1
|
Li W, Pang Y, Jin K, Wang Y, Wu Y, Luo J, Xu W, Zhang X, Xu R, Wang T, Jiao L. Membrane contact sites orchestrate cholesterol homeostasis that is central to vascular aging. WIREs Mech Dis 2023; 15:e1612. [PMID: 37156598 DOI: 10.1002/wsbm.1612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Chronological age causes structural and functional vascular deterioration and is a well-established risk factor for the development of cardiovascular diseases, leading to more than 40% of all deaths in the elderly. The etiology of vascular aging is complex; a significant impact arises from impaired cholesterol homeostasis. Cholesterol level is balanced through synthesis, uptake, transport, and esterification, the processes executed by multiple organelles. Moreover, organelles responsible for cholesterol homeostasis are spatially and functionally coordinated instead of isolated by forming the membrane contact sites. Membrane contact, mediated by specific protein-protein interaction, pulls opposing organelles together and creates the hybrid place for cholesterol transfer and further signaling. The membrane contact-dependent cholesterol transfer, together with the vesicular transport, maintains cholesterol homeostasis and has intimate implications in a growing list of diseases, including vascular aging-related diseases. Here, we summarized the latest advances regarding cholesterol homeostasis by highlighting the membrane contact-based regulatory mechanism. We also describe the downstream signaling under cholesterol homeostasis perturbations, prominently in cholesterol-rich conditions, stimulating age-dependent organelle dysfunction and vascular aging. Finally, we discuss potential cholesterol-targeting strategies for therapists regarding vascular aging-related diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yiyun Pang
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuru Wang
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Severance ZC, Nuñez JI, Le-McClain AT, Malinky CA, Bensen RC, Fogle RS, Manginelli GW, Sakers SH, Falcon EC, Bui RH, Snead KJ, Bourne CR, Burgett AWG. Structure-Activity Relationships of Ligand Binding to Oxysterol-Binding Protein (OSBP) and OSBP-Related Protein 4. J Med Chem 2023; 66:3866-3875. [PMID: 36916802 PMCID: PMC10786236 DOI: 10.1021/acs.jmedchem.2c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related protein 4 (ORP4) have emerged as potentially druggable targets in antiviral and precision cancer drug development. Multiple structurally diverse small molecules function through targeting the OSBP/ORP family of proteins, including the antiviral steroidal compounds OSW-1 and T-00127-HEV2. Here, the structure-activity relationships of oxysterols and related compound binding to human OSBP and ORP4 are characterized. Oxysterols with hydroxylation at various side chain positions (i.e., C-20, C-24, C-25, and C-27)─but not C-22─confer high affinity interactions with OSBP and ORP4. A library of 20(S)-hydroxycholesterol analogues with varying sterol side chains reveal that side chain length modifications are not well tolerated for OSBP and ORP4 interactions. This side chain requirement is contradicted by the high affinity binding of T-00127-HEV2, a steroidal compound lacking the side chain. The binding results, in combination with docking studies using homology models of OSBP and ORP4, suggest multiple modes of steroidal ligand binding to OSBP and ORP4.
Collapse
Affiliation(s)
- Zachary C Severance
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Juan I Nuñez
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Anh T Le-McClain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Cori A Malinky
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ryan C Bensen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Robert S Fogle
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Gianni W Manginelli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sophia H Sakers
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Emily C Falcon
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Richard Hoang Bui
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Kevin J Snead
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Anthony W G Burgett
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
3
|
Hepatocyte-Derived Prostaglandin E2-Modulated Macrophage M1-Type Polarization via mTOR-NPC1 Axis-Regulated Cholesterol Transport from Lysosomes to the Endoplasmic Reticulum in Hepatitis B Virus x Protein-Related Nonalcoholic Steatohepatitis. Int J Mol Sci 2022; 23:ijms231911660. [PMID: 36232960 PMCID: PMC9569602 DOI: 10.3390/ijms231911660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lipid metabolic dysregulation and liver inflammation have been reported to be associated with nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain unclear. Hepatitis B virus x protein (HBx) is a risk factor for NASH. Based on metabolomic and transcriptomic screens and public database analysis, we found that HBx-expressing hepatocyte-derived prostaglandin E2 (PGE2) induced macrophage polarization imbalance via prostaglandin E2 receptor 4 (EP4) through in vitro, ex vivo, and in vivo models. Here, we revealed that the M1-type polarization of macrophages induced by endoplasmic reticulum oxidoreductase-1-like protein α (ERO1α)-dependent endoplasmic reticulum stress was associated with the HBx-related hepatic NASH phenotype. Mechanistically, HBx promoted Niemann-Pick type C1 (NPC1)/oxysterol-binding protein-related protein 5 (ORP5)-mediated cholesterol transport from the lysosome to the endoplasmic reticulum via mammalian target of rapamycin (mTOR) activation. This study provides a novel basis for screening potential biomarkers in the macrophage mTOR-cholesterol homeostasis-polarization regulatory signaling pathway and evaluating targeted interventions for HBx-associated NASH.
