1
|
Chacar S, Abdi A, Almansoori K, Alshamsi J, Al Hageh C, Zalloua P, Khraibi AA, Holt SG, Nader M. Role of CaMKII in diabetes induced vascular injury and its interaction with anti-diabetes therapy. Rev Endocr Metab Disord 2024; 25:369-382. [PMID: 38064002 PMCID: PMC10943158 DOI: 10.1007/s11154-023-09855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 03/16/2024]
Abstract
Diabetes mellitus is a metabolic disorder denoted by chronic hyperglycemia that drives maladaptive structural changes and functional damage to the vasculature. Attenuation of this pathological remodeling of blood vessels remains an unmet target owing to paucity of information on the metabolic signatures of this process. Ca2+/calmodulin-dependent kinase II (CaMKII) is expressed in the vasculature and is implicated in the control of blood vessels homeostasis. Recently, CaMKII has attracted a special attention in view of its chronic upregulated activity in diabetic tissues, yet its role in the diabetic vasculature remains under investigation.This review highlights the physiological and pathological actions of CaMKII in the diabetic vasculature, with focus on the control of the dialogue between endothelial (EC) and vascular smooth muscle cells (VSMC). Activation of CaMKII enhances EC and VSMC proliferation and migration, and increases the production of extracellular matrix which leads to maladaptive remodeling of vessels. This is manifested by activation of genes/proteins implicated in the control of the cell cycle, cytoskeleton organization, proliferation, migration, and inflammation. Endothelial dysfunction is paralleled by impaired nitric oxide signaling, which is also influenced by CaMKII signaling (activation/oxidation). The efficiency of CaMKII inhibitors is currently being tested in animal models, with a focus on the genetic pathways involved in the regulation of CaMKII expression (microRNAs and single nucleotide polymorphisms). Interestingly, studies highlight an interaction between the anti-diabetic drugs and CaMKII expression/activity which requires further investigation. Together, the studies reviewed herein may guide pharmacological approaches to improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| | - Abdulhamid Abdi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Khalifa Almansoori
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jawaher Alshamsi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Ali A Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Stephen G Holt
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- SEHA Kidney Care, SEHA, Abu Dhabi, UAE
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Roberts-Craig FT, Worthington LP, O’Hara SP, Erickson JR, Heather AK, Ashley Z. CaMKII Splice Variants in Vascular Smooth Muscle Cells: The Next Step or Redundancy? Int J Mol Sci 2022; 23:ijms23147916. [PMID: 35887264 PMCID: PMC9318135 DOI: 10.3390/ijms23147916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) help to maintain the normal physiological contractility of arterial vessels to control blood pressure; they can also contribute to vascular disease such as atherosclerosis. Ca2+/calmodulin-dependent kinase II (CaMKII), a multifunctional enzyme with four isoforms and multiple alternative splice variants, contributes to numerous functions within VSMCs. The role of these isoforms has been widely studied across numerous tissue types; however, their functions are still largely unknown within the vasculature. Even more understudied is the role of the different splice variants of each isoform in such signaling pathways. This review evaluates the role of the different CaMKII splice variants in vascular pathological and physiological mechanisms, aiming to show the need for more research to highlight both the deleterious and protective functions of the various splice variants.
Collapse
Affiliation(s)
- Finn T. Roberts-Craig
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand;
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
| | - Luke P. Worthington
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Samuel P. O’Hara
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Jeffrey R. Erickson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Alison K. Heather
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Zoe Ashley
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-7646
| |
Collapse
|
3
|
The airway smooth muscle sodium/calcium exchanger NCLX is critical for airway remodeling and hyperresponsiveness in asthma. J Biol Chem 2022; 298:102259. [PMID: 35841929 PMCID: PMC9372629 DOI: 10.1016/j.jbc.2022.102259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
The structural changes of airway smooth muscle (ASM) that characterize airway remodeling (AR) are crucial to the pathogenesis of asthma. During AR, ASM cells dedifferentiate from a quiescent to a proliferative, migratory, and secretory phenotype. Calcium (Ca2+) is a ubiquitous second messenger that regulates many cellular processes, including proliferation, migration, contraction, and metabolism. Furthermore, mitochondria have emerged as major Ca2+ signaling organelles that buffer Ca2+ through uptake by the mitochondrial Ca2+ uniporter and extrude it through the Na+/Ca2+ exchanger (NCLX/Slc8b1). Here, we show using mitochondrial Ca2+-sensitive dyes that NCLX only partially contributes to mitochondrial Ca2+ extrusion in ASM cells. Yet, NCLX is necessary for ASM cell proliferation and migration. Through cellular imaging, RNA-Seq, and biochemical assays, we demonstrate that NCLX regulates these processes by preventing mitochondrial Ca2+ overload and supporting store-operated Ca2+ entry, activation of Ca2+/calmodulin-dependent kinase II, and transcriptional and metabolic reprogramming. Using small animal respiratory mechanic measurements and immunohistochemistry, we show that smooth muscle-specific NCLX KO mice are protected against AR, fibrosis, and hyperresponsiveness in an experimental model of asthma. Our findings support NCLX as a potential therapeutic target in the treatment of asthma.
Collapse
|
4
|
Zhou T, DeRoo E, Yang H, Stranz A, Wang Q, Ginnan R, Singer HA, Liu B. MLKL and CaMKII Are Involved in RIPK3-Mediated Smooth Muscle Cell Necroptosis. Cells 2021; 10:cells10092397. [PMID: 34572045 PMCID: PMC8471540 DOI: 10.3390/cells10092397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Receptor interacting protein kinase 3 (RIPK3)-mediated smooth muscle cell (SMC) necroptosis has been shown to contribute to the pathogenesis of abdominal aortic aneurysms (AAAs). However, the signaling steps downstream from RIPK3 during SMC necroptosis remain unknown. In this study, the roles of mixed lineage kinase domain-like pseudokinase (MLKL) and calcium/calmodulin-dependent protein kinase II (CaMKII) in SMC necroptosis were investigated. We found that both MLKL and CaMKII were phosphorylated in SMCs in a murine CaCl2-driven model of AAA and that Ripk3 deficiency reduced the phosphorylation of MLKL and CaMKII. In vitro, mouse aortic SMCs were treated with tumor necrosis factor α (TNFα) plus Z-VAD-FMK (zVAD) to induce necroptosis. Our data showed that both MLKL and CaMKII were phosphorylated after TNFα plus zVAD treatment in a time-dependent manner. SiRNA silencing of Mlkl-diminished cell death and administration of the CaMKII inhibitor myristoylated autocamtide-2-related inhibitory peptide (Myr-AIP) or siRNAs against Camk2d partially inhibited necroptosis. Moreover, knocking down Mlkl decreased CaMKII phosphorylation, but silencing Camk2d did not affect phosphorylation, oligomerization, or trafficking of MLKL. Together, our results indicate that both MLKL and CaMKII are involved in RIPK3-mediated SMC necroptosis, and that MLKL is likely upstream of CaMKII in this process.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.Z.); (E.D.); (H.Y.); (A.S.); (Q.W.)
| | - Elise DeRoo
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.Z.); (E.D.); (H.Y.); (A.S.); (Q.W.)
| | - Huan Yang
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.Z.); (E.D.); (H.Y.); (A.S.); (Q.W.)
| | - Amelia Stranz
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.Z.); (E.D.); (H.Y.); (A.S.); (Q.W.)
| | - Qiwei Wang
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.Z.); (E.D.); (H.Y.); (A.S.); (Q.W.)
| | - Roman Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (R.G.); (H.A.S.)
| | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (R.G.); (H.A.S.)
| | - Bo Liu
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.Z.); (E.D.); (H.Y.); (A.S.); (Q.W.)
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
5
|
O'Brien BJ, Singer HA, Adam AP, Ginnan RG. CaMKIIδ is upregulated by pro-inflammatory cytokine IL-6 in a JAK/STAT3-dependent manner to promote angiogenesis. FASEB J 2021; 35:e21437. [PMID: 33749880 DOI: 10.1096/fj.202002755r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous serine threonine kinase with established roles in physiological and pathophysiological vascular remodeling. Based on our previous study demonstrating that CaMKIIδ promotes thrombin-induced endothelial permeability and recent reports that CaMKII may contribute to inflammatory remodeling in the heart, we investigated CaMKIIδ-dependent regulation of endothelial function downstream of an interleukin-6 (IL-6)/JAK/STAT3 signaling axis. Upon treatment with IL-6 and its soluble receptor (sIL-6r), CaMKIIδ expression is significantly induced in HUVEC. Using pharmacological inhibitors of JAK and siRNA targeting STAT3, we demonstrated that activation of STAT3 is sufficient to induce CaMKIIδ expression. Under these conditions, rather than promoting IL-6-induced permeability, we found that CaMKIIδ promotes endothelial cell migration as measured by live cell imaging of scratch wound closure and single-cell motility analysis. In a similar manner, endothelial cell proliferation was attenuated upon knockdown of CaMKIIδ as determined by growth curves, cell cycle analysis, and capacitance of cell-covered electrodes as measured by ECIS. Using inducible endothelial-specific STAT3 knockout mice, we demonstrate that STAT3 signaling promotes developmental angiogenesis in the neonatal mouse retina assessed at postnatal day 6. CaMKIIδ expression in retinal endothelium was attenuated in these animals as measured by qPCR. STAT3's effects on angiogenesis were phenocopied by the endothelial-specific knockout of CaMKIIδ, with significantly reduced vascular outgrowth and number of junctions in the developing P6 retina. For the first time, we demonstrate that transcriptional regulation of CaMKIIδ by STAT3 promotes endothelial motility, proliferation, and in vivo angiogenesis.
