant attenuation (p < 0.05), accompanied by decreased plasma prostanoid concentrations. Increases in mean arterial blood pressure during hypoxia were also attenuated by diclofenac infusion. Flow and pressure responses were not accompanied by changes in cerebral vascular resistance. These results indicate that prostanoids indirectly modulate fetal CBF responses to hypoxia, but that their effects are mediated through modulation of systemic rather than cerebral vascular tone.
Collapse
Affiliation(s)
- Naoko Nishida
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan 13-8602
| | | | | | | | | | | | | |
Collapse
|
37
|
Wentzel P, Rydberg U, Eriksson UJ. Antioxidative Treatment Diminishes Ethanol-Induced Congenital Malformations in the Rat. Alcohol Clin Exp Res 2006; 30:1752-60. [PMID: 17010142 DOI: 10.1111/j.1530-0277.2006.00208.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Intrauterine exposure to ethanol causes embryonic and fetal growth retardation and maldevelopment. Oxidative stress in mother and offspring has been suggested to be part of the teratogenic mechanism, and supplementation of antioxidative agents to the pregnant women may therefore be of value in future prophylactic treatment regimen. There is a need for in vivo experimental work in this field, and in the present study, our aim was to investigate whether chronic ethanol consumption induced congenital malformations in rats and, if so, whether dietary supplementation of vitamin E (alpha-tocopherol) diminished such maldevelopment. METHODS Female Sprague-Dawley rats were given drinking water containing 20% ethanol and half of these received food containing 5% vitamin E. Non-ethanol-exposed female rats, with or without vitamin E treatment, served as controls. The pregnancy was interrupted on gestational day 20 when the offspring was evaluated morphologically and fetal hepatic 8-iso-PGF(2alpha) levels were measured to assess the degree of fetal oxidative stress. RESULTS Exposure to 20% ethanol increased maternal blood ethanol to 1.5 promille and increased resorption and malformation rates in the offspring. Maternal vitamin E treatment did not affect blood ethanol levels, but normalized fetal development. The fetal hepatic levels of 8-iso-PGF(2alpha) were increased in the ethanol-exposed group and normalized by vitamin E treatment of the mother. CONCLUSIONS Ethanol exposure disturbs embryogenesis partly by enhanced oxidative stress, and the adverse effects can be ameliorated by antioxidative treatment.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Uppsala Universitet, Biomedical Center, Uppsala, Sweden.
| | | | | |
Collapse
|
38
|
Yalcin M, Cavun S, Yilmaz MS, Cengiz F, Savci V. Involvement of brain thromboxane A in hypotension induced by haemorrhage in rats. Clin Exp Pharmacol Physiol 2006; 32:960-7. [PMID: 16405453 DOI: 10.1111/j.1440-1681.2005.04291.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. In the present study, we aimed to determine the involvement of brain thromboxane A2 (TXA2) in blood pressure decreases evoked by acute and/or graded haemorrhage in rats. 2. Sprague-Dawley rats were used throughout the study. Acute haemorrhage was achieved by withdrawing a total volume of 2.1 and 2.5 mL blood/100 g bodyweight over a period of 10 min. A microdialysis study was performed in a hypothalamic area to measure extracellular TXA2 levels. Graded haemorrhage was conducted successively by withdrawing carotid arterial blood (0.55 mL/100 g bodyweight) over a 10 s period four times (S1-S4) at 5 min intervals. Furegrelate (125, 250 and 500 microg), a TXA2 synthase inhibitor, was injected intracerebroventricularly (i.c.v.) 60 min before acute or graded haemorrhage was initiated. U-46619 (0.5, 1 and 2 microg, i.c.v.), a synthetic TXA2 analogue, was administered 5 min before acute haemorrhage (2.1 mL/100 g bodyweight). 3. Acute haemorrhage produced a severe and long-lasting decrease in blood pressure and had a tendency to increase heart rate. Both haemorrhage protocols (2.1 or 2.5 mL/100 g) generated similar approximate twofold increases in extracellular hypothalamic TXA2 levels. Intracerebroventricular furegrelate (250 microg) pretreatment completely blocked the TXA2 increases induced by acute haemorrhage. Furegrelate administration (100, 250 and 500 microg, i.c.v.) attenuated the fall in arterial pressure evoked by acute haemorrhage and caused significant increases in heart rate at all doses injected. 4. Graded haemorrhage progressively lowered arterial pressure and increased plasma vasopressin and adrenaline levels in the last period. Furegrelate-injected rats were greatly resistant to the hypotensive effect of haemorrhage for all degrees of blood removed. Plasma adrenaline and vasopressin levels were significantly elevated in furegrelate-pretreated rats compared with the saline-treated group during S2-S3 and S4, respectively. U-46619 administration caused small but statistically significant decreases in arterial pressure induced by haemorrhage. 4. The results show that acute hypotensive haemorrhage increases extracellular hypothalamic TXA2 levels. The increase in brain endogenous TXA2 levels involves a decrease in blood pressure evoked by haemorrhage because the blockade of TXA2 synthesis by furegrelate pretreatment attenuated the haemorrhagic hypotension. Increases in plasma adrenaline and vasopressin levels may mediate this effect.
