1
|
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024; 12:2262. [PMID: 39457575 PMCID: PMC11504183 DOI: 10.3390/biomedicines12102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications.
Collapse
Affiliation(s)
- Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Malvina Millet
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ludivine Rouillon
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
2
|
Mao X, Du Y, Sui R, Yu X, Zhu Y, Huang M. Quercetin conjugated PSC-derived exosomes to inhibit intimal hyperplasia via modulating the ERK, Akt, and NF-κB signaling pathways in the rat carotid artery post balloon injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102763. [PMID: 38897395 DOI: 10.1016/j.nano.2024.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The primary challenge in percutaneous coronary interventions for vascular restenosis is the occurrence of restenosis, which is defined by the excessive proliferation of neointimal tissue. Herein, our research team suggests that exosomes obtained from PSC, when paired with quercetin (Q@PSC-E), successfully reduce neointimal hyperplasia in a Sprague-Dawley rat model. Furthermore, the physical properties of the synthesized Q@PSC-E were examined using UV-vis, DLS, and FT-IR characterization techniques. The rats were subjected to balloon injury (BI) utilizing a 2-Fr Fogarty arterial embolectomy balloon catheter. Intimal hyperplasia and the degree of VSMC proliferation were evaluated using histological analysis in the rat groups that received a dosage of Q@PSC-E at 30 mg/kg/d. Significantly, Q@PSC-E inhibited cell proliferation through a pathway that does not include lipoxygenase, as demonstrated by [3H] thymidine incorporation, MTT, and flow cytometry studies. Additionally, the data indicate that Q@PSC-E hinders cell proliferation by targeting particular events that promote cell growth, including the activation of Akt and NF-κB, disruption of cell-cycle progression and also obstructs the ERK signaling pathway.
Collapse
Affiliation(s)
- Xin Mao
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Yaming Du
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Xiaodong Yu
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Yue Zhu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Meiyi Huang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| |
Collapse
|
3
|
Tong Z, Yin Z. Distribution, contribution and regulation of nestin + cells. J Adv Res 2024; 61:47-63. [PMID: 37648021 PMCID: PMC11258671 DOI: 10.1016/j.jare.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Nestin is an intermediate filament first reported in neuroepithelial stem cells. Nestin expression could be found in a variety of tissues throughout all systems of the body, especially during tissue development and tissue regeneration processes. AIM OF REVIEW This review aimed to summarize and discuss current studies on the distribution, contribution and regulation of nestin+ cells in different systems of the body, to discuss the feasibility ofusing nestin as a marker of multilineage stem/progenitor cells, and better understand the potential roles of nestin+ cells in tissue development, regeneration and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the potential of nestin as a marker of multilineage stem/progenitor cells, and as a key factor in tissue development and tissue regeneration. The article discussed the current findings, limitations, and potential clinical implications or applications of nestin+ cells. Additionally, it included the relationship of nestin+ cells to other cell populations. We propose potential future research directions to encourage further investigation in the field.
Collapse
Affiliation(s)
- Ziyang Tong
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
4
|
Erhardt S, Wang J. Cardiac Neural Crest and Cardiac Regeneration. Cells 2022; 12:cells12010111. [PMID: 36611905 PMCID: PMC9818523 DOI: 10.3390/cells12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCCs) are a vertebrate-specific, multipotent stem cell population that have the ability to migrate and differentiate into various cell populations throughout the embryo during embryogenesis. The heart is a muscular and complex organ whose primary function is to pump blood and nutrients throughout the body. Mammalian hearts, such as those of humans, lose their regenerative ability shortly after birth. However, a few vertebrate species, such as zebrafish, have the ability to self-repair/regenerate after cardiac damage. Recent research has discovered the potential functional ability and contribution of cardiac NCCs to cardiac regeneration through the use of various vertebrate species and pluripotent stem cell-derived NCCs. Here, we review the neural crest's regenerative capacity in various tissues and organs, and in particular, we summarize the characteristics of cardiac NCCs between species and their roles in cardiac regeneration. We further discuss emerging and future work to determine the potential contributions of NCCs for disease treatment.
Collapse
Affiliation(s)
- Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
5
|
Tang W, Bronner ME. Neural crest lineage analysis: from past to future trajectory. Development 2020; 147:147/20/dev193193. [PMID: 33097550 DOI: 10.1242/dev.193193] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery 150 years ago, the neural crest has intrigued investigators owing to its remarkable developmental potential and extensive migratory ability. Cell lineage analysis has been an essential tool for exploring neural crest cell fate and migration routes. By marking progenitor cells, one can observe their subsequent locations and the cell types into which they differentiate. Here, we review major discoveries in neural crest lineage tracing from a historical perspective. We discuss how advancing technologies have refined lineage-tracing studies, and how clonal analysis can be applied to questions regarding multipotency. We also highlight how effective progenitor cell tracing, when combined with recently developed molecular and imaging tools, such as single-cell transcriptomics, single-molecule fluorescence in situ hybridization and high-resolution imaging, can extend the scope of neural crest lineage studies beyond development to regeneration and cancer initiation.
Collapse
Affiliation(s)
- Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
George RM, Maldonado-Velez G, Firulli AB. The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development 2020; 147:147/20/dev188706. [PMID: 33060096 DOI: 10.1242/dev.188706] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac neural crest cells (cNCCs) are a migratory cell population that stem from the cranial portion of the neural tube. They undergo epithelial-to-mesenchymal transition and migrate through the developing embryo to give rise to portions of the outflow tract, the valves and the arteries of the heart. Recent lineage-tracing experiments in chick and zebrafish embryos have shown that cNCCs can also give rise to mature cardiomyocytes. These cNCC-derived cardiomyocytes appear to be required for the successful repair and regeneration of injured zebrafish hearts. In addition, recent work examining the response to cardiac injury in the mammalian heart has suggested that cNCC-derived cardiomyocytes are involved in the repair/regeneration mechanism. However, the molecular signature of the adult cardiomyocytes involved in this repair is unclear. In this Review, we examine the origin, migration and fates of cNCCs. We also review the contribution of cNCCs to mature cardiomyocytes in fish, chick and mice, as well as their role in the regeneration of the adult heart.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
7
|
Gallagher LB, Dolan EB, O'Sullivan J, Levey R, Cavanagh BL, Kovarova L, Pravda M, Velebny V, Farrell T, O'Brien FJ, Duffy GP. Pre-culture of mesenchymal stem cells within RGD-modified hyaluronic acid hydrogel improves their resilience to ischaemic conditions. Acta Biomater 2020; 107:78-90. [PMID: 32145393 DOI: 10.1016/j.actbio.2020.02.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/05/2023]
Abstract
The incorporation of the RGD peptide (arginine-glycine-aspartate) into biomaterials has been proposed to promote cell adhesion to the matrix, which can influence and control cell behaviour and function. While many studies have utilised RGD modified biomaterials for cell delivery, few have examined its effect under the condition of reduced oxygen and nutrients, as found at ischaemic injury sites. Here, we systematically examine the effect of RGD on hMSCs in hyaluronic acid (HA) hydrogel under standard and ischaemic culture conditions, to elucidate under what conditions RGD has beneficial effects over unmodified HA and its effectiveness in improving cell viability. Results demonstrate that under standard culture conditions, RGD significantly increased hMSC spreading and the release of vascular endothelial factor-1 (VEGF) and monocyte chemoattractant factor-1 (MCP-1), compared to unmodified HA hydrogel. As adhesion is known to influence cell survival, we hypothesised that cells in RGD hydrogels would exhibit increased cell viability under ischaemic culture conditions. However, results demonstrate that cell viability and protein release was comparable in both RGD modified and unmodified HA hydrogels. Confocal imaging revealed cellular morphology indicative of weak cell adhesion. Subsequent investigations found that RGD was could exert positive effects on encapsulated cells under ischaemic conditions but only if hMSCs were pre-cultured under standard conditions to allow strong adhesion to RGD before exposure. Together, these results provide novel insight into the value of RGD introduction and suggest that the adhesion of hMSCs to RGD prior to delivery could improve survival and function at ischaemic injury sites. STATEMENT OF SIGNIFICANCE: The development of a biomaterial scaffold capable of maintaining cell viability while promoting cell function is a major research goal in the field of cardiac tissue engineering. This study confirms the suitability of a modified HA hydrogel whereby stem cells in the modified hydrogel showed significantly greater cell spreading and protein secretion compared to cells in the unmodified HA hydrogel. A pre-culture period allowing strong adhesion of the cells to the modified hydrogel was shown to improve cell survival under conditions that mimic the myocardium post-MI. This finding may have a significant impact on the use and timelines of modifications to improve stem cell survival in harsh environments like the injured heart.