Collapse
|
4
|
Dong Y, Jin L, Liu X, Li D, Chen W, Huo H, Zhang C, Li S. IMPACT and OSBPL1A are two isoform-specific imprinted genes in bovines. Theriogenology 2022; 184:100-109. [DOI: 10.1016/j.theriogenology.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
|
5
|
Olkkonen VM, Ikonen E. Cholesterol transport in the late endocytic pathway: Roles of ORP family proteins. J Steroid Biochem Mol Biol 2022; 216:106040. [PMID: 34864207 DOI: 10.1016/j.jsbmb.2021.106040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
Oxysterol-binding protein (OSBP) homologues, designated ORP or OSBPL proteins, constitute one of the largest families of intracellular lipid-binding/transfer proteins (LTP). This review summarizes the mounting evidence that several members of this family participate in the machinery facilitating cholesterol trafficking in the late endocytic pathway. There are indications that OSBP, besides acting as a cholesterol/phosphatidylinositol 4-phosphate (PI4P) exchanger at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCS), also exchanges these lipids at ER-lysosome (Lys) contacts, increasing Lys cholesterol content. The long isoform of ORP1 (ORP1L), which also targets ER-late endosome (LE)/Lys MCS, has the capacity to mediate cholesterol transport either from ER to LE or in the opposite direction. Moreover, it regulates the motility, positioning and fusion of LE as well as autophagic flux. ORP2, the closest relative of ORP1, is mainly cytosolic, but also targets PI(4,5)P2-rich endosomal compartments. Our latest data suggest that ORP2 transfers cholesterol from LE to recycling endosomes (RE) in exchange for PI(4,5)P2, thus stimulating the recruitment of focal adhesion kinase (FAK) on the RE and cell adhesion. FAK activates phosphoinositide kinase on the RE to enhance PI(4,5)P2 synthesis. ORP2 in turn transfers PI(4,5)P2 from RE to LE, thus regulating LE tubule formation and transport activity.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
7
|
Yvan-Charvet L, Bonacina F, Guinamard RR, Norata GD. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc Res 2020; 115:1393-1407. [PMID: 31095280 DOI: 10.1093/cvr/cvz127] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation represents the driving feature of many diseases, including atherosclerosis, cancer, autoimmunity and infections. It is now established that metabolic processes shape a proper immune response and within this context the alteration in cellular cholesterol homeostasis has emerged as a culprit of many metabolic abnormalities observed in chronic inflammatory diseases. Cholesterol accumulation supports the inflammatory response of myeloid cells (i.e. augmentation of toll-like receptor signalling, inflammasome activation, and production of monocytes and neutrophils) which is beneficial in the response to infections, but worsens diseases associated with chronic metabolic inflammation including atherosclerosis. In addition to the innate immune system, cells of adaptive immunity, upon activation, have also been shown to undergo a reprogramming of cellular cholesterol metabolism, which results in the amplification of inflammatory responses. Aim of this review is to discuss (i) the molecular mechanisms linking cellular cholesterol metabolism to specific immune functions; (ii) how cellular cholesterol accumulation sustains chronic inflammatory diseases such as atherosclerosis; (iii) the immunometabolic profile of patients with defects of genes affecting cholesterol metabolism including familial hypercholesterolaemia, cholesteryl ester storage disease, Niemann-Pick type C, and immunoglobulin D syndrome/mevalonate kinase deficiency. Available data indicate that cholesterol immunometabolism plays a key role in directing immune cells function and set the stage for investigating the repurposing of existing 'metabolic' drugs to modulate the immune response.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rodolphe Renè Guinamard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Giuseppe Danilo Norata
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France.,Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| |
Collapse
|
8
|
Arnal-Levron M, Chen Y, Greimel P, Calevro F, Gaget K, Riols F, Batut A, Bertrand-Michel J, Hullin-Matsuda F, Olkkonen VM, Delton I, Luquain-Costaz C. Bis(monoacylglycero)phosphate regulates oxysterol binding protein-related protein 11 dependent sterol trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1247-1257. [DOI: 10.1016/j.bbalip.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
|
9
|
OSBPL2-disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia. J Genet Genomics 2019; 46:379-387. [PMID: 31451425 DOI: 10.1016/j.jgg.2019.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Oxysterol binding protein like 2 (OSBPL2), an important regulator in cellular lipid metabolism and transport, was identified as a novel deafness-causal gene in our previous work. To resemble the phenotypic features of OSBPL2 mutation in animal models and elucidate the potential genotype-phenotype associations, the OSBPL2-disrupted Bama miniature (BM) pig model was constructed using CRISPR/Cas9-mediated gene editing, somatic cell nuclear transfer (SCNT) and embryo transplantation approaches, and then subjected to phenotypic characterization of auditory function and serum lipid profiles. The OSBPL2-disrupted pigs displayed progressive hearing loss (HL) with degeneration/apoptosis of cochlea hair cells (HCs) and morphological abnormalities in HC stereocilia, as well as hypercholesterolaemia. High-fat diet (HFD) feeding aggravated the development of HL and led to more severe hypercholesterolaemia. The dual phenotypes of progressive HL and hypercholesterolaemia resembled in OSBPL2-disrupted pigs confirmed the implication of OSBPL2 mutation in nonsydromic hearing loss (NSHL) and contributed to the potential linkage between auditory dysfunction and dyslipidaemia/hypercholesterolaemia.
Collapse
|
10
|
Tirronen A, Vuorio T, Kettunen S, Hokkanen K, Ramms B, Niskanen H, Laakso H, Kaikkonen MU, Jauhiainen M, Gordts PLSM, Ylä-Herttuala S. Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants. Arterioscler Thromb Vasc Biol 2019; 38:2327-2337. [PMID: 30354205 DOI: 10.1161/atvbaha.118.311549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Dyslipidemia is one of the key factors behind coronary heart disease. Blood and lymphatic vessels play pivotal roles in both lipoprotein metabolism and development of atherosclerotic plaques. Recent studies have linked members of VEGF (vascular endothelial growth factor) family to lipid metabolism, but the function of VEGF-D has remained unexplored. Here, we investigated how the deletion of VEGF-D affects lipid and lipoprotein metabolism in atherogenic LDLR-/- ApoB100/100 mice. Approach and Results- Deletion of VEGF-D (VEGF-D-/-LDLR-/-ApoB100/100) led to markedly elevated plasma cholesterol and triglyceride levels without an increase in atherogenesis. Size distribution and hepatic lipid uptake studies confirmed a delayed clearance of large chylomicron remnant particles that cannot easily penetrate through the vascular endothelium. Mechanistically, the inhibition of VEGF-D signaling significantly decreased the hepatic expression of SDC1 (syndecan 1), which is one of the main receptors for chylomicron remnant uptake when LDLR is absent. Immunohistochemical staining confirmed reduced expression of SDC1 in the sinusoidal surface of hepatocytes in VEGF-D deficient mice. Furthermore, hepatic RNA-sequencing revealed that VEGF-D is also an important regulator of genes related to lipid metabolism and inflammation. The lack of VEGF-D signaling via VEGFR3 (VEGF receptor 3) led to lowered expression of genes regulating triglyceride and cholesterol production, as well as downregulation of peroxisomal β-oxidation pathway. Conclusions- These results demonstrate that VEGF-D, a powerful lymphangiogenic and angiogenic growth factor, is also a major regulator of chylomicron metabolism in mice.