Collapse
Affiliation(s)
- Murat Yalcin
- Department of Physiology, Veterinary Faculty, Uludag University, Bursa, Turkiye
| | | | | | | | | |
Collapse
|
39
|
Checchin D, Sennlaub F, Sirinyan M, Brault S, Zhu T, Kermorvant-Duchemin E, Hardy P, Balazy M, Chemtob S. Hypercapnia prevents neovascularization via nitrative stress. Free Radic Biol Med 2006; 40:543-53. [PMID: 16443170 DOI: 10.1016/j.freeradbiomed.2005.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 09/01/2005] [Accepted: 09/06/2005] [Indexed: 02/02/2023]
Abstract
Neovascularization after an ischemic insult is a beneficial attempt to salvage the injured tissue. Yet, despite the production of angiogenic factors within ischemic tissues, compensatory growth of new vessels fails to provide adequate vascularization. Thus, we hypothesized that local factors counter efficient revascularization. Whereas ischemia is often considered to be synonymous with an oxygen deficit, it is also associated with a concomitant local elevation of carbon dioxide (CO2). Although studies suggest that hypercapnia impacts tissue neovascularization, its significance relative to the abundantly described effects of hypoxia and its underlying mechanisms have yet to be elucidated. Therefore, we investigated the effects of hypercapnia on blood vessel growth in models of developmental and ischemic neovascularization. Acute and prolonged CO2 exposure inhibited developmental neovascularization of the rodent retina, as well as revascularization of the ischemic retina. Hypercapnia induced early increases in endothelial nitric oxide synthase and nitrative stress, associated with astrocyte impairment and endothelial cell death, as well as downregulation of the proangiogenic prostaglandin E2 receptor EP3. These results establish a previously unexplored means by which hypercapnia hinders efficient neovascularization, a mechanism that may contribute to ischemic tissue injury.
Collapse
Affiliation(s)
- Daniella Checchin
- Department of Pediatrics, Department of Ophthalmology, and Department of Pharmacology, Research Center, Hôpital Ste. Justine, Montreal, QC, Canada H3T 1C5
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Reactive oxygen species have multiple effects on vascular cells. Defining the sources and the impact of the various reactive oxygen species within the vessel wall has emerged as a major area of study in vascular biology. This review will focus on recent findings related to effects of reactive oxygen species on cerebral vascular tone. Effects of superoxide radical, hydrogen peroxide, and the reactive nitrogen species peroxynitrite are summarized. Although higher concentrations may be important for cerebral vascular biology in disease, relatively low concentrations of reactive oxygen species may function as signaling molecules involved with normal regulation of cerebral vascular tone. The mechanisms by which reactive oxygen species affect vascular tone may be quite complex, and our understanding of these processes is increasing. Additionally, the role of reactive oxygen species as mediators of endothelium-dependent relaxation is addressed. Finally, the consequences of the molecular interactions of superoxide with nitric oxide and arachidonic acid are discussed.