Collapse
Affiliation(s)
- Brendan J O'Brien
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roman G Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
6
|
Guo J, Pereira TJ, Mori Y, Gonzalez Medina M, Breen DM, Dalvi PS, Zhang H, McCole DF, McBurney MW, Heximer SP, Tsiani EL, Dolinsky VW, Giacca A. Resveratrol Inhibits Neointimal Growth after Arterial Injury in High-Fat-Fed Rodents: The Roles of SIRT1 and AMPK. J Vasc Res 2020; 57:325-340. [PMID: 32777783 DOI: 10.1159/000509217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
We have shown that both insulin and resveratrol (RSV) decrease neointimal hyperplasia in chow-fed rodents via mechanisms that are in part overlapping and involve the activation of endothelial nitric oxide synthase (eNOS). However, this vasculoprotective effect of insulin is abolished in high-fat-fed insulin-resistant rats. Since RSV, in addition to increasing insulin sensitivity, can activate eNOS via pathways that are independent of insulin signaling, such as the activation of sirtuin 1 (SIRT1) and AMP-activated kinase (AMPK), we speculated that unlike insulin, the vasculoprotective effect of RSV would be retained in high-fat-fed rats. We found that high-fat feeding decreased insulin sensitivity and increased neointimal area and that RSV improved insulin sensitivity (p < 0.05) and decreased neointimal area in high-fat-fed rats (p < 0.05). We investigated the role of SIRT1 in the effect of RSV using two genetic mouse models. We found that RSV decreased neointimal area in high-fat-fed wild-type mice (p < 0.05), an effect that was retained in mice with catalytically inactive SIRT1 (p < 0.05) and in heterozygous SIRT1-null mice. In contrast, the effect of RSV was abolished in AMKPα2-null mice. Thus, RSV decreased neointimal hyperplasia after arterial injury in both high-fat-fed rats and mice, an effect likely not mediated by SIRT1 but by AMPKα2.
Collapse
Affiliation(s)
- June Guo
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Troy J Pereira
- Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yusaku Mori
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | | | - Danna M Breen
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Prasad S Dalvi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Biology Department, Morosky College of Health Professions and Sciences, Gannon University, Erie, Pennsylvania, USA
| | - Hangjun Zhang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael W McBurney
- Program in Cancer Therapeutics, Ottawa Hospital Research Institute, Departments of Medicine and Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Scott P Heximer
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Evangelia L Tsiani
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, .,Department of Medicine, University of Toronto, Toronto, Ontario, Canada, .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada, .,Banting and Best Diabetes Centre, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada,
| |
Collapse
|
7
|
Chung CC, Lin YK, Chen YC, Kao YH, Lee TI, Chen YJ. Vascular endothelial growth factor enhances profibrotic activities through modulation of calcium homeostasis in human atrial fibroblasts. J Transl Med 2020; 100:285-296. [PMID: 31748680 DOI: 10.1038/s41374-019-0341-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/14/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor (VEGF), a pivotal activator of angiogenesis and calcium (Ca2+) signaling in endothelial cells, was shown to increase collagen production in atrial fibroblasts. In this study, we evaluated whether VEGF may regulate Ca2+ homeostasis in atrial fibroblasts and contribute to its profibrogenesis. Migration, and proliferation analyses, patch-clamp assay, Ca2+ fluorescence imaging, and western blotting were performed using VEGF-treated (300 pg/mL or 1000 pg/mL) human atrial fibroblasts with or without coadministration of Ethylene glycol tetra-acetic acid (EGTA, 1 mmol/L), or KN93 (a Ca2+/calmodulin-dependent protein kinase II [CaMKII] inhibitor, 10 μmol/L). VEGF (1000 pg/mL) increased migration, myofibroblast differentiation, pro-collagen type I, pro-collagen type III production, and phosphorylated VEGF receptor 1 expression of fibroblasts. VEGF (1000 pg/mL) increased the nonselective cation current (INSC) of transient receptor potential (TRP) channels and potassium current of intermediate-conductance Ca2+-activated K+ (KCa3.1) channels thereby upregulating Ca2+ entry. VEGF upregulated phosphorylated ERK expression. An ERK inhibitor (PD98059, 50 μmol/L) attenuated VEGF-activated INSC of TRP channels. The presence of EGTA attenuated the profibrotic effects of VEGF on pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and migratory capabilities of fibroblasts. VEGF upregulated the expression of phosphorylated CaMKII in fibroblasts, which was attenuated by EGTA. In addition, KN93 reduced VEGF-increased pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and the migratory capabilities of fibroblasts. In conclusion, we found that VEGF increases atrial fibroblast activity through CaMKII signaling by enhancing Ca2+ entry. Our findings provide benchside evidence leading to a potential novel strategy targeting atrial myopathy and arrhythmofibrosis.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Liu Y, Sun LY, Singer DV, Ginnan R, Zhao W, Jourd'heuil FL, Jourd'heuil D, Long X, Singer HA. Thymine DNA glycosylase is a key regulator of CaMKIIγ expression and vascular smooth muscle phenotype. Am J Physiol Heart Circ Physiol 2019; 317:H969-H980. [PMID: 31518169 PMCID: PMC6879914 DOI: 10.1152/ajpheart.00146.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023]
Abstract
Multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multigene family with isoform-specific regulation of vascular smooth muscle (VSM) functions. In previous studies, we found that vascular injury resulted in VSM dedifferentiation and reduced expression of the CaMKIIγ isoform in medial wall VSM. Smooth muscle knockout of CaMKIIγ enhanced injury-induced VSM neointimal hyperplasia, whereas CaMKIIγ overexpression inhibited VSM proliferation and neointimal formation. In this study, we evaluated DNA cytosine methylation/demethylation as a mechanism for regulating CaMKII isoform expression in VSM. Inhibition of cytosine methylation with 5-Aza-2'-deoxycytidine significantly upregulated CaMKIIγ expression in cultured VSM cells and inhibited CaMKIIγ downregulation in organ-cultured aorta ex vivo. With the use of methylated cytosine immunoprecipitation, the rat Camk2g promoter was found hypomethylated in differentiated VSM, whereas injury- or cell culture-induced VSM dedifferentiation coincided with Camk2g promoter methylation and decreased expression. We report for the first time that VSM cell phenotype switching is accompanied by marked induction of thymine DNA glycosylase (TDG) protein and mRNA expression in injured arteries in vivo and in cultured VSM synthetic phenotype cells. Silencing Tdg in VSM promoted expression of CaMKIIγ and differentiation markers, including myocardin, and inhibited VSM cell proliferation and injury-induced neointima formation. This study indicates that CaMKIIγ expression in VSM is regulated by cytosine methylation/demethylation and that TDG is an important determinant of this process and, more broadly, VSM phenotype switching and function.NEW & NOTEWORTHY Expression of the calcium calmodulin-dependent protein kinase II-γ isoform (CaMKIIγ) is associated with differentiated vascular smooth muscle (VSM) and negatively regulates proliferation in VSM synthetic phenotype (VSMSyn) cells. This study demonstrates that thymine DNA glycosylase (TDG) plays a key role in regulating CaMKIIγ expression in VSM through promoter cytosine methylation/demethylation. TDG expression is strongly induced in VSMSyn cells and plays key roles in negatively regulating CaMKIIγ expression and more broadly VSM phenotype switching.
Collapse
MESH Headings
- Animals
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Carotid Artery, Common/enzymology
- Carotid Artery, Common/pathology
- Cell Plasticity
- Cell Proliferation
- Cells, Cultured
- DNA Methylation
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- Male
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- Promoter Regions, Genetic
- Rats, Sprague-Dawley
- Signal Transduction
- Thymine DNA Glycosylase/genetics
- Thymine DNA Glycosylase/metabolism
Collapse
Affiliation(s)
- YongFeng Liu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Li-Yan Sun
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Diane V Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Roman Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Wen Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Frances L Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
9
|
Johnson M, Trebak M. ORAI channels in cellular remodeling of cardiorespiratory disease. Cell Calcium 2019; 79:1-10. [PMID: 30772685 DOI: 10.1016/j.ceca.2019.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
Cardiorespiratory disease, which includes systemic arterial hypertension, restenosis, atherosclerosis, pulmonary arterial hypertension, asthma, and chronic obstructive pulmonary disease (COPD) are highly prevalent and devastating diseases with limited therapeutic modalities. A common pathophysiological theme to these diseases is cellular remodeling, which is contributed by changes in expression and activation of ion channels critical for either excitability or growth. Calcium (Ca2+) signaling and specifically ORAI Ca2+ channels have emerged as significant regulators of smooth muscle, endothelial, epithelial, platelet, and immune cell remodeling. This review details the dysregulation of ORAI in cardiorespiratory diseases, and how this dysregulation of ORAI contributes to cellular remodeling.
Collapse
Affiliation(s)
- Martin Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
10
|
Lin X, Cheng C, Zhong J, Liu B, Luo C, Ou W, Mo P, Huang Q, Liu S. Resveratrol inhibits angiotensin II‑induced proliferation of A7r5 cells and decreases neointimal hyperplasia by inhibiting the CaMKII‑HDAC4 signaling pathway. Mol Med Rep 2018; 18:1007-1014. [PMID: 29845301 DOI: 10.3892/mmr.2018.9056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/26/2018] [Indexed: 11/06/2022] Open
Abstract
Resveratrol has been reported to inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia following arterial injury; however, the underlying mechanisms remain unclear. The present study was designed to investigate the effects of resveratrol on angiotensin II (AngII)‑induced proliferation of A7r5 cells and explore the molecular mechanisms responsible for the observed effects. Resveratrol inhibited cell proliferation and migration, and decreased the AngII‑induced protein expression of α‑smooth muscle actin (α‑SMA), proliferating cell nuclear antigen (PCNA) and cyclin‑dependent kinase 4 (CDK4). Resveratrol inhibited AngII‑induced activation of intracellular Ca2+/calmodulin‑dependent protein kinase II (CaMKII) and histone deacetylases 4 (HDAC4), as well as blocking AngII‑induced cell cycle progression from the G0/G1 to S‑phase. In vivo, 4‑weeks of resveratrol treatment decreased the neointima area and the neointima/media area ratio in rats following carotid balloon injury. Resveratrol also inhibited the protein expression of total and phosphorylated CaMKII and HDAC4 in the injured arteries. In conclusion, the present study demonstrated that resveratrol attenuated AngII‑induced cell proliferation and neointimal hyperplasia by inhibiting the CaMKII‑HDAC4 signaling pathway. These findings suggest that resveratrol may potentially prevent arterial restenosis.
