1
|
Yuan D, Chu J, Lin H, Zhu G, Qian J, Yu Y, Yao T, Ping F, Chen F, Liu X. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front Cardiovasc Med 2023; 9:1109445. [PMID: 36727029 PMCID: PMC9884709 DOI: 10.3389/fcvm.2022.1109445] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Homocysteine (Hcy) is an intermediate amino acid formed during the conversion from methionine to cysteine. When the fasting plasma Hcy level is higher than 15 μmol/L, it is considered as hyperhomocysteinemia (HHcy). The vascular endothelium is an important barrier to vascular homeostasis, and its impairment is the initiation of atherosclerosis (AS). HHcy is an important risk factor for AS, which can promote the development of AS and the occurrence of cardiovascular events, and Hcy damage to the endothelium is considered to play a very important role. However, the mechanism by which Hcy damages the endothelium is still not fully understood. This review summarizes the mechanism of Hcy-induced endothelial injury and the treatment methods to alleviate the Hcy induced endothelial dysfunction, in order to provide new thoughts for the diagnosis and treatment of Hcy-induced endothelial injury and subsequent AS-related diseases.
Collapse
|
2
|
The Role of Diacylglycerol Kinase in the Amelioration of Diabetic Nephropathy. Molecules 2022; 27:molecules27206784. [PMID: 36296376 PMCID: PMC9607625 DOI: 10.3390/molecules27206784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
The drastic increase in the number of patients with diabetes and its complications is a global issue. Diabetic nephropathy, the leading cause of chronic kidney disease, significantly affects patients’ quality of life and medical expenses. Furthermore, there are limited drugs for treating diabetic nephropathy patients. Impaired lipid signaling, especially abnormal protein kinase C (PKC) activation by de novo-synthesized diacylglycerol (DG) under high blood glucose, is one of the causes of diabetic nephropathy. DG kinase (DGK) is an enzyme that phosphorylates DG and generates phosphatidic acid, i.e., DGK can inhibit PKC activation under diabetic conditions. Indeed, it has been proven that DGK activation ameliorates diabetic nephropathy. In this review, we summarize the involvement of PKC and DGK in diabetic nephropathy as therapeutic targets, and its mechanisms, by referring to our recent study.
Collapse
|
3
|
Milyutina YP, Arutjunyan AV, Shcherbitskaia AD, Zalozniaia IV. The Effect of Hyperhomocysteinemia on the Content of Neurotrophins in Brain Structures of Pregnant Rats. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Baranovicova E, Hnilicova P, Kalenska D, Kaplan P, Kovalska M, Tatarkova Z, Tomascova A, Lehotsky J. Metabolic Changes Induced by Cerebral Ischemia, the Effect of Ischemic Preconditioning, and Hyperhomocysteinemia. Biomolecules 2022; 12:554. [PMID: 35454143 PMCID: PMC9032340 DOI: 10.3390/biom12040554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
1H Nuclear Magnetic Resonance (NMR) metabolomics is one of the fundamental tools in the fast-developing metabolomics field. It identifies and quantifies the most abundant metabolites, alterations of which can describe energy metabolism, activated immune response, protein synthesis and catabolism, neurotransmission, and many other factors. This paper summarizes our results of the 1H NMR metabolomics approach to characterize the distribution of relevant metabolites and their alterations induced by cerebral ischemic injury or its combination with hyperhomocysteinemia in the affected tissue and blood plasma in rodents. A decrease in the neurotransmitter pool in the brain tissue likely follows the disordered feasibility of post-ischemic neurotransmission. This decline is balanced by the increased tissue glutamine level with the detected impact on neuronal health. The ischemic injury was also manifested in the metabolomic alterations in blood plasma with the decreased levels of glycolytic intermediates, as well as a post-ischemically induced ketosis-like state with increased plasma ketone bodies. As the 3-hydroxybutyrate can act as a likely neuroprotectant, its post-ischemic increase can suggest its supporting role in balancing ischemic metabolic dysregulation. Furthermore, the 1H NMR approach revealed post-ischemically increased 3-hydroxybutyrate in the remote organs, such as the liver and heart, as well as decreased myocardial glutamate. Ischemic preconditioning, as a proposed protective strategy, was manifested in a lower extent of metabolomic changes and/or their faster recovery in a longitudinal study. The paper also summarizes the pre- and post-ischemic metabolomic changes in the rat hyperhomocysteinemic models. Animals are challenged with hyperglycemia and ketosis-like state. A decrease in several amino acids in plasma follows the onset and progression of hippocampal neuropathology when combined with ischemic injury. The 1H NMR metabolomics approach also offers a high potential for metabolites in discriminatory analysis in the search for potential biomarkers of ischemic injury. Based on our results and the literature data, this paper presents valuable findings applicable in clinical studies and suggests the precaution of a high protein diet, especially foods which are high in Met content and low in B vitamins, in the possible risk of human cerebrovascular neuropathology.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (E.B.); (P.H.); (A.T.)
| | - Petra Hnilicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (E.B.); (P.H.); (A.T.)
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.K.); (Z.T.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.K.); (Z.T.)
| | - Anna Tomascova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (E.B.); (P.H.); (A.T.)
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.K.); (Z.T.)
| |
Collapse
|
5
|
CRIF1 Deficiency Increased Homocysteine Production by Disrupting Dihydrofolate Reductase Expression in Vascular Endothelial Cells. Antioxidants (Basel) 2021; 10:antiox10111645. [PMID: 34829516 PMCID: PMC8614757 DOI: 10.3390/antiox10111645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022] Open
Abstract
Elevated plasma homocysteine levels can induce vascular endothelial dysfunction; however, the mechanisms regulating homocysteine metabolism in impaired endothelial cells are currently unclear. In this study, we deleted the essential mitoribosomal gene CR6 interacting factor 1 (CRIF1) in human umbilical vein endothelial cells (HUVECs) and mice to induce endothelial cell dysfunction; then, we monitored homocysteine accumulation. We found that CRIF1 downregulation caused significant increases in intracellular and plasma concentrations of homocysteine, which were associated with decreased levels of folate cycle intermediates such as 5-methyltetrahydrofolate (MTHF) and tetrahydrofolate (THF). Moreover, dihydrofolate reductase (DHFR), a key enzyme in folate-mediated metabolism, exhibited impaired activity and decreased protein expression in CRIF1 knockdown endothelial cells. Supplementation with folic acid did not restore DHFR expression levels or MTHF and homocysteine concentrations in endothelial cells with a CRIF1 deletion or DHFR knockdown. However, the overexpression of DHFR in CRIF1 knockdown endothelial cells resulted in decreased accumulation of homocysteine. Taken together, our findings suggest that CRIF1-deleted endothelial cells accumulated more homocysteine, compared with control cells; this was primarily mediated by the disruption of DHFR expression.
