1
|
Robb JL, Boisjoly F, Machuca-Parra AI, Coursan A, Manceau R, Majeur D, Rodaros D, Bouyakdan K, Greffard K, Bilodeau JF, Forest A, Daneault C, Ruiz M, Laurent C, Arbour N, Layé S, Fioramonti X, Madore C, Fulton S, Alquier T. Blockage of ATGL-mediated breakdown of lipid droplets in microglia alleviates neuroinflammatory and behavioural responses to lipopolysaccharides. Brain Behav Immun 2025; 123:315-333. [PMID: 39326768 DOI: 10.1016/j.bbi.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LD) are triglyceride storing organelles that have emerged as an important component of cellular inflammatory responses. LD lipolysis via adipose triglyceride lipase (ATGL), the enzyme that catalyses the rate-limiting step of triglyceride lipolysis, regulates inflammation in peripheral immune and non-immune cells. ATGL elicits both pro- and anti-inflammatory responses in the periphery in a cell-type dependent manner. The present study determined the impact of ATGL inhibition and microglia-specific ATGL genetic loss-of-function on acute inflammatory and behavioural responses to pro-inflammatory insult. First, we evaluated the impact of lipolysis inhibition on lipopolysaccharide (LPS)-induced expression and secretion of cytokines and phagocytosis in mouse primary microglia cultures. Lipase inhibitors (ORlistat and ATGListatin) and LPS led to LD accumulation in microglia. Pan-lipase inhibition with ORlistat alleviated LPS-induced expression of IL-1β and IL-6. Specific inhibition of ATGL had a similar action on CCL2, IL-1β and IL-6 expression in both neonatal and adult microglia cultures. CCL2 and IL-6 secretion were also reduced by ATGListatin or knockdown of ATGL. ATGListatin increased phagocytosis in neonatal cultures independently from LPS treatment. Second, targeted and untargeted lipid profiling revealed that ATGListatin reduced LPS-induced generation of pro-inflammatory prostanoids and modulated ceramide species in neonatal microglia. Finally, the role of microglial ATGL in neuroinflammation was assessed using a novel microglia-specific and inducible ATGL knockout mouse model. Loss of microglial ATGL in adult male mice dampened LPS-induced expression of IL-6 and IL-1β and microglial density. LPS-induced sickness- and anxiety-like behaviours were also reduced in male mice with loss of ATGL in microglia. Together, our results demonstrate potent anti-inflammatory effects produced by pharmacological or genetic inhibition of ATGL-mediated triglyceride lipolysis and thereby propose that supressing microglial LD lipolysis has beneficial actions in acute neuroinflammatory conditions.
Collapse
Affiliation(s)
- Josephine Louise Robb
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Frédérick Boisjoly
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Arturo Israel Machuca-Parra
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Adeline Coursan
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Romane Manceau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Danie Majeur
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Karine Greffard
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean-François Bilodeau
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, G1K 7P4, Canada
| | - Anik Forest
- Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Caroline Daneault
- Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Matthieu Ruiz
- Département de Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada; Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Cyril Laurent
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Xavier Fioramonti
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Charlotte Madore
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Food4BrainHealth France-Canada International Research Network, Bordeaux, France.
| |
Collapse
|
2
|
Boutagy NE, Gamez-Mendez A, Fowler JW, Zhang H, Chaube BK, Esplugues E, Kuo A, Lee S, Horikami D, Zhang J, Citrin KM, Singh AK, Coon BG, Lee MY, Suarez Y, Fernandez-Hernando C, Sessa WC. Dynamic metabolism of endothelial triglycerides protects against atherosclerosis in mice. J Clin Invest 2024; 134:e170453. [PMID: 38175710 PMCID: PMC10866653 DOI: 10.1172/jci170453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Blood vessels are continually exposed to circulating lipids, and elevation of ApoB-containing lipoproteins causes atherosclerosis. Lipoprotein metabolism is highly regulated by lipolysis, largely at the level of the capillary endothelium lining metabolically active tissues. How large blood vessels, the site of atherosclerotic vascular disease, regulate the flux of fatty acids (FAs) into triglyceride-rich (TG-rich) lipid droplets (LDs) is not known. In this study, we showed that deletion of the enzyme adipose TG lipase (ATGL) in the endothelium led to neutral lipid accumulation in vessels and impaired endothelial-dependent vascular tone and nitric oxide synthesis to promote endothelial dysfunction. Mechanistically, the loss of ATGL led to endoplasmic reticulum stress-induced inflammation in the endothelium. Consistent with this mechanism, deletion of endothelial ATGL markedly increased lesion size in a model of atherosclerosis. Together, these data demonstrate that the dynamics of FA flux through LD affects endothelial cell homeostasis and consequently large vessel function during normal physiology and in a chronic disease state.
Collapse
Affiliation(s)
- Nabil E. Boutagy
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Ana Gamez-Mendez
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Joseph W.M. Fowler
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bal K. Chaube
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Enric Esplugues
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew Kuo
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sungwoon Lee
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Daiki Horikami
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Jiasheng Zhang
- Department of Cardiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kathryn M. Citrin
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Abhishek K. Singh
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Brian G. Coon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Monica Y. Lee
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago School of Medicine, Chicago, Illinois, USA
| | - Yajaira Suarez
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William C. Sessa
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
- Department of Cardiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Vassiliou E, Farias-Pereira R. Impact of Lipid Metabolism on Macrophage Polarization: Implications for Inflammation and Tumor Immunity. Int J Mol Sci 2023; 24:12032. [PMID: 37569407 PMCID: PMC10418847 DOI: 10.3390/ijms241512032] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Macrophage polarization is influenced by lipids, which also exert significant control over macrophage functions. Lipids and their metabolites are players in intricate signaling pathways that modulate macrophages' responses to pathogens, phagocytosis, ferroptosis, and inflammation. This review focuses on lipid metabolism and macrophage functions and addresses potential molecular targets for the treatment of macrophage-related diseases. While lipogenesis is crucial for lipid accumulation and phagocytosis in M1 macrophages, M2 macrophages likely rely on fatty acid β-oxidation to utilize fatty acids as their primary energy source. Cholesterol metabolism, regulated by factors such as SREBPs, PPARs, and LXRs, is associated with the cholesterol efflux capacity and the formation of foam cells (M2-like macrophages). Foam cells, which are targets for atherosclerosis, are associated with an increase in inflammatory cytokines. Lipolysis and fatty acid uptake markers, such as CD36, also contribute to the production of cytokines. Enhancing the immune system through the inhibition of lipid-metabolism-related factors can potentially serve as a targeted approach against tumor cells. Cyclooxygenase inhibitors, which block the conversion of arachidonic acid into various inflammatory mediators, influence macrophage polarization and have generated attention in cancer research.
Collapse
Affiliation(s)
- Evros Vassiliou
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA;
| | - Renalison Farias-Pereira
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA;
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
4
|
Deficiency of Adipose Triglyceride Lipase Induces Metabolic Syndrome and Cardiomyopathy in Zebrafish. Int J Mol Sci 2022; 24:ijms24010117. [PMID: 36613558 PMCID: PMC9820674 DOI: 10.3390/ijms24010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Lipid metabolism dysfunction is related to clinical disorders including obesity, cancer, liver steatosis, and cardiomyopathy. Impaired lipolytic enzymes result in altered release of free fatty acids. The dramatic change in dyslipidemia is important in lipotoxic cardiomyopathy. Adipose triglyceride lipase (ATGL) catalyzes the lipolysis of triacylglycerol to reduce intramyocardial triglyceride levels in the heart and improve myocardial function. We examined the role of ATGL in metabolic cardiomyopathy by developing an Atgl knockout (ALKO) zebrafish model of metabolic cardiomyopathy disease by continuously expressing CRISPR/Cas9 protein and atgl gene guide RNAs (gRNAs). The expressed Cas9 protein bound to four gRNAs targeting the atgl gene locus, facilitating systemic gene KO. Ablation of Atgl interfered with lipid metabolism, which induced hyperlipidemia and hyperglycemia. ALKO adults and embryos displayed hypertrophic hearts. ALKO presented a typical dilated cardiomyopathy profile with a remarkable reduction in four sarcomere genes (myosin heavy chain 7-like, actin alpha cardiac muscle 1b, myosin binding protein C3, and troponin T type 2a) and two Ca2+ handling regulator genes (tropomyosin 4b and ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2b). Immune cell infiltration in cardiac tissue of ALKO provided direct evidence of advanced metabolic cardiomyopathy. The presently described model could become a powerful tool to clarify the underlying mechanism between metabolic disorders and cardiomyopathies.
