1
|
Knauss EA, Guci J, Luc N, Disharoon D, Huang GH, Gupta AS, Nieman MT. Mice with reduced protease-activated receptor 4 reactivity show decreased venous thrombosis and platelet procoagulant activity. J Thromb Haemost 2025:S1538-7836(24)00780-3. [PMID: 39798922 DOI: 10.1016/j.jtha.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Hypercoagulation and thrombin generation are major risk factors for venous thrombosis. Sustained thrombin signaling through protease-activated receptor (PAR) 4 promotes platelet activation, phosphatidylserine exposure, and subsequent thrombin generation. A single nucleotide polymorphism in PAR4 (rs2227376) changes proline to leucine extracellular loop 3, which decreases PAR4 reactivity and is associated with a lower risk for venous thromboembolism (VTE) in a genome wide association studies meta-analysis. OBJECTIVES The goal of this study was to determine the mechanism for the association of rs2227376 with a reduced risk of VTE using mice with a homologous mutation (PAR4-P322L). METHODS Venous thrombosis was examined using our recently generated PAR4-P322L mice in the inferior vena cava stasis and stenosis models. Coagulation and clot stability were measured using rotational thromboelastometry. Thrombin-generating potential was measured in platelet-rich plasma. Phosphatidylserine surface expression and platelet-neutrophil aggregates were analyzed using flow cytometry. RESULTS Mice heterozygous (PAR4P/L) or homozygous (PAR4L/L) at position 310 had reduced sizes of venous clots at 48 hours. PAR4P/L and PAR4L/L platelets had progressively decreased phosphatidylserine in response to thrombin and convulxin, in addition to decreased thrombin generation and decreased PAR4-mediated platelet-neutrophil aggregation. CONCLUSION The leucine allele in extracellular loop 3, PAR4-322L, leads to fewer procoagulant platelets, decreased endogenous thrombin potential, and reduced platelet-neutrophil aggregation. This decreased ability to generate thrombin and bind to neutrophils offers a mechanism for PAR4's role in VTE, highlighting a key role for PAR4 signaling.
Collapse
Affiliation(s)
- Elizabeth A Knauss
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Johana Guci
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Norman Luc
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dante Disharoon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Grace H Huang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Marvin T Nieman
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Fager AM, Ellsworth P, Key NS, Monroe DM, Hoffman M. Emicizumab promotes factor Xa generation on endothelial cells. J Thromb Haemost 2024; 22:1605-1615. [PMID: 38460838 DOI: 10.1016/j.jtha.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Until recently, the treatment of hemophilia A relied on factor (F)VIII replacement. However, up to one-third of patients with severe hemophilia A develop neutralizing alloantibodies that render replacement therapies ineffective. The development of emicizumab, a bispecific antibody that partially mimics FVIIIa, has revolutionized the treatment of these patients. However, the use of an activated prothrombin complex concentrate [FEIBA (Takeda)] to treat breakthrough bleeding in patients on emicizumab has been associated with thrombotic complications including a unique microangiopathy. OBJECTIVES We hypothesized that the thrombotic complications observed with the combination of emicizumab and FEIBA might be due to excessive expression of procoagulant activity on the surface of endothelial cells. METHODS We examined the ability of emicizumab to promote FX activation on endothelial cells using 2 cell culture models. RESULTS We found that endothelial cells readily support emicizumab-mediated activation of FX by FIXa. The level of FXa generation depends on the concentration of available FIXa. The addition of FEIBA to emicizumab increased FXa generation in a dose-dependent manner on endothelial cells in both models. The rate of FXa generation was further enhanced by endothelial cell activation. However, unlike emicizumab, we found limited FXa generation in the presence of FVIII(a), which followed a significant lag time and was not dependent on FIXa concentration under these conditions. CONCLUSION Emicizumab promotes FXa generation on the surface of endothelial cells, which is markedly enhanced in the presence of FEIBA. These findings demonstrate a potential mechanism for the thrombotic complications seen with the combined use of emicizumab and FEIBA.