Collapse
|
6
|
Deng W, McMullin D, Inglessis-Azuaje I, Locascio JJ, Palacios IF, Buonanno FS, Lo EH, Ning M. Effect of Patent Foramen Ovale Closure After Stroke on Circulatory Biomarkers. Neurology 2021; 97:e203-e214. [PMID: 33986139 PMCID: PMC8279569 DOI: 10.1212/wnl.0000000000012188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To determine the influence of patent foramen ovale (PFO) closure on circulatory biomarkers. METHODS Consecutive patients with PFO-related stroke were prospectively enrolled and followed with serial sampling of cardiac atrial and venous blood pre- and post-PFO closure over time. Candidate biomarkers were identified by mass spectrometry in a discovery cohort first, and lead candidates were validated in an independent cohort. RESULTS Patients with PFO-related stroke (n = 254) were recruited and followed up to 4 years (median 2.01; interquartile range 0.77-2.54). Metabolite profiling in the discovery cohort (n = 12) identified homocysteine as the most significantly decreased factor in intracardiac plasma after PFO closure (false discovery rate 0.001). This was confirmed in a validation cohort (n = 181), where intracardiac total homocysteine (tHcy) was immediately reduced in patients with complete closure, but not in those with residual shunting, suggesting association of PFO shunting with tHcy elevation (β 0.115; 95% confidence interval [CI] 0.047-0.183; p = 0.001). tHcy reduction was more dramatic in left atrium than right (p < 0.001), suggesting clearance through pulmonary circulation. Long-term effect of PFO closure was also monitored and compared to medical treatment alone (n = 61). Complete PFO closure resulted in long-term tHcy reduction in peripheral blood, whereas medical therapy alone showed no effect (β -0.208; 95% CI -0.375∼-0.058; p = 0.007). Residual shunting was again independently associated with persistently elevated tHcy (β 0.184; 95% CI 0.051-0.316; p = 0.007). CONCLUSIONS PFO shunting may contribute to circulatory tHcy elevation, which is renormalized by PFO closure. PFO is not just a door for clots, but may itself enhance clot formation and injure neurovasculature by clot-independent mechanisms. Biomarkers such as tHcy can potentially serve as cost-effective measures of residual shunting and neurovascular risk for PFO stroke.
Collapse
Affiliation(s)
- Wenjun Deng
- From the Clinical Proteomics Research Center (W.D., D.M., F.S.B., E.H.L., M.M.N.), Cardio-Neurology Division (W.D., I.I.-A., J.J.L., I.F.P., F.S.B., E.H.L., M.M.N.), and Neuroprotection Research Laboratory (E.H.L., M.M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - David McMullin
- From the Clinical Proteomics Research Center (W.D., D.M., F.S.B., E.H.L., M.M.N.), Cardio-Neurology Division (W.D., I.I.-A., J.J.L., I.F.P., F.S.B., E.H.L., M.M.N.), and Neuroprotection Research Laboratory (E.H.L., M.M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ignacio Inglessis-Azuaje
- From the Clinical Proteomics Research Center (W.D., D.M., F.S.B., E.H.L., M.M.N.), Cardio-Neurology Division (W.D., I.I.-A., J.J.L., I.F.P., F.S.B., E.H.L., M.M.N.), and Neuroprotection Research Laboratory (E.H.L., M.M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Joseph J Locascio
- From the Clinical Proteomics Research Center (W.D., D.M., F.S.B., E.H.L., M.M.N.), Cardio-Neurology Division (W.D., I.I.-A., J.J.L., I.F.P., F.S.B., E.H.L., M.M.N.), and Neuroprotection Research Laboratory (E.H.L., M.M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Igor F Palacios
- From the Clinical Proteomics Research Center (W.D., D.M., F.S.B., E.H.L., M.M.N.), Cardio-Neurology Division (W.D., I.I.-A., J.J.L., I.F.P., F.S.B., E.H.L., M.M.N.), and Neuroprotection Research Laboratory (E.H.L., M.M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ferdinando S Buonanno
- From the Clinical Proteomics Research Center (W.D., D.M., F.S.B., E.H.L., M.M.N.), Cardio-Neurology Division (W.D., I.I.-A., J.J.L., I.F.P., F.S.B., E.H.L., M.M.N.), and Neuroprotection Research Laboratory (E.H.L., M.M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eng H Lo
- From the Clinical Proteomics Research Center (W.D., D.M., F.S.B., E.H.L., M.M.N.), Cardio-Neurology Division (W.D., I.I.-A., J.J.L., I.F.P., F.S.B., E.H.L., M.M.N.), and Neuroprotection Research Laboratory (E.H.L., M.M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - MingMing Ning
- From the Clinical Proteomics Research Center (W.D., D.M., F.S.B., E.H.L., M.M.N.), Cardio-Neurology Division (W.D., I.I.-A., J.J.L., I.F.P., F.S.B., E.H.L., M.M.N.), and Neuroprotection Research Laboratory (E.H.L., M.M.N.), Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
7
|
Jan M, Cueto R, Jiang X, Lu L, Sardy J, Xiong X, Yu JE, Pham H, Khan M, Qin X, Ji Y, Yang XF, Wang H. Molecular processes mediating hyperhomocysteinemia-induced metabolic reprogramming, redox regulation and growth inhibition in endothelial cells. Redox Biol 2021; 45:102018. [PMID: 34140262 PMCID: PMC8282538 DOI: 10.1016/j.redox.2021.102018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is an established and potent independent risk factor for degenerative diseases, including cardiovascular disease (CVD), Alzheimer disease, type II diabetes mellitus, and chronic kidney disease. HHcy has been shown to inhibit proliferation and promote inflammatory responses in endothelial cells (EC), and impair endothelial function, a hallmark for vascular injury. However, metabolic processes and molecular mechanisms mediating HHcy-induced endothelial injury remains to be elucidated. This study examined the effects of HHcy on the expression of microRNA (miRNA) and mRNA in human aortic EC treated with a pathophysiologically relevant concentration of homocysteine (Hcy 500 μM). We performed a set of extensive bioinformatics analyses to identify HHcy-altered metabolic and molecular processes. The global functional implications and molecular network were determined by Gene Set Enrichment Analysis (GSEA) followed by Cytoscape analysis. We identified 244 significantly differentially expressed (SDE) mRNA, their relevant functional pathways, and 45 SDE miRNA. HHcy-altered SDE inversely correlated miRNA-mRNA pairs (45 induced/14 reduced mRNA) were discovered and applied to network construction using an experimentally verified database. We established a hypothetical model to describe the biochemical and molecular network with these specified miRNA/mRNA axes, finding: 1) HHcy causes metabolic reprogramming by increasing glucose uptake and oxidation, by glycogen debranching and NAD+/CoA synthesis, and by stimulating mitochondrial reactive oxygen species production via NNT/IDH2 