Collapse
Affiliation(s)
- Frank M Faraci
- Dept. of Internal Medicine, E318-2 GH, Carver College of Medicine, Univ. of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
41
|
Gonzales RJ, Ghaffari AA, Duckles SP, Krause DN. Testosterone treatment increases thromboxane function in rat cerebral arteries. Am J Physiol Heart Circ Physiol 2005; 289:H578-85. [PMID: 15764681 DOI: 10.1152/ajpheart.00958.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that testosterone, administered in vivo, increases the tone of cerebral arteries. A possible underlying mechanism is increased vasoconstriction through the thromboxane A2 (TxA2) pathway. Therefore, we investigated the effect of chronic testosterone treatment (4 wk) on TxA2 synthase levels and the contribution of TxA2 to vascular tone in rat middle cerebral arteries (MCAs). Using immunofluorescence and confocal microscopy, we demonstrated that TxA2 synthase is present in MCA segments in both smooth muscle and endothelial layers. Using Western blot analysis, we found that TxA2 synthase protein levels are higher in cerebral vessel homogenates from testosterone-treated orchiectomized (ORX+T) rats compared with orchiectomized (ORX) control animals. Functional consequences of changes in cerebrovascular TxA2 synthase were determined using cannulated, pressurized MCA segments in vitro. Constrictor responses to the TxA2 mimetic U-46619 were not different between the ORX+T and ORX groups. However, dilator responses to either the selective TxA2 synthase inhibitor furegrelate or the TxA2-endoperoxide receptor (TP) antagonist SQ-29548 were greater in the ORX+T compared with ORX group. In endothelium-denuded arteries, the dilation to furegrelate was attenuated in both the ORX and ORX+T groups, and the difference between the groups was abolished. These data suggest that chronic testosterone treatment enhances TxA2-mediated tone in rat cerebral arteries by increasing endothelial TxA2 synthesis without altering the TP receptors mediating constriction. The effect of in vivo testosterone on cerebrovascular TxA2 synthase, observed here after chronic hormone administration, may contribute to the risk of vasospasm and thrombosis related to cerebrovascular disease.
Collapse
Affiliation(s)
- Rayna J Gonzales
- Department of Pharmacology, College of Medicine, Univ. of California, Irvine, CA 92697-4625, USA
| | | | | | | |
Collapse
|
42
|
Pladys P, Sennlaub F, Brault S, Checchin D, Lahaie I, Lê NLO, Bibeau K, Cambonie G, Abran D, Brochu M, Thibault G, Hardy P, Chemtob S, Nuyt AM. Microvascular rarefaction and decreased angiogenesis in rats with fetal programming of hypertension associated with exposure to a low-protein diet in utero. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1580-8. [PMID: 16037123 DOI: 10.1152/ajpregu.00031.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In hypertension, increased peripheral vascular resistance results from vascular dysfunction with or without structural changes (vessel wall remodeling and/or microvascular rarefaction). Humans with lower birth weight exhibit evidence of vascular dysfunction. The current studies were undertaken to investigate whether in utero programming of hypertension is associated with in vivo altered response and/or abnormal vascular structure. Offspring of Wistar dams fed a normal (CTRL) or low (LP)-protein diet during gestation were studied. Mean arterial blood pressure response to ANG II was significantly increased, and depressor response to sodium nitroprusside (SNP) infusions significantly decreased in male LP adult offspring relative to CTRL. No arterial remodeling was observed in male LP compared with CTRL offspring. Capillary and arteriolar density was significantly decreased in striated muscles from LP offspring at 7 and 28 days of life but was not different in late fetal life [day 21 of gestation (E21)]. Angiogenic potential of aortic rings from LP newborn (day of birth, P0) was significantly decreased. Striated muscle expressions (Western blots) of ANG II AT(1) receptor subtype, endothelial nitric oxide synthase, angiopoietin 1 and 2, Tie 2 receptor, vascular endothelial growth factor and receptor, and platelet-derived growth factor C at E21 and P7 were unaltered by antenatal diet exposure. In conclusion, blood pressure responses to ANG II and SNP are altered, and microvascular structural changes prevail in this model of fetal programming of hypertension. The capillary rarefaction is absent in the fetus and appears in the neonatal period, in association with decreased angiogenic potential. The study suggests that intrauterine protein restriction increases susceptibility to postnatal factors resulting in microvascular rarefaction, which could represent a primary event in the genesis of hypertension.