Collapse
|
5
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
6
|
Ho TC, Fan NW, Yeh SI, Chen SL, Tsao YP. The Therapeutic Effects of a PEDF-Derived Short Peptide on Murine Experimental Dry Eye Involves Suppression of MMP-9 and Inflammation. Transl Vis Sci Technol 2022; 11:12. [PMID: 36201200 PMCID: PMC9554226 DOI: 10.1167/tvst.11.10.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the efficacy of a pigment epithelium-derived factor (PEDF)-derived short peptide 29-mer, on the treatment and prevention of experimental dry eye (EDE). Methods C57BL/6 mice were housed in a low humidity controlled environment chamber for 14 days to induce EDE. The 29-mer was administered topically to their eyes, for treatment or dosing, from the point of housing in the controlled environment chamber. The efficacy of the 29-mer on EDE was evaluated in terms of corneal epithelial integrity, tear secretion, and the density of conjunctival goblet cells. PEDF and inflammatory factors, including tumor necrosis factor-α, IL-1β, IL-6, monocyte chemotactic protein (MCP)-1, matrix metalloproteinase-9, and macrophage infiltration, were examined by real-time polymerase chain reaction, Western blotting, and immunostaining. The involvement of the PEDF receptor/PNPLA2 on the 29-mer effects was evaluated by a specific inhibitor, atglistatin. Rabbit corneal epithelial cells were exposed to hyperosmotic medium to induce inflammatory responses. Results The levels of PEDF protein increased in the corneal epithelium of EDE, compared with the nonstressed mice. The 29-mer showed a therapeutic effect on EDE and prevented the development of EDE, accompanied by amelioration of the inflammatory factors. The 29-mer effects of inflammatory relief were dramatically reversed by atglistatin. The 29-mer also suppressed the expression of matrix metalloproteinase-9 and proinflammatory cytokines in rabbit corneal epithelial cells induced by hyperosmolarity. Conclusions Through this animal study, we provide a proof of concept of the anti-inflammatory domain of PEDF having potential to treat dry eye disease. Translational Relevance This study shows the 29-mer has novel potential as an ophthalmic drop treatment for dry eye disease.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Nai-Wen Fan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shu-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Emam M, Eslamloo K, Caballero-Solares A, Lorenz EK, Xue X, Umasuthan N, Gnanagobal H, Santander J, Taylor RG, Balder R, Parrish CC, Rise ML. Nutritional immunomodulation of Atlantic salmon response to Renibacterium salmoninarum bacterin. Front Mol Biosci 2022; 9:931548. [PMID: 36213116 PMCID: PMC9532746 DOI: 10.3389/fmolb.2022.931548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Evandro Kleber Lorenz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Minneapolis, MN, United States
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
8
|
Tlili M, Acevedo H, Descoteaux A, Germain M, Heinonen KM. Cell-intrinsic Wnt4 ligand regulates mitochondrial oxidative phosphorylation in macrophages. J Biol Chem 2022; 298:102193. [PMID: 35764169 PMCID: PMC9352913 DOI: 10.1016/j.jbc.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Macrophages respond to their environment by adopting a predominantly inflammatory or anti-inflammatory profile, depending on the context. The polarization of the subsequent response is regulated by a combination of intrinsic and extrinsic signals and is associated with alterations in macrophage metabolism. Although macrophages are important producers of Wnt ligands, the role of Wnt signaling in regulating metabolic changes associated with macrophage polarization remains unclear. Wnt4 upregulation has been shown to be associated with tissue repair and suppression of age-associated inflammation, which led us to generate Wnt4-deficient bone marrow–derived macrophages to investigate its role in metabolism. We show that loss of Wnt4 led to modified mitochondrial structure, enhanced oxidative phosphorylation, and depleted intracellular lipid reserves, as the cells depended on fatty acid oxidation to fuel their mitochondria. Further we found that enhanced lipolysis was dependent on protein kinase C–mediated activation of lysosomal acid lipase in Wnt4-deficient bone marrow–derived macrophages. Although not irreversible, these metabolic changes promoted parasite survival during infection with Leishmania donovani. In conclusion, our results indicate that enhanced macrophage fatty acid oxidation impairs the control of intracellular pathogens, such as Leishmania. We further suggest that Wnt4 may represent a potential target in atherosclerosis, which is characterized by lipid storage in macrophages leading to them becoming foam cells.
Collapse
Affiliation(s)
- Mouna Tlili
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Hamlet Acevedo
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Albert Descoteaux
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, CANADA; Centre d'Excellence de Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montreal, CANADA; Réseau Intersectoriel de Recherche en Santé de l'Université du Québec, Université du Québec, Quebec, CANADA
| | - Krista M Heinonen
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA; Centre d'Excellence de Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montreal, CANADA.
| |
Collapse
|
9
|
Goeritzer M, Schlager S, Kuentzel KB, Vujić N, Korbelius M, Rainer S, Kolb D, Mussbacher M, Salzmann M, Schrottmaier WC, Assinger A, Schlagenhauf A, Madreiter-Sokolowski CT, Blass S, Eichmann TO, Graier WF, Kratky D. Adipose Triglyceride Lipase Deficiency Attenuates In Vitro Thrombus Formation without Affecting Platelet Activation and Bleeding In Vivo. Cells 2022; 11:850. [PMID: 35269472 PMCID: PMC8908992 DOI: 10.3390/cells11050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
According to genome-wide RNA sequencing data from human and mouse platelets, adipose triglyceride lipase (ATGL), the main lipase catalyzing triglyceride (TG) hydrolysis in cytosolic lipid droplets (LD) at neutral pH, is expressed in platelets. Currently, it is elusive to whether common lipolytic enzymes are involved in the degradation of TG in platelets. Since the consequences of ATGL deficiency in platelets are unknown, we used whole-body and platelet-specific (plat)Atgl-deficient (-/-) mice to investigate the loss of ATGL on platelet function. Our results showed that platelets accumulate only a few LD due to lack of ATGL. Stimulation with platelet-activating agonists resulted in comparable platelet activation in Atgl-/-, platAtgl-/-, and wild-type mice. Measurement of mitochondrial respiration revealed a decreased oxygen consumption rate in platelets from Atgl-/- but not from platAtgl-/- mice. Of note, global loss of ATGL was associated with an anti-thrombogenic phenotype, which was evident by reduced thrombus formation in collagen-coated channels in vitro despite unchanged bleeding and occlusion times in vivo. We conclude that genetic deletion of ATGL affects collagen-induced thrombosis without pathological bleeding and platelet activation.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Stefanie Schlager
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
- AOP Orphan Pharmaceuticals GmbH, 1190 Vienna, Austria
| | - Katharina B. Kuentzel
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Nemanja Vujić
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Melanie Korbelius
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Silvia Rainer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis, Medical University of Graz, 8010 Graz, Austria;
- BioTechMed-Graz, 8010 Graz, Austria;
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria;
| | - Manuel Salzmann
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, 1190 Vienna, Austria;
| | - Waltraud C. Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1190 Vienna, Austria; (W.C.S.); (A.A.)
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1190 Vienna, Austria; (W.C.S.); (A.A.)
| | - Axel Schlagenhauf
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Corina T. Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Sandra Blass
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Thomas O. Eichmann
- BioTechMed-Graz, 8010 Graz, Austria;
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
- BioTechMed-Graz, 8010 Graz, Austria;
| | - Dagmar Kratky
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
- BioTechMed-Graz, 8010 Graz, Austria;
| |
Collapse
|
10
|
Elevated ATGL in colon cancer cells and cancer stem cells promotes metabolic and tumorigenic reprogramming reinforced by obesity. Oncogenesis 2021; 10:82. [PMID: 34845203 PMCID: PMC8630180 DOI: 10.1038/s41389-021-00373-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is a worldwide epidemic associated with increased risk and progression of colon cancer. Here, we aimed to determine the role of adipose triglyceride lipase (ATGL), responsible for intracellular lipid droplet (LD) utilization, in obesity-driven colonic tumorigenesis. In local colon cancer patients, significantly increased ATGL levels in tumor tissue, compared to controls, were augmented in obese individuals. Elevated ATGL levels in human colon cancer cells (CCC) relative to non-transformed were augmented by an obesity mediator, oleic acid (OA). In CCC and colonospheres, enriched in colon cancer stem cells (CCSC), inhibition of ATGL prevented LDs utilization and inhibited OA-stimulated growth through retinoblastoma-mediated cell cycle arrest. Further, transcriptomic analysis of CCC, with inhibited ATGL, revealed targeted pathways driving tumorigenesis, and high-fat-diet obesity facilitated tumorigenic pathways. Inhibition of ATGL in colonospheres revealed targeted pathways in human colonic tumor crypt base cells (enriched in CCSC) derived from colon cancer patients. In CCC and colonospheres, we validated selected transcripts targeted by ATGL inhibition, some with emerging roles in colonic tumorigeneses (ATG2B, PCK2, PGAM1, SPTLC2, IGFBP1, and ABCC3) and others with established roles (MYC and MUC2). These findings demonstrate obesity-promoted, ATGL-mediated colonic tumorigenesis and establish the therapeutic significance of ATGL in obesity-reinforced colon cancer progression.