suppression-induced NAD+/NADP-NADPH/NADP+ metabolism disruption; 2) HHcy activates inflammatory responses by activating inflammasome-pyroptosis mainly through ↓miR193b→↑CASP-9 signaling and by inducing IL-1β and adhesion molecules through the ↓miR29c→↑NEDD9 and the ↓miR1256→↑ICAM-1 axes, as well as GPCR and interferon α/β signaling; 3) HHcy promotes cell degradation by the activation of lysosome autophagy and ubiquitin proteasome systems; 4) HHcy causes cell cycle arrest at G1/S and S/G2 transitions, suppresses spindle checkpoint complex and cytokinetic abscission, and suppresses proliferation through ↓miRNA335/↑VASH1 and other axes. These findings are in accordance with our previous studies and add a wealth of heretofore-unexplored molecular and metabolic mechanisms underlying HHcy-induced endothelial injury. This is the first study to consider the effects of HHcy on both global mRNA and miRNA expression changes for mechanism identification. Molecular axes and biochemical processes identified in this study are useful not only for the understanding of mechanisms underlying HHcy-induced endothelial injury, but also for discovering therapeutic targets for CVD in general. Identified multiple HHcy-altered metabolic and molecular processes potentially responsible for HHcy-induced endothelial injury via examining global mRNA/miRNA expression changes in Hcy-treated EC and performing comprehensive bioinformatic studies. HHcy may activate glucose uptake signaling via the ↓miR148b→↑SLC2A axis. HHcy may induce glucose oxidation signaling by switching pyruvate metabolism from lactate synthesis to mitochondrial oxidation via expression changes of ↑MPC1 & ↓LDHB. HHcy may disrupt redox homeostasis mostly by suppressing NNT/IDH2-related mt-NADPH/mt-NAD+ signaling. HHcy may increase FA β-oxidation, glutamine, TCA cycle and OXPHOS signaling. HHcy may activate inflammatory signaling via the ↓miR29c→↑NEDD9 and the ↓miR1256→↑ICAM-1 axes. HHcy may activate inflammasome/pyroptosis-related signaling by the ↓miR137→↑TLR3, the ↓miR574→↑TRAF5, and the ↓miR193b→↑CASP-9 axes, and induce IL1α/β and CASP-10/7. HHcy may induce inflammation signaling via GPCR activation through the ↓miRNA335→↑CXCR4/↑GNA14 axes. HHcy may activate molecular degradation process signaling through the ↓miRNA335→↑ASAH1/↑ABCB9 axes. HHcy may suppress cell cycle and proliferation through the miR491→↓HMGA2→↓CCNA2/CCNB2, the ↓miR335→↑VASH1, the ↓miR181a→↑PHLDA1, the miR6045→↓CENPH, the miR22→↓PRR11/↓BRCA2, and the miR605/miR497/miR514a→CEP55 axes
Collapse
Affiliation(s)
- Michael Jan
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States; Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, United States
| | - Ramon Cueto
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Liu Lu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Jason Sardy
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Xinyu Xiong
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Justine E Yu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Hung Pham
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Xuebing Qin
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Kaplan P, Tatarkova Z, Sivonova MK, Racay P, Lehotsky J. Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems. Int J Mol Sci 2020; 21:ijms21207698. [PMID: 33080955 PMCID: PMC7589705 DOI: 10.3390/ijms21207698] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Elevated concentration of homocysteine (Hcy) in the blood plasma, hyperhomocysteinemia (HHcy), has been implicated in various disorders, including cardiovascular and neurodegenerative diseases. Accumulating evidence indicates that pathophysiology of these diseases is linked with mitochondrial dysfunction. In this review, we discuss the current knowledge concerning the effects of HHcy on mitochondrial homeostasis, including energy metabolism, mitochondrial apoptotic pathway, and mitochondrial dynamics. The recent studies suggest that the interaction between Hcy and mitochondria is complex, and reactive oxygen species (ROS) are possible mediators of Hcy effects. We focus on mechanisms contributing to HHcy-associated oxidative stress, such as sources of ROS generation and alterations in antioxidant defense resulting from altered gene expression and post-translational modifications of proteins. Moreover, we discuss some recent findings suggesting that HHcy may have beneficial effects on mitochondrial ROS homeostasis and antioxidant defense. A better understanding of complex mechanisms through which Hcy affects mitochondrial functions could contribute to the development of more specific therapeutic strategies targeted at HHcy-associated disorders.
Collapse
|
9
|
Azzini E, Ruggeri S, Polito A. Homocysteine: Its Possible Emerging Role in At-Risk Population Groups. Int J Mol Sci 2020; 21:ijms21041421. [PMID: 32093165 PMCID: PMC7073042 DOI: 10.3390/ijms21041421] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Increased plasma homocysteine is a risk factor for several pathological disorders. The present review focused on the role of homocysteine (Hcy) in different population groups, especially in risk conditions (pregnancy, infancy, old age), and on its relevance as a marker or etiological factor of the diseases in these age groups, focusing on the nutritional treatment of elevated Hcy levels. In pregnancy, Hcy levels were investigated in relation to the increased risk of adverse pregnancy outcomes such as small size for gestational age at birth, preeclampsia, recurrent abortions, low birth weight, or intrauterine growth restriction. In pediatric populations, Hcy levels are important not only for cardiovascular disease, obesity, and renal disease, but the most interesting evidence concerns study of elevated levels of Hcy in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Finally, a focus on the principal pathologies of the elderly (cardiovascular and neurodegenerative disease, osteoporosis and physical function) is presented. The metabolism of Hcy is influenced by B vitamins, and Hcy-lowering vitamin treatments have been proposed. However, clinical trials have not reached a consensus about the effectiveness of vitamin supplementation on the reduction of Hcy levels and improvement of pathological condition, especially in elderly patients with overt pathologies, suggesting that other dietary and non-dietary factors are involved in high Hcy levels. The importance of novel experimental designs focusing on intra-individual variability as a complement to the typical case-control experimental designs and the study of interactions between different factors it should be emphasized.