Collapse
Affiliation(s)
- Xiaozhen Lin
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Chuanfang Cheng
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Junyang Zhong
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Benrong Liu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Chengfeng Luo
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Wenchao Ou
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Pei Mo
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Qiang Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Shiming Liu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
11
|
Ebenebe OV, Heather A, Erickson JR. CaMKII in Vascular Signalling: "Friend or Foe"? Heart Lung Circ 2017; 27:560-567. [PMID: 29409723 DOI: 10.1016/j.hlc.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Signalling mechanisms within and between cells of the vasculature enable function and maintain homeostasis. However, a number of these mechanisms also contribute to the pathophysiology of vascular disease states. The multifunctional signalling molecule calcium/calmodulin-dependent kinase II (CaMKII) has been shown to have critical functional effects in many tissue types. For example, CaMKII is known to have a dual role in cardiac physiology and pathology. The function of CaMKII within the vasculature is incompletely understood, but emerging evidence points to potential physiological and pathological roles. This review discusses the evidence for CaMKII signalling within the vasculature, with the aim to better understand both positive and potentially deleterious effects of CaMKII activation in vascular tissue.
Collapse
Affiliation(s)
- Obialunanma V Ebenebe
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Alison Heather
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand.
| |
Collapse
|
12
|
Murthy S, Koval OM, Ramiro Diaz JM, Kumar S, Nuno D, Scott JA, Allamargot C, Zhu LJ, Broadhurst K, Santhana V, Kutschke WJ, Irani K, Lamping KG, Grumbach IM. Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity. PLoS One 2017; 12:e0186311. [PMID: 29059213 PMCID: PMC5653296 DOI: 10.1371/journal.pone.0186311] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/28/2017] [Indexed: 01/11/2023] Open
Abstract
The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine kinase important in transducing intracellular Ca2+ signals. While in vitro data regarding the role of CaMKII in the regulation of endothelial nitric oxide synthase (eNOS) are contradictory, its role in endothelial function in vivo remains unknown. Using two novel transgenic models to express CaMKII inhibitor peptides selectively in endothelium, we examined the effect of CaMKII on eNOS activation, NO production, vasomotor tone and blood pressure. Under baseline conditions, CaMKII activation was low in the aortic wall. Consistently, systolic and diastolic blood pressure, heart rate and plasma NO levels were unaltered by endothelial CaMKII inhibition. Moreover, endothelial CaMKII inhibition had no significant effect on NO-dependent vasodilation. These results were confirmed in studies of aortic rings transduced with adenovirus expressing a CaMKII inhibitor peptide. In cultured endothelial cells, bradykinin treatment produced the anticipated rapid influx of Ca2+ and transient CaMKII and eNOS activation, whereas CaMKII inhibition blocked eNOS phosphorylation on Ser-1179 and dephosphorylation at Thr-497. Ca2+/CaM binding to eNOS and resultant NO production in vitro were decreased under CaMKII inhibition. Our results demonstrate that CaMKII plays an important role in transient bradykinin-driven eNOS activation in vitro, but does not regulate NO production, vasorelaxation or blood pressure in vivo under baseline conditions.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
| | - Olha M. Koval
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
| | - Juan M. Ramiro Diaz
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Santosh Kumar
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Daniel Nuno
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jason A. Scott
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Chantal Allamargot
- Central Microscopy Research Facility, Office of Vice President of Research and Economic Development, University of Iowa, Iowa City, Iowa, United States of America
| | - Linda J. Zhu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kim Broadhurst
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Velarchana Santhana
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - William J. Kutschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kaikobad Irani
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
| | - Kathryn G. Lamping
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Isabella M. Grumbach
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
| |
Collapse
|
13
|
Saddouk FZ, Ginnan R, Singer HA. Ca 2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:171-202. [PMID: 28212797 DOI: 10.1016/bs.apha.2016.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca2+-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies.
Collapse
Affiliation(s)
- F Z Saddouk
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - R Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - H A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
14
|
Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ. Stem Cells Int 2016; 2016:1267480. [PMID: 27493668 PMCID: PMC4963582 DOI: 10.1155/2016/1267480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022] Open
Abstract
The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is known to participate in maintenance and switches of smooth muscle cell (SMC) phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs) into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC), while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs.
Collapse
|
15
|
MicroRNA-30 inhibits neointimal hyperplasia by targeting Ca(2+)/calmodulin-dependent protein kinase IIδ (CaMKIIδ). Sci Rep 2016; 6:26166. [PMID: 27199283 PMCID: PMC4873751 DOI: 10.1038/srep26166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/27/2016] [Indexed: 01/13/2023] Open
Abstract
The multifunctional Ca2+/calmodulin-dependent protein kinase II δ-isoform (CaMKIIδ) promotes vascular smooth muscle (VSM) proliferation, migration, and injury-induced vascular wall neointima formation. The objective of this study was to test if microRNA-30 (miR-30) family members are endogenous regulators of CaMKIIδ expression following vascular injury and whether ectopic expression of miR-30 can inhibit CaMKIIδ-dependent VSM cell function and neointimal VSM hyperplasia induced by vascular injury. The CaMKIIδ 3′UTR contains a consensus miR-30 binding sequence that is highly conserved across species. A significant decrease in miR-30 family members and increase in CaMKIIδ2 protein expression, with no change in CaMKIIδ mRNA expression, was observed in medial layers of VSM 7 days post-injury. In vitro, overexpression of miR-30c or miR-30e inhibited CaMKIIδ2 protein expression by ~50% in cultured rat aortic VSM cells, and inhibited VSM cell proliferation and migration. In vivo, lenti-viral delivery of miR-30c into injured rat carotid arteries prevented the injury-induced increase in CaMKIIδ2. Furthermore, neointima formation was dramatically inhibited by lenti-viral delivery of miR-30c in the injured medial smooth muscle. These studies define a novel mechanism for regulating CaMKIIδ expression in VSM and provide a new potential therapeutic strategy to reduce progression of vascular proliferative diseases, including atherosclerosis and restenosis.
Collapse
|
16
|
Saddouk FZ, Sun LY, Liu YF, Jiang M, Singer DV, Backs J, Van Riper D, Ginnan R, Schwarz JJ, Singer HA. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling. FASEB J 2015; 30:1051-64. [PMID: 26567004 DOI: 10.1096/fj.15-279158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 01/15/2023]
Abstract
Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIγC rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIIδ2 adenovirus had no effect. Similar dynamics in CaMKIIγ mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIγ in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIγ overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIγ and -δ isoforms have nonequivalent, opposing functions.
Collapse
Affiliation(s)
- Fatima Z Saddouk
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Li-Yan Sun
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Yong Feng Liu
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Miao Jiang
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Diane V Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Johannes Backs
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Dee Van Riper
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Roman Ginnan
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - John J Schwarz
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Harold A Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Smooth muscle CaMKIIδ promotes allergen-induced airway hyperresponsiveness and inflammation. Pflugers Arch 2015; 467:2541-54. [PMID: 26089028 DOI: 10.1007/s00424-015-1713-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/28/2022]
Abstract
Airway smooth muscle (ASM) is a key target cell in allergen-induced asthma known to contribute to airway hyperresponsiveness (AHR) and chronic airway remodeling. Changes in ASM calcium homeostasis have been shown to contribute to AHR although the mechanisms and Ca(2+) signal effectors are incompletely understood. In the present study, we tested the function of ASM multifunctional protein kinase Ca(2+)/calmodulin-dependent kinase II (CaMKII) isoforms CaMKIIδ and CaMKIIγ in allergen-induced AHR and airway remodeling in vivo. Using a murine model of atopic asthma, we demonstrate that CaMKIIδ protein is upregulated in ASM derived from ovalbumin (OVA)-treated animals compared to controls. A genetic approach to conditionally knock out smooth muscle CaMKIIδ and CaMKIIγ in separate Cre-loxp systems was validated, and using this loss-of-function approach, the function of these CaMKII isoforms was tested in ovalbumin (OVA)-induced airway remodeling and AHR. OVA treatment in control mice had no effect on ASM remodeling in this model of AHR, and CaMKIIδ knockouts had no independent effects on ASM content. However, at 1 day post-final OVA challenge, OVA-induced AHR was eliminated in the CaMKIIδ knockouts. OVA-induced peribronchial inflammation and bronchoalveolar lavage fluid (BALF) levels of the Th2 cytokine IL-13 were significantly decreased in the CaMKIIδ knockouts. Unexpectedly, we found increased peribronchial eosinophils in the smooth muscle CaMKIIδ knockouts compared to control animals at 1 day post-final challenge, suggesting that lack of ASM CaMKIIδ delays the progression of AHR rather than inhibiting it. Indeed, when AHR was determined at 7 days post-final OVA challenge, CaMKIIδ knockouts showed robust AHR while AHR was fully resolved in OVA-challenged control mice. These in vivo studies demonstrate a role for smooth muscle CaMKIIδ in promoting airway inflammation and AHR and suggest a complex signaling role for CaMKIIδ in regulating ASM function. These studies confirm the diverse roles of ASM cells as immune effectors that control AHR and call for further studies into CaMKIIδ-mediated signaling in ASM cells during disease.
Collapse
|
18
|
Prasad AM, Morgan DA, Nuno DW, Ketsawatsomkron P, Bair TB, Venema AN, Dibbern ME, Kutschke WJ, Weiss RM, Lamping KG, Chapleau MW, Sigmund CD, Rahmouni K, Grumbach IM. Calcium/calmodulin-dependent kinase II inhibition in smooth muscle reduces angiotensin II-induced hypertension by controlling aortic remodeling and baroreceptor function. J Am Heart Assoc 2015; 4:e001949. [PMID: 26077587 PMCID: PMC4599535 DOI: 10.1161/jaha.115.001949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Multifunctional calcium/calmodulin-dependent kinase II (CaMKII) is activated by angiotensin II (Ang II) in cultured vascular smooth muscle cells (VSMCs), but its function in experimental hypertension has not been explored. The aim of this study was to determine the impact of CaMKII inhibition selectively in VSMCs on Ang II hypertension. Methods and Results Transgenic expression of a CaMKII peptide inhibitor in VSMCs (TG SM-CaMKIIN model) reduced the blood pressure response to chronic Ang II infusion. The aortic depressor nerve activity was reset in hypertensive versus normotensive wild-type animals but not in TG SM-CaMKIIN mice, suggesting that changes in baroreceptor activity account for the blood pressure difference between genotypes. Accordingly, aortic pulse wave velocity, a measure of arterial wall stiffness and a determinant of baroreceptor activity, increased in hypertensive versus normotensive wild-type animals but did not change in TG SM-CaMKIIN mice. Moreover, examination of blood pressure and heart rate under ganglionic blockade revealed that VSMC CaMKII inhibition abolished the augmented efferent sympathetic outflow and renal and splanchnic nerve activity in Ang II hypertension. Consequently, we hypothesized that VSMC CaMKII controls baroreceptor activity by modifying arterial wall remodeling in Ang II hypertension. Gene expression analysis in aortas from normotensive and Ang II–infused mice revealed that TG SM-CaMKIIN aortas were protected from Ang II–induced upregulation of genes that control extracellular matrix production, including collagen. VSMC CaMKII inhibition also strongly altered the expression of muscle contractile genes under Ang II. Conclusions CaMKII in VSMCs regulates blood pressure under Ang II hypertension by controlling structural gene expression, wall stiffness, and baroreceptor activity.