Collapse
Affiliation(s)
- Laura B Gallagher
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Dublin, Ireland; Trinity Centre for Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), NUIG, RCSI and TCD, Dublin, Ireland
| | - Eimear B Dolan
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Dublin, Ireland; Trinity Centre for Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin 2, Dublin, Ireland; Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Department of Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - Janice O'Sullivan
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Dublin, Ireland; Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ruth Levey
- Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, RSCI, 123 St. Stephen's Green, Dublin 2, Dublin, Ireland
| | - Lenka Kovarova
- R&D department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czechia; Brno University of Technology, Faculty of Chemistry, Institute of Physical Chemistry, Purkynova 464/118, 612 00 Brno, Czechia
| | - Martin Pravda
- R&D department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czechia
| | - Vladimir Velebny
- R&D department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czechia
| | - Tom Farrell
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Dublin, Ireland; Trinity Centre for Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), NUIG, RCSI and TCD, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Dublin, Ireland; Trinity Centre for Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), NUIG, RCSI and TCD, Dublin, Ireland; Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
8
|
Schmitteckert S, Ziegler C, Rappold GA, Niesler B, Rolletschek A. Molecular Characterization of Embryonic Stem Cell-Derived Cardiac Neural Crest-Like Cells Revealed a Spatiotemporal Expression of an Mlc-3 Isoform. Int J Stem Cells 2020; 13:65-79. [PMID: 31887845 PMCID: PMC7119212 DOI: 10.15283/ijsc19069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/11/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Objectives Pluripotent embryonic stem (ES) cells represent a perfect model system for the investigation of early developmental processes. Besides their differentiation into derivatives of the three primary germ layers, they can also be differentiated into derivatives of the ‘fourth’ germ layer, the neural crest (NC). Due to its multipotency, extensive migration and outstanding capacity to generate a remarkable number of different cell types, the NC plays a key role in early developmental processes. Cardiac neural crest (CNC) cells are a subpopulation of the NC, which are of crucial importance for precise cardiovascular and pharyngeal glands’ development. CNC-associated malformations are rare, but always severe and life-threatening. Appropriate cell models could help to unravel underlying pathomechanisms and to develop new therapeutic options for relevant heart malformations. Methods Murine ES cells were differentiated according to a mesodermal-lineage promoting protocol. Expression profiles of ES cell-derived progeny at various differentiation stages were investigated on transcript and protein level. Results Comparative expression profiling of murine ES cell multilineage progeny versus undifferentiated ES cells confirmed differentiation into known cell derivatives of the three primary germ layers and provided evidence that ES cells have the capacity to differentiate into NC/CNC-like cells. Applying the NC/CNC cell-specific marker, 4E9R, an unambiguous identification of ES cell-derived NC/CNC-like cells was achieved. Conclusions Our findings will facilitate the establishment of an ES cell-derived CNC cell model for the investigation of molecular pathways during cardiac development in health and disease.
Collapse
Affiliation(s)
- Stefanie Schmitteckert
- Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany.,Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Cornelia Ziegler
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Gudrun A Rappold
- Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Niesler
- Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandra Rolletschek
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.,Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
9
|
Mehrotra P, Tseropoulos G, Bronner ME, Andreadis ST. Adult tissue-derived neural crest-like stem cells: Sources, regulatory networks, and translational potential. Stem Cells Transl Med 2019; 9:328-341. [PMID: 31738018 PMCID: PMC7031649 DOI: 10.1002/sctm.19-0173] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Neural crest (NC) cells are a multipotent stem cell population that give rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Premigratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC‐like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a postmigratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
10
|
Mennen RHG, Pennings JLAJ, Piersma AHA. Neural crest related gene transcript regulation by valproic acid analogues in the cardiac embryonic stem cell test. Reprod Toxicol 2019; 90:44-52. [PMID: 31445079 DOI: 10.1016/j.reprotox.2019.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022]
Abstract
In vivo, neural crest (NC) cells contribute critically to heart formation. The embryonic stem cells in the cardiac Embryonic Stem cell Test (ESTc) differentiate into a heterogeneous cell population including non-cardiomyocyte cells. The use of molecular biomarkers from different mechanistic pathways can refine quantitative embryotoxicity assessment. Gene expression levels representing different signalling pathways that could relate to beating cardiomyocyte formation were analysed at different time-points. Immunocytochemistry showed NC cells were present in the ESTc and RT-qPCR showed upregulation of NC related gene expression levels in a time-dependent manner. NC related genes were sensitive to VPA and its analogues 2-ethylhexanoic acid (EHA) and 2-ethylhexanol (EHOL) and indicated VPA as the most potent one. STITCH ('search tool for interactions of chemicals') analysis showed relationships between the examined signalling pathways and suggested additional candidate marker genes. Biomarkers from dedicated mechanistic pathways, e.g. NC differentiation, provide promising tools for monitoring specific effects in ESTc.
Collapse
Affiliation(s)
- R H Gina Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - J L A Jeroen Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A H Aldert Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
11
|
Tang W, Martik ML, Li Y, Bronner ME. Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. eLife 2019; 8:47929. [PMID: 31393264 PMCID: PMC6721792 DOI: 10.7554/elife.47929] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
Cardiac neural crest cells contribute to important portions of the cardiovascular system including the aorticopulmonary septum and cardiac ganglion. Using replication incompetent avian retroviruses for precise high-resolution lineage analysis, we uncover a previously undescribed neural crest contribution to cardiomyocytes of the ventricles in Gallus gallus, supported by Wnt1-Cre lineage analysis in Mus musculus. To test the intriguing possibility that neural crest cells contribute to heart repair, we examined Danio rerio adult heart regeneration in the neural crest transgenic line, Tg(−4.9sox10:eGFP). Whereas the adult heart has few sox10+ cells in the apex, sox10 and other neural crest regulatory network genes are upregulated in the regenerating myocardium after resection. The results suggest that neural crest cells contribute to many cardiovascular structures including cardiomyocytes across vertebrates and to the regenerating heart of teleost fish. Thus, understanding molecular mechanisms that control the normal development of the neural crest into cardiomyocytes and reactivation of the neural crest program upon regeneration may open potential therapeutic approaches to repair heart damage in amniotes. Before birth, unspecialized stem cells go through a process called differentiation to form the many types of cells found in the adult. Neural crest cells are a group of these stem cells found in all animals with backbones (i.e. vertebrates) including humans. These cells migrate extensively during development to form many different parts of the body. Due to their contributions to diverse organs and tissues, neural crest cells are very important for healthy development. The heart ventricle is one of the tissues to which neural crest cells contribute during embryonic development in fish and amphibians. However, it was unclear whether this is also the case for birds or mammals or whether neural crest cells have any roles in the regeneration of the adult heart after injury in fish and amphibians. To address these questions, Tang, Martik et al. used cell biology techniques to track neural crest cells in living animals. The experiments revealed that neural crest cells contribute to heart tissue in developing birds and mammals and help repair the heart in adult zebrafish. Further results showed that the contribution of neural crest cells to the heart is controlled by the same genes during both the growth of the embryonic heart and the repair of the adult heart. These results provide new insights into the repair and healing of damaged heart muscle in fish. They also show that similar processes could exist in mammals, including humans, suggesting that activating neural crest cells in the heart could treat damage caused by heart attacks and related conditions.