Collapse
Affiliation(s)
- P Pladys
- Research Center, Hôpital Sainte-Justine, Dept. of Pediatrics, Univ. of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Some years ago it was discovered that prostaglandin F2-like compounds are formed in vivo by nonenzymatic free radical-catalyzed peroxidation of arachidonic acid. Because these compounds are a series of isomers that contain the prostane ring of prostaglandins, they were termed F2-isoprostanes. Intermediates in the isoprostane pathway are prostaglandin H2-like compounds that become reduced to form F2-isoprostanes but also undergo rearrangement in vivo to form E2-, D2-, A2-, J2-isoprostanes, isothromboxanes, and highly reactive gamma-ketoaldehydes, termed isoketals. Analogous compounds have also been shown to be formed from free radical mediated oxidation of docosoahexaenoic acid. Because docosahexaenoic acid is highly enriched in neurons, these compounds have been termed neuroprostanes and neuroketals. An important aspect of the discovery of isoprostanes is that measurement of F2-isoprostanes has emerged as one of the most reliable approaches to assess oxidative stress status in vivo, providing an important tool to explore the role of oxidative stress in the pathogenesis of human disease. Measurement of F4-neuroprostanes has also proved of value in exploring the role of oxidative stress in neurodegenerative diseases. Products of the isoprostane pathway have been found to exert potent biological actions and therefore may participate as physiological mediators of disease.
Collapse
Affiliation(s)
- Paolo Montuschi
- Department of Pharmacology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | | |
Collapse
|
44
|
Abstract
Isoprostanes are not mere bystanders of oxidative injury, but possess potent biological activity and may thus contribute to the pathophysiology of various disorders associated with an increase in free radical formation. 15-F2t-IsoP (8-iso-prostaglandin F2) and 15-E2t-IsoP (8-iso-prostaglandin E2), two of the most abundant isoprostanes, are potent vasoconstrictors in various vascular beds, including the kidney. Since their discovery, numerous studies have aimed to define the receptors through which isoprostanes exert their effects. Whether the thromboxane receptor and/or other prostaglandin receptors mediate the actions of isoprostanes, or whether these compounds interact with their own unique receptors, remains to be clarified. Regardless of their exact mode of action, isoprostanes are being implicated in the pathophysiology of a variety of diseases, and their discovery might give rise to novel therapies for these diseases. Here we describe early studies that defined the vasoactive properties of isoprostanes in the kidney, and subsequent discoveries relating to their renal actions and pathophysiologic significance.
Collapse
Affiliation(s)
- Kamal F Badr
- Department of Medicine, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
45
|
Brault S, Martinez-Bermudez AK, Roberts J, Cui QL, Fragoso G, Hemdan S, Liu HN, Gobeil F, Quiniou C, Kermorvant-Duchemin E, Lachance C, Almazan G, Varma DR, Chemtob S. Cytotoxicity of the E(2)-isoprostane 15-E(2t)-IsoP on oligodendrocyte progenitors. Free Radic Biol Med 2004; 37:358-66. [PMID: 15223069 DOI: 10.1016/j.freeradbiomed.2004.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/28/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
Oxidant stress plays a significant role in the pathogenesis of periventricular leukomalacia (PVL). Isoprostanes (IsoPs) are bioactive products of lipid peroxidation abundantly generated during hypoxic-ischemic injuries. Because loss of oligodendrocytes (OLs) occurs early in PVL, we hypothesized that IsoPs could induce progenitor OL death. 15-E(2t)-IsoP but not 15-F(2t)-IsoP elicited a concentration-dependent death of progenitor OLs by oncosis and not by apoptosis, but exerted minimal effects on mature OLs. 15-E(2t)-IsoP-induced cytotoxicity could not be explained by its conversion into cyclopentenones, because PGA(2) was hardly cytotoxic. On the other hand, thromboxane A(2) (TxA(2)) synthase inhibitor CGS12970 and cyclooxygenase inhibitor ibuprofen attenuated 15-E(2t)-IsoP-induced cytotoxicity. Susceptibility of progenitor OLs was independent of TxA(2) receptor (TP) expression, which was far less in progenitor than in mature OLs. However, TxA(2) synthase was detected in precursor but not in mature OLs, and TxA(2) mimetic U46619 induced hydroperoxides generation and progenitor OL death. The glutathione synthesis enhancer N-acetylcysteine prevented 15-E(2t)-IsoP-induced progenitor cell death. Depletion of glutathione in mature OLs with buthionine sulfoximine rendered them susceptible to cytotoxicity of 15-E(2t)-IsoP. These novel data implicate 15-E(2t)-IsoP as a product of oxidative stress that may contribute in the genesis of PVL.