Collapse
Affiliation(s)
- Annakaisa Tirronen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Taina Vuorio
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Sanna Kettunen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Krista Hokkanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Bastian Ramms
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Department of Chemistry, Biochemistry I, Bielefeld University, Germany (B.R.)
| | - Henri Niskanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Hanne Laakso
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Minna U Kaikkonen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.J.)
| | - Philip L S M Gordts
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Glycobiology Research and Training Center (P.L.S.M.G.), University of California San Diego, La Jolla, CA
| | - Seppo Ylä-Herttuala
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.).,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| |
Collapse
|
11
|
Grefhorst A, Verkade HJ, Groen AK. The TICE Pathway: Mechanisms and Lipid-Lowering Therapies. Methodist Debakey Cardiovasc J 2019; 15:70-76. [PMID: 31049152 DOI: 10.14797/mdcj-15-1-70] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Besides the well-known hepatobiliary pathway of cholesterol excretion into the feces, transintestinal cholesterol excretion (TICE) is a second major pathway through which cholesterol is disposed from the body. In the process of TICE, cholesterol is taken up from lipoprotein particles at the basolateral side of the enterocyte and translocates towards the apical side of the enterocyte. At the apical side, the ATP-binding cassette transporters G5 and G8 form a heterodimer that transports cholesterol into the intestinal lumen. A substantial amount of the secreted cholesterol is likely reabsorbed by the cholesterol influx transporter Niemann-Pick C1-Like 1 (NPC1L1) since recent data indicate that inhibition of NPC1L1 increases the efficacy of TICE for disposal of cholesterol via the feces. The pathways and proteins involved in intracellular cholesterol trafficking in the enterocyte have not yet been identified. Therefore, in addition to discussing known mediators of TICE, this review will also examine potential candidates involved in cholesterol translocation in the enterocyte. Both the cholesterol reuptake and efflux pathways can be influenced by pharmaceutical means; thus, the TICE pathway is a very attractive target to increase cholesterol excretion from the body and prevent or mitigate atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Aldo Grefhorst
- AMSTERDAM UNIVERSITY MEDICAL CENTERS, AMSTERDAM, THE NETHERLANDS
| | - Henkjan J Verkade
- UNIVERSITY MEDICAL CENTER GRONINGEN, UNIVERSITY OF GRONINGEN, GRONINGEN, THE NETHERLANDS
| | - Albert K Groen
- AMSTERDAM UNIVERSITY MEDICAL CENTERS, AMSTERDAM, THE NETHERLANDS.,UNIVERSITY MEDICAL CENTER GRONINGEN, UNIVERSITY OF GRONINGEN, GRONINGEN, THE NETHERLANDS
| |
Collapse
|
12
|
Tong J, Manik MK, Yang H, Im YJ. Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:928-939. [DOI: 10.1016/j.bbalip.2016.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
13
|
Justis AV, Hansen B, Beare PA, King KB, Heinzen RA, Gilk SD. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol 2016; 19. [PMID: 27345457 DOI: 10.1111/cmi.12637] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 01/07/2023]
Abstract
Coxiella burnetii is a gram-negative intracellular bacterium that forms a large, lysosome-like parasitophorous vacuole (PV) essential for bacterial replication. Host membrane lipids are critical for the formation and maintenance of this intracellular niche, yet the mechanisms by which Coxiella manipulates host cell lipid metabolism, trafficking and signalling are unknown. Oxysterol-binding protein-related protein 1 long (ORP1L) is a mammalian lipid-binding protein that plays a dual role in cholesterol-dependent endocytic trafficking as well as interactions between endosomes and the endoplasmic reticulum (ER). We found that ORP1L localized to the Coxiella PV within 12 h of infection through a process requiring the Coxiella Dot/Icm Type 4B secretion system, which secretes effector proteins into the host cell cytoplasm where they manipulate trafficking and signalling pathways. The ORP1L N-terminal ankyrin repeats were necessary and sufficient for PV localization, indicating that ORP1L binds a PV membrane protein. Strikingly, ORP1L simultaneously co-localized with the PV and ER, and electron microscopy revealed membrane contact sites between the PV and ER membranes. In ORP1L-depleted cells, PVs were significantly smaller than PVs from control cells. These data suggest that ORP1L is specifically recruited by the bacteria to the Coxiella PV, where it influences PV membrane dynamics and interactions with the ER.