Collapse
Affiliation(s)
- Anand M Prasad
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Donald A Morgan
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Daniel W Nuno
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Pimonrat Ketsawatsomkron
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Thomas B Bair
- The Iowa Institute for Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA (T.B.B.)
| | - Ashlee N Venema
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Megan E Dibbern
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - William J Kutschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Robert M Weiss
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Kathryn G Lamping
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Mark W Chapleau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Curt D Sigmund
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.) Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA (C.D.S.)
| | - Kamal Rahmouni
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Isabella M Grumbach
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| |
Collapse
|
19
|
Regulation of thrombosis and vascular function by protein methionine oxidation. Blood 2015; 125:3851-9. [PMID: 25900980 DOI: 10.1182/blood-2015-01-544676] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 02/07/2023] Open
Abstract
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.
Collapse
|
20
|
Zhu LJ, Klutho PJ, Scott JA, Xie L, Luczak ED, Dibbern ME, Prasad AM, Jaffer OA, Venema AN, Nguyen EK, Guan X, Anderson ME, Grumbach IM. Oxidative activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulates vascular smooth muscle migration and apoptosis. Vascul Pharmacol 2014; 60:75-83. [PMID: 24418021 DOI: 10.1016/j.vph.2014.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/26/2013] [Accepted: 01/03/2014] [Indexed: 01/19/2023]
Abstract
Activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and reactive oxygen species (ROS) promote neointimal hyperplasia after vascular injury. CaMKII can be directly activated by ROS through oxidation. In this study, we determined whether abolishing the oxidative activation site of CaMKII alters vascular smooth muscle cell (VCMC) proliferation, migration and apoptosis in vitro and neointimal formation in vivo. VSMC isolated from a knock-in mouse with oxidation-resistant CaMKIIδ (CaMKII M2V) displayed similar proliferation but decreased migration and apoptosis. Surprisingly, ROS production and expression of the NADPH oxidase subunits p47 and p22 were decreased in M2V VSMC, whereas superoxide dismutase 2 protein expression was upregulated. In vivo, after carotid artery ligation, no differences in neointimal size or remodeling were observed. In contrast to VSMC, CaMKII expression and autonomous activity were significantly higher in M2V compared to WT carotid arteries, suggesting that an autoregulatory mechanism determines CaMKII activity in vivo. Our findings demonstrate that preventing oxidative activation of CaMKII decreases migration and apoptosis in vitro and suggest that CaMKII regulates ROS production. Our study presents novel evidence that CaMKII expression in vivo is regulated by a negative feedback loop following oxidative activation.
Collapse
Affiliation(s)
- Linda J Zhu
- Department of Medicine, Iowa City, IA, United States
| | | | - Jason A Scott
- Department of Medicine, Iowa City, IA, United States
| | - Litao Xie
- Department of Medicine, Iowa City, IA, United States
| | | | | | | | - Omar A Jaffer
- Department of Medicine, Iowa City, IA, United States
| | | | | | - Xiaoqun Guan
- Department of Medicine, Iowa City, IA, United States
| | - Mark E Anderson
- Department of Medicine, Iowa City, IA, United States; Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Isabella M Grumbach
- Department of Medicine, Iowa City, IA, United States; Iowa City VA Medical Center, Iowa City, IA, United States.
| |
Collapse
|
21
|
Liu Y, Sun LY, Singer DV, Ginnan R, Singer HA. CaMKIIδ-dependent inhibition of cAMP-response element-binding protein activity in vascular smooth muscle. J Biol Chem 2013; 288:33519-33529. [PMID: 24106266 DOI: 10.1074/jbc.m113.490870] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One transcription factor mediator of Ca(2+)-signals is cAMP response element-binding protein (CREB). CREB expression and/or activity negatively correlates with vascular smooth muscle (VSM) cell proliferation and migration. Multifunctional Ca(2+)/calmodulin-dependent protein kinases, including CaMKII, have been demonstrated to regulate CREB activity through both positive and negative phosphorylation events in vitro, but the function of CaMKII as a proximal regulator of CREB in intact cell systems, including VSM, is not clear. In this study, we used gain- and loss-of-function approaches to determine the function of CaMKIIδ in regulating CREB phosphorylation, localization, and activity in VSM. Overexpression of constitutively active CaMKIIδ specifically increased CREB phosphorylation on Ser(142) and silencing CaMKIIδ expression by siRNA or blocking endogenous CaMKII activity with KN93 abolished thrombin- or ionomycin-induced CREB phosphorylation on Ser(142) without affecting Ser(133) phosphorylation. CREB-Ser(142) phosphorylation correlated with transient nucleocytoplasmic translocation of CREB. Thrombin-induced CREB promoter activity, CREB binding to Sik1 and Rgs2 promoters, and Sik1/Rgs2 transcription were enhanced by a kinase-negative CaMKIIδ2 (K43A) mutant and inhibited by a constitutively active (T287D) mutant. Taken together, these studies establish negative regulation of CREB activity by endogenous CaMKIIδ-dependent CREB-Ser(142) phosphorylation and suggest a potential mechanism for CaMKIIδ/CREB signaling in modulating proliferation and migration in VSM cells.
Collapse
Affiliation(s)
- Yongfeng Liu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Li-Yan Sun
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Diane V Singer
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Roman Ginnan
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Harold A Singer
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208.
| |
Collapse
|
22
|
Ginnan R, Zou X, Pfleiderer PJ, Mercure MZ, Barroso M, Singer HA. Vascular smooth muscle cell motility is mediated by a physical and functional interaction of Ca2+/calmodulin-dependent protein kinase IIδ2 and Fyn. J Biol Chem 2013; 288:29703-12. [PMID: 24003228 DOI: 10.1074/jbc.m113.477257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In vascular smooth muscle (VSM) cells, Ca(2+)/calmodulin-dependent protein kinase IIδ2 (CaMKIIδ2) activates non-receptor tyrosine kinases and EGF receptor, with a Src family kinase as a required intermediate. siRNA-mediated suppression of Fyn, a Src family kinase, inhibited VSM cell motility. Simultaneous suppression of both Fyn and CaMKIIδ2 was non-additive, suggesting coordinated regulation of cell motility. Confocal immunofluorescence microscopy indicated that CaMKIIδ2 and Fyn selectively (compared with Src) co-localized with the Golgi in quiescent cultured VSM cells. Stimulation with PDGF resulted in a rapid (<5 min) partial redistribution and co-localization of both kinases in peripheral membrane regions. Furthermore, CaMKIIδ2 and Fyn selectively (compared with Src) co-immunoprecipitated, suggesting a physical interaction in a signaling complex. Stimulation of VSM cells with ionomycin, a calcium ionophore, resulted in activation of CaMKIIδ2 and Fyn and disruption of the complex. Pretreatment with KN-93, a pharmacological inhibitor of CaMKII, prevented activation-dependent disruption of CaMKIIδ2 and Fyn, implicating CaMKIIδ2 as an upstream mediator of Fyn. Overexpression of constitutively active CaMKII resulted in the dephosphorylation of Fyn at Tyr-527, which is required for Fyn activation. Taken together, these data demonstrate a dynamic interaction between CaMKIIδ2 and Fyn in VSM cells and indicate a mechanism by which CaMKIIδ2 and Fyn may coordinately regulate VSM cell motility.
Collapse
Affiliation(s)
- Roman Ginnan
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | | | | | | | | | | |
Collapse
|
23
|
Martin TP, Lawan A, Robinson E, Grieve DJ, Plevin R, Paul A, Currie S. Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts. Pflugers Arch 2013; 466:319-30. [DOI: 10.1007/s00424-013-1326-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/17/2013] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
|
24
|
Song YH. A Memory Molecule, Ca(2+)/Calmodulin-Dependent Protein Kinase II and Redox Stress; Key Factors for Arrhythmias in a Diseased Heart. Korean Circ J 2013; 43:145-51. [PMID: 23613689 PMCID: PMC3629238 DOI: 10.4070/kcj.2013.43.3.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Arrhythmias can develop in various cardiac diseases, such as ischemic heart disease, cardiomyopathy and congenital heart disease. It can also contribute to the aggravation of heart failure and sudden cardiac death. Redox stress and Ca2+ overload are thought to be the important triggering factors in the generation of arrhythmias in failing myocardium. From recent studies, it appears evident that Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a central role in the arrhythmogenic processes in heart failure by sensing intracellular Ca2+ and redox stress, affecting individual ion channels and thereby leading to electrical instability in the heart. CaMKII, a multifunctional serine/threonine kinase, is an abundant molecule in the neuron and the heart. It has a specific property as "a memory molecule" such that the binding of calcified calmodulin (Ca2+/CaM) to the regulatory domain on CaMKII initially activates this enzyme. Further, it allows autophosphorylation of T287 or oxidation of M281/282 in the regulatory domain, resulting in sustained activation of CaMKII even after the dissociation of Ca2+/CaM. This review provides the understanding of both the structural and functional properties of CaMKII, the experimental findings of the interactions between CaMKII, redox stress and individual ion channels, and the evidences proving the potential participation of CaMKII and oxidative stress in the diverse arrhythmogenic processes in a diseased heart.