Collapse
Affiliation(s)
- Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Megan L Martik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yuwei Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
12
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
13
|
Hatzistergos KE, Williams AR, Dykxhoorn D, Bellio MA, Yu W, Hare JM. Tumor Suppressors RB1 and CDKN2a Cooperatively Regulate Cell-Cycle Progression and Differentiation During Cardiomyocyte Development and Repair. Circ Res 2019; 124:1184-1197. [PMID: 30744497 DOI: 10.1161/circresaha.118.314063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear. OBJECTIVE We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry. METHODS AND RESULTS Directed differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes revealed that RB1 and CDKN2a are upregulated at the onset of cardiac precursor specification, simultaneously with GATA4 (GATA-binding protein 4) homeobox genes PBX1 (pre-B-cell leukemia transcription factor 1) and MEIS1 (myeloid ecotropic viral integration site 1 homolog), and remain so until terminal cardiomyocyte differentiation. In both GATA4+ hPSC cardiac precursors and postmitotic hPSC-cardiomyocytes, RB1 is hyperphosphorylated and inactivated. Transient, stage-specific, depletion of RB1 during hPSC differentiation enhances cardiomyogenesis at the cardiac precursors stage, but not in terminally differentiated hPSC-cardiomyocytes, by transiently upregulating GATA4 expression through a cell-cycle regulatory pathway involving CDKN2a. Importantly, cytokinesis in postmitotic hPSC-cardiomyocytes can be induced with transient, dual RB1, and CDKN2a silencing. The relevance of this pathway in vivo was suggested by findings in a porcine model of cardiac cell therapy post-MI, whereby dual RB1 and CDKN2a inactivation in adult GATA4+ cells correlates with the degree of scar size reduction and endogenous cardiomyocyte mitosis, particularly in response to combined transendocardial injection of adult human hMSCs (bone marrow-derived mesenchymal stromal cells) and cKit+ cardiac cells. CONCLUSIONS Together these findings reveal an important and coordinated role for RB1 and CDKN2a in regulating cell-cycle progression and differentiation during human cardiomyogenesis. Moreover, transient, dual inactivation of RB1 and CDKN2a in endogenous adult GATA4+ cells and cardiomyocytes mediates, at least in part, the beneficial effects of cell-based therapy in a post-MI large mammalian model, a finding with potential clinical implications.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Cell Biology (K.E.H.), University of Miami, Miller School of Medicine, FL
| | - Adam R Williams
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Surgery (A.R.W.), University of Miami, Miller School of Medicine, FL
- Department of Surgery, Duke University School of Medicine, Durham, NC (A.R.W.)
| | - Derek Dykxhoorn
- Department of Human Genetics (D.D.), University of Miami, Miller School of Medicine, FL
- John P. Hussman Institute for Human Genomics (D.D.), University of Miami, Miller School of Medicine, FL
| | - Michael A Bellio
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Wendou Yu
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Pediatrics (W.Y.), University of Miami, Miller School of Medicine, FL
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Molecular and Cellular Pharmacology (J.M.H.), University of Miami, Miller School of Medicine, FL
- Cardiology Division, Department of Medicine (J.M.H.), University of Miami, Miller School of Medicine, FL
| |
Collapse
|
14
|
Abdul-Wajid S, Demarest BL, Yost HJ. Loss of embryonic neural crest derived cardiomyocytes causes adult onset hypertrophic cardiomyopathy in zebrafish. Nat Commun 2018; 9:4603. [PMID: 30389937 PMCID: PMC6214924 DOI: 10.1038/s41467-018-07054-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
Neural crest cells migrate to the embryonic heart and transform into a small number of cardiomyocytes, but their functions in the developing and adult heart are unknown. Here, we show that neural crest derived cardiomyocytes (NC-Cms) in the zebrafish ventricle express Notch ligand jag2b, are adjacent to Notch responding cells, and persist throughout life. Genetic ablation of NC-Cms during embryogenesis results in diminished jag2b, altered Notch signaling and aberrant trabeculation patterns, but is not detrimental to early heart function or survival to adulthood. However, embryonic NC-Cm ablation results in adult fish that show severe hypertrophic cardiomyopathy (HCM), altered cardiomyocyte size, diminished adult heart capacity and heart failure in cardiac stress tests. Adult jag2b mutants have similar cardiomyopathy. Thus, we identify a cardiomyocyte population and genetic pathway that are required to prevent adult onset HCM and provide a zebrafish model of adult-onset HCM and heart failure.
Collapse
Affiliation(s)
- Sarah Abdul-Wajid
- University of Utah, Molecular Medicine Program, Eccles Institute of Human Genetics, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Bradley L Demarest
- University of Utah, Molecular Medicine Program, Eccles Institute of Human Genetics, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - H Joseph Yost
- University of Utah, Molecular Medicine Program, Eccles Institute of Human Genetics, 15 North 2030 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
15
|
Ledoux T, Aridgides D, Salvador R, Ngwenyama N, Panagiotidou S, Alcaide P, Blanton RM, Perrin MA. Trypanosoma cruzi Neurotrophic Factor Facilitates Cardiac Repair in a Mouse Model of Chronic Chagas Disease. J Pharmacol Exp Ther 2018; 368:11-20. [PMID: 30348750 DOI: 10.1124/jpet.118.251900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Most patients acutely infected with Trypanosoma cruzi undergo short-term structural and functional cardiac alterations that heal without sequelae. By contrast, in patients whose disease progresses to chronic infection, irreversible degenerative chronic Chagas cardiomyopathy (CCC) may develop. To account for the contrast between cardiac regeneration in high-parasitism acute infection and progressive cardiomyopathy in low-parasitism CCC, we hypothesized that T. cruzi expresses repair factors that directly facilitate cardiac regeneration. We investigated, as one such repair factor, the T. cruzi parasite-derived neurotrophic factor (PDNF), known to trigger survival of cardiac myocytes and fibroblasts and upregulate chemokine chemokine C-C motif ligand 2, which promotes migration of regenerative cardiac progenitor cells (CPCs). Using in vivo and in vitro models of Chagas disease, we tested whether T. cruzi PDNF promotes cardiac repair. Quantitative PCR and flow cytometry of heart tissue revealed that stem-cell antigen-1 (Sca-1+) CPCs expand in acute infection in parallel to parasitism. Recombinant PDNF induced survival and expansion of ex vivo CPCs, and intravenous administration of PDNF into naïve mice upregulated mRNA of cardiac stem-cell marker Sca-1. Furthermore, in CCC mice, a 3-week intravenous administration of PDNF protocol induced CPC expansion and reversed left ventricular T-cell accumulation and cardiac remodeling including fibrosis. Compared with CCC vehicle-treated mice, which developed severe atrioventricular block, PDNF-treated mice exhibited reduced frequency and severity of conduction abnormalities. Our findings are in support of the novel concept that T. cruzi uses PDNF to promote mutually beneficial cardiac repair in Chagas disease. This could indicate a possible path to prevention or treatment of CCC.
Collapse
Affiliation(s)
- Tamar Ledoux
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Daniel Aridgides
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Ryan Salvador
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Njabulo Ngwenyama
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Smaro Panagiotidou
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Pilar Alcaide
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Robert M Blanton
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Mercio A Perrin
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
16
|
Davis EL, Davis AR, Gugala Z, Olmsted-Davis EA. Is heterotopic ossification getting nervous?: The role of the peripheral nervous system in heterotopic ossification. Bone 2018; 109:22-27. [PMID: 28716552 PMCID: PMC5768468 DOI: 10.1016/j.bone.2017.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/28/2022]
Abstract
Heterotopic ossification (HO), or de novo bone formation in soft tissue, is often observed following traumatic injury. Recent studies suggest that peripheral nerves may play a key functional role in this process. The results supporting a neurological basis for HO are examined in this article. Evidence supports the fact that BMPs released from bone matrix possess the capacity to induce HO. However, the process cannot be recapitulated using recombinant proteins without extremely high doses suggesting other components are required for this process. Study of injuries that increase risk for HO, i.e. amputation, hip replacement, elbow fracture, burn, and CNS injury suggests that a likely candidate is traumatic injury of adjacent peripheral nerves. Recent studies suggest neuroinflammation may play a key functional role, by its ability to open the blood-nerve barrier (BNB). Barrier opening is characterized by a change in permeability and is experimentally assessed by the ability of Evans blue dye to enter the endoneurium of peripheral nerves. A combination of BMP and barrier opening is required to activate bone progenitors in the endoneurial compartment. This process is referred to as "neurogenic HO".