Collapse
|
11
|
Giroud M, Jodeleit H, Prentice KJ, Bartelt A. Adipocyte function and the development of cardiometabolic disease. J Physiol 2021; 600:1189-1208. [PMID: 34555180 DOI: 10.1113/jp281979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Obesity is a medical disorder caused by multiple mechanisms of dysregulated energy balance. A major consequence of obesity is an increased risk to develop diabetes, diabetic complications and cardiovascular disease. While a better understanding of the molecular mechanisms linking obesity, insulin resistance and cardiovascular disease is needed, translational research of the human pathology is hampered by the available cellular and rodent model systems. Major barriers are the species-specific differences in energy balance, vascular biology and adipose tissue physiology, especially related to white and brown adipocytes, and adipose tissue browning. In rodents, non-shivering thermogenesis is responsible for a large part of energy expenditure, but humans possess much less thermogenic fat, which means temperature is an important variable in translational research. Mouse models with predisposition to dyslipidaemia housed at thermoneutrality and fed a high-fat diet more closely reflect human physiology. Also, adipocytes play a key role in the endocrine regulation of cardiovascular function. Adipocytes secrete a variety of hormones, lipid mediators and other metabolites that directly influence the local microenvironment as well as distant tissues. This is specifically apparent in perivascular depots, where adipocytes modulate vascular function and inflammation. Altogether, these mechanisms highlight the critical role of adipocytes in the development of cardiometabolic disease.
Collapse
Affiliation(s)
- Maude Giroud
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Henrika Jodeleit
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany
| | - Kacey J Prentice
- Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany.,Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
12
|
Gallerand A, Stunault MI, Merlin J, Luehmann HP, Sultan DH, Firulyova MM, Magnone V, Khedher N, Jalil A, Dolfi B, Castiglione A, Dumont A, Ayrault M, Vaillant N, Gilleron J, Barbry P, Dombrowicz D, Mack M, Masson D, Bertero T, Becher B, Williams JW, Zaitsev K, Liu Y, Guinamard RR, Yvan-Charvet L, Ivanov S. Brown adipose tissue monocytes support tissue expansion. Nat Commun 2021; 12:5255. [PMID: 34489438 PMCID: PMC8421389 DOI: 10.1038/s41467-021-25616-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Monocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling. Single-cell RNA sequencing analysis of BAT immune cells uncovered a large diversity in monocyte and macrophage populations. Fate-mapping experiments demonstrated that the BAT macrophage pool requires constant replenishment from monocytes. Using a genetic model of BAT expansion, we found that brown fat monocyte numbers were selectively increased in this scenario. This observation was confirmed using a CCR2-binding radiotracer and positron emission tomography. Importantly, in line with their tissue recruitment, blood monocyte counts were decreased while bone marrow hematopoiesis was not affected. Monocyte depletion prevented brown adipose tissue expansion and altered its architecture. Podoplanin engagement is strictly required for BAT expansion. Together, these data redefine the diversity of immune cells in the BAT and emphasize the role of monocyte recruitment for tissue remodeling. Adipose tissue is composed of a number of adipocytes and a number of other cells including immune cells. Here the authors use single-cell sequencing of murine brown adipose tissue immune cells and describe multiple macrophage and monocyte subsets and show that monocytes contribute to brown adipose tissue expansion.
Collapse
Affiliation(s)
| | | | | | - Hannah P Luehmann
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Deborah H Sultan
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maria M Firulyova
- Computer Technologies Department, ITMO University, Saint Petersburg, Russia
| | | | | | - Antoine Jalil
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | | | | | | | | | | | | | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | - David Dombrowicz
- Univ.Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Matthias Mack
- Department of Internal Medicine - Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - David Masson
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Jesse W Williams
- Department of Integrative Biology and Physiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Konstantin Zaitsev
- Computer Technologies Department, ITMO University, Saint Petersburg, Russia
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | |
Collapse
|
13
|
Noguchi H, Yamada S, Hirano KI, Yamaguchi S, Suzuki A, Guo X, Zaima N, Li M, Kobayashi K, Ikeda Y, Nakayama T, Sasaguri Y. Outside-in signaling by femoral cuff injury induces a distinct vascular lesion in adipose triglyceride lipase knockout mice. Histol Histopathol 2020; 36:91-100. [PMID: 33231284 DOI: 10.14670/hh-18-285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic deficiency of adipose triglyceride lipase (ATGL), a rate-limiting enzyme for intracellular triglyceride (TG) hydrolysis, causes TG-deposit cardiomyovasculopathy (TGCV), a recently identified rare cardiovascular disorder (ORPHA code: 565612) in humans. One of the major characteristics of TGCV is a novel type of diffuse and concentric coronary atherosclerosis with ATGL-deficient smooth muscle cells (SMCs). Patients with TGCV have intractable coronary artery disease. Therefore, it is crucial to investigate the mechanisms underlying vascular lesions in ATGL deficiency using animal models. Cuff injury is an experimental procedure to induce vascular remodeling with neointimal formation with SMCs after placing a cuff around the adventitial side of the artery without direct influence on endothelium. We report the effect of cuff injury on femoral arteries of ATGL-knockout (ATGL⁻/⁻) mice. Cuff-induced concentric neointimal formation with migrating SMCs was exacerbated in ATGL⁻/⁻ mice, mimicking atherosclerotic lesions in patients with TGCV. In the media, cell death of SMCs and loss of elastic fibers increased. Perivascular infiltrating cells expressing tumor necrosis factor-α (TNF-α) were more prominent in ATGL⁻/⁻ mice than in wild-type (WT) mice. In Boyden chamber experiments, a greater number of ATGL⁻/⁻ SMCs migrated in response to TNF-α compared to WT SMCs. These data, for the first time, demonstrated that outside-in signaling by cuff-induced neointimal formation where paracrine stimuli from adventitial infiltrating cells may lead to neointimal formation and mediolysis in ATGL-deficient conditions. Cuff injury might be a valuable model for understanding the mechanisms underlying the development of atherosclerotic lesions in patients with TGCV.
Collapse
Affiliation(s)
- Hirotsugu Noguchi
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kagoshima, Japan.,Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sohsuke Yamada
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kagoshima, Japan.,Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kanazawa, Japan
| | - Ken-Ichi Hirano
- Laboratory of Cardiovascular Disease, Novel, Non-invasive, and Nutritional Therapeutics (CNT) and Triglyceride Research Center (TGRC), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Satoshi Yamaguchi
- Laboratory of Cardiovascular Disease, Novel, Non-invasive, and Nutritional Therapeutics (CNT) and Triglyceride Research Center (TGRC), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Suzuki
- Laboratory of Cardiovascular Disease, Novel, Non-invasive, and Nutritional Therapeutics (CNT) and Triglyceride Research Center (TGRC), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kanazawa, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Kindai, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Kindai, Japan
| | - Ming Li
- Laboratory of Cardiovascular Disease, Novel, Non-invasive, and Nutritional Therapeutics (CNT) and Triglyceride Research Center (TGRC), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kagoshima, Japan
| | - Yasuyuki Sasaguri
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kagoshima, Japan
| |
Collapse
|
14
|
Yvan-Charvet L, Ivanov S. Metabolic Reprogramming of Macrophages in Atherosclerosis: Is It All about Cholesterol? J Lipid Atheroscler 2020; 9:231-242. [PMID: 32821733 PMCID: PMC7379089 DOI: 10.12997/jla.2020.9.2.231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Hypercholesterolemia contributes to the chronic inflammatory response during the progression of atherosclerosis, in part by favoring cholesterol loading in macrophages and other immune cells. However, macrophages encounter a substantial amount of other lipids and nutrients after ingesting atherogenic lipoprotein particles or clearing apoptotic cells, increasing their metabolic load and impacting their behavior during atherosclerosis plaque progression. This review examines whether and how fatty acids and glucose shape the cellular metabolic reprogramming of macrophages in atherosclerosis to modulate the onset phase of inflammation and the later resolution stage, in which the balance is tipped toward tissue repair.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Stoyan Ivanov
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| |
Collapse
|
15
|
Yu L, Li Y, Grisé A, Wang H. CGI-58: Versatile Regulator of Intracellular Lipid Droplet Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:197-222. [PMID: 32705602 PMCID: PMC8063591 DOI: 10.1007/978-981-15-6082-8_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Comparative gene identification-58 (CGI-58), also known as α/β-hydrolase domain-containing 5 (ABHD5), is a member of a large family of proteins containing an α/β-hydrolase-fold. CGI-58 is well-known as the co-activator of adipose triglyceride lipase (ATGL), which is a key enzyme initiating cytosolic lipid droplet lipolysis. Mutations in either the human CGI-58 or ATGL gene cause an autosomal recessive neutral lipid storage disease, characterized by the excessive accumulation of triglyceride (TAG)-rich lipid droplets in the cytoplasm of almost all cell types. CGI-58, however, has ATGL-independent functions. Distinct phenotypes associated with CGI-58 deficiency commonly include ichthyosis (scaly dry skin), nonalcoholic steatohepatitis, and hepatic fibrosis. Through regulated interactions with multiple protein families, CGI-58 controls many metabolic and signaling pathways, such as lipid and glucose metabolism, energy balance, insulin signaling, inflammatory responses, and thermogenesis. Recent studies have shown that CGI-58 regulates the pathogenesis of common metabolic diseases in a tissue-specific manner. Future studies are needed to molecularly define ATGL-independent functions of CGI-58, including the newly identified serine protease activity of CGI-58. Elucidation of these versatile functions of CGI-58 may uncover fundamental cellular processes governing lipid and energy homeostasis, which may help develop novel approaches that counter against obesity and its associated metabolic sequelae.