Collapse
|
10
|
Exogenous hydrogen sulfide protects from endothelial cell damage, platelet activation, and neutrophils extracellular traps formation in hyperhomocysteinemia rats. Exp Cell Res 2018; 370:434-443. [DOI: 10.1016/j.yexcr.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022]
|
11
|
Zinellu A, Sotgia S, Mangoni AA, Sotgiu E, Arru D, Paliogiannis P, Sengupta S, Carru C. Spontaneous Release of Human Serum Albumin S-Bound Homocysteine in a Thiol-Free Physiological Medium. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9663-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Sim WC, Han I, Lee W, Choi YJ, Lee KY, Kim DG, Jung SH, Oh SH, Lee BH. Inhibition of homocysteine-induced endoplasmic reticulum stress and endothelial cell damage by l-serine and glycine. Toxicol In Vitro 2016; 34:138-145. [DOI: 10.1016/j.tiv.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
|
13
|
Trusca VG, Mihai AD, Fuior EV, Fenyo IM, Gafencu AV. High levels of homocysteine downregulate apolipoprotein E expression via nuclear factor kappa B. World J Biol Chem 2016; 7:178-187. [PMID: 26981206 PMCID: PMC4768122 DOI: 10.4331/wjbc.v7.i1.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/12/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the effect of high homocysteine (Hcy) levels on apolipoprotein E (apoE) expression and the signaling pathways involved in this gene regulation.
METHODS: Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot were used to assess apoE expression in cells treated with various concentrations (50-500 μmol/L) of Hcy. Calcium phosphate-transient transfections were performed in HEK-293 and RAW 264.7 cells to evaluate the effect of Hcy on apoE regulatory elements [promoter and distal multienhancer 2 (ME2)]. To this aim, plasmids containing the proximal apoE promoter [(-500/+73)apoE construct] alone or in the presence of ME2 [ME2/(-500/+73)apoE construct] to drive the expression of the reporter luciferase gene were used. Co-transfection experiments were carried out to investigate the downstream effectors of Hcy-mediated regulation of apoE promoter by using specific inhibitors or a dominant negative form of IKβ. In other co-transfections, the luciferase reporter was under the control of synthetic promoters containing multiple specific binding sites for nuclear factor kappa B (NF-κB), activator protein-1 (AP-1) or nuclear factor of activated T cells (NFAT). Chromatin immunoprecipitation (ChIP) assay was accomplished to detect the binding of NF-κB p65 subunit to the apoE promoter in HEK-293 treated with 500 μmol/L Hcy. As control, cells were incubated with similar concentration of cysteine. NF-κB p65 proteins bound to DNA were immunoprecipitated with anti-p65 antibodies and DNA was identified by PCR using primers amplifying the region -100/+4 of the apoE gene.
RESULTS: RT-PCR revealed that high levels of Hcy (250-750 μmol/L) induced a 2-3 fold decrease in apoE mRNA levels in HEK-293 cells, while apoE gene expression was not significantly affected by treatment with lower concentrations of Hcy (100 μmol/L). Immunoblotting data provided additional evidence for the negative role of Hcy in apoE expression. Hcy decreased apoE promoter activity, in the presence or absence of ME2, in a dose dependent manner, in both RAW 264.7 and HEK-293 cells, as revealed by transient transfection experiments. The downstream effectors of the signaling pathways of Hcy were also investigated. The inhibitory effect of Hcy on the apoE promoter activity was counteracted by MAPK/ERK kinase 1/2 (MEK1/2) inhibitor U0126, suggesting that MEK1/2 is involved in the downregulation of apoE promoter activity by Hcy. Our data demonstrated that Hcy-induced inhibition of apoE took place through activation of NF-κB. Moreover, we demonstrated that Hcy activated a synthetic promoter containing three NF-κB binding sites, but did not affect promoters containing AP-1 or NFAT binding sites. ChIP experiments revealed that NF-κB p65 subunit is recruited to the apoE promoter following Hcy treatment of cells.
CONCLUSION: Hcy-induced stress negatively modulates apoE expression via MEK1/2 and NF-κB activation. The decreased apoE expression in peripheral tissues may aggravate atherosclerosis, neurodegenerative diseases and renal dysfunctions.
Collapse
|
14
|
Hainsworth AH, Yeo NE, Weekman EM, Wilcock DM. Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID). Biochim Biophys Acta Mol Basis Dis 2015; 1862:1008-17. [PMID: 26689889 DOI: 10.1016/j.bbadis.2015.11.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 11/29/2022]
Abstract
Homocysteine is produced physiologically in all cells, and is present in plasma of healthy individuals (plasma [HCy]: 3-10μM). While rare genetic mutations (CBS, MTHFR) cause severe hyperhomocysteinemia ([HCy]: 100-200μM), mild-moderate hyperhomocysteinemia ([HCy]: 10-100μM) is common in older people, and is an independent risk factor for stroke and cognitive impairment. As B-vitamin supplementation (B6, B12 and folate) has well-validated homocysteine-lowering efficacy, this may be a readily-modifiable risk factor in vascular contributions to cognitive impairment and dementia (VCID). Here we review the biochemical and cellular actions of HCy related to VCID. Neuronal actions of HCy were at concentrations above the clinically-relevant range. Effects of HCy <100μM were primarily vascular, including myocyte proliferation, vessel wall fibrosis, impaired nitric oxide signalling, superoxide generation and pro-coagulant actions. HCy-lowering clinical trials relevant to VCID are discussed. Extensive clinical and preclinical data support HCy as a mediator for VCID. In our view further trials of combined B-vitamin supplementation are called for, incorporating lessons from previous trials and from recent experimental work. To maximise likelihood of treatment effect, a future trial should: supply a high-dose, combination supplement (B6, B12 and folate); target the at-risk age range; and target cohorts with low baseline B-vitamin status. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Cardiovascular and Cell Sciences Research Centre, St Georges University of London, London SW17 0RE, UK.
| | - Natalie E Yeo
- Cardiovascular and Cell Sciences Research Centre, St Georges University of London, London SW17 0RE, UK
| | - Erica M Weekman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40536, USA.