Collapse
Affiliation(s)
- Anna V Justis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan Hansen
- Research Technology Branch, National Institutes of Health, Hamilton, MT, USA
| | - Paul A Beare
- Laboratory of Bacteriology, Rocky Mountain Labs, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kourtney B King
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert A Heinzen
- Laboratory of Bacteriology, Rocky Mountain Labs, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
A loss-of-function variant in OSBPL1A predisposes to low plasma HDL cholesterol levels and impaired cholesterol efflux capacity. Atherosclerosis 2016; 249:140-7. [DOI: 10.1016/j.atherosclerosis.2016.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 12/25/2022]
|
15
|
Ouimet M, Hennessy EJ, van Solingen C, Koelwyn GJ, Hussein MA, Ramkhelawon B, Rayner KJ, Temel RE, Perisic L, Hedin U, Maegdefessel L, Garabedian MJ, Holdt LM, Teupser D, Moore KJ. miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux. Arterioscler Thromb Vasc Biol 2016; 36:942-951. [PMID: 26941018 DOI: 10.1161/atvbaha.116.307282] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Cholesterol homeostasis is fundamental to human health and is, thus, tightly regulated. MicroRNAs exert potent effects on biological pathways, including cholesterol metabolism, by repressing genes with related functions. We reasoned that this mode of pathway regulation could be exploited to identify novel genes involved in cholesterol homeostasis. APPROACH AND RESULTS Here, we identify oxysterol-binding protein-like 6 (OSBPL6) as a novel target of 2 miRNA hubs regulating cholesterol homeostasis: miR-33 and miR-27b. Characterization of OSBPL6 revealed that it is transcriptionally regulated in macrophages and hepatocytes by liver X receptor and in response to cholesterol loading and in mice and nonhuman primates by Western diet feeding. OSBPL6 encodes the OSBPL-related protein 6 (ORP6), which contains dual membrane- and endoplasmic reticulum-targeting motifs. Subcellular localization studies showed that ORP6 is associated with the endolysosomal network and endoplasmic reticulum, suggesting a role for ORP6 in cholesterol trafficking between these compartments. Accordingly, knockdown of OSBPL6 results in aberrant clustering of endosomes and promotes the accumulation of free cholesterol in these structures, resulting in reduced cholesterol esterification at the endoplasmic reticulum. Conversely, ORP6 overexpression enhances cholesterol trafficking and efflux in macrophages and hepatocytes. Moreover, we show that hepatic expression of OSBPL6 is positively correlated with plasma levels of high-density lipoprotein cholesterol in a cohort of 200 healthy individuals, whereas its expression is reduced in human atherosclerotic plaques. CONCLUSIONS These studies identify ORP6 as a novel regulator of cholesterol trafficking that is part of the miR-33 and miR-27b target gene networks that contribute to the maintenance of cholesterol homeostasis.
Collapse
Affiliation(s)
- Mireille Ouimet
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Elizabeth J Hennessy
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Coen van Solingen
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Graeme J Koelwyn
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Maryem A Hussein
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Bhama Ramkhelawon
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Katey J Rayner
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ryan E Temel
- Saha Cardiovascular Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Ljubica Perisic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | | | - Michael J Garabedian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Kathryn J Moore
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
16
|
Kentala H, Weber-Boyvat M, Olkkonen VM. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:299-340. [PMID: 26811291 DOI: 10.1016/bs.ircmb.2015.09.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| |
Collapse
|
17
|
Raiborg C, Wenzel EM, Stenmark H. ER-endosome contact sites: molecular compositions and functions. EMBO J 2015; 34:1848-58. [PMID: 26041457 DOI: 10.15252/embj.201591481] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/31/2015] [Indexed: 01/05/2023] Open
Abstract
Recent studies have revealed the existence of numerous contact sites between the endoplasmic reticulum (ER) and endosomes in mammalian cells. Such contacts increase during endosome maturation and play key roles in cholesterol transfer, endosome positioning, receptor dephosphorylation, and endosome fission. At least 7 distinct contact sites between the ER and endosomes have been identified to date, which have diverse molecular compositions. Common to these contact sites is that they impose a close apposition between the ER and endosome membranes, which excludes membrane fusion while allowing the flow of molecular signals between the two membranes, in the form of enzymatic modifications, or ion, lipid, or protein transfer. Thus, ER-endosome contact sites ensure coordination of molecular activities between the two compartments while keeping their general compositions intact. Here, we review the molecular architectures and cellular functions of known ER-endosome contact sites and discuss their implications for human health.
Collapse
Affiliation(s)
- Camilla Raiborg
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research Oslo University Hospital, Oslo, Norway
| | - Eva M Wenzel
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research Oslo University Hospital, Oslo, Norway Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
18
|
Cellular Localization and Trafficking of the Human ABCG1 Transporter. BIOLOGY 2014; 3:781-800. [PMID: 25405320 PMCID: PMC4280511 DOI: 10.3390/biology3040781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 11/17/2022]
Abstract
We have developed a suitable heterologous cell expression system to study the localization, trafficking, and site(s) of function of the human ABCG1 transporter. Increased plasma membrane (PM) and late endosomal (LE) cholesterol generated by ABCG1 was removed by lipoproteins and liposomes, but not apoA-I. Delivery of ABCG1 to the PM and LE was required for ABCG1-mediated cellular cholesterol efflux. ABCG1 LEs frequently contacted the PM, providing a collisional mechanism for transfer of ABCG1-mobilized cholesterol, similar to ABCG1-mediated PM cholesterol efflux to lipoproteins. ABCG1-mobilized LE cholesterol also trafficked to the PM by a non-vesicular pathway. Transfer of ABCG1-mobilized cholesterol from the cytoplasmic face of LEs to the PM and concomitant removal of cholesterol from the outer leaflet of the PM bilayer by extracellular acceptors suggests that ABCG1 mobilizes cholesterol on both sides of the lipid bilayer for removal by acceptors. ABCG1 increased uptake of HDL into LEs, consistent with a potential ABCG1-mediated cholesterol efflux pathway involving HDL resecretion. Thus, ABCG1 at the PM mobilizes PM cholesterol and ABCG1 in LE/LYS generates mobile pools of cholesterol that can traffic by both vesicular and non-vesicular pathways to the PM where it can also be transferred to extracellular acceptors with a lipid surface.