Collapse
Affiliation(s)
- Eleanor L Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, United States
| | - Alan R Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, United States; Department of Pediatrics - Section Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, United States; Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, United States
| | - Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Elizabeth A Olmsted-Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, United States; Department of Pediatrics - Section Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, United States; Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
17
|
Hatzistergos KE, Jiang Z, Valasaki K, Takeuchi LM, Balkan W, Atluri P, Saur D, Seidler B, Tsinoremas N, DiFede DL, Hare JM. Simulated Microgravity Impairs Cardiac Autonomic Neurogenesis from Neural Crest Cells. Stem Cells Dev 2018; 27:819-830. [PMID: 29336212 DOI: 10.1089/scd.2017.0265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Microgravity-induced alterations in the autonomic nervous system (ANS) contribute to derangements in both the mechanical and electrophysiological function of the cardiovascular system, leading to severe symptoms in humans following space travel. Because the ANS forms embryonically from neural crest (NC) progenitors, we hypothesized that microgravity can impair NC-derived cardiac structures. Accordingly, we conducted in vitro simulated microgravity experiments employing NC genetic lineage tracing in mice with cKitCreERT2/+, Isl1nLacZ, and Wnt1-Cre reporter alleles. Inducible fate mapping in adult mouse hearts and pluripotent stem cells (iPSCs) demonstrated reduced cKitCreERT2/+-mediated labeling of both NC-derived cardiomyocytes and autonomic neurons (P < 0.0005 vs. controls). Whole transcriptome analysis, suggested that this effect was associated with repressed cardiac NC- and upregulated mesoderm-related gene expression profiles, coupled with abnormal bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β) and Wnt/β-catenin signaling. To separate the manifestations of simulated microgravity on NC versus mesodermal-cardiac derivatives, we conducted Isl1nLacZ lineage analyses, which indicated an approximately 3-fold expansion (P < 0.05) in mesoderm-derived Isl-1+ pacemaker sinoatrial nodal cells; and an approximately 3-fold reduction (P < 0.05) in cardiac NC-derived ANS cells, including sympathetic nerves and Isl-1+ cardiac ganglia. Finally, NC-specific fate mapping with a Wnt1-Cre reporter iPSC model of murine NC development confirmed that simulated microgravity directly impacted the in vitro development of cardiac NC progenitors and their contribution to the sympathetic and parasympathetic innervation of the iPSC-derived myocardium. Altogether, these findings reveal an important role for gravity in the development of NCs and their postnatal derivatives, and have important therapeutic implications for human space exploration, providing insights into cellular and molecular mechanisms of microgravity-induced cardiomyopathies/channelopathies.
Collapse
Affiliation(s)
| | - Zhijie Jiang
- 2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida
| | | | - Lauro M Takeuchi
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Wayne Balkan
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Preethi Atluri
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Dieter Saur
- 3 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München , München, Germany .,4 German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Barbara Seidler
- 3 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München , München, Germany .,4 German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Nicholas Tsinoremas
- 2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Joshua M Hare
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| |
Collapse
|
18
|
Calderone A. The Biological Role of Nestin (+)-Cells in Physiological and Pathological Cardiovascular Remodeling. Front Cell Dev Biol 2018; 6:15. [PMID: 29492403 PMCID: PMC5817075 DOI: 10.3389/fcell.2018.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
The intermediate filament protein nestin was identified in diverse populations of cells implicated in cardiovascular remodeling. Cardiac resident neural progenitor/stem cells constitutively express nestin and following an ischemic insult migrate to the infarct region and participate in angiogenesis and neurogenesis. A modest number of normal adult ventricular fibroblasts express nestin and the intermediate filament protein is upregulated during the progression of reparative and reactive fibrosis. Nestin depletion attenuates cell cycle re-entry suggesting that increased expression of the intermediate filament protein in ventricular fibroblasts may represent an activated phenotype accelerating the biological impact during fibrosis. Nestin immunoreactivity is absent in normal adult rodent ventricular cardiomyocytes. Following ischemic damage, the intermediate filament protein is induced in a modest population of pre-existing adult ventricular cardiomyocytes bordering the peri-infarct/infarct region and nestin(+)-ventricular cardiomyocytes were identified in the infarcted human heart. The appearance of nestin(+)-ventricular cardiomyocytes post-myocardial infarction (MI) recapitulates an embryonic phenotype and depletion of the intermediate filament protein inhibits cell cycle re-entry. Recruitment of the serine/threonine kinase p38 MAPK secondary to an overt inflammatory response after an ischemic insult may represent a seminal event limiting the appearance of nestin(+)-ventricular cardiomyocytes and concomitantly suppressing cell cycle re-entry. Endothelial and vascular smooth muscle cells (VSMCs) express nestin and upregulation of the intermediate filament protein may directly contribute to vascular remodeling. This review will highlight the biological role of nestin(+)-cells during physiological and pathological remodeling of the heart and vasculature and discuss the phenotypic advantage attributed to the intermediate filament protein.
Collapse
Affiliation(s)
- Angelino Calderone
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
19
|
Greenberg JM, Lumbreras V, Pelaez D, Rajguru SM, Cheung HS. Neural Crest Stem Cells Can Differentiate to a Cardiomyogenic Lineage with an Ability to Contract in Response to Pulsed Infrared Stimulation. Tissue Eng Part C Methods 2017; 22:982-990. [PMID: 28192031 DOI: 10.1089/ten.tec.2016.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Cellular cardiomyoplasty has rapidly risen to prominence in the clinic following a myocardial infarction; however, low engraftment of transplanted cells limits the therapeutic benefit to these procedures. Recently, lineage-specific stem cells differentiated into cardiomyocytes have gained much attention to assist in the repair of an injured heart tissue; however, questions regarding the ideal cell source remain. In the present study, we have identified a source that is easy to extract stem cells from and show that the cells present have a high plasticity toward the cardiomyogenic lineage. We focused on the recently discovered neural crest stem cells residing in the periodontal ligament that can be easily obtained through dental procedures. MATERIALS AND METHODS Neural crest stem cells were obtained from human excised third molars and differentiated in culture using a protocol for directed differentiation into cardiomyocytes. Differentiation of cells was assessed through gene expression and immunostaining studies. Optical stimulation using pulsed infrared radiation (IR) (λ = 1863 nm) was delivered to cell aggregates to study their contractile ability. RESULTS We show that neural crest stem cells can be differentiated to a cardiomyogenic lineage, which was verified through immunostaining and gene expression. We observed a significant increase in cardiomyocyte-specific markers, NK2 homeobox 5 (NKX2.5) and troponin T type 2 (TNNT2), with positive changes in tropomyosin I (TPM1), gap junction protein alpha 1/Cx43 (GJA1/Cx43), and myocyte enhancement factor 2C (MEF2C). Furthermore, we were able to elicit and maintain pulse-by-pulse contractile responses in the derived cells, including in cardiospheres, with pulsed IR delivered at various radiant energies. The contractility in responses to IR could be maintained at different frequencies (0.25-2 Hz) and up to 10-min durations. While these cells did not maintain their contractility following cessation of IR, these cells demonstrated responses to the optical stimuli that are consistent with previous reports. We also found no evidence for irreversible mitochondrial depolarization in these cells following the long duration of infrared stimulation, suggesting the robustness of these cells. CONCLUSIONS Overall, these results suggest the merit of neural crest-derived stem cells for cardiomyogenic applications and a potential cell source for repair that should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
Affiliation(s)
- Jordan M Greenberg
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida
| | - Vicente Lumbreras
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida
| | - Daniel Pelaez
- 2 Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs Medical Center , Miami, Florida
| | - Suhrud M Rajguru
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida.,3 Department of Otolaryngology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Herman S Cheung
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida.,2 Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs Medical Center , Miami, Florida
| |
Collapse
|
20
|
From Blood to Lesioned Brain: An In Vitro Study on Migration Mechanisms of Human Nasal Olfactory Stem Cells. Stem Cells Int 2017; 2017:1478606. [PMID: 28698717 PMCID: PMC5494110 DOI: 10.1155/2017/1478606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/19/2017] [Indexed: 02/08/2023] Open
Abstract
Stem cell-based therapies critically rely on selective cell migration toward pathological or injured areas. We previously demonstrated that human olfactory ectomesenchymal stem cells (OE-MSCs), derived from an adult olfactory lamina propria, migrate specifically toward an injured mouse hippocampus after transplantation in the cerebrospinal fluid and promote functional recoveries. However, the mechanisms controlling their recruitment and homing remain elusive. Using an in vitro model of blood-brain barrier (BBB) and secretome analysis, we observed that OE-MSCs produce numerous proteins allowing them to cross the endothelial wall. Then, pan-genomic DNA microarrays identified signaling molecules that lesioned mouse hippocampus overexpressed. Among the most upregulated cytokines, both recombinant SPP1/osteopontin and CCL2/MCP-1 stimulate OE-MSC migration whereas only CCL2 exerts a chemotactic effect. Additionally, OE-MSCs express SPP1 receptors but not the CCL2 cognate receptor, suggesting a CCR2-independent pathway through other CCR receptors. These results confirm that OE-MSCs can be attracted by chemotactic cytokines overexpressed in inflamed areas and demonstrate that CCL2 is an important factor that could promote OE-MSC engraftment, suggesting improvement for future clinical trials.