Collapse
Affiliation(s)
- Young-Hwan Song
- Department of Pediatrics, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| |
Collapse
|
25
|
Phosphorylation at Ser²⁶ in the ATP-binding site of Ca²⁺/calmodulin-dependent kinase II as a mechanism for switching off the kinase activity. Biosci Rep 2013; 33:BSR20120116. [PMID: 23289753 PMCID: PMC3566533 DOI: 10.1042/bsr20120116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CaMKII (Ca2+/calmodulin-dependent kinase II) is a serine/threonine phosphotransferase that is capable of long-term retention of activity due to autophosphorylation at a specific threonine residue within each subunit of its oligomeric structure. The γ isoform of CaMKII is a significant regulator of vascular contractility. Here, we show that phosphorylation of CaMKII γ at Ser26, a residue located within the ATP-binding site, terminates the sustained activity of the enzyme. To test the physiological importance of phosphorylation at Ser26, we generated a phosphospecific Ser26 antibody and demonstrated an increase in Ser26 phosphorylation upon depolarization and contraction of blood vessels. To determine if the phosphorylation of Ser26 affects the kinase activity, we mutated Ser26 to alanine or aspartic acid. The S26D mutation mimicking the phosphorylated state of CaMKII causes a dramatic decrease in Thr287 autophosphorylation levels and greatly reduces the catalytic activity towards an exogenous substrate (autocamtide-3), whereas the S26A mutation has no effect. These data combined with molecular modelling indicate that a negative charge at Ser26 of CaMKII γ inhibits the catalytic activity of the enzyme towards its autophosphorylation site at Thr287 most probably by blocking ATP binding. We propose that Ser26 phosphorylation constitutes an important mechanism for switching off CaMKII activity.
Collapse
|
26
|
MEF2 is regulated by CaMKIIδ2 and a HDAC4-HDAC5 heterodimer in vascular smooth muscle cells. Biochem J 2012; 444:105-14. [PMID: 22360269 DOI: 10.1042/bj20120152] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
VSMCs (vascular smooth muscle cells) dedifferentiate from the contractile to the synthetic phenotype in response to acute vascular diseases such as restenosis and chronic vascular diseases such as atherosclerosis, and contribute to growth of the neointima. We demonstrated previously that balloon catheter injury of rat carotid arteries resulted in increased expression of CaMKII (Ca(2+)/calmodulin-dependent protein kinase) IIδ(2) in the medial wall and the expanding neointima [House and Singer (2008) Arterioscler. Thromb. Vasc. Biol. 28, 441-447]. These findings led us to hypothesize that increased expression of CaMKIIδ(2) is a positive mediator of synthetic VSMCs. HDAC (histone deacetylase) 4 and HDAC5 function as transcriptional co-repressors and are regulated in a CaMKII-dependent manner. In the present paper, we report that endogenous HDAC4 and HDAC5 in VSMCs are activated in a Ca(2+)- and CaMKIIδ(2)-dependent manner. We show further that AngII (angiotensin II)- and PDGF (platelet-derived growth factor)-dependent phosphorylation of HDAC4 and HDAC5 is reduced when CaMKIIδ(2) expression is suppressed or CaMKIIδ(2) activity is attenuated. The transcriptional activator MEF2 (myocyte-enhancer factor 2) is an important determinant of VSMC phenotype and is regulated in an HDAC-dependent manner. In the present paper, we report that stimulation of VSMCs with ionomycin or AngII potentiates MEF2's ability to bind DNA and increases the expression of established MEF2 target genes Nur77 (nuclear receptor 77) (NR4A1) and MCP1 (monocyte chemotactic protein 1) (CCL2). Suppression of CaMKIIδ(2) attenuates increased MEF2 DNA-binding activity and up-regulation of Nur77 and MCP1. Finally, we show that HDAC5 is regulated by HDAC4 in VSMCs. Suppression of HDAC4 expression and activity prevents AngII- and PDGF-dependent phosphorylation of HDAC5. Taken together, these results illustrate a mechanism by which CaMKIIδ(2) mediates MEF2-dependent gene transcription in VSMCs through regulation of HDAC4 and HDAC5.
Collapse
|
27
|
Turczyńska KM, Sadegh MK, Hellstrand P, Swärd K, Albinsson S. MicroRNAs are essential for stretch-induced vascular smooth muscle contractile differentiation via microRNA (miR)-145-dependent expression of L-type calcium channels. J Biol Chem 2012; 287:19199-206. [PMID: 22474293 PMCID: PMC3365952 DOI: 10.1074/jbc.m112.341073] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/26/2012] [Indexed: 11/06/2022] Open
Abstract
Stretch of the vascular wall is an important stimulus to maintain smooth muscle contractile differentiation that is known to depend on L-type calcium influx, Rho-activation, and actin polymerization. The role of microRNAs in this response was investigated using tamoxifen-inducible and smooth muscle-specific Dicer KO mice. In the absence of Dicer, which is required for microRNA maturation, smooth muscle microRNAs were completely ablated. Stretch-induced contractile differentiation and Rho-dependent cofilin-2 phosphorylation were dramatically reduced in Dicer KO vessels. On the other hand, acute stretch-sensitive growth signaling, which is independent of influx through L-type calcium channels, was not affected by Dicer KO. Contractile differentiation induced by the actin polymerizing agent jasplakinolide was not altered by deletion of Dicer, suggesting an effect upstream of actin polymerization. Basal and stretch-induced L-type calcium channel expressions were both decreased in Dicer KO portal veins, and inhibition of L-type channels in control vessels mimicked the effects of Dicer deletion. Furthermore, inhibition of miR-145, a highly expressed microRNA in smooth muscle, resulted in a similar reduction of L-type calcium channel expression. This was abolished by the Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN93, suggesting that Ca(2+)/calmodulin-dependent protein kinase IIδ, a target of miR-145 and up-regulated in Dicer KO, plays a role in the regulation of L-type channel expression. These results show that microRNAs play a crucial role in stretch-induced contractile differentiation in the vascular wall in part via miR-145-dependent regulation of L-type calcium channels.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Male
- Mice
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Protein Kinase Inhibitors/pharmacology
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Karolina M. Turczyńska
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | | | - Per Hellstrand
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Karl Swärd
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Sebastian Albinsson
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
28
|
Abstract
Stromal interaction molecules (STIM1 and STIM2) are single pass transmembrane proteins located mainly in the endoplasmic reticulum (ER). STIM proteins contain an EF-hand in their N-termini that faces the lumen side of the ER allowing them to act as ER calcium (Ca(2+)) sensors. STIM1 has been recognized as central to the activation of the highly Ca(2+) selective store-operated Ca(2+) (SOC) entry current mediated by the Ca(2+) release-activated Ca(2+) (CRAC) channel; CRAC channels are formed by tetramers of the plasma membrane (PM) protein Orai1. Physiologically, the production of inositol 1,4,5-trisphosphate (IP(3)) upon stimulation of phospholipase C-coupled receptors and the subsequent emptying of IP(3)-sensitive ER Ca(2+) stores are sensed by STIM1 molecules which aggregate and move closer to the PM to interact physically with Orai1 channels and activate Ca(2+) entry. Orai1 has two homologous proteins encoded by separate genes, Orai2 and Orai3. Other modes of receptor-regulated Ca(2+) entry into cells are store-independent; for example, arachidonic acid activates a highly Ca(2+) selective store-independent channel formed by heteropentamers of Orai1 and Orai3 and regulated by the PM pool of STIM1. Here, I will discuss results pertaining to the roles of STIM and Orai proteins in smooth muscle Ca(2+) entry pathways and their role in vascular remodelling.
Collapse
Affiliation(s)
- Mohamed Trebak
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
29
|
Scott JA, Xie L, Li H, Li W, He JB, Sanders PN, Carter AB, Backs J, Anderson ME, Grumbach IM. The multifunctional Ca2+/calmodulin-dependent kinase II regulates vascular smooth muscle migration through matrix metalloproteinase 9. Am J Physiol Heart Circ Physiol 2012; 302:H1953-64. [PMID: 22427508 DOI: 10.1152/ajpheart.00978.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The multifunctional CaMKII has been implicated in vascular smooth muscle cell (VSMC) migration, but little is known regarding its downstream targets that mediate migration. Here, we examined whether CaMKII regulates migration through modulation of matrix metalloproteinase 9 (MMP9). Using CaMKIIδ(-/-) mice as a model system, we evaluated migration and MMP9 regulation in vitro and in vivo. After ligation of the common carotid artery, CaMKII was activated in the neointima as determined by oxidation and autophosphorylation. We found that MMP9 was robustly expressed in the neointima and adventitia of carotid-ligated wild-type (WT) mice but was barely detectable in CaMKIIδ(-/-) mice. The perimeter of the external elastic lamina, a correlate of migration-related outward remodeling, was increased in WT but not in CaMKIIδ(-/-) mice. Migration induced by serum, platelet-derived growth factor, and tumor necrosis factor-α (TNF-α) was significantly decreased in CaMKIIδ(-/-) as compared with WT VSMCs, but migration was rescued with adenoviral overexpression of MMP9 in CaMKIIδ(-/-) VSMCs. Likewise, overexpression of CaMKIIδ in CaMKIIδ(-/-) VSMCs increased migration, whereas an oxidation-resistant mutant of CaMKIIδ did not. TNF-α strongly induced CaMKII oxidation and autophosphorylation as well as MMP9 activity, mRNA, and protein levels in WT, but not in CaMKIIδ(-/-) VSMC. Surprisingly, TNF-α strongly induced MMP9 promoter activity in WT and CaMKIIδ(-/-) VSMC. However, the MMP9 mRNA stability was significantly decreased in CaMKIIδ(-/-) VSMC. Our data demonstrate that CaMKII promotes VSMC migration through posttranscriptional regulation of MMP9 and suggest that CaMKII effects on MMP9 expression may be a therapeutic pathway in vascular injury.
Collapse
Affiliation(s)
- Jason A Scott
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Singer HA. Ca2+/calmodulin-dependent protein kinase II function in vascular remodelling. J Physiol 2011; 590:1349-56. [PMID: 22124148 DOI: 10.1113/jphysiol.2011.222232] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vascular smooth muscle (VSM) undergoes a phenotypic switch in response to injury, a process that contributes to pathophysiological vascular wall remodelling. VSM phenotype switching is a consequence of changes in gene expression, including an array of ion channels and pumps affecting spatiotemporal features of intracellular Ca(2+) signals. Ca(2+) signalling promotes vascular wall remodelling by regulating cell proliferation, motility, and/or VSM gene transcription, although the mechanisms are not clear. In this review, the functions of multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in VSM phenotype switching and synthetic phenotype function are considered. CaMKII isozymes have complex structural and autoregulatory properties. Vascular injury in vivo results in rapid changes in CaMKII isoform expression with reduced expression of CaMKIIγ and upregulation of CaMKIIδ in medial wall VSM. SiRNA-mediated suppression of CaMKIIδ or gene deletion attenuates VSM proliferation and consequent neointimal formation. In vitro studies support functions for CaMKII in the regulation of cell proliferation, motility and gene expression via phosphorylation of CREB1 and HDACIIa/MEF2 complexes. These studies support the concept, and provide potential mechanisms, whereby Ca(2+) signalling through CaMKIIδ promotes VSM phenotype transitions and vascular remodelling.