| |
Collapse
|
15
|
Yamane S, Nomura R, Yanagihara M, Nakamura H, Fujino H, Matsumoto K, Horie S, Murayama T. L-cysteine/d,L-homocysteine-regulated ileum motility via system L and B°,+ transporter: Modification by inhibitors of hydrogen sulfide synthesis and dietary treatments. Eur J Pharmacol 2015. [DOI: 10.1016/j.ejphar.2015.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|
17
|
Castro-Piedras I, Perez-Zoghbi JF. Hydrogen sulphide inhibits Ca2+ release through InsP3 receptors and relaxes airway smooth muscle. J Physiol 2013; 591:5999-6015. [PMID: 24144878 DOI: 10.1113/jphysiol.2013.257790] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulphide (H2S) is a signalling molecule that appears to regulate diverse cell physiological process in several organs and systems including vascular and airway smooth muscle cell (SMC) contraction. Decreases in endogenous H2S synthesis have been associated with the development of cardiovascular diseases and asthma. Here we investigated the mechanism of airway SMC relaxation induced by H2S in small intrapulmonary airways using mouse lung slices and confocal and phase-contrast video microscopy. Exogenous H2S donor Na2S (100 μm) reversibly inhibited Ca(2+) release and airway contraction evoked by inositol-1,4,5-trisphosphate (InsP3) uncaging in airway SMCs. Similarly, InsP3-evoked Ca(2+) release and contraction was inhibited by endogenous H2S precursor l-cysteine (10 mm) but not by l-serine (10 mm) or either amino acid in the presence of dl-propargylglycine (PPG). Consistent with the inhibition of Ca(2+) release through InsP3 receptors (InsP3Rs), Na2S reversibly inhibited acetylcholine (ACh)-induced Ca(2+) oscillations in airway SMCs. In addition, Na2S, the H2S donor GYY-4137, and l-cysteine caused relaxation of airways pre-contracted with either ACh or 5-hydroxytryptamine (5-HT). Na2S-induced airway relaxation was resistant to a guanylyl cyclase inhibitor (ODQ) and a protein kinase G inhibitor (Rp-8-pCPT-cGMPS). The effects of H2S on InsP3-evoked Ca(2+) release and contraction as well as on the relaxation of agonist-contracted airways were mimicked by the thiol-reducing agent dithiothreitol (DTT, 10 mm) and inhibited by the oxidizing agent diamide (30 μm). These studies indicate that H2S causes airway SMC relaxation by inhibiting Ca(2+) release through InsP3Rs and consequent reduction of agonist-induced Ca(2+) oscillations in SMCs. The results suggest a novel role for endogenously produced H2S that involves the modulation of InsP3-evoked Ca(2+) release - a cell-signalling system of critical importance for many physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- J. F. Perez-Zoghbi: Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79423, USA.
| | | |
Collapse
|
18
|
Castro-Piedras I, Perez-Zoghbi JF. Hydrogen sulphide inhibits Ca2+ release through InsP3 receptors and relaxes airway smooth muscle. J Physiol 2013. [PMID: 24144878 DOI: 10.1113/jphysiol.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulphide (H2S) is a signalling molecule that appears to regulate diverse cell physiological process in several organs and systems including vascular and airway smooth muscle cell (SMC) contraction. Decreases in endogenous H2S synthesis have been associated with the development of cardiovascular diseases and asthma. Here we investigated the mechanism of airway SMC relaxation induced by H2S in small intrapulmonary airways using mouse lung slices and confocal and phase-contrast video microscopy. Exogenous H2S donor Na2S (100 μm) reversibly inhibited Ca(2+) release and airway contraction evoked by inositol-1,4,5-trisphosphate (InsP3) uncaging in airway SMCs. Similarly, InsP3-evoked Ca(2+) release and contraction was inhibited by endogenous H2S precursor l-cysteine (10 mm) but not by l-serine (10 mm) or either amino acid in the presence of dl-propargylglycine (PPG). Consistent with the inhibition of Ca(2+) release through InsP3 receptors (InsP3Rs), Na2S reversibly inhibited acetylcholine (ACh)-induced Ca(2+) oscillations in airway SMCs. In addition, Na2S, the H2S donor GYY-4137, and l-cysteine caused relaxation of airways pre-contracted with either ACh or 5-hydroxytryptamine (5-HT). Na2S-induced airway relaxation was resistant to a guanylyl cyclase inhibitor (ODQ) and a protein kinase G inhibitor (Rp-8-pCPT-cGMPS). The effects of H2S on InsP3-evoked Ca(2+) release and contraction as well as on the relaxation of agonist-contracted airways were mimicked by the thiol-reducing agent dithiothreitol (DTT, 10 mm) and inhibited by the oxidizing agent diamide (30 μm). These studies indicate that H2S causes airway SMC relaxation by inhibiting Ca(2+) release through InsP3Rs and consequent reduction of agonist-induced Ca(2+) oscillations in SMCs. The results suggest a novel role for endogenously produced H2S that involves the modulation of InsP3-evoked Ca(2+) release - a cell-signalling system of critical importance for many physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- J. F. Perez-Zoghbi: Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79423, USA.
| | | |
Collapse
|
19
|
Veeranki S, Tyagi SC. Defective homocysteine metabolism: potential implications for skeletal muscle malfunction. Int J Mol Sci 2013; 14:15074-91. [PMID: 23873298 PMCID: PMC3742288 DOI: 10.3390/ijms140715074] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is a systemic medical condition and has been attributed to multi-organ pathologies. Genetic, nutritional, hormonal, age and gender differences are involved in abnormal homocysteine (Hcy) metabolism that produces HHcy. Homocysteine is an intermediate for many key processes such as cellular methylation and cellular antioxidant potential and imbalances in Hcy production and/or catabolism impacts gene expression and cell signaling including GPCR signaling. Furthermore, HHcy might damage the vagus nerve and superior cervical ganglion and affects various GPCR functions; therefore it can impair both the parasympathetic and sympathetic regulation in the blood vessels of skeletal muscle and affect long-term muscle function. Understanding cellular targets of Hcy during HHcy in different contexts and its role either as a primary risk factor or as an aggravator of certain disease conditions would provide better interventions. In this review we have provided recent Hcy mediated mechanistic insights into different diseases and presented potential implications in the context of reduced muscle function and integrity. Overall, the impact of HHcy in various skeletal muscle malfunctions is underappreciated; future studies in this area will provide deeper insights and improve our understanding of the association between HHcy and diminished physical function.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Authors to whom correspondence should be addressed; E-Mails: (S.V.); (S.C.T.); Tel.: +1-973-610-1160 (S.V.); +1-502-852-3381 (S.C.T.); Fax: +1-502-852-6239 (S.C.T.)
| | - Suresh C. Tyagi
- Authors to whom correspondence should be addressed; E-Mails: (S.V.); (S.C.T.); Tel.: +1-973-610-1160 (S.V.); +1-502-852-3381 (S.C.T.); Fax: +1-502-852-6239 (S.C.T.)