Collapse
|
21
|
The vascular adventitia: An endogenous, omnipresent source of stem cells in the body. Pharmacol Ther 2017; 171:13-29. [DOI: 10.1016/j.pharmthera.2016.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022]
|
22
|
Malliaras K, Vakrou S, Kapelios CJ, Nanas JN. Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification. Expert Opin Biol Ther 2016; 16:1341-1352. [PMID: 27484198 DOI: 10.1080/14712598.2016.1218846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The -once viewed as heretical- concept of the adult mammalian heart as a dynamic organ capable of endogenous regeneration has recently gained traction. However, estimated rates of myocyte turnover vary wildly and the underlying mechanisms of cardiac plasticity remain controversial. It is still unclear whether the adult mammalian heart gives birth to new myocytes through proliferation of resident myocytes, through cardiomyogenic differentiation of endogenous progenitors or through both mechanisms. AREAS COVERED In this review, the authors discuss the cellular origins of postnatal mammalian cardiomyogenesis and touch upon therapeutic strategies that could potentially amplify innate cardiac regeneration. EXPERT OPINION The adult mammalian heart harbors a limited but detectable capacity for spontaneous endogenous regeneration. During normal aging, proliferation of pre-existing cardiomyocytes is the dominant mechanism for generation of new cardiomyocytes. Following myocardial injury, myocyte proliferation increases modestly, but differentiation of endogenous progenitor cells appears to also contribute to cardiomyogenesis (although agreement on the latter point is not universal). Since cardiomyocyte deficiency underlies almost all types of heart disease, development of therapeutic strategies that amplify endogenous regeneration to a clinically-meaningful degree is of utmost importance.
Collapse
Affiliation(s)
- Konstantinos Malliaras
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| | - Styliani Vakrou
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| | - Chris J Kapelios
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| | - John N Nanas
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| |
Collapse
|
23
|
Meus MA, Hertig V, Villeneuve L, Jasmin JF, Calderone A. Nestin Expressed by Pre-Existing Cardiomyocytes Recapitulated in Part an Embryonic Phenotype; Suppressive Role of p38 MAPK. J Cell Physiol 2016; 232:1717-1727. [DOI: 10.1002/jcp.25496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Marc-Andre Meus
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Québec Canada
| | - Vanessa Hertig
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Québec Canada
| | - Louis Villeneuve
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences; University of the Sciences in Philadelphia; Philadelphia Pennsylvania
| | - Angelino Calderone
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Québec Canada
| |
Collapse
|
24
|
Tomokiyo A, Hynes K, Ng J, Menicanin D, Camp E, Arthur A, Gronthos S, Mark Bartold P. Generation of Neural Crest-Like Cells From Human Periodontal Ligament Cell-Derived Induced Pluripotent Stem Cells. J Cell Physiol 2016; 232:402-416. [DOI: 10.1002/jcp.25437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Atsushi Tomokiyo
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide Australia
| | - Kim Hynes
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide Australia
- South Australian Health and Medical Research Institute; Adelaide SA Australia
| | - Jia Ng
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide Australia
- South Australian Health and Medical Research Institute; Adelaide SA Australia
| | - Danijela Menicanin
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide Australia
| | - Esther Camp
- South Australian Health and Medical Research Institute; Adelaide SA Australia
- Mesenchymal Stem Cell Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide SA Australia
| | - Agnes Arthur
- South Australian Health and Medical Research Institute; Adelaide SA Australia
- Mesenchymal Stem Cell Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide SA Australia
- SA Pathology; Adelaide SA Australia
| | - Stan Gronthos
- South Australian Health and Medical Research Institute; Adelaide SA Australia
- Mesenchymal Stem Cell Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide SA Australia
| | - Peter Mark Bartold
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide Australia
| |
Collapse
|
25
|
Awada HK, Hwang MP, Wang Y. Towards comprehensive cardiac repair and regeneration after myocardial infarction: Aspects to consider and proteins to deliver. Biomaterials 2016; 82:94-112. [PMID: 26757257 PMCID: PMC4872516 DOI: 10.1016/j.biomaterials.2015.12.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
Ischemic heart disease is a leading cause of death worldwide. After the onset of myocardial infarction, many pathological changes take place and progress the disease towards heart failure. Pathologies such as ischemia, inflammation, cardiomyocyte death, ventricular remodeling and dilation, and interstitial fibrosis, develop and involve the signaling of many proteins. Proteins can play important roles in limiting or countering pathological changes after infarction. However, they typically have short half-lives in vivo in their free form and can benefit from the advantages offered by controlled release systems to overcome their challenges. The controlled delivery of an optimal combination of proteins per their physiologic spatiotemporal cues to the infarcted myocardium holds great potential to repair and regenerate the heart. The effectiveness of therapeutic interventions depends on the elucidation of the molecular mechanisms of the cargo proteins and the spatiotemporal control of their release. It is likely that multiple proteins will provide a more comprehensive and functional recovery of the heart in a controlled release strategy.
Collapse
Affiliation(s)
- Hassan K Awada
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Mintai P Hwang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
26
|
Tamura Y, Sano M, Nakamura H, Ito K, Sato Y, Shinmura K, Ieda M, Fujita J, Kurosawa H, Ogawa S, Nakano S, Matsuzaki M, Fukuda K. Neural crest-derived resident cardiac cells contribute to the restoration of adrenergic function of transplanted heart in rodent. Cardiovasc Res 2015; 109:350-7. [PMID: 26645983 DOI: 10.1093/cvr/cvv267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 11/26/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS We investigated whether neural crest-derived cardiac resident cells contribute to the restoration of intrinsic adrenergic function following transplantation in mice. Transplanted heart shows partial restoration of cardiac adrenergic activity with time. Both the intrinsic cardiac adrenergic system and extrinsic sympathetic re-innervation contribute to neuronal remodelling in the transplanted heart. Little is known about the origin and function of the intrinsic system in the transplanted heart. METHODS AND RESULTS Heart from the protein 0-Cre/Floxed-Enhanced Green Fluorescent Protein double-transgenic mouse was transplanted onto the abdominal aorta of the non-obese diabetic/severe combined immunodeficient mouse to trace the fate of cardiac resident neural crest-derived cells. Sympathetic nerve fibres, which are predominantly localized to the epicardial surface of the heart, disappeared in the transplanted heart. Intramyocardial neural crest cells increased immediately, while neural crest-derived nucleated tyrosine hydroxylase (TH)-immunoreactive cells increased over 2 weeks following transplantation. The mRNA expression levels of TH, dopamine-β-hydroxylase and phenylethanolamine N-methyltransferase, and the tissue content of catecholamines in the transplanted hearts increased with time in association with an increase in the number of neural crest-derived nucleated TH-immunoreactive cells and tissue nerve growth factor levels. Iodine-123-metaiodobenzylguanidine scintigraphy showed that the uptake ability of transplanted heart for catecholamines also recovered with time. Finally, the chronotropic response to tyramine both in vivo and ex vivo reappeared 2 weeks after transplantation. CONCLUSION Neural crest-derived adrenergic cells increased following heart transplantation. The restoration of cardiac sympathetic activities in transplanted heart is tightly coupled with an increase in the number of neural crest-derived adrenergic cells.