Collapse
Affiliation(s)
- Harold A Singer
- Center for Cardiovascular Sciences, Albany Medical College (MC-8), 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
31
|
Zhang M, Shan H, Gu Z, Wang D, Wang T, Wang Z, Tao L. Increased expression of calcium/calmodulin-dependent protein kinase type II subunit δ after rat traumatic brain injury. J Mol Neurosci 2011; 46:631-43. [PMID: 22048920 DOI: 10.1007/s12031-011-9651-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
Abstract
Many cellular responses to Ca(2+) signals are mediated by Ca(2+)/calmodulin-dependent enzymes, among which is the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). CaMKII was originally described in rat brain tissue. In rat brain, four different subunits of the kinase have been identified: α, β, γ, and δ. This study aims to investigate changes of CaMKIIδ after traumatic brain injury and its possible role. Rat traumatic brain injury (TBI) model was established by controlled cortical injury system. In the present study, we mainly investigated the expression and cellular localization of CaMKIIδ after traumatic brain injury. Western blot analysis revealed that CaMKIIδ was present in normal rat brain cortex. It gradually increased, reached a peak at the third day after TBI, and then decreased. Importantly, more CaMKIIδ was colocalized with neuron. In addition, Western blot detection showed that the third day postinjury was also the apoptosis peak indicated by the elevated expression of caspase-3.Importantly, immunohistochemistry analysis revealed that injury-induced expression of CaMKIIδ was colabeled by caspase-3 (apoptosis cells marker). Moreover, pretreatment with the CaMKII inhibitor (KN62) reduced the injury-induced activation of caspase-3. Noticeably, the CaMKII inhibitor KN-62 could reduce TBI-induced cell injury assessed with lesion volume and attenuate behavioral outcome evaluated by motor test. These data suggested that CaMKIIδ may be implicated in the apoptosis of neuron and the recovery of neurological outcomes. However, the inherent mechanisms remained unknown. Further studies are needed to confirm the exact role of CaMKIIδ after brain injury.
Collapse
Affiliation(s)
- Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Jin X, Fu GX, Li XD, Zhu DL, Gao PJ. Expression and function of osteopontin in vascular adventitial fibroblasts and pathological vascular remodeling. PLoS One 2011; 6:e23558. [PMID: 21949681 PMCID: PMC3176202 DOI: 10.1371/journal.pone.0023558] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/20/2011] [Indexed: 12/04/2022] Open
Abstract
Osteopontin is known to play important roles in various diseases including vascular disorders. However, little is known about its expression and function in vascular adventitial fibroblasts. Adventitial fibroblasts have been shown to play a key role in pathological vascular remodeling associating with various vascular disorders. In this study, we measured activation of Osteopontin and its biological functions in cultured adventitial fibroblasts and injured rat carotid injury arteries induced by balloon angioplasty. Our results showed that angiotensin II and aldosterone increased Osteopontin expression in adventitial fibroblasts in a time- and concentration-dependent manner. MAPKs and AP-1 pathways were involved in Osteopontin upregulation. In addition, Adventitial fibroblast migration stimulated by Angiotensin II and aldosterone required OPN expression. Perivascular delivery of antisense oligonucleotide for Osteopontin suppressed neointimal formation post-injury. We concluded that upregulation of Osteopontin expression in adventitial fibroblasts might be important in the pathogenesis of vascular remodeling after arterial injury.
Collapse
Affiliation(s)
- Xin Jin
- Laboratory of Vascular Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
- Shanghai Institute of Hypertension, Shanghai, China
- Faculty of Biological Science, Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom
| | - Guo-xiang Fu
- State Key Laboratory of Medical Genomics and Shanghai Key Laboratory of Vascular Biology, Shanghai JiaoTong University School of Medicine, Ruijin Hospital, Shanghai, China
- Shanghai Institute of Hypertension, Shanghai, China
| | - Xiao-dong Li
- Laboratory of Vascular Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
- Shanghai Institute of Hypertension, Shanghai, China
| | - Ding-liang Zhu
- State Key Laboratory of Medical Genomics and Shanghai Key Laboratory of Vascular Biology, Shanghai JiaoTong University School of Medicine, Ruijin Hospital, Shanghai, China
- Shanghai Institute of Hypertension, Shanghai, China
| | - Ping-jin Gao
- State Key Laboratory of Medical Genomics and Shanghai Key Laboratory of Vascular Biology, Shanghai JiaoTong University School of Medicine, Ruijin Hospital, Shanghai, China
- Laboratory of Vascular Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
- Shanghai Institute of Hypertension, Shanghai, China
- * E-mail:
| |
Collapse
|
33
|
Erickson JR, He BJ, Grumbach IM, Anderson ME. CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 2011; 91:889-915. [PMID: 21742790 DOI: 10.1152/physrev.00018.2010] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure, and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca(2+)/CaM). Under conditions of sustained exposure to elevated Ca(2+)/CaM, CaMKII transitions into a Ca(2+)/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine-287 in the CaMKII regulatory domain "traps" CaMKII into an open configuration even after Ca(2+)/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca(2+)/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey R Erickson
- Department of Pharmacology, University of California at Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
34
|
Zhang W, Halligan KE, Zhang X, Bisaillon JM, Gonzalez-Cobos JC, Motiani RK, Hu G, Vincent PA, Zhou J, Barroso M, Singer HA, Matrougui K, Trebak M. Orai1-mediated I (CRAC) is essential for neointima formation after vascular injury. Circ Res 2011; 109:534-42. [PMID: 21737791 DOI: 10.1161/circresaha.111.246777] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE The molecular correlate of the calcium release-activated calcium current (I(CRAC)), the channel protein Orai1, is upregulated in proliferative vascular smooth muscle cells (VSMC). However, the role of Orai1 in vascular disease remains largely unknown. OBJECTIVE The goal of this study was to determine the role of Orai1 in neointima formation after balloon injury of rat carotid arteries and its potential upregulation in a mouse model of VSMC remodeling. METHODS AND RESULTS Lentiviral particles encoding short-hairpin RNA (shRNA) targeting either Orai1 (shOrai1) or STIM1 (shSTIM1) caused knockdown of their respective target mRNA and proteins and abrogated store-operated calcium entry and I(CRAC) in VSMC; control shRNA was targeted to luciferase (shLuciferase). Balloon injury of rat carotid arteries upregulated protein expression of Orai1, STIM1, and calcium-calmodulin kinase IIdelta2 (CamKIIδ2); increased proliferation assessed by Ki67 and PCNA and decreased protein expression of myosin heavy chain in medial and neointimal VSMC. Incubation of the injured vessel with shOrai1 prevented Orai1, STIM1, and CamKIIδ2 upregulation in the media and neointima; inhibited cell proliferation and markedly reduced neointima formation 14 days post injury; similar results were obtained with shSTIM1. VSMC Orai1 and STIM1 knockdown inhibited nuclear factor for activated T-cell (NFAT) nuclear translocation and activity. Furthermore, Orai1 and STIM1 were upregulated in mice carotid arteries subjected to ligation. CONCLUSIONS Orai1 is upregulated in VSMC during vascular injury and is required for NFAT activity, VSMC proliferation, and neointima formation following balloon injury of rat carotids. Orai1 provides a novel target for control of VSMC remodeling during vascular injury or disease.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Cardiovascular Sciences, Albany Medical College, Mail Code 8, 47 New Scotland Ave, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rangrez AY, Massy ZA, Metzinger-Le Meuth V, Metzinger L. miR-143 and miR-145: molecular keys to switch the phenotype of vascular smooth muscle cells. CIRCULATION. CARDIOVASCULAR GENETICS 2011; 4:197-205. [PMID: 21505201 DOI: 10.1161/circgenetics.110.958702] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Li W, Li H, Sanders PN, Mohler PJ, Backs J, Olson EN, Anderson ME, Grumbach IM. The multifunctional Ca2+/calmodulin-dependent kinase II delta (CaMKIIdelta) controls neointima formation after carotid ligation and vascular smooth muscle cell proliferation through cell cycle regulation by p21. J Biol Chem 2010; 286:7990-7999. [PMID: 21193397 DOI: 10.1074/jbc.m110.163006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) promotes vascular smooth muscle (VSMC) proliferation. However, the signaling pathways mediating CAMKII-dependent proliferative effects in vivo are poorly understood. This study tested the hypothesis that CaMKIIδ mediates neointimal proliferation after carotid artery ligation by regulating expression and activity of cell cycle regulators, particularly at the G1/S checkpoint. Data herein indicate that 14 days after carotid ligation, C57Bl/6 mice developed a marked neointima with robust CaMKII protein expression. In particular, only the CaMKII isoform δ was increased as demonstrated by quantitative RT-PCR. Genetic deletion of CaMKII δ prevented injury-induced neointimal hyperplasia and cell proliferation in the intima and media. In ligated carotids of control mice, the proliferative cell cycle markers cdk2, cyclin E, and cyclin D1 were activated. In contrast, in CaMKIIδ(-/-) mice, we detected a reduction in proliferative cell cycle regulators as well as an increase in the cell cycle inhibitor p21. This expression profile was confirmed in cultured CaMKIIδ(-/-) VSMC, in which cdk2 and cdk4 activity was decreased. Toward understanding how CAMKIIδ affects p53, a transcriptional regulator of p21, we examined p53 pathway components. Our data indicate that p53 is elevated in CAMKIIδ(-/-) VSMC, whereas phosphorylation of the p53-specific E3 ligase, Mdm2, was decreased. In conclusion, CaMKII stimulates neointima proliferation after vascular injury by regulating cell proliferation through inhibition of p21 and induction of Mdm-2-mediated degradation of p53.