Collapse
|
19
|
van Kampen E, Beaslas O, Hildebrand RB, Lammers B, Van Berkel TJC, Olkkonen VM, Van Eck M. Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice. PLoS One 2014; 9:e109024. [PMID: 25347070 PMCID: PMC4209969 DOI: 10.1371/journal.pone.0109024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
Introduction Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown. Methods and Results LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity. Conclusions Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/metabolism
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/therapy
- Biomarkers
- Bone Marrow Cells/metabolism
- Cholesterol/blood
- Cholesterol/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Foam Cells/pathology
- Gene Expression
- Inflammation Mediators/metabolism
- Leukocyte Count
- Macrophages/metabolism
- Male
- Mice
- Mice, Knockout
- Mustard Gas
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, Steroid/deficiency
- Receptors, Steroid/genetics
- Time Factors
- Triglycerides/blood
Collapse
Affiliation(s)
- Erik van Kampen
- Div. of Biopharmaceutics, Cluster of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
- * E-mail:
| | - Olivier Beaslas
- Dept. of Lipid Signalling and Homeostasis, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Reeni B. Hildebrand
- Div. of Biopharmaceutics, Cluster of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Bart Lammers
- Div. of Biopharmaceutics, Cluster of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Theo J. C. Van Berkel
- Div. of Biopharmaceutics, Cluster of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Vesa M. Olkkonen
- Dept. of Lipid Signalling and Homeostasis, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Miranda Van Eck
- Div. of Biopharmaceutics, Cluster of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
20
|
Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr 2014; 14:36. [PMID: 24656052 PMCID: PMC3994432 DOI: 10.1186/1471-2318-14-36] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/26/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aging is accompanied by increasing vulnerability to pathologies such as atherosclerosis (ATH) and Alzheimer disease (AD). Are these different pathologies, or different presentations with a similar underlying pathoetiology? DISCUSSION Both ATH and AD involve inflammation, macrophage infiltration, and occlusion of the vasculature. Allelic variants in common genes including APOE predispose to both diseases. In both there is strong evidence of disease association with viral and bacterial pathogens including herpes simplex and Chlamydophila. Furthermore, ablation of components of the immune system (or of bone marrow-derived macrophages alone) in animal models restricts disease development in both cases, arguing that both are accentuated by inflammatory/immune pathways. We discuss that amyloid β, a distinguishing feature of AD, also plays a key role in ATH. Several drugs, at least in mouse models, are effective in preventing the development of both ATH and AD. Given similar age-dependence, genetic underpinnings, involvement of the vasculature, association with infection, Aβ involvement, the central role of macrophages, and drug overlap, we conclude that the two conditions reflect different manifestations of a common pathoetiology. MECHANISM Infection and inflammation selectively induce the expression of cholesterol 25-hydroxylase (CH25H). Acutely, the production of 'immunosterol' 25-hydroxycholesterol (25OHC) defends against enveloped viruses. We present evidence that chronic macrophage CH25H upregulation leads to catalyzed esterification of sterols via 25OHC-driven allosteric activation of ACAT (acyl-CoA cholesterol acyltransferase/SOAT), intracellular accumulation of cholesteryl esters and lipid droplets, vascular occlusion, and overt disease. SUMMARY We postulate that AD and ATH are both caused by chronic immunologic challenge that induces CH25H expression and protection against particular infectious agents, but at the expense of longer-term pathology.
Collapse
Affiliation(s)
- Richard Lathe
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK
| | - Alexandra Sapronova
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Optical Research Group, Laboratory of Evolutionary Biophysics of Development, Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri Kotelevtsev
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Biomedical Centre for Research Education and Innovation (CREI), Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh EH16 4TJ, UK
| |
Collapse
|
21
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
22
|
Olkkonen VM, Li S. Oxysterol-binding proteins: Sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog Lipid Res 2013; 52:529-38. [DOI: 10.1016/j.plipres.2013.06.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/15/2013] [Accepted: 06/22/2013] [Indexed: 01/27/2023]
|
23
|
Heinonen SE, Kivelä AM, Huusko J, Dijkstra MH, Gurzeler E, Mäkinen PI, Leppänen P, Olkkonen VM, Eriksson U, Jauhiainen M, Ylä-Herttuala S. The effects of VEGF-A on atherosclerosis, lipoprotein profile, and lipoprotein lipase in hyperlipidaemic mouse models. Cardiovasc Res 2013; 99:716-23. [PMID: 23756254 DOI: 10.1093/cvr/cvt148] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The role of vascular endothelial growth factor (VEGF-A) in atherogenesis has remained controversial. We addressed this by comparing the effects of adenoviral VEGF-A gene transfer on atherosclerosis and lipoproteins in ApoE(-/-), LDLR(-/-), LDLR(-/-)ApoE(-/-), and LDLR(-/-)ApoB(100/100) mice. METHODS AND RESULTS After 4 weeks on western diet, systemic adenoviral gene transfer was performed with hVEGF-A or control vectors. Effects on atherosclerotic lesion area and composition, lipoprotein profiles, and plasma lipoprotein lipase (LPL) activity were examined. On day 4, VEGF-A induced alterations in lipoprotein profiles and a significant negative correlation was observed between plasma LPL activity and VEGF-A levels. One month after gene transfer, no changes in atherosclerosis were observed in LDLR(-/-) and LDLR(-/-)ApoB(100/100) models, whereas both ApoE(-/-) models displayed increased en face lesion areas in thoracic and abdominal aortas. VEGF-A also reduced LPL mRNA in heart and white adipose tissue, whereas Angptl4 was increased, potentially providing further mechanistic explanation for the findings. CONCLUSION VEGF-A gene transfer induced pro-atherogenic changes in lipoprotein profiles in all models. As a novel finding, VEGF-A also reduced LPL activity, which might underlie the observed changes in lipid profiles. However, VEGF-A was observed to increase atherosclerosis only in the ApoE(-/-) background, clearly indicating some mouse model-specific effects.