Collapse
Affiliation(s)
- Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yi Li
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alison Grisé
- College of Computer, Math, and Natural Sciences, College of Behavioral and Social Sciences, University of Maryland, College Park, MD, USA
| | - Huan Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:880-899. [PMID: 30367950 PMCID: PMC6439276 DOI: 10.1016/j.bbalip.2018.10.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Adipose triglyceride lipase (ATGL) has been discovered 14 years ago and revised our view on intracellular triglyceride (TG) mobilization – a process termed lipolysis. ATGL initiates the hydrolysis of TGs to release fatty acids (FAs) that are crucial energy substrates, precursors for the synthesis of membrane lipids, and ligands of nuclear receptors. Thus, ATGL is a key enzyme in whole-body energy homeostasis. In this review, we give an update on how ATGL is regulated on the transcriptional and post-transcriptional level and how this affects the enzymes' activity in the context of neutral lipid catabolism. In depth, we highlight and discuss the numerous physiological functions of ATGL in lipid and energy metabolism. Over more than a decade, different genetic mouse models lacking or overexpressing ATGL in a cell- or tissue-specific manner have been generated and characterized. Moreover, pharmacological studies became available due to the development of a specific murine ATGL inhibitor (Atglistatin®). The identification of patients with mutations in the human gene encoding ATGL and their disease spectrum has underpinned the importance of ATGL in humans. Together, mouse models and human data have advanced our understanding of the physiological role of ATGL in lipid and energy metabolism in adipose and non-adipose tissues, and of the pathophysiological consequences of ATGL dysfunction in mice and men. Summary of mouse models with genetic or pharmacological manipulation of ATGL. Summary of patients with mutations in the human gene encoding ATGL. In depth discussion of the role of ATGL in numerous physiological processes in mice and men.
Collapse
|
17
|
Yang S, Sun J. LncRNA SRA deregulation contributes to the development of atherosclerosis by causing dysfunction of endothelial cells through repressing the expression of adipose triglyceride lipase. Mol Med Rep 2018; 18:5207-5214. [PMID: 30272285 DOI: 10.3892/mmr.2018.9497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
It has been well established that long non‑coding RNAs (lncRNAs) are crucial mediators in a diverse range of diseases, including atherosclerosis. The present study aimed to examine the molecular mechanisms underlying the association between steroid receptor RNA activator (SRA) and atherosclerosis. Reverse transcription‑quantitative polymerase chain reaction analysis, western blot analysis and luciferase assays were performed to examine interactions among SRA, adipose triglyceride lipase (ATGL) and peroxisome proliferator‑activated receptor (PPARγ), and the effect of resveratrol (RSV) on the levels of SRA, ATGL and PPARγ. ELISA was performed to determine the effects of SRA and RSV on the production of inflammatory‑associated cytokines. The results showed that knockdown of the expression of SRA by transfecting HUVECs with short hairpin RNA‑SRA inhibited the production of ATGL and PPARγ. A plasmid coding SRA RNA, but not the SRAP protein, attenuated the luciferase activity of the ATGL promoter. PPARγ had no effect on the luciferase activity driven by the ATGL promoter in the absence of rosiglitazone, whereas the luciferase activity of the ATGL promoter was elevated in the presence of rosiglitazone. This effect was eliminated by SRA. SRA enhanced the production of inflammatory‑associated cytokines, including tumor necrosis factor‑α, interleukin‑6, monocyte chemotactic protein‑1 and intercellular adhesion molecule‑1; however, the promoting effect of SRA was eliminated by RSV. RSV increased the expression of ATGL and PPARγ, but not that of SRA. RSV distinctly and concentration‑dependently upregulated the luciferase activity of ATGL, compared with that in the cells without RSV treatment, whereas treating with rosiglitazone inhibited the effect of RSV on the luciferase activity of ATGL. The present study examined the roles of SRA in atherosclerosis, and the effects of changes in SRA and ATGL on inflammatory cytokines and HUVEC dysfunction.
Collapse
Affiliation(s)
- Shuguo Yang
- Department of Internal Medicine, The Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Jingang Sun
- Department of Internal Medicine, The Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
18
|
Hints on ATGL implications in cancer: beyond bioenergetic clues. Cell Death Dis 2018; 9:316. [PMID: 29472527 PMCID: PMC5833653 DOI: 10.1038/s41419-018-0345-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
Abstract
Among metabolic rearrangements occurring in cancer cells, lipid metabolism alteration has become a hallmark, aimed at sustaining accelerated proliferation. In particular, fatty acids (FAs) are dramatically required by cancer cells as signalling molecules and membrane building blocks, beyond bioenergetics. Along with de novo biosynthesis, free FAs derive from dietary sources or from intracellular lipid droplets, which represent the storage of triacylglycerols (TAGs). Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis, catalysing the first step of intracellular TAGs hydrolysis in several tissues. However, the roles of ATGL in cancer are still neglected though a putative tumour suppressor function of ATGL has been envisaged, as its expression is frequently reduced in different human cancers (e.g., lung, muscle, and pancreas). In this review, we will introduce lipid metabolism focusing on ATGL functions and regulation in normal cell physiology providing also speculative perspectives on potential non-energetic functions of ATGL in cancer. In particular, we will discuss how ATGL is implicated, mainly through the peroxisome proliferator-activated receptor-α (PPAR-α) signalling, in inflammation, redox homoeostasis and autophagy, which are well-known processes deregulated during cancer formation and/or progression.
Collapse
|
19
|
Zechner R, Madeo F, Kratky D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 2017; 18:671-684. [PMID: 28852221 DOI: 10.1038/nrm.2017.76] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fatty acids are the most efficient substrates for energy production in vertebrates and are essential components of the lipids that form biological membranes. Synthesis of triacylglycerols from non-esterified free fatty acids (FFAs) combined with triacylglycerol storage represents a highly efficient strategy to stockpile FFAs in cells and prevent FFA-induced lipotoxicity. Although essentially all vertebrate cells have some capacity to store and utilize triacylglycerols, white adipose tissue is by far the largest triacylglycerol depot and is uniquely able to supply FFAs to other tissues. The release of FFAs from triacylglycerols requires their enzymatic hydrolysis by a process called lipolysis. Recent discoveries thoroughly altered and extended our understanding of lipolysis. This Review discusses how cytosolic 'neutral' lipolysis and lipophagy, which utilizes 'acid' lipolysis in lysosomes, degrade cellular triacylglycerols as well as how these pathways communicate, how they affect lipid metabolism and energy homeostasis and how their dysfunction affects the pathogenesis of metabolic diseases. Answers to these questions will likely uncover novel strategies for the treatment of prevalent metabolic diseases.
Collapse
Affiliation(s)
- Rudolf Zechner
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| | - Frank Madeo
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| | - Dagmar Kratky
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010 Graz, Austria
| |
Collapse
|
20
|
Xi D, Zhao J, Zhao M, Fu W, Guo Z, Chen H. Identification of Gene Expression Changes in the Aorta of ApoE Null Mice Fed a High-Fat Diet. Genes (Basel) 2017; 8:genes8100289. [PMID: 29064389 PMCID: PMC5664139 DOI: 10.3390/genes8100289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/08/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a chronic multifactorial inflammatory disease with high worldwide prevalence, and has become the leading cause of death. In the present study, we analyzed global gene expression changes in the aorta of Apolipoprotein E (ApoE) null mice fed a high-fat diet by using RNA-seq. We identified a total of 280 differentially expressed genes, of which 163 genes were upregulated and 117 genes were downregulated by high-fat diet compared with normal diet. Functional clustering and gene network analysis revealed that fatty acid metabolic process is crucial for atherosclerosis. By examining of the promoter regions of differentially expressed genes, we identified four causal transcription factors. Additionally, through connectivity map (CMap) analysis, multiple compounds were identified to have anti-atherosclerotic effects due to their ability to reverse gene expression during atherosclerosis. Our study provides a valuable resource for in-depth understanding of the mechanism underlying atherosclerosis.