Collapse
Affiliation(s)
- Sonia Brault
- Research Center of Hôpital Sainte-Justine, Department of Pediatrics and Pharmacology, Université de Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Isoprostanes are widely recognized as useful markers of membrane lipid peroxidation. It seems to be less well appreciated, however, that they also elicit important biological responses, even though this was first shown at the same time that they were introduced as markers of oxidative stress. The past several years have seen the list of cells/tissues which are sensitive to isoprostanes grow considerably: in fact, as we summarize here, there is now evidence that essentially every cell type in the lung responds in some pathologically relevant way to isoprostanes. In this sense, they might well be considered as not just markers of oxidative stress and inflammation, but also as a novel group of inflammatory mediators. Moreover, in addition to their pathological effects, we summarize here the evidence which has led us to hypothesize that isoprostanes could play an important role in vascular smooth muscle physiology as "endothelium-derived hyperpolarizing factors."
Collapse
Affiliation(s)
- L J Janssen
- Department of Medicine, Asthma Research Group, Father Sean O'Sullivan Research Center, Firestone Institute for Respiratory Health, St. Joseph's Hospital, McMaster University, Hamilton, Ont., Canada L8N4A6.
| |
Collapse
|
47
|
Belik J, Jankov RP, Pan J, Yi M, Pace-Asciak CR, Tanswell AK. Effect of 8-isoprostaglandin F2alpha on the newborn rat pulmonary arterial muscle and endothelium. J Appl Physiol (1985) 2003; 95:1979-85. [PMID: 12857766 DOI: 10.1152/japplphysiol.00420.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
8-Isoprostaglandin F2alpha (8-iso-PGF2alpha) is a bioactive lipid peroxidation product that is a vasoconstrictor at high concentrations. Paradoxically, at lower, and possibly physiological, concentrations, it is a pulmonary vascular muscle's relaxant. Its effects on newborn pulmonary vasculature are unknown. We hypothesized that the pulmonary arterial 8-iso-PGF2alpha responses may be developmentally regulated. Therefore, the purpose of this study was to evaluate and compare 8-iso-PGF2alpha effects between 1- and 2-wk-old newborn and adult rat isolated intrapulmonary arteries (100 microm) mounted on a myograph. Force after 8-iso-PGF2alpha stimulation was greatest in the adult (P < 0.01). In newborns, force was significantly increased by the nitric oxide (NO) synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME) (P < 0.01) and was suppressed by blockade of the thromboxane (Tx) A2 receptor. Whereas 8-iso-PGF2alpha induced a significant dose-dependent relaxation of adult precontracted vessels in the presence of a TxA2 mimetic (U-46619; 1 microM), contraction was observed in the 1-wk-old rat. This 8-iso-PGF2alpha-induced contraction was abolished by endothelium removal and l-NAME and was attenuated by the cyclooxygenase inhibitor ibuprofen. In the presence of a TxA2/prostaglandin H2 receptor blocker, 8-iso-PGF2alpha induced NO-mediated relaxation, the magnitude of which was greater in the newborn, compared with the adult (P < 0.01). When exposed to 8-iso-PGF2alpha in vitro, only the newborn lung secreted TxB2. We conclude that, in contrast to its relaxant effect in the adult, 8-iso-PGF2alpha induces contraction of the pulmonary arteries in the early postnatal period, which is likely to be mediated by endothelium-derived TxA2. This phenomenon may contribute to the maintenance of a higher pulmonary vascular resistance in the early postnatal period.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Age Factors
- Animals
- Animals, Newborn
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Enzyme Inhibitors/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Prostaglandins A/pharmacology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Rats
- Rats, Sprague-Dawley
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- J Belik
- Canadian Institutes of Health Research Group in Lung Development, Lung Biology and Integrative Biology Programmes, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
48
|
Bolcato CA, Frye RF, Zemaitis MA, Poloyac SM. Determination of 20-hydroxyeicosatetraenoic acid in microsomal incubates using high-performance liquid chromatography-mass spectrometry (HPLC-MS). J Chromatogr B Analyt Technol Biomed Life Sci 2003; 794:363-72. [PMID: 12954388 DOI: 10.1016/s1570-0232(03)00496-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
20-HETE is a potent, vasoconstrictive arachidonic acid metabolite with a limited number of published methods for quantitative assessment of microsomal formation rate. The purpose of this study was to evaluate the utility of HPLC-MS (negative ESI) for quantitation of rat microsomal 20-HETE enzyme kinetics. Calibration curves were linear over 0.75-16 ng on-column (r(2)>0.996). The intra- and inter-assay precision and accuracy were <15%. Microsomal 20-HETE revealed saturable (100 microM) kinetics (brain K(m) and V(max): 39.9+/-6.0 microM and 8.7+/-0.6 pM/min per mg; liver K(m) and V(max): 23.5+/-3.2 microM and 775.5+/-39.8 pmol/min per mg; kidney K(m) and V(max): 47.6+/-8.5 microM and 1933+/-151 pM/min per mg). This paper demonstrates HPLC-MS as an efficient method for quantitating 20-HETE enzyme kinetics in microsomes from rat tissues.