Collapse
Affiliation(s)
- Suvi E Heinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To offer a comprehensive review on the roles that oxysterols synthesized or engulfed by macrophages, or oxysterol-binding proteins in these cells, play in the development and progression of atherosclerotic lesions. RECENT FINDINGS Oxysterols abundant within the plaque have the capacity to potentiate macrophage proinflammatory signaling and to induce cell death. These activities may contribute to formation of the complex lesion, expansion of the necrotic core, and to plaque rupture. On the contrary, several endogenous oxysterols generated by cholesterol hydroxylases act as ligands of liver X receptors, stimulate macrophage cholesterol efflux, repress proinflammatory signaling, and promote macrophage survival, counteracting lesion progression. Cytoplasmic oxysterol-binding proteins represent a family of sterol and phosphoinositide sensors that may contribute to the regulatory impact of these bioactive lipids on processes relevant in the context of atherogenesis. SUMMARY The generation and deposition of oxysterols within the developing plaque is envisioned to modulate macrophage lipid metabolism, to affect the delicate balance of proinflammatory and anti-inflammatory processes, and to impact cell fate decisions, thus, determining whether the lesion remains benign or whether it develops into a hazardous, vulnerable plaque.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research bInstitute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
25
|
Lee S, Wang PY, Jeong Y, Mangelsdorf DJ, Anderson RGW, Michaely P. Sterol-dependent nuclear import of ORP1S promotes LXR regulated trans-activation of apoE. Exp Cell Res 2012; 318:2128-42. [PMID: 22728266 DOI: 10.1016/j.yexcr.2012.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 01/30/2023]
Abstract
Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to the nucleus and promotes LXR-dependent gene transcription through select enhancer elements.
Collapse
Affiliation(s)
- Sungsoo Lee
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, United States.
| | | | | | | | | | | |
Collapse
|
26
|
Olkkonen VM, Zhou Y, Yan D, Vihervaara T. Oxysterol-binding proteins-emerging roles in cell regulation. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201200044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Oxysterols and their cellular effectors. Biomolecules 2012; 2:76-103. [PMID: 24970128 PMCID: PMC4030866 DOI: 10.3390/biom2010076] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/23/2022] Open
Abstract
Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene) proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP) homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR) α and γ, and Epstein-Barr virus induced gene 2 (EBI2) have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.
Collapse
|
28
|
Vihervaara T, Jansen M, Uronen RL, Ohsaki Y, Ikonen E, Olkkonen VM. Cytoplasmic oxysterol-binding proteins: sterol sensors or transporters? Chem Phys Lipids 2011; 164:443-50. [DOI: 10.1016/j.chemphyslip.2011.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/04/2011] [Accepted: 03/04/2011] [Indexed: 12/13/2022]
|
29
|
Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat Chem Biol 2011; 7:639-47. [PMID: 21822274 DOI: 10.1038/nchembio.625] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/03/2011] [Indexed: 01/08/2023]
Abstract
Cephalostatin 1, OSW-1, ritterazine B and schweinfurthin A are natural products that potently, and in some cases selectively, inhibit the growth of cultured human cancer cell lines. The cellular targets of these small molecules have yet to be identified. We have discovered that these molecules target oxysterol binding protein (OSBP) and its closest paralog, OSBP-related protein 4L (ORP4L)--proteins not known to be involved in cancer cell survival. OSBP and the ORPs constitute an evolutionarily conserved protein superfamily, members of which have been implicated in signal transduction, lipid transport and lipid metabolism. The functions of OSBP and the ORPs, however, remain largely enigmatic. Based on our findings, we have named the aforementioned natural products ORPphilins. Here we used ORPphilins to reveal new cellular activities of OSBP. The ORPphilins are powerful probes of OSBP and ORP4L that will be useful in uncovering their cellular functions and their roles in human diseases.
Collapse
|
30
|
Vihervaara T, Uronen RL, Wohlfahrt G, Björkhem I, Ikonen E, Olkkonen VM. Sterol binding by OSBP-related protein 1L regulates late endosome motility and function. Cell Mol Life Sci 2011; 68:537-51. [PMID: 20690035 PMCID: PMC11114714 DOI: 10.1007/s00018-010-0470-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/24/2010] [Accepted: 07/14/2010] [Indexed: 11/26/2022]
Abstract
ORP1L is an oxysterol binding homologue that regulates late endosome (LE) positioning. We show that ORP1L binds several oxysterols and cholesterol, and characterize a mutant, ORP1L Δ560-563, defective in oxysterol binding. While wild-type ORP1L clusters LE, ORP1L Δ560-563 induces LE scattering, which is reversed by disruption of the endoplasmic reticulum (ER) targeting FFAT motif, suggesting that it is due to enhanced LE-ER interactions. Endosome motility is reduced upon overexpression of ORP1L. Both wild-type ORP1L and the Δ560-563 mutant induce the recruitment of both dynactin and kinesin-2 on LE. Most of the LE decorated by overexpressed ORP1L fail to accept endocytosed dextran or EGF, and the transfected cells display defective degradation of internalized EGF. ORP1L silencing in macrophage foam cells enhances endosome motility and results in inhibition of [(3)H]cholesterol efflux to apolipoprotein A-I. These data demonstrate that LE motility and functions in both protein and lipid transport are regulated by ORP1L.
Collapse
Affiliation(s)
- Terhi Vihervaara
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland
- National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum 1, 00290 Helsinki, Finland
| | - Riikka-Liisa Uronen
- Institute of Biomedicine/Anatomy, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Gerd Wohlfahrt
- Computer-Aided Drug Design, Orion Pharma, Orionintie 1, 02101 Espoo, Finland
| | - Ingemar Björkhem
- Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Elina Ikonen
- Institute of Biomedicine/Anatomy, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland
- National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum 1, 00290 Helsinki, Finland
- Institute of Biomedicine/Anatomy, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
31
|
Functional implications of sterol transport by the oxysterol-binding protein gene family. Biochem J 2010; 429:13-24. [PMID: 20545625 DOI: 10.1042/bj20100263] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cholesterol and its numerous oxygenated derivatives (oxysterols) profoundly affect the biophysical properties of membranes, and positively and negatively regulate sterol homoeostasis through interaction with effector proteins. As the bulk of cellular sterols are segregated from the sensory machinery that controls homoeostatic responses, an important regulatory step involves sterol transport or signalling between membrane compartments. Evidence for rapid, energy-independent transport between organelles has implicated transport proteins, such as the eukaryotic family of OSBP (oxysterol-binding protein)/ORPs (OSBP-related proteins). Since the founding member of this family was identified more than 25 years ago, accumulated evidence has implicated OSBP/ORPs in sterol signalling and/or sterol transport functions. However, recent evidence of sterol transfer activity by OSBP/ORPs suggests that other seemingly disparate functions could be the result of alterations in membrane sterol distribution or ancillary to this primary activity.