Collapse
Affiliation(s)
- Weiwei Li
- From the Division of Cardiovascular Medicine/Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Hui Li
- From the Division of Cardiovascular Medicine/Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Philip N Sanders
- From the Division of Cardiovascular Medicine/Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Peter J Mohler
- From the Division of Cardiovascular Medicine/Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Johannes Backs
- the Department of Internal Medicine III, University of Heidelberg, 69120 Heidelberg, Germany, and
| | - Eric N Olson
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Mark E Anderson
- From the Division of Cardiovascular Medicine/Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Isabella M Grumbach
- From the Division of Cardiovascular Medicine/Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa,; the Iowa City VA Medical Center, Iowa City, Iowa 52242,.
| |
Collapse
|
37
|
Wang Z, Ginnan R, Abdullaev IF, Trebak M, Vincent PA, Singer HA. Calcium/Calmodulin-dependent protein kinase II delta 6 (CaMKIIdelta6) and RhoA involvement in thrombin-induced endothelial barrier dysfunction. J Biol Chem 2010; 285:21303-12. [PMID: 20442409 DOI: 10.1074/jbc.m110.120790] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple Ca(2+) release and entry mechanisms and potential cytoskeletal targets have been implicated in vascular endothelial barrier dysfunction; however, the immediate downstream effectors of Ca(2+) signals in the regulation of endothelial permeability still remain unclear. In the present study, we evaluated the contribution of multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) as a mediator of thrombin-stimulated increases in human umbilical vein endothelial cell (HUVEC) monolayer permeability. For the first time, we identified the CaMKIIdelta(6) isoform as the predominant CaMKII isoform expressed in endothelium. As little as 2.5 nM thrombin maximally increased CaMKIIdelta(6) activation assessed by Thr(287) autophosphorylation. Electroporation of siRNA targeting endogenous CaMKIIdelta (siCaMKIIdelta) suppressed expression of the kinase by >80% and significantly inhibited 2.5 nM thrombin-induced increases in monolayer permeability assessed by electrical cell-substrate impedance sensing (ECIS). siCaMKIIdelta inhibited 2.5 nM thrombin-induced activation of RhoA, but had no effect on thrombin-induced ERK1/2 activation. Although Rho kinase inhibition strongly suppressed thrombin-induced HUVEC hyperpermeability, inhibiting ERK1/2 activation had no effect. In contrast to previous reports, these results indicate that thrombin-induced ERK1/2 activation in endothelial cells is not mediated by CaMKII and is not involved in endothelial barrier hyperpermeability. Instead, CaMKIIdelta(6) mediates thrombin-induced HUVEC barrier dysfunction through RhoA/Rho kinase as downstream intermediates. Moreover, the relative contribution of the CaMKIIdelta(6)/RhoA pathway(s) diminished with increasing thrombin stimulation, indicating recruitment of alternative signaling pathways mediating endothelial barrier dysfunction, dependent upon thrombin concentration.
Collapse
Affiliation(s)
- Zhen Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
38
|
Trebak M, Ginnan R, Singer HA, Jourd'heuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid Redox Signal 2010; 12:657-74. [PMID: 19719386 PMCID: PMC2861541 DOI: 10.1089/ars.2009.2842] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Signaling cascades initiated or regulated by calcium (Ca(2+)), reactive oxygen (ROS), and nitrogen (RNS) species are essential to diverse physiological and pathological processes in vascular smooth muscle. Stimuli-induced changes in intracellular Ca(2+) regulate the activity of primary ROS and RNS, producing enzymes including NADPH oxidases (Nox) and nitric oxide synthases (NOS). At the same time, alteration in intracellular ROS and RNS production reciprocates through redox-based post-translational modifications altering Ca(2+) signaling networks. These may include Ca(2+) pumps such as sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase (SERCA), voltage-gated channels, transient receptor potential canonical (TRPC), melastatin2 (TRPM2), and ankyrin1 (TRPA1) channels, store operated Ca(2+) channels such as Orai1/stromal interaction molecule 1 (STIM1), and Ca(2+) effectors such as Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In this review, we summarize and highlight current experimental evidence supporting the idea that cross-talk between Ca(2+) and ROS/RNS may represent a well-integrated signaling network in vascular smooth muscle.
Collapse
Affiliation(s)
- Mohamed Trebak
- Center for Cardiovascular Sciences, Albany Medical College, New York, USA
| | | | | | | |
Collapse
|
39
|
Bisaillon JM, Motiani RK, Gonzalez-Cobos JC, Potier M, Halligan KE, Alzawahra WF, Barroso M, Singer HA, Jourd'heuil D, Trebak M. Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration. Am J Physiol Cell Physiol 2010; 298:C993-1005. [PMID: 20107038 DOI: 10.1152/ajpcell.00325.2009] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently demonstrated that thapsigargin-induced passive store depletion activates Ca(2+) entry in vascular smooth muscle cells (VSMC) through stromal interaction molecule 1 (STIM1)/Orai1, independently of transient receptor potential canonical (TRPC) channels. However, under physiological stimulations, despite the ubiquitous depletion of inositol 1,4,5-trisphosphate-sensitive stores, many VSMC PLC-coupled agonists (e.g., vasopressin and endothelin) activate various store-independent Ca(2+) entry channels. Platelet-derived growth factor (PDGF) is an important VSMC promigratory agonist with an established role in vascular disease. Nevertheless, the molecular identity of the Ca(2+) channels activated by PDGF in VSMC remains unknown. Here we show that inhibitors of store-operated Ca(2+) entry (Gd(3+) and 2-aminoethoxydiphenyl borate at concentrations as low as 5 microM) prevent PDGF-mediated Ca(2+) entry in cultured rat aortic VSMC. Protein knockdown of STIM1, Orai1, and PDGF receptor-beta (PDGFRbeta) impaired PDGF-mediated Ca(2+) influx, whereas Orai2, Orai3, TRPC1, TRPC4, and TRPC6 knockdown had no effect. Scratch wound assay showed that knockdown of STIM1, Orai1, or PDGFRbeta inhibited PDGF-mediated VSMC migration, but knockdown of STIM2, Orai2, and Orai3 was without effect. STIM1, Orai1, and PDGFRbeta mRNA levels were upregulated in vivo in VSMC from balloon-injured rat carotid arteries compared with noninjured control vessels. Protein levels of STIM1 and Orai1 were also upregulated in medial and neointimal VSMC from injured carotid arteries compared with noninjured vessels, as assessed by immunofluorescence microscopy. These results establish that STIM1 and Orai1 are important components for PDGF-mediated Ca(2+) entry and migration in VSMC and are upregulated in vivo during vascular injury and provide insights linking PDGF to STIM1/Orai1 during neointima formation.
Collapse
|
40
|
Li H, Li W, Gupta AK, Mohler PJ, Anderson ME, Grumbach IM. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy. Am J Physiol Heart Circ Physiol 2009; 298:H688-98. [PMID: 20023119 DOI: 10.1152/ajpheart.01014.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite our understanding that medial smooth muscle hypertrophy is a central feature of vascular remodeling, the molecular pathways underlying this pathology are still not well understood. Work over the past decade has illustrated a potential role for the multifunctional calmodulin-dependent kinase CaMKII in smooth muscle cell contraction, growth, and migration. Here we demonstrate that CaMKII is enriched in vascular smooth muscle (VSM) and that CaMKII inhibition blocks ANG II-dependent VSM cell hypertrophy in vitro and in vivo. Specifically, systemic CaMKII inhibition with KN-93 prevented ANG II-mediated hypertension and medial hypertrophy in vivo. Adenoviral transduction with the CaMKII peptide inhibitor CaMKIIN abrogated ANG II-induced VSM hypertrophy in vitro, which was augmented by overexpression of CaMKII-delta2. Finally, we identify the downstream signaling components critical for ANG II- and CaMKII-mediated VSM hypertrophy. Specifically, we demonstrate that CaMKII induces VSM hypertrophy by regulating histone deacetylase 4 (HDAC4) activity, thereby stimulating activity of the hypertrophic transcription factor MEF2. MEF2 transcription is activated by ANG II in vivo and abrogated by the CaMKII inhibitor KN-93. Together, our studies identify a complete pathway for ANG II-triggered arterial VSM hypertrophy and identify new potential therapeutic targets for chronic human hypertension.
Collapse
Affiliation(s)
- Hui Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
41
|
McCubrey JA, Abrams SL, Stadelman K, Chappell WH, Lahair M, Ferland RA, Steelman LS. Targeting signal transduction pathways to eliminate chemotherapeutic drug resistance and cancer stem cells. ADVANCES IN ENZYME REGULATION 2009; 50:285-307. [PMID: 19895837 PMCID: PMC2862855 DOI: 10.1016/j.advenzreg.2009.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Bouallegue A, Pandey NR, Srivastava AK. CaMKII knockdown attenuates H2O2-induced phosphorylation of ERK1/2, PKB/Akt, and IGF-1R in vascular smooth muscle cells. Free Radic Biol Med 2009; 47:858-66. [PMID: 19545622 DOI: 10.1016/j.freeradbiomed.2009.06.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 05/19/2009] [Accepted: 06/18/2009] [Indexed: 12/23/2022]
Abstract
We have shown earlier a requirement for Ca(2+) and calmodulin (CaM) in the H(2)O(2)-induced activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key mediators of growth-promoting, proliferative, and hypertrophic responses in vascular smooth muscle cells (VSMC). Because the effect of CaM is mediated through CaM-dependent protein kinase II (CaMKII), we have investigated here the potential role of CaMKII in H(2)O(2)-induced ERK1/2 and PKB phosphorylation by using pharmacological inhibitors of CaM and CaMKII, a CaMKII inhibitor peptide, and siRNA knockdown strategies for CaMKII alpha. Calmidazolium and W-7, antagonists of CaM, as well as KN-93, a specific inhibitor of CaMKII, attenuated H(2)O(2)-induced responses of ERK1/2 and PKB phosphorylation in a dose-dependent fashion. Similar to H(2)O(2), calmidazolium and KN-93 also exhibited an inhibitory effect on glucose/glucose oxidase-induced phosphorylation of ERK1/2 and PKB in these cells. Transfection of VSMC with CaMKII autoinhibitory peptide corresponding to the autoinhibitory domain (aa 281-309) of CaMKII and with siRNA of CaMKII alpha attenuated the H(2)O(2)-induced phosphorylation of ERK1/2 and PKB. In addition, calmidazolium and KN-93 blocked H(2)O(2)-induced Pyk2 and insulin-like growth factor-1 receptor (IGF-1R) phosphorylation. Moreover, treatment of VSMC with CaMKII alpha siRNA abolished the H(2)O(2)-induced IGF-1R phosphorylation. H(2)O(2) treatment also induced Thr(286) phosphorylation of CaMKII, which was inhibited by both calmidazolium and KN-93. These results demonstrate that CaMKII plays a critical upstream role in mediating the effects of H(2)O(2) on ERK1/2, PKB, and IGF-1R phosphorylation.