Collapse
Affiliation(s)
- Dan Xi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China.
| | - Jinzhen Zhao
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China.
| | - Miao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Weijun Fu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China.
| | - Zhigang Guo
- Department of Cardiology, Huqiao Medical Center, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China.
| | - Hui Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
21
|
Critical roles for α/β hydrolase domain 5 (ABHD5)/comparative gene identification-58 (CGI-58) at the lipid droplet interface and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1233-1241. [PMID: 28827091 DOI: 10.1016/j.bbalip.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
Abstract
Mutations in the gene encoding comparative gene identification 58 (CGI-58), also known as α β hydrolase domain-containing 5 (ABHD5), cause neutral lipid storage disorder with ichthyosis (NLSDI). This inborn error in metabolism is characterized by ectopic accumulation of triacylglycerols (TAG) within cytoplasmic lipid droplets in multiple cell types. Studies over the past decade have clearly demonstrated that CGI-58 is a potent regulator of TAG hydrolysis in the disease-relevant cell types. However, despite the reproducible genetic link between CGI-58 mutations and TAG storage, the molecular mechanisms by which CGI-58 regulates TAG hydrolysis are still incompletely understood. It is clear that CGI-58 can regulate TAG hydrolysis by activating the major TAG hydrolase adipose triglyceride lipase (ATGL), yet CGI-58 can also regulate lipid metabolism via mechanisms that do not involve ATGL. This review highlights recent progress made in defining the physiologic and biochemical function of CGI-58, and its broader role in energy homeostasis. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
|
22
|
Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation. Biosci Rep 2017; 37:BSR20170002. [PMID: 28536311 PMCID: PMC5479018 DOI: 10.1042/bsr20170002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF165) displayed a high capability to alter their phenotype and function into ELCs in vitro. Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro. We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation.
Collapse
|
23
|
Zhong W, Pan G, Wang L, Li S, Ou J, Xu M, Li J, Zhu B, Cao X, Ma H, Li C, Xu J, Olkkonen VM, Staels B, Yan D. ORP4L Facilitates Macrophage Survival via G-Protein-Coupled Signaling: ORP4L-/- Mice Display a Reduction of Atherosclerosis. Circ Res 2016; 119:1296-1312. [PMID: 27729467 DOI: 10.1161/circresaha.116.309603] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/02/2016] [Accepted: 10/11/2016] [Indexed: 02/05/2023]
Abstract
RATIONALE Macrophage survival within the arterial wall is a central factor contributing to atherogenesis. Oxysterols, major components of oxidized low-density lipoprotein, exert cytotoxic effects on macrophages. OBJECTIVE To determine whether oxysterol-binding protein-related protein 4 L (ORP4L), an oxysterol-binding protein, affects macrophage survival and the pathogenesis of atherosclerosis. METHODS AND RESULTS By hiring cell biological approaches and ORP4L-/- mice, we show that ORP4L coexpresses with and forms a complex with Gαq/11 and phospholipase C (PLC)-β3 in macrophages. ORP4L facilitates G-protein-coupled ligand-induced PLCβ3 activation, IP3 production, and Ca2+ release from the endoplasmic reticulum. Through this mechanism, ORP4L sustains antiapoptotic Bcl-XL expression through Ca2+-mediated c-AMP responsive element binding protein transcriptional regulation and thus protects macrophages from apoptosis. Excessive stimulation with the oxysterol 25-hydroxycholesterol disassembles the ORP4L/Gαq/11/PLCβ3 complexes, resulting in reduced PLCβ3 activity, IP3 production, and Ca2+ release, as well as decreased Bcl-XL expression and increased apoptosis. Overexpression of ORP4L counteracts these oxysterol-induced defects. Mice lacking ORP4L exhibit increased apoptosis of macrophages in atherosclerotic lesions and a reduced lesion size. CONCLUSIONS ORP4L is crucial for macrophage survival. It counteracts the cytotoxicity of oxysterols/oxidized low-density lipoprotein to protect macrophage from apoptosis, thus playing an important role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Wenbin Zhong
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China (W.Z., G.P., L.W., J.L., B.Z., X.C., H.M., C.L., D.Y.); Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland (S.L., V.M.O.); Division of Cardiac Surgery, the First Affiliated Hospital (J.O.) and Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (M.X., J.X.); and U1011 Inserm, EGID, Université Lille, CHU Lille, Institut Pasteur de Lille, France (B.S.)
| | - Guoping Pan
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China (W.Z., G.P., L.W., J.L., B.Z., X.C., H.M., C.L., D.Y.); Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland (S.L., V.M.O.); Division of Cardiac Surgery, the First Affiliated Hospital (J.O.) and Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (M.X., J.X.); and U1011 Inserm, EGID, Université Lille, CHU Lille, Institut Pasteur de Lille, France (B.S.)
| | - Lin Wang
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China (W.Z., G.P., L.W., J.L., B.Z., X.C., H.M., C.L., D.Y.); Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland (S.L., V.M.O.); Division of Cardiac Surgery, the First Affiliated Hospital (J.O.) and Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (M.X., J.X.); and U1011 Inserm, EGID, Université Lille, CHU Lille, Institut Pasteur de Lille, France (B.S.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lord CC, Ferguson D, Thomas G, Brown AL, Schugar RC, Burrows A, Gromovsky AD, Betters J, Neumann C, Sacks J, Marshall S, Watts R, Schweiger M, Lee RG, Crooke RM, Graham MJ, Lathia JD, Sakaguchi TF, Lehner R, Haemmerle G, Zechner R, Brown JM. Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation. Cell Rep 2016; 16:939-949. [PMID: 27396333 DOI: 10.1016/j.celrep.2016.06.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 06/10/2016] [Indexed: 01/23/2023] Open
Abstract
Adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes.
Collapse
Affiliation(s)
- Caleb C Lord
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9077, USA
| | - Daniel Ferguson
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gwynneth Thomas
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Amanda L Brown
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca C Schugar
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy Burrows
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony D Gromovsky
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jenna Betters
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Chase Neumann
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Sacks
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stephanie Marshall
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Rosanne M Crooke
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Mark J Graham
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Takuya F Sakaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
25
|
Vujic N, Porter Abate J, Schlager S, David T, Kratky D, Koliwad SK. Acyl-CoA:Diacylglycerol Acyltransferase 1 Expression Level in the Hematopoietic Compartment Impacts Inflammation in the Vascular Plaques of Atherosclerotic Mice. PLoS One 2016; 11:e0156364. [PMID: 27223895 PMCID: PMC4880185 DOI: 10.1371/journal.pone.0156364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/12/2016] [Indexed: 01/09/2023] Open
Abstract
The final step of triacylglycerol synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferases (DGATs). We have previously shown that ApoE-/-Dgat1-/- mice are protected from developing atherosclerosis in association with reduced foam cell formation. However, the role of DGAT1, specifically in myeloid and other hematopoietic cell types, in determining this protective phenotype is unknown. To address this question, we reconstituted the bone marrow of irradiated Ldlr-/-mice with that from wild-type (WT→ Ldlr-/-) and Dgat1-/-(Dgat1-/-→ Ldlr-/-) donor mice. We noted that DGAT1 in the hematopoietic compartment exerts a sex-specific effect on systemic cholesterol homeostasis. However, both male and female Dgat1-/-→ Ldlr-/-mice had higher circulating neutrophil and lower lymphocyte counts than control mice, suggestive of a classical inflammatory phenotype. Moreover, specifically examining the aortae of these mice revealed that Dgat1-/-→ Ldlr-/-mice have atherosclerotic plaques with increased macrophage content. This increase was coupled to a reduced plaque collagen content, leading to a reduced collagen-to-macrophage ratio. Together, these findings point to a difference in the inflammatory contribution to plaque composition between Dgat1-/-→ Ldlr-/-and control mice. By contrast, DGAT1 deficiency did not affect the transcriptional responses of cultured macrophages to lipoprotein treatment in vitro, suggesting that the alterations seen in the plaques of Dgat1-/-→ Ldlr-/-mice in vivo do not reflect a cell intrinsic effect of DGAT1 in macrophages. We conclude that although DGAT1 in the hematopoietic compartment does not impact the overall lipid content of atherosclerotic plaques, it exerts reciprocal effects on inflammation and fibrosis, two processes that control plaque vulnerability.