Collapse
Affiliation(s)
- Yuichi Tamura
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan Université Paris-Sud, AP-HP, Service de Pneumologie, Hôpital Bicêtre, Inserm U999, Le Kremlin Bicêtre, France International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | - Kentaro Ito
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yusuke Sato
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ken Shinmura
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | - Satohi Ogawa
- International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Shintaro Nakano
- Department of Cardiology, Saitama Medical University, International Medical Center, Saitama, Japan
| | | | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
27
|
Abstract
The degree to which cKit-expressing progenitors generate cardiomyocytes in the heart is controversial. Genetic fate-mapping studies suggest minimal contribution; however, whether or not minimal contribution reflects minimal cardiomyogenic capacity is unclear because the embryonic origin and role in cardiogenesis of these progenitors remain elusive. Using high-resolution genetic fate-mapping approaches with cKit(CreERT2/+) and Wnt1::Flpe mouse lines, we show that cKit delineates cardiac neural crest progenitors (CNC(kit)). CNC(kit) possess full cardiomyogenic capacity and contribute to all CNC derivatives, including cardiac conduction system cells. Furthermore, by modeling cardiogenesis in cKit(CreERT2)-induced pluripotent stem cells, we show that, paradoxically, the cardiogenic fate of CNC(kit) is regulated by bone morphogenetic protein antagonism, a signaling pathway activated transiently during establishment of the cardiac crescent, and extinguished from the heart before CNC invasion. Together, these findings elucidate the origin of cKit(+) cardiac progenitors and suggest that a nonpermissive cardiac milieu, rather than minimal cardiomyogenic capacity, controls the degree of CNC(kit) contribution to myocardium.
Collapse
|
28
|
Morphometric Analysis of Human Embryonic Stem Cell-Derived Ventricular Cardiomyocytes: Determining the Maturation State of a Population by Quantifying Parameters in Individual Cells. Stem Cells Int 2015; 2015:586908. [PMID: 26351464 PMCID: PMC4553338 DOI: 10.1155/2015/586908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/13/2015] [Accepted: 07/22/2015] [Indexed: 11/24/2022] Open
Abstract
Quantitative methods were established to determine the level of maturation of human embryonic stem cell-derived ventricular cardiomyocytes (hESC-vCMs) that were treated with different metabolic stimulants (i.e., isoproterenol and oleic acid) during early differentiation. Cells were double-immunolabeled with α-actinin and COX IV antibodies, to label the myofibrils and mitochondria, respectively, after which images were acquired via confocal microscopy. In order to determine the extent of differentiation, image analysis protocols were then used to quantify cell shape and area, as well as the degree of myofibrillar organization and intercalation of mitochondria between the myofibrils within the cells. We demonstrated that oleic acid or isoproterenol alone, or a combination of the two, induced a more elongated hESC-vCM phenotype than the untreated controls. In addition, cells treated with isoproterenol alone exhibited a similar level of myofibrillar organization as the controls, but those treated with oleic acid with/without isoproterenol exhibited a more organized (parallel) orientation of myofibrils. The combined isoproterenol/oleic acid treatment also resulted in enhanced intercalation of mitochondria between the myofibrils. We suggest that these quantitative morphometric methods might serve as simple and effective tools that can be utilized in the determination of the level of structural maturation of hESC-vCMs.
Collapse
|
29
|
Cavanaugh AM, Huang J, Chen JN. Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart. Dev Biol 2015; 404:103-12. [PMID: 26086691 DOI: 10.1016/j.ydbio.2015.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/28/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022]
Abstract
Cardiac neural crest cells are essential for outflow tract remodeling in animals with divided systemic and pulmonary circulatory systems, but their contributions to cardiac development in animals with a single-loop circulatory system are less clear. Here we genetically labeled neural crest cells and examined their contribution to the developing zebrafish heart. We identified two populations of neural crest cells that contribute to distinct compartments of zebrafish cardiovascular system at different developmental stages. A stream of neural crest cells migrating through pharyngeal arches 1 and 2 integrates into the myocardium of the primitive heart tube between 24 and 30 h post fertilization and gives rise to cardiomyocytes. A second wave of neural crest cells migrating along aortic arch 6 envelops the endothelium of the ventral aorta and invades the bulbus arteriosus after three days of development. Interestingly, while inhibition of FGF signaling has no effect on the integration of neural crest cells to the primitive heart tube, it prevents these cells from contributing to the outflow tract, demonstrating disparate responses of neural crest cells to FGF signaling. Furthermore, neural crest ablation in zebrafish leads to multiple cardiac defects, including reduced heart rate, defective myocardial maturation and a failure to recruit progenitor cells from the second heart field. These findings add to our understanding of the contribution of neural crest cells to the developing heart and provide insights into the requirement for these cells in cardiac maturation.
Collapse
Affiliation(s)
- Ann M Cavanaugh
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles CA 90095, USA
| | - Jie Huang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles CA 90095, USA
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles CA 90095, USA.
| |
Collapse
|
30
|
Cho GS, Fernandez L, Kwon C. Regenerative medicine for the heart: perspectives on stem-cell therapy. Antioxid Redox Signal 2014; 21:2018-31. [PMID: 25133793 PMCID: PMC4208610 DOI: 10.1089/ars.2014.6063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Despite decades of progress in cardiovascular biology and medicine, heart disease remains the leading cause of death, and there is no cure for the failing heart. Since heart failure is mostly caused by loss or dysfunction of cardiomyocytes (CMs), replacing dead or damaged CMs with new CMs might be an ideal way to reverse the disease. However, the adult heart is composed mainly of terminally differentiated CMs that have no significant self-regeneration capacity. RECENT ADVANCES Stem cells have tremendous regenerative potential and, thus, current cardiac regenerative research has focused on developing stem cell sources to repair damaged myocardium. CRITICAL ISSUES In this review, we examine the potential sources of cells that could be used for heart therapies, including embryonic stem cells and induced pluripotent stem cells, as well as alternative methods for activating the endogenous regenerative mechanisms of the heart via transdifferentiation and cell reprogramming. We also discuss the current state of knowledge of cell purification, delivery, and retention. FUTURE DIRECTIONS Efforts are underway to improve the current stem cell strategies and methodologies, which will accelerate the development of innovative stem-cell therapies for heart regeneration.
Collapse
Affiliation(s)
- Gun-Sik Cho
- Division of Cardiology, Department of Medicine, Institute for Cell Engineering, Johns Hopkins University , Baltimore, Maryland
| | | | | |
Collapse
|
31
|
Parasite-derived neurotrophic factor/trans-sialidase of Trypanosoma cruzi links neurotrophic signaling to cardiac innate immune response. Infect Immun 2014; 82:3687-96. [PMID: 24935974 DOI: 10.1128/iai.02098-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Chagas' disease parasite Trypanosoma cruzi elicits a potent inflammatory response in acutely infected hearts that keeps parasitism in check and triggers cardiac abnormalities. A most-studied mechanism underlying innate immunity in T. cruzi infection is Toll-like receptor (TLR) activation by lipids and other parasite molecules. However, yet-to-be-identified pathways should exist. Here, we show that T. cruzi strongly upregulates monocyte chemoattractant protein 1 (MCP-1)/CCL2 and fractalkine (FKN)/CX3CL1 in cellular and mouse models of heart infection. Mechanistically, upregulation of MCP-1 and FKN stems from the interaction of parasite-derived neurotrophic factor (PDNF)/trans-sialidase with neurotrophic receptors TrkA and TrkC, as assessed by pharmacological inhibition, neutralizing antibodies, and gene silencing studies. Administration of a single dose of intravenous PDNF to naive mice results in a dose-dependent increase in MCP-1 and FKN in the heart and liver with pulse-like kinetics that peak at 3 h postinjection. Intravenous PDNF also augments MCP-1 and FKN in TLR signaling-deficient MyD88-knockout mice, underscoring the MyD88-independent action of PDNF. Although single PDNF injections do not increase MCP-1 and FKN receptors, multiple PDNF injections at short intervals up the levels of receptor transcripts in the heart and liver, suggesting that sustained PDNF triggers cell recruitment at infection sites. Thus, given that MCP-1 and FKN are chemokines essential to the recruitment of immune cells to combat inflammation triggers and to enhance tissue repair, our findings uncover a new mechanism in innate immunity against T. cruzi infection mediated by Trk signaling akin to an endogenous inflammatory and fibrotic pathway resulting from cardiomyocyte-TrkA recognition by matricellular connective tissue growth factor (CTGF/CCN2).