Collapse
Affiliation(s)
- Ali Bouallegue
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Technopole Angus Campus, Montreal, Canada
| | | | | |
Collapse
|
43
|
Cordes KR, Sheehy NT, White M, Berry E, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460:705-10. [PMID: 19578358 PMCID: PMC2769203 DOI: 10.1038/nature08195] [Citation(s) in RCA: 1263] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/10/2009] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are regulators of myriad cellular events, but evidence for a single miRNA that can efficiently differentiate multipotent stem cells into a specific lineage or regulate direct reprogramming of cells into an alternative cell fate has been elusive. Here we show that miR-145 and miR-143 are co-transcribed in multipotent murine cardiac progenitors before becoming localized to smooth muscle cells, including neural crest stem-cell-derived vascular smooth muscle cells. miR-145 and miR-143 were direct transcriptional targets of serum response factor, myocardin and Nkx2-5 (NK2 transcription factor related, locus 5) and were downregulated in injured or atherosclerotic vessels containing proliferating, less differentiated smooth muscle cells. miR-145 was necessary for myocardin-induced reprogramming of adult fibroblasts into smooth muscle cells and sufficient to induce differentiation of multipotent neural crest stem cells into vascular smooth muscle. Furthermore, miR-145 and miR-143 cooperatively targeted a network of transcription factors, including Klf4 (Kruppel-like factor 4), myocardin and Elk-1 (ELK1, member of ETS oncogene family), to promote differentiation and repress proliferation of smooth muscle cells. These findings demonstrate that miR-145 can direct the smooth muscle fate and that miR-145 and miR-143 function to regulate the quiescent versus proliferative phenotype of smooth muscle cells.
Collapse
Affiliation(s)
- Kimberly R. Cordes
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94543
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94143, USA
| | - Neil T. Sheehy
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94543
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94143, USA
| | - Mark White
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94543
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94143, USA
| | - Emily Berry
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94543
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94143, USA
| | - Sarah U. Morton
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94543
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94143, USA
| | - Alecia N. Muth
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94543
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94143, USA
| | - Ting-Hein Lee
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Joseph M. Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Kathryn N. Ivey
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94543
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94143, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94543
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
44
|
Gordon JW, Pagiatakis C, Salma J, Du M, Andreucci JJ, Zhao J, Hou G, Perry RL, Dan Q, Courtman D, Bendeck MP, McDermott JC. Protein kinase A-regulated assembly of a MEF2{middle dot}HDAC4 repressor complex controls c-Jun expression in vascular smooth muscle cells. J Biol Chem 2009; 284:19027-42. [PMID: 19389706 DOI: 10.1074/jbc.m109.000539] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) maintain the ability to modulate their phenotype in response to changing environmental stimuli. This phenotype modulation plays a critical role in the development of most vascular disease states. In these studies, stimulation of cultured vascular smooth muscle cells with platelet-derived growth factor resulted in marked induction of c-jun expression, which was attenuated by protein kinase Cdelta and calcium/calmodulin-dependent protein kinase inhibition. Given that these signaling pathways have been shown to relieve the repressive effects of class II histone deacetylases (HDACs) on myocyte enhancer factor (MEF) 2 proteins, we ectopically expressed HDAC4 and observed repression of c-jun expression. Congruently, suppression of HDAC4 by RNA interference resulted in enhanced c-jun expression. Consistent with these findings, mutation of the MEF2 cis-element in the c-jun promoter resulted in promoter activation during quiescent conditions, suggesting that the MEF2 cis-element functions as a repressor in this context. Furthermore, we demonstrate that protein kinase A attenuates c-Jun expression by promoting the formation of a MEF2.HDAC4 repressor complex by inhibiting salt-inducible kinase 1. Finally, we document a physical interaction between c-Jun and myocardin, and we document that forced expression of c-Jun represses the ability of myocardin to activate smooth muscle gene expression. Thus, MEF2 and HDAC4 act to repress c-Jun expression in quiescent VSMCs, protein kinase A enhances this repression, and platelet-derived growth factor derepresses c-Jun expression through calcium/calmodulin-dependent protein kinases and novel protein kinase Cs. Regulation of this molecular "switch" on the c-jun promoter may thus prove critical for toggling between the activated and quiescent VSMC phenotypes.
Collapse
Affiliation(s)
- Joseph W Gordon
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2009. [PMID: 19120701 DOI: 10.1111/j.1582-4934.2008.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
46
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2008; 12:2165-80. [PMID: 19120701 PMCID: PMC2692531 DOI: 10.1111/j.1582-4934.2008.00552.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/08/2008] [Indexed: 12/24/2022] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Appel
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Vetterkind
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | | | - K G Morgan
- Department of Health Sciences, Boston UniversityBoston, MA, USA
- Boston Biomedical Research InstituteWatertown, MA, USA
| |
Collapse
|
47
|
Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD, Wickline SA, Lanza GM. Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler Thromb Vasc Biol 2008; 28:820-6. [PMID: 18292395 PMCID: PMC2727458 DOI: 10.1161/atvbaha.107.156281] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Drug eluting stents prevent vascular restenosis but can delay endothelial healing. A rabbit femoral artery model of stenosis formation after vascular injury was used to study the effect of intramural delivery of alpha(v)beta(3)-integrin-targeted rapamycin nanoparticles on vascular stenosis and endothelial healing responses. METHODS AND RESULTS Femoral arteries of 48 atherosclerotic rabbits underwent balloon stretch injury and were locally treated with either (1) alpha(v)beta(3)-targeted rapamycin nanoparticles, (2) alpha(v)beta(3)-targeted nanoparticles without rapamycin, (3) nontargeted rapamycin nanoparticles, or (4) saline. Intramural binding of integrin-targeted paramagnetic nanoparticles was confirmed with MR molecular imaging (1.5 T). MR angiograms were indistinguishable between targeted and control arteries at baseline, but 2 weeks later they showed qualitatively less luminal plaque in the targeted rapamycin treated segments compared with contralateral control vessels. In a first cohort of 19 animals (38 vessel segments), microscopic morphometric analysis of the rapamycin-treated segments revealed a 52% decrease in the neointima/media ratio (P<0.05) compared to control. No differences (P>0.05) were observed among balloon injured vessel segments treated with alpha(v)beta(3)-targeted nanoparticles without rapamycin, nontargeted nanoparticles with rapamycin, or saline. In a second cohort of 29 animals, endothelial healing followed a parallel pattern over 4 weeks in the vessels treated with alpha(v)beta(3)-targeted rapamycin nanoparticles and the 3 control groups. CONCLUSIONS Local intramural delivery of alpha(v)beta(3)-targeted rapamycin nanoparticles inhibited stenosis without delaying endothelial healing after balloon injury.
Collapse
Affiliation(s)
- Tillmann Cyrus
- Division of Cardiology, Washington University School of Medicine, Saint Louis, Mo. 63108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mercure MZ, Ginnan R, Singer HA. CaM kinase II delta2-dependent regulation of vascular smooth muscle cell polarization and migration. Am J Physiol Cell Physiol 2008; 294:C1465-75. [PMID: 18385282 DOI: 10.1152/ajpcell.90638.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previous studies indicate involvement of the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) in vascular smooth muscle (VSM) cell migration. In the present study, molecular loss-of-function studies were used specifically to assess the role of the predominant CaMKII delta2 isoform on VSM cell migration using a scratch wound healing assay. Targeted CaMKII delta2 knockdown using siRNA or inhibition of activity by overexpressing a kinase-negative mutant resulted in attenuation of VSM cell migration. Temporal and spatial assessments of kinase autophosphorylation indicated rapid and transient activation in response to wounding, in addition to a sustained activation in the leading edge of migrating and spreading cells. Furthermore, siRNA-mediated suppression of CaMKII delta2 resulted in the inhibition of wound-induced Rac activation and Golgi reorganization, and disruption of leading edge morphology, indicating an important function for CaMKII delta2 in regulating VSM cell polarization. Numerous previous reports link activation of CaMKII to ERK1/2 signaling in VSM. Wound-induced ERK1/2 activation was also found to be dependent on CaMKII; however, ERK activity did not account for effects of CaMKII in regulating Golgi polarization, indicating alternative mechanisms by which CaMKII affects the complex events involved in cell migration. Wounding a VSM cell monolayer results in CaMKII delta2 activation, which positively regulates VSM cell polarization and downstream signaling, including Rac and ERK1/2 activation, leading to cell migration.
Collapse
Affiliation(s)
- Melissa Z Mercure
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | |
Collapse
|
49
|
The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 2008; 456:769-85. [PMID: 18365243 DOI: 10.1007/s00424-008-0491-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 03/04/2008] [Indexed: 01/09/2023]
Abstract
Calcium (Ca(2+)) is a highly versatile second messenger that controls vascular smooth muscle cell (VSMC) contraction, proliferation, and migration. By means of Ca(2+) permeable channels, Ca(2+) pumps and channels conducting other ions such as potassium and chloride, VSMC keep intracellular Ca(2+) levels under tight control. In healthy quiescent contractile VSMC, two important components of the Ca(2+) signaling pathways that regulate VSMC contraction are the plasma membrane voltage-operated Ca(2+) channel of the high voltage-activated type (L-type) and the sarcoplasmic reticulum Ca(2+) release channel, Ryanodine Receptor (RyR). Injury to the vessel wall is accompanied by VSMC phenotype switch from a contractile quiescent to a proliferative motile phenotype (synthetic phenotype) and by alteration of many components of VSMC Ca(2+) signaling pathways. Specifically, this switch that culminates in a VSMC phenotype reminiscent of a non-excitable cell is characterized by loss of L-type channels expression and increased expression of the low voltage-activated (T-type) Ca(2+) channels and the canonical transient receptor potential (TRPC) channels. The expression levels of intracellular Ca(2+) release channels, pumps and Ca(2+)-activated proteins are also altered: the proliferative VSMC lose the RyR3 and the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase isoform 2a pump and reciprocally regulate isoforms of the ca(2+)/calmodulin-dependent protein kinase II. This review focuses on the changes in expression of Ca(2+) signaling proteins associated with VSMC proliferation both in vitro and in vivo. The physiological implications of the altered expression of these Ca(2+) signaling molecules, their contribution to VSMC dysfunction during vascular disease and their potential as targets for drug therapy will be discussed.
Collapse
|