Collapse
Affiliation(s)
- Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Jess Porter Abate
- Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Tovo David
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Suneil K. Koliwad
- Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
26
|
Goeritzer M, Vujic N, Schlager S, Chandak PG, Korbelius M, Gottschalk B, Leopold C, Obrowsky S, Rainer S, Doddapattar P, Aflaki E, Wegscheider M, Sachdev V, Graier WF, Kolb D, Radovic B, Kratky D. Active autophagy but not lipophagy in macrophages with defective lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1304-1316. [PMID: 26143381 PMCID: PMC4562370 DOI: 10.1016/j.bbalip.2015.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/29/2015] [Accepted: 06/20/2015] [Indexed: 11/30/2022]
Abstract
During autophagy, autophagosomes fuse with lysosomes to degrade damaged organelles and misfolded proteins. Breakdown products are released into the cytosol and contribute to energy and metabolic building block supply, especially during starvation. Lipophagy has been defined as the autophagy-mediated degradation of lipid droplets (LDs) by lysosomal acid lipase. Adipose triglyceride lipase (ATGL) is the major enzyme catalyzing the initial step of lipolysis by hydrolyzing triglycerides (TGs) in cytosolic LDs. Consequently, most organs and cells, including macrophages, lacking ATGL accumulate TGs, resulting in reduced intracellular free fatty acid concentrations. Macrophages deficient in hormone-sensitive lipase (H0) lack TG accumulation albeit reduced in vitro TG hydrolase activity. We hypothesized that autophagy is activated in lipase-deficient macrophages to counteract their energy deficit. We therefore generated mice lacking both ATGL and HSL (A0H0). Macrophages from A0H0 mice showed 73% reduced neutral TG hydrolase activity, resulting in TG-rich LD accumulation. Increased expression of cathepsin B, accumulation of LC3-II, reduced expression of p62 and increased DQ-BSA dequenching suggest intact autophagy and functional lysosomes in A0H0 macrophages. Markedly decreased acid TG hydrolase activity and lipid flux independent of bafilomycin A1 treatment, however, argue against effective lysosomal degradation of LDs in A0H0 macrophages. We conclude that autophagy of proteins and cell organelles but not of LDs is active as a compensatory mechanism to circumvent and balance the reduced availability of energy substrates in A0H0 macrophages.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Nemanja Vujic
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Prakash G Chandak
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Melanie Korbelius
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Christina Leopold
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Sascha Obrowsky
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Prakash Doddapattar
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Elma Aflaki
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Martin Wegscheider
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Vinay Sachdev
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research/Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| |
Collapse
|
27
|
Xie P, Zeng X, Xiao J, Sun B, Yang D. Transgenic CGI-58 expression in macrophages alleviates the atherosclerotic lesion development in ApoE knockout mice. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1683-90. [PMID: 25178844 DOI: 10.1016/j.bbalip.2014.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
Comparative Gene Identification-58 (CGI-58), as an adipose triglyceride lipase (ATGL) activator, strongly in- creases ATGL-mediated triglyceride (TG) catabolism. Previous studies have shown that CGI-58 affects intestinal cholesterol homeostasis independently of ATGL activity. Therefore, we hypothesized that CGI-58 was involved in macrophage cholesterol metabolism and consequently atherosclerotic lesion formation. Here, we generated macrophage-specific CGI-58 transgenic mice (Mac-CGI-58 Tg) using an SRA promoter, which was further mated with ApoE-/- mice to create litters of CGI-58 Tg/ApoE-/- mice. These CGI-58 Tg/ApoE-/- mice exhibited an anti-atherosclerosis phenotype compared with wild type (WT) controls (CGI-58 WT/ApoE-/-), illustrated by less plaque area in aortic roots. Moreover, macrophage-specific CGI-58 overexpression in mice resulted in upregulated levels of plasma total cholesterol and HDL-cholesterol. Consequently, higher expression levels of PPARa, PPARγ, LXRα, ABCA1, and ABCG1 were detected in macrophages from CGI-58 Tg/ApoE-/- mice compared to CGI-58 WT/ApoE-/- counterparts, which were accompanied by elevated macrophage cholesterol efflux toward HDL and Apo A1. Nevertheless, serum levels of TNF-α and IL-6 were reduced by macrophage-specific CGI-58 overexpression. Finally, bone marrow (BM) transplantation experiments further revealed that ApoE-/- mice reconstituted with Mac-CGI-58 Tg BM cells (ApoE-/-Tg-BM chimera) displayed a significant reduction of atherosclerosis lesions compared with control mice reconstituted with Mac-CGI-58 WT BM cells (ApoE-/-/WT-BM chimera). Collectively, these data strongly suggest that CGI-58 overexpression in macrophages may protect against atherosclerosis development in mice.
Collapse
|
28
|
Fatty acid signaling: the new function of intracellular lipases. Int J Mol Sci 2015; 16:3831-55. [PMID: 25674855 PMCID: PMC4346929 DOI: 10.3390/ijms16023831] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/19/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022] Open
Abstract
Until recently, intracellular triacylglycerols (TAG) stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.
Collapse
|
29
|
Lord CC, Brown JM. Distinct roles for alpha-beta hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2) in lipid metabolism and signaling. Adipocyte 2014; 1:123-131. [PMID: 23145367 PMCID: PMC3492958 DOI: 10.4161/adip.20035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Catabolism of stored triacylglycerol (TAG) from cytoplasmic lipid droplets is critical for providing energy substrates, membrane building blocks and signaling lipids in most cells of the body. However, the lipolytic machinery dictating TAG hydrolysis varies greatly among different cell types. Within the adipocyte, TAG hydrolysis is dynamically regulated by hormones to ensure appropriate metabolic adaptation to nutritional and physiologic cues. In other cell types such as hepatocytes, myocytes and macrophages, mobilization of stored TAG is regulated quite differently. Within the last decade, mutations in two key genes involved in TAG hydrolysis, α-β hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2), were found to cause two distinct neutral lipid storage diseases (NLSD) in humans. These genetic links, along with supporting evidence in mouse models, have prompted a number of studies surrounding the biochemical function(s) of these proteins. Although both CGI-58 and ATGL have been clearly implicated in TAG hydrolysis in multiple tissues and have even been shown to physically interact with each other, recent evidence suggests that they may also have distinct roles. The purpose of this review is to summarize the most recent insights into how CGI-58 and ATGL regulate lipid metabolism and signaling.
Collapse
|
30
|
Schreiber R, Zechner R. Lipolysis meets inflammation: arachidonic acid mobilization from fat. J Lipid Res 2014; 55:2447-9. [PMID: 25332433 DOI: 10.1194/jlr.c055673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Renate Schreiber
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| |
Collapse
|
31
|
Goeritzer M, Schlager S, Radovic B, Madreiter CT, Rainer S, Thomas G, Lord CC, Sacks J, Brown AL, Vujic N, Obrowsky S, Sachdev V, Kolb D, Chandak PG, Graier WF, Sattler W, Brown JM, Kratky D. Deletion of CGI-58 or adipose triglyceride lipase differently affects macrophage function and atherosclerosis. J Lipid Res 2014; 55:2562-75. [PMID: 25316883 PMCID: PMC4242449 DOI: 10.1194/jlr.m052613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular TG stores are efficiently hydrolyzed by adipose TG lipase (ATGL). Its coactivator comparative gene identification-58 (CGI-58) strongly increases ATGL-mediated TG catabolism in cell culture experiments. To investigate the consequences of CGI-58 deficiency in murine macrophages, we generated mice with a targeted deletion of CGI-58 in myeloid cells (macCGI-58(-/-) mice). CGI-58(-/-) macrophages accumulate intracellular TG-rich lipid droplets and have decreased phagocytic capacity, comparable to ATGL(-/-) macrophages. In contrast to ATGL(-/-) macrophages, however, CGI-58(-/-) macrophages have intact mitochondria and show no indications of mitochondrial apoptosis and endoplasmic reticulum stress, suggesting that TG accumulation per se lacks a significant role in processes leading to mitochondrial dysfunction. Another notable difference is the fact that CGI-58(-/-) macrophages adopt an M1-like phenotype in vitro. Finally, we investigated atherosclerosis susceptibility in macCGI-58/ApoE-double KO (DKO) animals. In response to high-fat/high-cholesterol diet feeding, DKO animals showed comparable plaque formation as observed in ApoE(-/-) mice. In agreement, antisense oligonucleotide-mediated knockdown of CGI-58 in LDL receptor(-/-) mice did not alter atherosclerosis burden in the aortic root. These results suggest that macrophage function and atherosclerosis susceptibility differ fundamentally in these two animal models with disturbed TG catabolism, showing a more severe phenotype by ATGL deficiency.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Corina T Madreiter
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Caleb C Lord
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jessica Sacks
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Amanda L Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Sascha Obrowsky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Vinay Sachdev
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research/Institute of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria
| | - Prakash G Chandak
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
32
|
Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization. Cell Death Differ 2014; 21:1290-302. [PMID: 24722209 PMCID: PMC4085533 DOI: 10.1038/cdd.2014.45] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 12/28/2022] Open
Abstract
Macrophages are critical immune effector cells of the tumor microenvironment that promote seeding, extravasation and persistent growth of tumor cells in primary tumors and metastatic sites. Tumor progression and metastasis are affected by dynamic changes in the specific phenotypes of macrophage subpopulations; however, the mechanisms by which tumor cells modulate macrophage polarization remain incompletely understood. Caspase recruitment domain-containing protein 9 (CARD9) is a central adaptor protein of innate immune responses to extracellular pathogens. We report that increased CARD9 expression is primarily localized in infiltrated macrophages and significantly associated with advanced histopathologic stage and the presence of metastasis. Using CARD9-deficient (CARD9(-/-)) mice, we show that bone marrow-derived CARD9 promotes liver metastasis of colon carcinoma cells. Mechanistic studies reveal that CARD9 contributes to tumor metastasis by promoting metastasis-associated macrophage polarization through activation of the nuclear factor-kappa B signaling pathway. We further demonstrate that tumor cell-secreted vascular endothelial growth factor facilitates spleen tyrosine kinase activation in macrophages, which is necessary for formation of the CARD9-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 complex. Taken together, our results indicating that CARD9 is a regulator of metastasis-associated macrophages will lead to new insights into evolution of the microenvironments supporting tumor metastasis, thereby providing targets for anticancer therapies.