| |
Collapse
|
20
|
Zhang D, Chen Y, Xie X, Liu J, Wang Q, Kong W, Zhu Y. Homocysteine activates vascular smooth muscle cells by DNA demethylation of platelet-derived growth factor in endothelial cells. J Mol Cell Cardiol 2012; 53:487-96. [PMID: 22867875 DOI: 10.1016/j.yjmcc.2012.07.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 02/05/2023]
Abstract
Hyperhomocysteinemia (HHcy), as an independent risk factor of atherosclerosis, facilitates endothelial dysfunction and activation of vascular smooth muscle cells (VSMCs). However, little is known about the crosstalk between endothelial cells (ECs) and VSMCs under HHcy. We investigated whether homocysteine (Hcy) activates VSMCs by aberrant secretion of mitogen platelet-derived growth factors (PDGFs) from ECs in human and in mice. In this study, we found that increased Hcy level did not affect VSMC activity in 24 hrs until the concentration reached 500 μM. In contrast, Hcy at 100 μM significantly promoted proliferation and migration of VSMCs co-cultured with human ECs. This effect was partially reversed by pretreatment with a PDGF receptor inhibitor. Hcy concentration-dependently upregulated the mRNA level of PDGF-A, -C and -D but not PDGF-B in ECs. Hcy reduced the expression and activity of DNA methyltransferase 1, demethylation of PDGF-A, -C and -D promoters and enhanced the binding activity of transcriptional factor SP-1 to the promoter. Hcy upregulation of PDGF was confirmed in the aortic intima of mice with HHcy. Multivariate regression analysis revealed HHcy was a predictor of increased serum PDGF level in patients. Thus, Hcy upregulates PDGF level via DNA demethylation in ECs, affects cross-talk between ECs and VSMCs and leads to VSMC activation.
Collapse
Affiliation(s)
- Donghong Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Luo X, Xiao Y, Song F, Yang Y, Xia M, Ling W. Increased plasma S-adenosyl-homocysteine levels induce the proliferation and migration of VSMCs through an oxidative stress-ERK1/2 pathway in apoE−/− mice. Cardiovasc Res 2012; 95:241-50. [DOI: 10.1093/cvr/cvs130] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Yilmaz N. Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases. Arch Med Sci 2012; 8:138-53. [PMID: 22457688 PMCID: PMC3309450 DOI: 10.5114/aoms.2012.27294] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/17/2011] [Accepted: 04/07/2011] [Indexed: 01/14/2023] Open
Abstract
Homocysteine (Hcy) is an accepted independent risk factor for several major pathologies including cardiovascular disease, birth defects, osteoporosis, Alzheimer's disease, and renal failure. Interestingly, many of the pathologies associated with homocysteine are also linked to oxidative stress. The enzyme paraoxonase (PON1) - so named because of its ability to hydrolyse the toxic metabolite of parathion, paraoxon - was also shown early after its identification to manifest arylesterase activity. Although the preferred endogenous substrate of PON1 remains unknown, lactones comprise one possible candidate class. Homocysteine-thiolactone can be disposed of by enzymatic hydrolysis by the serum Hcy-thiolactonase/paraoxonase carried on high-density lipoprotein (HDL). In this review, Hcy and the PON1 enzyme family were scrutinized from different points of view in the literature and the recent articles on these subjects were examined to determine whether these two molecular groups are related to each other like a coin with two different sides, so close and yet so different and so opposite.
Collapse
Affiliation(s)
- Necat Yilmaz
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, Antalya, Turkey
| |
Collapse
|
23
|
Tsitsiou E, Sibley CP, D’Souza SW, Catanescu O, Jacobsen DW, Glazier JD. Homocysteine is transported by the microvillous plasma membrane of human placenta. J Inherit Metab Dis 2011; 34:57-65. [PMID: 20567909 PMCID: PMC2966547 DOI: 10.1007/s10545-010-9141-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/01/2010] [Accepted: 05/31/2010] [Indexed: 12/18/2022]
Abstract
Elevated maternal plasma concentrations of homocysteine (Hcy) are associated with pregnancy complications and adverse neonatal outcomes. The postulate that we wish to advance here is that placental transport of Hcy, by competing with endogenous amino acids for transporter activity, may account for some of the damaging impacts of Hcy on placental metabolism and function as well as fetal development. In this article, we provide an overview of some recent studies characterising the transport mechanisms for Hcy across the microvillous plasma membrane (MVM) of the syncytiotrophoblast, the transporting epithelium of human placenta. Three Hcy transport systems have been identified, systems L, A and y(+)L. This was accomplished using a strategy of competitive inhibition to investigate the effects of Hcy on the uptake of well-characterised radiolabelled substrates for each transport system into isolated MVM vesicles. The reverse experiments were also performed, examining the effects of model substrates on [³⁵S]L-Hcy uptake. This article describes the evidence for systems L, A and y(+)L involvement in placental Hcy transport and discusses the physiological implications of these findings with respect to placental function and fetal development.
Collapse
Affiliation(s)
- Eleni Tsitsiou
- Maternal and Fetal Health Research Group, School of Biomedicine, University of Manchester, Manchester Academic Health Science Centre, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Colin P. Sibley
- Maternal and Fetal Health Research Group, School of Biomedicine, University of Manchester, Manchester Academic Health Science Centre, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Stephen W. D’Souza
- Maternal and Fetal Health Research Group, School of Biomedicine, University of Manchester, Manchester Academic Health Science Centre, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Otilia Catanescu
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Donald W. Jacobsen
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jocelyn D. Glazier
- Maternal and Fetal Health Research Group, School of Biomedicine, University of Manchester, Manchester Academic Health Science Centre, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK.
| |
Collapse
|
24
|
Beard RS, Bearden SE. Vascular complications of cystathionine β-synthase deficiency: future directions for homocysteine-to-hydrogen sulfide research. Am J Physiol Heart Circ Physiol 2011; 300:H13-26. [PMID: 20971760 PMCID: PMC3023265 DOI: 10.1152/ajpheart.00598.2010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/20/2010] [Indexed: 12/19/2022]
Abstract
Homocysteine (Hcy), a cardiovascular and neurovascular disease risk factor, is converted to hydrogen sulfide (H(2)S) through the transsulfuration pathway. H(2)S has attracted considerable attention in recent years for many positive effects on vascular health and homeostasis. Cystathionine β-synthase (CBS) is the first, and rate-limiting, enzyme in the transsulfuration pathway. Mutations in the CBS gene decrease enzymatic activity, which increases the plasma Hcy concentration, a condition called hyperhomocysteinemia (HHcy). Animal models of CBS deficiency have provided invaluable insights into the pathological effects of transsulfuration impairment and of both mild and severe HHcy. However, studies have also highlighted the complexity of HHcy and the need to explore the specific details of Hcy metabolism in addition to Hcy levels per se. There has been a relative paucity of work addressing the dysfunctional H(2)S production in CBS deficiency that may contribute to, or even create, HHcy-associated pathologies. Experiments using CBS knockout mice, both homozygous (-/-) and heterozygous (+/-), have provided 15 years of new knowledge and are the focus of this review. These murine models present the opportunity to study a specific mechanism for HHcy that matches one of the etiologies in many human patients. Therefore, the goal of this review was to integrate and highlight the critical information gained thus far from models of CBS deficiency and draw attention to critical gaps in knowledge, with particular emphasis on the modulation of H(2)S metabolism. We include findings from human and animal studies to identify important opportunities for future investigation that should be aimed at generating new basic and clinical understanding of the role of CBS and transsulfuration in cardiovascular and neurovascular disease.