Collapse
|
32
|
Abstract
In eukaryotic cells, membranes of the late secretory pathway contain a disproportionally large amount of cholesterol in relation to the endoplasmic reticulum, nuclear envelope and mitochondria. At one extreme, enrichment of the plasma membrane with cholesterol and sphingolipids is crucial for formation of liquid ordered domains (rafts) involved in cell communication and transport. On the other hand, regulatory machinery in the endoplasmic reticulum is maintained in a relatively cholesterol-poor environment, to ensure appropriate rapid responses to fluctuations in cellular sterol levels. Thus, cholesterol homeostasis is absolutely dependent on its distribution along an intracellular gradient. It is apparent that this gradient is maintained by a combination of sterol-lipid interactions, vesicular transport and sterol-binding/transport proteins. Evidence for rapid, energy-independent transport between organelles has implicated transport proteins, in particular the eukaryotic oxysterol binding protein (OSBP) family. Since the founding member of this family was identified more than 25 years ago, accumulated evidence implicates the 12-member family of OSBP and OSBP-related proteins (ORPs) in sterol signalling and/or sterol transport functions. The OSBP/ORP gene family is characterized by a conserved beta-barrel sterol-binding fold but is differentiated from other sterol-binding proteins by the presence of additional domains that target multiple organelle membranes. Here we will discuss the functional and structural characteristics of the mammalian OSBP/ORP family that support a 'dual-targeting' model for sterol transport between membranes.
Collapse
Affiliation(s)
- Neale D Ridgway
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada.
| |
Collapse
|
33
|
Affiliation(s)
- Norihito Shibata
- Department of Cellular and Molecular Medicine, University of California
| | | |
Collapse
|
34
|
Perttilä J, Merikanto K, Naukkarinen J, Surakka I, Martin NW, Tanhuanpää K, Grimard V, Taskinen MR, Thiele C, Salomaa V, Jula A, Perola M, Virtanen I, Peltonen L, Olkkonen VM. OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism. J Mol Med (Berl) 2009; 87:825-35. [PMID: 19554302 PMCID: PMC2707950 DOI: 10.1007/s00109-009-0490-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/14/2009] [Accepted: 05/25/2009] [Indexed: 11/25/2022]
Abstract
Analysis of variants in three genes encoding oxysterol-binding protein (OSBP) homologues (OSBPL2, OSBPL9, OSBPL10) in Finnish families with familial low high-density lipoprotein (HDL) levels (N = 426) or familial combined hyperlipidemia (N = 684) revealed suggestive linkage of OSBPL10 single-nucleotide polymorphisms (SNPs) with extreme end high triglyceride (TG; >90th percentile) trait. Prompted by this initial finding, we carried out association analysis in a metabolic syndrome subcohort (Genmets) of Health2000 examination survey (N = 2,138), revealing association of multiple OSBPL10 SNPs with high serum TG levels (>95th percentile). To investigate whether OSBPL10 could be the gene underlying the observed linkage and association, we carried out functional experiments in the human hepatoma cell line Huh7. Silencing of OSBPL10 increased the incorporation of [(3)H]acetate into cholesterol and both [(3)H]acetate and [(3)H]oleate into triglycerides and enhanced the accumulation of secreted apolipoprotein B100 in growth medium, suggesting that the encoded protein ORP10 suppresses hepatic lipogenesis and very-low-density lipoprotein production. ORP10 was shown to associate dynamically with microtubules, consistent with its involvement in intracellular transport or organelle positioning. The data introduces OSBPL10 as a gene whose variation may contribute to high triglyceride levels in dyslipidemic Finnish subjects and provides evidence for ORP10 as a regulator of cellular lipid metabolism.
Collapse
MESH Headings
- Cell Line, Tumor
- Cholesterol, HDL/blood
- Cholesterol, HDL/genetics
- Cholesterol, HDL/metabolism
- Female
- Finland
- Gene Silencing
- Hepatocytes/metabolism
- Humans
- Hyperlipidemia, Familial Combined/genetics
- Hyperlipidemia, Familial Combined/metabolism
- Lipid Metabolism
- Male
- Microtubules/chemistry
- Polymorphism, Single Nucleotide
- Receptors, Steroid/analysis
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Triglycerides/blood
- Triglycerides/genetics
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Julia Perttilä
- National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum, P.O. Box 104, 00251 Helsinki, Finland
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, P.O. Box 20, 00014 Helsinki, Finland
- Institute of Biomedicine/Anatomy, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Krista Merikanto
- National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum, P.O. Box 104, 00251 Helsinki, Finland
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, P.O. Box 20, 00014 Helsinki, Finland
| | - Jussi Naukkarinen
- National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum, P.O. Box 104, 00251 Helsinki, Finland
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, P.O. Box 20, 00014 Helsinki, Finland
| | - Ida Surakka
- National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum, P.O. Box 104, 00251 Helsinki, Finland
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, P.O. Box 20, 00014 Helsinki, Finland
| | - Nicolas W. Martin
- National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum, P.O. Box 104, 00251 Helsinki, Finland
- Queensland Institute of Medical Research, 300 Herston Road, Brisbane, 4029 Australia
| | - Kimmo Tanhuanpää
- Light microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Vinciane Grimard
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marja-Riitta Taskinen
- Department of Medicine, Division of Cardiology, Helsinki University Hospital and Biomedicum, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Christoph Thiele
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Veikko Salomaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland
| | - Antti Jula
- National Institute for Health and Welfare, 20720 Turku, Finland
| | - Markus Perola
- National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum, P.O. Box 104, 00251 Helsinki, Finland
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, P.O. Box 20, 00014 Helsinki, Finland
| | - Ismo Virtanen
- Institute of Biomedicine/Anatomy, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Leena Peltonen
- National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum, P.O. Box 104, 00251 Helsinki, Finland
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, P.O. Box 20, 00014 Helsinki, Finland
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA UK
- Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland
- The Broad Institute, Boston, MA 02142 USA
| | - Vesa M. Olkkonen
- National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum, P.O. Box 104, 00251 Helsinki, Finland
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, P.O. Box 20, 00014 Helsinki, Finland
- Institute of Biomedicine/Anatomy, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
35
|
Ngo M, Ridgway ND. Oxysterol binding protein-related Protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol Biol Cell 2009; 20:1388-99. [PMID: 19129476 DOI: 10.1091/mbc.e08-09-0905] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER-Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P-dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN.