Collapse
Affiliation(s)
- Christopher A Bolcato
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
49
|
Hou X, Gobeil F, Marrache AM, Quiniou C, Brault S, Checchin D, Bernier SG, Sennlaub F, Joyal JS, Abran D, Peri K, Varma DR, Chemtob S. Increased platelet-activating factor-induced periventricular brain microvascular constriction associated with immaturity. Am J Physiol Regul Integr Comp Physiol 2003; 284:R928-35. [PMID: 12626359 DOI: 10.1152/ajpregu.00633.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidant stress contributes to the pathogenesis of hypoxic-ischemic encephalopathies. Platelet-activating factor (PAF) is generated during oxidant stress. We studied the vasomotor mode of actions of PAF on periventricular (PV) microvessels of fetal ( approximately 75% of term), newborn (1-3 days), and adult pigs. PAF constricted PV microvessels from fetal (29.27 +/- 2.6%) and newborn (22.14 +/- 3.2%) pigs but was ineffective in adults (<2.5%). Specific [(3)H]PAF binding was greater in fetus and newborn than in adults; a concordant developmental PAF-induced inositol phosphate formation was observed. PAF-induced vasoconstriction was abrogated by thromboxane A(2) (TXA(2)) synthase and receptor inhibitors, calcium channel blockers, and by removal of endothelium; vasoconstriction to TXA(2) mimetic U-46619 did not differ with age. Immunoreactive TXA(2) synthase expression and PAF-evoked TXA(2) formation revealed a fetus> newborn>adult profile. Thus the greater PAF-induced PV microvascular constriction in younger subjects seems attributable to greater PAF receptor density and mostly secondary to TXA(2) formation from endothelium. The resulting decrease in blood flow may contribute to the increased vulnerability of the PV brain regions to oxidant stress-induced injury in immature subjects.
Collapse
Affiliation(s)
- Xin Hou
- Centre de Recherche de l'Hôpital Sainte-Justine, Department of Pediatrics and Pharmacology, Université de Montréal, Montréal, H3T 1C5
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD. Lipid peroxidation in aging brain and Alzheimer's disease. Free Radic Biol Med 2002; 33:620-6. [PMID: 12208348 DOI: 10.1016/s0891-5849(02)00807-9] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipid peroxidation is one of the major outcomes of free radical-mediated injury that directly damages membranes and generates a number of secondary products, both from fission and endocyclization of oxygenated fatty acids that possess neurotoxic activity. Numerous studies have demonstrated increased lipid peroxidation in brain of patients with Alzheimer's disease (AD) compared with age-matched controls. These data include quantification of fission and endocyclized products such as 4-hydroxy-2-nonenal, acrolein, isoprostanes, and neuroprostanes. Immunohistochemical and biochemical studies have localized the majority of lipid peroxidation products to neurons. A few studies have consistently demonstrated increased cerebrospinal fluid (CSF) levels of isoprostanes in AD patients early in the course of their dementia, and one study has suggested that CSF isoprostanes may improve the laboratory diagnostic accuracy for AD. Similar analyses of control individuals over a wide range of ages indicate that brain lipid peroxidation is not a significant feature of usual aging. Quantification of isoprostanes in plasma and urine of AD patients has yielded inconsistent results. These results indicate that brain lipid peroxidation is a potential therapeutic target in probable AD patients, and that CSF isoprostanes may aid in the assessment of antioxidant experimental therapeutics and the laboratory diagnosis of AD.
Collapse
Affiliation(s)
- Thomas J Montine
- Department of Pharmacology, Pathology, and Medicine and the Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | | | | | | | | | | |
Collapse
|