Collapse
Affiliation(s)
- Richard S Beard
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho ID 83209-8007, USA
| | | |
Collapse
|
25
|
Barathi S, Angayarkanni N, Pasupathi A, Natarajan SK, Pukraj R, Dhupper M, Velpandian T, Muralidharan C, Sivashanmugham M. Homocysteinethiolactone and paraoxonase: novel markers of diabetic retinopathy. Diabetes Care 2010; 33:2031-7. [PMID: 20551012 PMCID: PMC2928358 DOI: 10.2337/dc10-0132] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Paraoxonase (PON) exhibits esterase activity (PON-AREase) and lactonase activity (PON-HCTLase), which prevent LDL oxidation and detoxify homocysteine thiolactone (HCTL). The role of HCTL and PON-HCTLase as a risk factor for the microvascular complication in diabetic retinopathy at the level of vitreous has not been investigated. RESEARCH DESIGN AND METHODS Undiluted vitreous from patients with proliferative diabetic retinopathy (PDR) (n = 13) and macular hole (MH) (n = 8) was used to determine PON-HCTLase and PON-AREase activity spectrophotometrically. HCTL levels were detected by liquid chromatography-tandem mass spectrometry. In vitro studies were done in primary cultures of bovine retinal capillary endothelial cells (BRECs) to determine the dose- and time-dependent effect of HCTL and homocysteine (Hcys) on PON-HCTLase activity, as well as to determine mRNA expression of PON by RT-PCR. RESULTS A significant increase in HCTL and PON-HCTLase activity was observed in PDR compared with MH (P = 0.036, P = 0.001), with a significant positive correlation between them (r = 0.77, P = 0.03). The in vitro studies on BRECs showed a dose- and time-dependent increase in the PON-HCTLase activity and mRNA expression of PON2 when exposed to HCTL and Hcys. CONCLUSIONS This is the first study showing elevated levels of vitreous HCTL and PON-HCTLase activity in PDR. These elevations are probably a protective effect to eliminate HCTL, which mediates endothelial cell dysfunction. Thus, vitreous levels of HCTL and PON activity can be markers of diabetic retinopathy. The bioinformatics analysis reveals that the structure and function of PON that can be modulated by hyperhomocysteinemia in PDR can affect the dual-enzyme activity of PON.
Collapse
Affiliation(s)
- Subramaniam Barathi
- Biochemistry and Cell Biology Department, Sankara Nethralaya Hospital, Chennai, Tamil Nadu, India
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hung YC, Wang PW, Pan TL. Functional proteomics reveal the effect of Salvia miltiorrhiza aqueous extract against vascular atherosclerotic lesions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1310-21. [DOI: 10.1016/j.bbapap.2010.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 01/15/2010] [Accepted: 02/01/2010] [Indexed: 11/29/2022]
|
27
|
Zhang D, Jiang X, Fang P, Yan Y, Song J, Gupta S, Schafer AI, Durante W, Kruger WD, Yang X, Wang H. Hyperhomocysteinemia promotes inflammatory monocyte generation and accelerates atherosclerosis in transgenic cystathionine beta-synthase-deficient mice. Circulation 2009; 120:1893-902. [PMID: 19858416 DOI: 10.1161/circulationaha.109.866889] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease. Monocytes display inflammatory and resident subsets and commit to specific functions in atherogenesis. In this study, we examined the hypothesis that HHcy modulates monocyte heterogeneity and leads to atherosclerosis. METHODS AND RESULTS We established a novel atherosclerosis-susceptible mouse model with both severe HHcy and hypercholesterolemia in which the mouse cystathionine beta-synthase (CBS) and apolipoprotein E (apoE) genes are deficient and an inducible human CBS transgene is introduced to circumvent the neonatal lethality of the CBS deficiency (Tg-hCBS apoE(-/-) Cbs(-/-) mice). Severe HHcy accelerated atherosclerosis and inflammatory monocyte/macrophage accumulation in lesions and increased plasma tumor necrosis factor-alpha and monocyte chemoattractant protein-1 levels in Tg-hCBS apoE(-/-) Cbs(-/-) mice fed a high-fat diet. Furthermore, we characterized monocyte heterogeneity in Tg-hCBS apoE(-/-) Cbs(-/-) mice and another severe HHcy mouse model (Tg-S466L Cbs(-/-)) with a disease-relevant mutation (Tg-S466L) that lacks hyperlipidemia. HHcy increased monocyte population and selective expansion of inflammatory Ly-6C(hi) and Ly-6C(mid) monocyte subsets in blood, spleen, and bone marrow of Tg-S466L Cbs(-/-) and Tg-hCBS apoE(-/-) Cbs(-/-) mice. These changes were exacerbated in Tg-S466L Cbs(-/-) mice with aging. Addition of l-homocysteine (100 to 500 micromol/L), but not l-cysteine, maintained the Ly-6C(hi) subset and induced the Ly-6C(mid) subset in cultured mouse primary splenocytes. Homocysteine-induced differentiation of the Ly-6C(mid) subset was prevented by catalase plus superoxide dismutase and the NAD(P)H oxidase inhibitor apocynin. CONCLUSIONS HHcy promotes differentiation of inflammatory monocyte subsets and their accumulation in atherosclerotic lesions via NAD(P)H oxidase-mediated oxidant stress.