Collapse
|
32
|
Proteome array identification of bioactive soluble proteins/peptides in Matrigel: relevance to stem cell responses. Cytotechnology 2014; 67:873-83. [PMID: 24744128 DOI: 10.1007/s10616-014-9727-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 04/04/2014] [Indexed: 01/19/2023] Open
Abstract
Matrigel and similar commercial products are extracts of the Engelbreth-Holm-Swarm sarcoma that provide a basement-membrane-like attachment substrate or gel that is used to grow cells on or in, respectively. To ascertain further what proteins may be present in Matrigel, besides its major basement-membrane constituents, an analysis of the expressed liquid of gelled Matrigel was performed using proteome array technology. Among the growth factors/cytokines assayed, high positive detection was found for IGFBP1, IGFBP3, LIF, platelet factor 4, PlGF-2, and VEGF; moderate reactivity was found for cyr61, IGFBP2, IGFBP6, IL-1ra, and NOV; and low, but detectable, responses occurred for aFGF, IL-13, IL-23, M-CSF, and VEGF-B. Among the chemokines assayed, high positive detection was found for MIG and serpin E1; moderate reactivity was found for IP-10, MCP-1, and MCP-5, and low, but detectable, responses occurred for CXCL16, I-TAC, and MIP-1α. Among the other biologically active proteins assayed, high positive detection was found for adiponectin, C5a, endocan, lipocalin-2, sICAM-1, MMP-3, and TIMP-1; moderate reactivity was found for C-reactive protein, coagulation factor III, endoglin, endostatin/collagen XVIII, endothelin-1, ICAM-1, MMP-9, osteopontin, pentraxin-3, and RANTES; and low, but detectable, responses occurred for fetuin A, MMP-8, pentraxin-2, RBP4, resistin, and TIMP-4. The study found several growth factors, chemokines, and biologically active proteins not previously identified in Matrigel, and this may have significance to the interpretations of observed cellular responses when cells are grown on or in Matrigel.
Collapse
|
33
|
Malliaras K, Ibrahim A, Tseliou E, Liu W, Sun B, Middleton RC, Seinfeld J, Wang L, Sharifi BG, Marbán E. Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction. EMBO Mol Med 2014; 6:760-77. [PMID: 24797668 PMCID: PMC4203354 DOI: 10.1002/emmm.201303626] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Controversy surrounds the identity, origin, and physiologic role of endogenous cardiomyocyte progenitors in adult mammals. Using an inducible genetic labeling approach to identify small non-myocyte cells expressing cardiac markers, we find that activated endogenous cardioblasts are rarely evident in the normal adult mouse heart. However, myocardial infarction results in significant cardioblast activation at the site of injury. Genetically labeled isolated cardioblasts express cardiac transcription factors and sarcomeric proteins, exhibit spontaneous contractions, and form mature cardiomyocytes in vivo after injection into unlabeled recipient hearts. The activated cardioblasts do not arise from hematogenous seeding, cardiomyocyte dedifferentiation, or mere expansion of a preformed progenitor pool. Cell therapy with cardiosphere-derived cells amplifies innate cardioblast-mediated tissue regeneration, in part through the secretion of stromal cell-derived factor 1 by transplanted cells. Thus, stimulation of endogenous cardioblasts by exogenous cells mediates therapeutic regeneration of injured myocardium.
Collapse
Affiliation(s)
| | | | | | - Weixin Liu
- Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Baiming Sun
- Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | | | | | - Lai Wang
- Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | | | | |
Collapse
|
34
|
Malliaras K, Terrovitis J. Cardiomyocyte proliferation vs progenitor cells in myocardial regeneration: The debate continues. Glob Cardiol Sci Pract 2013; 2013:303-15. [PMID: 24689031 PMCID: PMC3963760 DOI: 10.5339/gcsp.2013.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/11/2013] [Indexed: 12/18/2022] Open
Abstract
In recent years, several landmark studies have provided compelling evidence that cardiomyogenesis occurs in the adult mammalian heart. However, the rate of new cardiomyocyte formation is inadequate for complete restoration of the normal mass of myocardial tissue, should a significant myocardial injury occur, such as myocardial infarction. The cellular origin of postnatal cardiomyogenesis in mammals remains a controversial issue and two mechanisms seem to be participating, proliferation of pre-existing cardiomyocytes and myogenic differentiation of progenitor cells. We will discuss the relative importance of these two processes in different settings, such as normal ageing and post-myocardial injury, as well as the strengths and limitations of the existing experimental methodologies used in the relevant studies. Further clarification of the mechanisms underlying cardiomyogenesis in mammals will open the way for their therapeutic exploitation in the clinical field, with the scope of myocardial regeneration.
Collapse
|
35
|
Lugassy C, Péault B, Wadehra M, Kleinman HK, Barnhill RL. Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties? Pigment Cell Melanoma Res 2013; 26:746-54. [PMID: 23789776 DOI: 10.1111/pcmr.12120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
We hypothesize that the interaction between angiotropic melanoma cells and the abluminal vascular surface can induce or sustain embryonic and/or stem cell migratory properties in these tumor cells. As a result, such angiotropic melanoma cells may migrate along the abluminal vascular surface, demonstrating pericytic mimicry. Through these cellular interactions, melanoma cells may migrate toward secondary sites.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
36
|
Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat Commun 2013; 3:1267. [PMID: 23232397 DOI: 10.1038/ncomms2258] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 11/05/2012] [Indexed: 12/25/2022] Open
Abstract
Neural crest cells constitute a multipotent cell population that gives rise to diverse cell lineages. The neural crest arising from the postotic hindbrain is known as the 'cardiac' neural crest, and contributes to the great vessels and outflow tract endocardial cushions, but the neural crest contribution to structures within the heart remains largely controversial. Here we demonstrate that neural crest cells from the preotic region migrate into the heart and differentiate into coronary artery smooth muscle cells. Preotic neural crest cells preferentially distribute to the conotruncal region and interventricular septum. Ablation of the preotic neural crest causes abnormalities in coronary septal branch and orifice formation. Mice and chicks lacking endothelin signalling show similar abnormalities in the coronary artery, indicating its involvement in neural crest-dependent coronary artery formation. This is the first report that reveals the preotic neural crest contribution to heart development and smooth muscle heterogeneity within a coronary artery.