Collapse
|
33
|
Zierler KA, Zechner R, Haemmerle G. Comparative gene identification-58/α/β hydrolase domain 5: more than just an adipose triglyceride lipase activator? Curr Opin Lipidol 2014; 25:102-9. [PMID: 24565921 PMCID: PMC4170181 DOI: 10.1097/mol.0000000000000058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Comparative gene identification-58 (CGI-58) is a lipid droplet-associated protein that controls intracellular triglyceride levels by its ability to activate adipose triglyceride lipase (ATGL). Additionally, CGI-58 was described to exhibit lysophosphatidic acid acyl transferase (LPAAT) activity. This review focuses on the significance of CGI-58 in energy metabolism in adipose and nonadipose tissue. RECENT FINDINGS Recent studies with transgenic and CGI-58-deficient mouse strains underscored the importance of CGI-58 as a regulator of intracellular energy homeostasis by modulating ATGL-driven triglyceride hydrolysis. In accordance with this function, mice and humans that lack CGI-58 accumulate triglyceride in multiple tissues. Additionally, CGI-58-deficient mice develop an ATGL-independent severe skin barrier defect and die soon after birth. Although the premature death prevented a phenotypical characterization of adult global CGI-58 knockout mice, the characterization of mice with tissue-specific CGI-58 deficiency revealed new insights into its role in neutral lipid and energy metabolism. Concerning the ATGL-independent function of CGI-58, a recently identified LPAAT activity for CGI-58 was shown to be involved in the generation of signaling molecules regulating inflammatory processes and insulin action. SUMMARY Although the function of CGI-58 in the catabolism of cellular triglyceride depots via ATGL is well established, further studies are required to consolidate the function of CGI-58 as LPAAT and to clarify the involvement of CGI-58 in the metabolism of skin lipids.
Collapse
Affiliation(s)
- Kathrin A Zierler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | |
Collapse
|
34
|
Jha P, Claudel T, Baghdasaryan A, Mueller M, Halilbasic E, Das SK, Lass A, Zimmermann R, Zechner R, Hoefler G, Trauner M. Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia. Hepatology 2014; 59:858-69. [PMID: 24002947 DOI: 10.1002/hep.26732] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/29/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED Hepatic inflammation is a key feature of progressive liver disease. Alterations of fatty acid (FA) metabolism and signaling may play an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and its progression to nonalcoholic steatohepatitis (NASH). Moreover, FAs activate peroxisome proliferator-activated receptor α (PPARα) as a key transcriptional regulator of hepatic FA metabolism and inflammation. Since adipose triglyceride lipase (ATGL/PNPLA2) is the key enzyme for intracellular hydrolysis of stored triglycerides and determines FA signaling through PPARα, we explored the role of ATGL in hepatic inflammation in mouse models of NASH and endotoxemia. Mice lacking ATGL or hormone-sensitive lipase (HSL) were challenged with a methionine-choline-deficient (MCD) diet as a nutritional model of NASH or lipopolysaccharide (LPS) as a model of acute hepatic inflammation. We further tested whether a PPARα agonist (fenofibrate) treatment improves the hepatic phenotype in MCD- or LPS-challenged ATGL-knockout (KO) mice. MCD-fed ATGL-KO mice, although partially protected from peripheral lipolysis, showed exacerbated hepatic steatosis and inflammation. Moreover, ATGL-KO mice challenged by LPS showed enhanced hepatic inflammation, increased mortality, and torpor, findings which were attributed to impaired PPARα DNA binding activity due to reduced FABP1 protein levels, resulting in impaired nuclear FA import. Notably, liganding PPARα through fenofibrate attenuated hepatic inflammation in both MCD-fed and LPS-treated ATGL-KO mice. In contrast, mice lacking HSL had a phenotype similar to the WT mice on MCD and LPS challenge. CONCLUSION These findings unravel a novel protective role of ATGL against hepatic inflammation which could have important implications for metabolic and inflammatory liver diseases.
Collapse
Affiliation(s)
- Pooja Jha
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
36
|
Li JK, Liang HL, Li Z, Gu CH, Yi DH, Pei JM. Pigment epithelium-derived factor promotes Fas-induced cardiomyocyte apoptosis via its receptor phospholipase A2. Life Sci 2013; 99:18-23. [PMID: 23892196 DOI: 10.1016/j.lfs.2013.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/19/2022]
Abstract
AIMS Cardiovascular diseases cause significant morbidity and mortality worldwide. Recently, our research team demonstrated that a multifunctional cytokine, pigment epithelium-derived factor (PEDF), plays a critical role in regulating myocardial infarction. However, few researchers have studied the molecular mechanisms by which PEDF and its receptors influence the pathophysiology of cardiovascular disease. We tested the hypothesis that PEDF affects cardiomyocyte apoptosis under hypoxic conditions and determined the role that its receptors phospholipase A2 (PLA2) and laminin receptor play in this process. MAIN METHODS Cardiomyocytes were isolated from neonatal mice and treated with PEDF under normoxic and hypoxic conditions; then, apoptosis was assessed using Annexin V/PI staining and flow cytometry. Western blotting and immunofluorescence staining were used to detect PEDF receptor expression, and siRNA knockdown of PEDF receptors was performed to determine which receptor was involved in mediating cardiomyocyte apoptosis. KEY FINDINGS Our results demonstrated that PEDF increased cardiomyocyte apoptosis during hypoxia via Fas and that PEDF receptors were expressed on cardiomyocyte cell membranes. Furthermore, siRNA experiments indicated that the PEDF receptor PLA2 was responsible for inducing cardiomyocyte apoptosis via the Fas pathway. SIGNIFICANCE PEDF promoted Fas-induced cardiomyocyte apoptosis via its receptor PLA2.
Collapse
Affiliation(s)
- Ji-ke Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China
| | - Hong-liang Liang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China
| | - Zhi Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China
| | - Chun-hu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China
| | - Ding-hua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China.
| | - Jian-ming Pei
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China; Department of Physiology, Fourth Military Medical University, No. 169 West Changle Rd, Xi'an, 710032, China.
| |
Collapse
|
37
|
Lin Y, Chiba S, Suzuki A, Yamaguchi S, Nakanishi T, Matsumoto H, Ikeda Y, Ishibashi-Ueda H, Hirano KI, Kato S. Vascular smooth muscle cells isolated from adipose triglyceride lipase-deficient mice exhibit distinct phenotype and phenotypic plasticity. Biochem Biophys Res Commun 2013; 434:534-40. [PMID: 23583398 DOI: 10.1016/j.bbrc.2013.03.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
The alteration of triglyceride (TG) metabolism in vascular smooth muscle cells (SMC) is likely to be correlated with certain phenotype, though this has not been elucidated. Adipose triglyceride lipase (ATGL) exerts major TG catalytic activity in both adipotic and non-adipotic cells. In the present study, we isolated SMC from ATGL-deficient mice (ATGL(-/-)mSMC). ATGL(-/-)mSMC showed spontaneous TG accumulation with lower mitogenic response and smooth muscle actin (SMA) expression compared to ATGL (+/+)mSMC. Percentage of senescence-associated β-galactosidase positive cells was also increased in ATGL(-/-)mSMC. Real-time PCR followed by screening with focused DNA array analysis revealed up-regulated expression of glucokinase (1.7-fold), lipoprotein lipase (3.8-fold) and interleukin-6 (3.7-fold) and down-regulated expression of vascular endothelial growth factor-A (0.2-fold), type I collagen (0.5-fold), and transforming growth factor-β (0.4-fold) in ATGL(-/-)mSMC compared to ATGL(+/+)mSMC. Next, ectopic gene transfer of human ATGL was attempted using doxycycline (Dox)-regulatable myc-DDK-tagged adenovirus vector (AdvATGL). AdvATGL infection resulted in a reduction of TG accumulation with elevated mitogenic response and SMA expression, and decreased in senescent cell numbers in ATGL(-/-)mSMC. Moreover, deviated gene expression pattern in ATGL(-/-)mSMC was potentially corrected. Our data suggest that ATGL(-/-)mSMC have a distinct phenotype that may be related to vascular pathogenesis. Plasticity of SMC phenotypes correlated to lipid metabolism could be a therapeutic target.