Collapse
Affiliation(s)
- Daqing Zhang
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tsitsiou E, Sibley CP, D'Souza SW, Catanescu O, Jacobsen DW, Glazier JD. Homocysteine transport by systems L, A and y+L across the microvillous plasma membrane of human placenta. J Physiol 2009; 587:4001-13. [PMID: 19564394 PMCID: PMC2756434 DOI: 10.1113/jphysiol.2009.173393] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/29/2009] [Indexed: 12/26/2022] Open
Abstract
Elevated maternal plasma levels of homocysteine (Hcy) are associated with pregnancy complications and adverse neonatal outcomes, suggesting placental transport of Hcy may impact on fetal development. However, such transport mechanisms have not been defined. In this study we characterise Hcy transport mechanisms across the microvillous plasma membrane (MVM) of the syncytiotrophoblast, the transporting epithelium of human placenta. Three candidate transport systems, systems L, A and y(+)L, were examined utilising competitive inhibition to investigate the effects of Hcy on the uptake of well-characterised radiolabelled substrates for each system into isolated MVM vesicles, and that of model substrates on 10 microm [(35)S]l-Hcy uptake. System L activity was inhibited by both l-Hcy and dl-Hcy, comparable to model substrates including 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH). System L constituted the major transport mechanism, with significant BCH inhibition (69%) of [(35)S]l-Hcy uptake. System A activity was also inhibited by l-Hcy and dl-Hcy with a smaller contribution (21%) to [(35)S]l-Hcy uptake. Inhibition by l-Hcy and dl-Hcy of system y(+)L activity was Na(+) sensitive with a significant inhibition constant (K(i)) shift observed following K(+) replacement; l-arginine reduced [(35)S]l-Hcy uptake by 19%. Kinetic modelling of [(35)S]l-Hcy uptake resolved two, Na(+)-independent, transport components (K(m) 72 microm and 9.7 mm). This study provides evidence for the involvement of systems L, A and y(+)L in placental Hcy transport. Such transport, by competing with endogenous amino acids for transporter activity, could have major implications for syncytiotrophoblast metabolism and function as well as fetal development.
Collapse
Affiliation(s)
- Eleni Tsitsiou
- Maternal and Fetal Health Research Group, University of Manchester, St Mary's Hospital, Hathersage Road, Manchester M13 0JH, UK
| | | | | | | | | | | |
Collapse
|
29
|
Hung YC, Wang PW, Pan TL, Bazylak G, Leu YL. Proteomic screening of antioxidant effects exhibited by radix Salvia miltiorrhiza aqueous extract in cultured rat aortic smooth muscle cells under homocysteine treatment. JOURNAL OF ETHNOPHARMACOLOGY 2009; 124:463-474. [PMID: 19481143 DOI: 10.1016/j.jep.2009.05.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/29/2009] [Accepted: 05/16/2009] [Indexed: 05/27/2023]
Abstract
AIM OF THE STUDY Still little is known about the cellular mechanisms that contribute to the attenuated proliferation of aortic smooth muscle cells under the influence of the oxidative stress factors such as homocysteine (Hcy). Thus, we aimed to evaluate whether Salvia miltiorrhiza Bunge (Labiatae), a Chinese medicinal herb widely used in folk medicine for therapy of variety of human cardiovascular disorders would modulate this Hcy promoted growth effect in model animal aortic cells system. MATERIALS AND METHODS The Salvia miltiorrhiza roots aqueous extract (SMAE) containing 3,4-dihydroxybenzoic acid, 3,4-dihydroxyphenyl lactic acid and salvianolic acid B, as confirmed by narrow-bore HPLC analyses with binary gradient elution was used in variable concentrations for the treatment of the rat aortic smooth muscle A10 cells under Hcy stimulation. Two-dimensional electrophoresis (2-DE) coupled with MALDI-TOF mass spectrometry was applied for the elucidation of protein changes characterizing the response of the rat A10 cells into the Hcy-induced oxidative stress. RESULTS This study showed that a low dose (0.015 mg/mL) of the SMAE significantly inhibited growth (>60%, p<0.05) of the Hcy stimulated rat A10 cells. In addition, concentration of intracellular reactive oxygen species (ROS) obviously decreased in the rat A10 cells after its incubation with SMAE in terms of catalase increasing activity. Next, marked down-regulation of protein kinase C beta-1 (PKC beta-1) and phosphorylated mitogen-activated protein kinase (p-MAPK) expression suggest that observed inhibitory effect of the polyphenol-rich SMAE on the Hcy-induced growth of rat A10 cells was realized via the PKC/p44/42 MAPK-dependent pathway. The intensity changes of 10 protein spots in response of the rat A10 cells to the Hcy-induced oxidative damage as alpha-4-tropomyosin, vimentin, F1F0-ATP synthase (beta subunit), glucose regulated protein 75 (GRP75), actin (fragment), prohibitin, capping protein, plakoglobin, endoplasmic reticulum protein (ERp29), and peptidylprolyl isomerase A (PPIase A), were detected with statistical significance (p<0.05). Meanwhile, it was showed that used here SMAE resist carbonylation of specific cytoskeleton and chaperone proteins as vimentin, alpha-4-tropomyosin and GRP75, respectively, leading to phenotype transformations in the rat A10 cells. CONCLUSION These data suggest that applied here SMAE exerts its protective effect through circulating ROS suppression and subsequent modulation of protein carbonylation in rat aortic smooth muscle A10 cells. Redox-proteomics protocol highlighted in this study may be applicable in facilitating the assessing potential novel molecular therapeutic targets to reduce cardiovascular risk related with elevated Hcy levels in various human populations and elucidating new mechanisms through which protein functions can be regulated by the redox status with the use of naturally occurring antioxidants.
Collapse
Affiliation(s)
- Yu-Chiang Hung
- Graduate Institute of Clinical Medical Sciences, Kaohsiung Division, Chang Gung University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
30
|
Abstract
Hyperhomocysteinemia (HHcy) is a significant and independent risk factor for cardiovascular diseases. Endothelial dysfunction (ED) is the earliest indicator of atherosclerosis and vascular diseases. We and others have shown that HHcy induced ED in human and in animal models of HHcy induced by either high-methionine load or genetic deficiency. Six mechanisms have been suggested explaining HHcy-induced ED. These include 1) nitric oxide inhibition, 2) prostanoids regulation, 3) endothelium-derived hyperpolarizing factors suppression, 4) angiotensin II receptor-1 activation, 5) endothelin-1 induction, and 6) oxidative stress. The goal of this review is to elaborate these mechanisms and to discuss biological and molecular events related to HHcy-induced ED.
Collapse
Affiliation(s)
- Zhongjian Cheng
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
31
|
Liu X, Shen J, Zhan R, Wang X, Wang X, Zhang Z, Leng X, Yang Z, Qian L. Proteomic analysis of homocysteine induced proliferation of cultured neonatal rat vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:177-84. [DOI: 10.1016/j.bbapap.2008.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/08/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
|