Collapse
|
37
|
Lugassy C, Wadehra M, Li X, Corselli M, Akhavan D, Binder SW, Péault B, Cochran AJ, Mischel PS, Kleinman HK, Barnhill RL. Pilot study on "pericytic mimicry" and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2013; 6:19-29. [PMID: 23275074 PMCID: PMC3601217 DOI: 10.1007/s12307-012-0128-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/17/2012] [Indexed: 12/19/2022]
Abstract
The interaction of tumor cells with the tumor vasculature is mainly studied for its role in tumor angiogenesis and intravascular metastasis of circulating tumor cells. In addition, a specific interaction of tumor cells with the abluminal surfaces of vessels, or angiotropism, may promote the migration of angiotropic tumor cells along the abluminal vascular surfaces in a pericytic location. This process has been termed extravascular migratory metastasis. The abluminal vascular surface may also provide a vascular niche inducing or sustaining stemness to angiotropic tumor cells. This pilot study investigated if angiotropic melanoma cells might represent a subset population with pericytic and embryonic or stem cell properties. Through microarray analysis, we showed that the interaction between melanoma cells and the abluminal surface of endothelial cells triggers significant differential expression of several genes. The most significantly differentially expressed genes have demonstrated properties linked to cancer cell migration (CCL2, ICAM1 and IL6), cancer progression (CCL2, ICAM1, SELE, TRAF1, IL6, SERPINB2 and CXCL6), epithelial to mesenchymal transition (CCL2 and IL6), embryonic/stem cell properties (CCL2, PDGFB, EVX1 and CFDP1) and pericytic recruitment (PDGFB). In addition, bioinformatics-based analysis of the differentially expressed genes has shown that the most significantly enriched functional groups included development, cell movement, cancer, and embryonic development. Finally, the investigation of pericyte/mesenchymal stem cells markers via immunostaining of human melanoma samples revealed expression of PDGFRB, NG2 and CD146 by angiotropic melanoma cells. Taken together, these preliminary data are supportive of the "pericytic mimicry" by angiotropic melanoma cells, and suggest that the interaction between melanoma cells and the abluminal vascular surface induce differential expression of genes linked to cancer migration and embryonic/stem cell properties.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huang YS, Li IH, Chueh SH, Hueng DY, Tai MC, Liang CM, Lien SB, Sytwu HK, Ma KH. Mesenchymal stem cells from rat olfactory bulbs can differentiate into cells with cardiomyocyte characteristics. J Tissue Eng Regen Med 2013; 9:E191-201. [PMID: 23378029 DOI: 10.1002/term.1684] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are widely distributed in different tissues such as bone marrow, adipose tissues, peripheral blood, umbilical cord and amnionic fluid. Recently, MSC-like cells were also found to exist in rat olfactory bulb and are capable of inducing differentiation into mesenchymal lineages - osteocytes, chondrocytes and adipocytes. However, whether these cells can differentiate into myocardial cells is not known. In this study, we examined whether olfactory bulb-derived MSCs could differentiate into myocardial cells in vitro. Fibroblast-like cells isolated from the olfactory bulb of neonatal rats were grown under four conditions: no treatment; in the presence of growth factors (neuregulin-1, bFGF and forskolin); co-cultured with cardiomyocytes; and co-cultured with cardiomyocytes plus neuregulin-1, bFGF and forskolin. Cell differentiation into myocardial cells was monitored by RT-PCR, light microscopy immunofluorescence, western blot analysis and contractile response to pharmacological treatments. The isolated olfactory bulb-derived fibroblast-like cells expressed CD29, CD44, CD90, CD105, CD166 but not CD34 and CD45, consistent with the characteristics of MSCs. Long cylindical cells that spontaneously contracted were only observed following 7 days of co-culture of MSCs with rat cardiomyocytes plus neuregulin-1, bFGF and forskolin. RT-PCR and western blot analysis indicated that the cylindrical cells expressed myocardial markers, such as Nkx2.5, GATA4, sarcomeric α-actinin, cardiac troponin I, cardiac myosin heavy chain, atrial natriuretic peptide and connexin 43. They also contained sarcomeres and gap junction and were sensitive to pharmacological treatments (adrenal and cholinergic agonists and antagonists). These findings indicate that rat olfactory bulb-derived fibroblast-like cells with MSC characteristics can differentiate into myocardial-like cells.
Collapse
Affiliation(s)
- Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sheau-Huei Chueh
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ming-Cheng Tai
- Department of Ophthalmology, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chang-Min Liang
- Department of Ophthalmology, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shiu-Bii Lien
- Department of Orthopaedics, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
39
|
Nsair A, Schenke-Layland K, Van Handel B, Evseenko D, Kahn M, Zhao P, Mendelis J, Heydarkhan S, Awaji O, Vottler M, Geist S, Chyu J, Gago-Lopez N, Crooks GM, Plath K, Goldhaber J, Mikkola HKA, MacLellan WR. Characterization and therapeutic potential of induced pluripotent stem cell-derived cardiovascular progenitor cells. PLoS One 2012; 7:e45603. [PMID: 23056209 PMCID: PMC3467279 DOI: 10.1371/journal.pone.0045603] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiovascular progenitor cells (CPCs) have been identified within the developing mouse heart and differentiating pluripotent stem cells by intracellular transcription factors Nkx2.5 and Islet 1 (Isl1). Study of endogenous and induced pluripotent stem cell (iPSC)-derived CPCs has been limited due to the lack of specific cell surface markers to isolate them and conditions for their in vitro expansion that maintain their multipotency. METHODOLOGY/PRINCIPAL FINDINGS We sought to identify specific cell surface markers that label endogenous embryonic CPCs and validated these markers in iPSC-derived Isl1(+)/Nkx2.5(+) CPCs. We developed conditions that allow propagation and characterization of endogenous and iPSC-derived Isl1(+)/Nkx2.5(+) CPCs and protocols for their clonal expansion in vitro and transplantation in vivo. Transcriptome analysis of CPCs from differentiating mouse embryonic stem cells identified a panel of surface markers. Comparison of these markers as well as previously described surface markers revealed the combination of Flt1(+)/Flt4(+) best identified and facilitated enrichment for Isl1(+)/Nkx2.5(+) CPCs from embryonic hearts and differentiating iPSCs. Endogenous mouse and iPSC-derived Flt1(+)/Flt4(+) CPCs differentiated into all three cardiovascular lineages in vitro. Flt1(+)/Flt4(+) CPCs transplanted into left ventricles demonstrated robust engraftment and differentiation into mature cardiomyocytes (CMs). CONCLUSION/SIGNIFICANCE The cell surface marker combination of Flt1 and Flt4 specifically identify and enrich for an endogenous and iPSC-derived Isl1(+)/Nkx2.5(+) CPC with trilineage cardiovascular potential in vitro and robust ability for engraftment and differentiation into morphologically and electrophysiologically mature adult CMs in vivo post transplantation into adult hearts.
Collapse
Affiliation(s)
- Ali Nsair
- Department of Medicine and Physiology, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hoch M, Fischer P, Stapel B, Missol-Kolka E, Sekkali B, Scherr M, Favret F, Braun T, Eder M, Schuster-Gossler K, Gossler A, Hilfiker A, Balligand JL, Drexler H, Hilfiker-Kleiner D. Erythropoietin preserves the endothelial differentiation capacity of cardiac progenitor cells and reduces heart failure during anticancer therapies. Cell Stem Cell 2012; 9:131-43. [PMID: 21816364 DOI: 10.1016/j.stem.2011.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 05/31/2011] [Accepted: 07/05/2011] [Indexed: 11/17/2022]
Abstract
Anticancer therapies, such as targeting of STAT3 or the use of anthracyclins (doxorubicin), can induce cardiomyopathy. In mice prone to developing heart failure as a result of reduced cardiac STAT3 expression (cardiomyocyte-restricted deficiency of STAT3) or treatment with doxorubicin, we observed impaired endothelial differentiation capacity of Sca-1(+) cardiac progenitor cells (CPCs) in conjunction with attenuated CCL2/CCR2 activation. Mice in both models also displayed reduced erythropoietin (EPO) levels in the cardiac microenvironment. EPO binds to CPCs and seems to be responsible for maintaining an active CCL2/CCR2 system. Supplementation with the EPO derivative CERA in a hematocrit-inactive low dose was sufficient to upregulate CCL2, restore endothelial differentiation of CPCs, and preserve the cardiac microvasculature and cardiac function in both mouse models. Thus, low-dose EPO treatment could potentially be exploited as a therapeutic strategy to reduce the risk of heart failure in certain treatment regimens.
Collapse
Affiliation(s)
- Melanie Hoch
- Department of Cardiology and Angiology, Medical School Hannover, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI) is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1) improved identification, recruitment, and expansion of autologous stem cells; (2) identification of mobilizing and homing agents that increase recruitment; and (3) development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress.
Collapse
Affiliation(s)
- Jane Hoover-Plow
- Departmentof Cardiovascular Medicine, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| | | |
Collapse
|
42
|
Abstract
Scar formation following an ischemic insult to the heart is referred to as reparative fibrosis and represents an essential physiological response to heal the damaged myocardium. The biological events of reparative fibrosis include inflammation, the deposition of collagen by myofibroblasts, sympathetic innervation, and angiogenesis. Several studies have further reported that scar formation was associated with the recruitment of neural crest-derived cardiac resident nestin(+) cells that display characteristics consistent with a neural progenitor/stem cell phenotype. During the reparative fibrotic response, these nestin(+) cells participate in neural remodeling and represent a novel cellular substrate of angiogenesis. In addition, a subpopulation of nestin(+) cells identified in the normal heart expressed cardiac progenitor transcriptional factors and may directly contribute to myocardial regeneration following ischemic damage. Nestin protein was also detected in endothelial cells of newly formed blood vessels in the scar and may represent a marker of revascularization. Lastly, nestin was induced in a subpopulation of smooth muscle α-actin(+) scar-derived myofibroblasts, and the expression of the intermediate filament protein may provide a proliferative advantage. Collectively, these data demonstrate that diverse populations of nestin(+) cells participate in cardiac wound healing.
Collapse
|