Collapse
Affiliation(s)
- Yanhui Lin
- Department of Pathology and Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chavan SS, Hudson LK, Li JH, Ochani M, Harris Y, Patel NB, Katz D, Scheinerman JA, Pavlov VA, Tracey KJ. Identification of pigment epithelium-derived factor as an adipocyte-derived inflammatory factor. Mol Med 2012; 18:1161-8. [PMID: 22714715 DOI: 10.2119/molmed.2012.00156] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/14/2012] [Indexed: 12/31/2022] Open
Abstract
Obesity is a major risk factor for insulin resistance, type 2 diabetes mellitus and cardiovascular disease. The pathophysiology of obesity is associated with chronic low-grade inflammation. Adipose tissue in obesity is significantly infiltrated by macrophages that secrete cytokines. The mechanisms of interaction between macrophages and adipocytes, leading to macrophage activation and increased cytokine release, remain to be elucidated. We reasoned that an adipocyte-derived factor might stimulate activation of macrophages. We have identified pigment epithelium-derived factor (PEDF) as a mediator of inflammation that is secreted by adipocytes and mediates macrophage activation. Recombinant PEDF activates macrophages to release tumor necrosis factor (TNF) and interleukin-1 (IL-1). The PEDF receptor adipose triglyceride lipase (ATGL) is required for PEDF-mediated macrophage activation. Selective inhibition of ATGL on macrophages attenuates PEDF-induced TNF production, and PEDF enhances the phosphorylation of p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. PEDF administration to rats results in increased serum TNF levels, and insulin resistance. Together, these findings suggest that PEDF secreted by adipocytes contributes to the onset and maintenance of chronic inflammation in obesity, and may be a therapeutic target in ameliorating insulin resistance.
Collapse
Affiliation(s)
- Sangeeta S Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York 11030, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang W, Lee Y, Lee CH. Review: the physiological and computational approaches for atherosclerosis treatment. Int J Cardiol 2012; 167:1664-76. [PMID: 23103138 DOI: 10.1016/j.ijcard.2012.09.195] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/23/2012] [Accepted: 09/26/2012] [Indexed: 01/13/2023]
Abstract
The cardiovascular disease has long been an issue that causes severe loss in population, especially those conditions associated with arterial malfunction, being attributable to atherosclerosis and subsequent thrombotic formation. This article reviews the physiological mechanisms that underline the transition from plaque formation in atherosclerotic process to platelet aggregation and eventually thrombosis. The physiological and computational approaches, such as percutaneous coronary intervention and stent design modeling, to detect, evaluate and mitigate this malicious progression were also discussed.
Collapse
Affiliation(s)
- Wuchen Wang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
40
|
Radovic B, Aflaki E, Kratky D. Adipose triglyceride lipase in immune response, inflammation, and atherosclerosis. Biol Chem 2012; 393:1005-11. [PMID: 22944699 PMCID: PMC3520003 DOI: 10.1515/hsz-2012-0192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/23/2012] [Indexed: 12/15/2022]
Abstract
Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, including macrophages. The hydrolytic cleavage of triacylglycerol by adipose triglyceride lipase (ATGL) generates non-esterified fatty acids, which are subsequently used as essential precursors for lipid and membrane synthesis, mediators in cell signaling processes or as energy substrate in mitochondria. This review summarizes the current knowledge concerning the consequences of ATGL deficiency in macrophages with particular emphasis on macrophage (dys)-function, apoptosis, and atherosclerosis.
Collapse
Affiliation(s)
- Branislav Radovic
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, A-8010 Graz, Austria
| | | | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, A-8010 Graz, Austria
| |
Collapse
|
41
|
Aparicio-Vergara M, Shiri-Sverdlov R, Koonen DPY, Hofker MH. Bone marrow transplantation as an established approach for understanding the role of macrophages in atherosclerosis and the metabolic syndrome. Curr Opin Lipidol 2012; 23:111-21. [PMID: 22274753 DOI: 10.1097/mol.0b013e3283508c4f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Bone marrow transplantation (BMT) technology is a firmly established tool for studying atherosclerosis. Only recently it is helping us to understand the inflammatory mechanisms leading to the development of obesity, insulin resistance and type 2 diabetes. Here we review the use of BMT as a tool for studying the metabolic syndrome. RECENT FINDINGS Bone marrow-derived cells, and particularly monocytes and macrophages, have been a major subject in the study of atherogenesis, and they are highly amenable for research purposes because of their application in bone marrow transplantations. For example, the many pathways studied using BMT have helped unmask ABC transporters as the genes controlling reverse cholesterol transport and foam cell formation, as well as other genes like CCR2 and IκBα controlling leukocyte development, migration and activation. The invasion of leukocytes, not only in the vessel wall, but also in adipose tissue and liver, shares many common mechanisms relevant to atherosclerosis and metabolic diseases. SUMMARY BMT is an efficient and versatile tool for assessing the roles of specific genes that are restricted to hematopoietic cells, and especially the monocytes and macrophages in metabolic syndrome and its related pathologies.
Collapse
Affiliation(s)
- Marcela Aparicio-Vergara
- Molecular Genetics, Medical Biology Section, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
42
|
Impaired Rho GTPase activation abrogates cell polarization and migration in macrophages with defective lipolysis. Cell Mol Life Sci 2011; 68:3933-47. [PMID: 21533980 PMCID: PMC3214256 DOI: 10.1007/s00018-011-0688-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/22/2011] [Accepted: 04/07/2011] [Indexed: 11/23/2022]
Abstract
Infiltration of monocytes and macrophages into the site of inflammation is critical in the progression of inflammatory diseases such as atherosclerosis. Cell migration is dependent on the continuous organization of the actin cytoskeleton, which is regulated by members of the small Rho GTPase family (RhoA, Cdc42, Rac) that are also important for the regulation of signal transduction pathways. We have recently reported on reduced plaque formation in an atherosclerotic mouse model transplanted with bone marrow from adipose triglyceride lipase-deficient (Atgl−/−) mice. Here we provide evidence that defective lipolysis in macrophages lacking ATGL, the major enzyme responsible for triacylglycerol hydrolysis, favors an anti-inflammatory M2-like macrophage phenotype. Our data implicate an as yet unrecognized principle that insufficient lipolysis influences macrophage polarization and actin polymerization, resulting in impaired macrophage migration. Sustained phosphorylation of focal adhesion kinase [due to inactivation of its phosphatase by elevated levels of reactive oxygen species (ROS)] results in defective Cdc42, Rac1 and RhoA activation and in increased and sustained activation of Rac2. Inhibition of ROS production restores the migratory capacity of Atgl−/− macrophages. Since monocyte and macrophage migration are a prerequisite for infiltrating the arterial wall, our results provide a molecular link between lipolysis and the development of atherosclerosis.
Collapse
|
43
|
Aflaki E, Radović B, Chandak PG, Kolb D, Eisenberg T, Ring J, Fertschai I, Uellen A, Wolinski H, Kohlwein SD, Zechner R, Levak-Frank S, Sattler W, Graier WF, Malli R, Madeo F, Kratky D. Triacylglycerol accumulation activates the mitochondrial apoptosis pathway in macrophages. J Biol Chem 2011; 286:7418-28. [PMID: 21196579 PMCID: PMC3044998 DOI: 10.1074/jbc.m110.175703] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/19/2010] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death of lipid-laden macrophages is a prominent feature of atherosclerotic lesions and mostly ascribed to accumulation of excess intracellular cholesterol. The present in vitro study investigated whether intracellular triacylglycerol (TG) accumulation could activate a similar apoptotic response in macrophages. To address this question, we utilized peritoneal macrophages isolated from mice lacking adipose triglyceride lipase (ATGL), the major enzyme responsible for TG hydrolysis in multiple tissues. In Atgl(-/-) macrophages, we observed elevated levels of cytosolic Ca(2+) and reactive oxygen species, stimulated cytochrome c release, and nuclear localization of apoptosis-inducing factor. Fragmented mitochondria prior to cell death were indicative of the mitochondrial apoptosis pathway being triggered as a consequence of defective lipolysis. Other typical markers of apoptosis, such as externalization of phosphatidylserine in the plasma membrane, caspase 3 and poly(ADP-ribose) polymerase cleavage, were increased in Atgl(-/-) macrophages. An artificial increase of cellular TG levels by incubating wild-type macrophages with very low density lipoprotein closely mimicked the apoptotic phenotype observed in Atgl(-/-) macrophages. Results obtained during the present study define a novel pathway linking intracellular TG accumulation to mitochondrial dysfunction and programmed cell death in macrophages.
Collapse
Affiliation(s)
- Elma Aflaki
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Branislav Radović
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Prakash G. Chandak
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Dagmar Kolb
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Tobias Eisenberg
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Julia Ring
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Ismene Fertschai
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Andreas Uellen
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Heimo Wolinski
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Sepp-Dieter Kohlwein
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Rudolf Zechner
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Sanja Levak-Frank
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Wolfgang Sattler
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Wolfgang F. Graier
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Roland Malli
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Frank Madeo
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Dagmar Kratky
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| |
Collapse
|