Collapse
Affiliation(s)
- Mike Ngo
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
36
|
Bibliography. Current world literature. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2008; 19:525-35. [PMID: 18769235 DOI: 10.1097/mol.0b013e328312bffc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Abstract
PURPOSE OF REVIEW The lipid efflux pathway is important for both HDL formation and the reverse cholesterol transport pathway. This review is focused on recent findings on the mechanism of lipid efflux and its regulation, particularly in macrophages. RECENT FINDINGS Significant progress has been made on understanding the sequence of events that accompany the interaction of apolipoproteins A-I with cell surface ATP-binding cassette transporter A1 and its subsequent lipidation. Continued research on the regulation of ATP-binding cassette transporter A1 and ATP-binding cassette transporter G1 expression and traffic has also generated new paradigms for the control of lipid efflux from macrophages and its contribution to reverse cholesterol transport. In addition, the mobilization of cholesteryl esters from lipid droplets represents a new step in the control of cholesterol efflux. SUMMARY The synergy between lipid transporters is a work in progress, but its importance in reverse cholesterol transport is clear. The regulation of efflux implies both the regulation of relevant transporters and the cellular trafficking of cholesterol.
Collapse
Affiliation(s)
- Yves L Marcel
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
38
|
Abstract
Oxysterols are naturally occurring oxidized derivatives of cholesterol, or by-products of cholesterol biosynthesis, with multiple biologic functions. These compounds display cytotoxic, pro-apoptotic, and pro-inflammatory activities and may play a role in the pathology of atherosclerosis. Their functions as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol are well established. During the past decade, however, novel physiologic activities of oxysterols have emerged. They are now thought to act as endogenous regulators of gene expression in lipid metabolism. Recently, new intracellular oxysterol receptors have been identified and novel functions of oxysterols in cell signaling discovered, evoking novel interest in these compounds in several branches of biomedical research.
Collapse
Affiliation(s)
- Vesa M. Olkkonen
- National Public Health Institute and FIMM, Institute for Molecular Medicine Finland, Biomedicum, Helsinki, Finland
| |
Collapse
|
39
|
Abstract
Oxysterol binding to liver X receptors (LXR) increases the transcription of genes involved in cholesterol efflux and disposal, such as ABCA1 (ATP-binding cassette transporter A1). Other cytoplasmic sterol-binding proteins could interact with this pathway by sequestering or delivering substrates and ligands. One potential regulator is OSBP (oxysterol-binding protein), which is implicated in the integration of sterol sensing/transport with sphingomyelin synthesis and cell signaling. Since these activities could impact the cholesterol efflux pathway, we examined whether OSBP was involved in LXR regulation and in expression and activity of ABCA1. Suppression of OSBP in Chinese hamster ovary cells by RNA interference resulted in increased ABCA1 protein expression and cholesterol efflux activity following induction with oxysterols or the synthetic LXR agonist TO901317. OSBP knockdown in J774 macrophages also increased ABCA1 expression in the presence and absence of LXR agonists. OSBP depletion did not affect ABCA1 mRNA levels or LXR activity. Rather, OSBP silencing increased the half-life of ABCA1 protein by 3-fold. Sphingomyelin synthesis was suppressed in OSBP-depleted cells treated with 25-hydroxycholesterol but not TO901317 or 22-hydroxycholesterol and did not correlate with ABCA1 stabilization. Moreover, co-transfection experiments revealed that reduction of ABCA1 protein by OSBP was prevented by a mutation in the sterol-binding domain but not by mutations that abrogated interaction with the Golgi apparatus or endoplasmic reticulum. Thus, OSBP opposes the activity of LXR by negatively regulating ABCA1 activity in the cytoplasm by sterol-binding domain-dependent protein destabilization.
Collapse
Affiliation(s)
- Kristin Bowden
- Department of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
40
|
Yan D, Olkkonen VM. Characteristics of oxysterol binding proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:253-85. [PMID: 18275891 DOI: 10.1016/s0074-7696(07)65007-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein families characterized by a ligand binding domain related to that of oxysterol binding protein (OSBP) have been identified in eukaryotic species from yeast to humans. These proteins, designated OSBP-related (ORP) or OSBP-like (OSBPL) proteins, have been implicated in various cellular functions. However, the detailed mechanisms of their action have remained elusive. Data from our and other laboratories suggest that binding of sterol ligands may be a unifying theme. Work with Saccharomyces cerevisiae ORPs suggests a function of these proteins in the nonvesicular intracellular transport of sterols, in secretory vesicle transport from the Golgi complex, and in the establishment of cell polarity. Mammals have more ORP genes, and differential splicing substantially increases the complexity of the encoded protein family. Functional studies on mammalian ORPs point in different directions: integration of sterol and sphingomyelin metabolism, sterol transport, regulation of neutral lipid metabolism, control of the microtubule-dependent motility of endosomes/lysosomes, and regulation of signaling cascades. We envision that during evolution, the functions of ORPs have diverged from an ancestral one in sterol transport, to meet the increasing demand of the regulatory potential in multicellular organisms. Our working hypothesis is that mammalian ORPs mainly act as sterol sensors that relay information to a spectrum of different cellular processes.
Collapse
Affiliation(s)
- Daoguang Yan
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, FI-00290 Helsinki, Finland
| | | |
Collapse
|