Collapse
Affiliation(s)
- Ammon M Fager
- Hematology/Oncology Service, Department of Veterans Affairs Medical Center, Durham, North Carolina, USA; Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Patrick Ellsworth
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel S Key
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Laboratory Medicine and Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dougald M Monroe
- Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maureane Hoffman
- Pathology and Laboratory Medicine Service, Department of Veterans Affairs Medical Center, Durham, North Carolina, USA; Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Siddiqui F, Tafur A, Darki A, Kantarcioglu B, Hoppensteadt D, Krupa E, Iqbal O, Fareed J, Monreal M. Decreased Thrombin Generation is Associated with Increased Thrombin Generation Biomarkers and Blood Cellular Indices in Pulmonary Embolism. Clin Appl Thromb Hemost 2024; 30:10760296241261076. [PMID: 39043231 PMCID: PMC11271111 DOI: 10.1177/10760296241261076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 07/25/2024] Open
Abstract
Pulmonary embolism (PE) is a heterogenous condition with variable clinical presentations. Thrombin generation potential (TGP) and biomarkers, and blood cellular indices can reflect the underlying pathophysiology and risk stratification of PE. This case-control study analyzed TGP in 209 PE patients from Loyola University, Pulmonary Embolism Response Team program compared to normal human plasma (NHP) controls. The present study evaluates TGP and biomarkers, and cellular indices in relation to PE severity, according to the European Society of Cardiology (ESC) guidelines. Statistical analysis including median with interquartile range (IQR), 2-tailed Wilcoxon Mann-Whitney test, Chi-square test, and Spearman Correlational analysis were performed. There were 209 patients with PE, with an almost equal distribution between sex, and a median age of 63 years. Significant downregulation in peak thrombin and endogenous thrombin potential (ETP), as well as upregulation in lag time, were observed in PE patients versus controls. Biomarker analysis revealed pronounced elevations, with D-dimer demonstrating the most significant increase. Blood cellular indices also rose in PE patients, correlating with disease severity. PE severity was associated with higher TGP and biomarker levels. Mortality rates differed significantly across risk categories and were highest in patients with elevated cellular indices. TGP and biomarkers are intricately linked to PE severity and can aid in risk stratification. Elevated cellular indices are associated with increased mortality, highlighting their potential as prognostic markers. These findings could enhance the precision of PE management strategies.
Collapse
Affiliation(s)
- Fakiha Siddiqui
- PhD Program in Health Sciences, UCAM - Universidad Católica San Antonio de Murcia, Murcia, Spain
- Department of Pathology & Laboratory Medicine, Cardiovascular Research Institute, Health Science Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Alfonso Tafur
- Department of Medicine and Vascular Medicine, Evanston NorthShore University Health System, Evanston, Illinois, USA
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Amir Darki
- Department of Cardiology, Health Science Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| | - Bulent Kantarcioglu
- Department of Pathology & Laboratory Medicine, Cardiovascular Research Institute, Health Science Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Debra Hoppensteadt
- Department of Pathology & Laboratory Medicine, and Department of Pharmacology and Neuroscience, Health Science Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| | - Emily Krupa
- Department of Pathology & Laboratory Medicine, Cardiovascular Research Institute, Health Science Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Omer Iqbal
- Department of Pathology & Laboratory Medicine, Cardiovascular Research Institute, Health Science Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Jawed Fareed
- Department of Pathology & Laboratory Medicine, and Department of Pharmacology and Neuroscience, Health Science Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| | - Manuel Monreal
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Chair for the Study of Thromboembolic Disease, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| |
Collapse
|
4
|
Li X, Song X, Mahmood DFD, Sim MMS, Bidarian SJ, Wood JP. Activated protein C, protein S, and tissue factor pathway inhibitor cooperate to inhibit thrombin activation. Thromb Res 2023; 230:84-93. [PMID: 37660436 PMCID: PMC10543463 DOI: 10.1016/j.thromres.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Thrombin, the enzyme which converts fibrinogen into a fibrin clot, is produced by the prothrombinase complex, composed of factor Xa (FXa) and factor Va (FVa). Down-regulation of this process is critical, as excess thrombin can lead to life-threatening thrombotic events. FXa and FVa are inhibited by the anticoagulants tissue factor pathway inhibitor alpha (TFPIα) and activated protein C (APC), respectively, and their common cofactor protein S (PS). However, prothrombinase is resistant to either of these inhibitory systems in isolation. MATERIALS AND METHODS We hypothesized that these anticoagulants function best together, and tested this hypothesis using purified proteins and plasma-based systems. RESULTS In plasma, TFPIα had greater anticoagulant activity in the presence of APC and PS, maximum PS activity required both TFPIα and APC, and antibodies against TFPI and APC had an additive procoagulant effect, which was mimicked by an antibody against PS alone. In purified protein systems, TFPIα dose-dependently inhibited thrombin activation by prothrombinase, but only in the presence of APC, and this activity was enhanced by PS. Conversely, FXa protected FVa from cleavage by APC, even in the presence of PS, and TFPIα reversed this protection. However, prothrombinase assembled on platelets was still protected from inhibition, even in the presence of TFPIα, APC, and PS. CONCLUSIONS We propose a model of prothrombinase inhibition through combined targeting of both FXa and FVa, and that this mechanism enables down-regulation of thrombin activation outside of a platelet clot. Platelets protect prothrombinase from inhibition, however, supporting a procoagulant environment within the clot.
Collapse
Affiliation(s)
- Xian Li
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Xiaohong Song
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Dlovan F D Mahmood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Martha M S Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Sara J Bidarian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Jeremy P Wood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States of America; Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
5
|
Sex-dependent effects of canagliflozin and dapagliflozin on hemostasis in normoglycemic and hyperglycemic mice. Sci Rep 2023; 13:932. [PMID: 36650229 PMCID: PMC9845220 DOI: 10.1038/s41598-023-28225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are antihyperglycemic drugs that decrease mortality from cardiovascular diseases. However, their effects on hemostasis in the cardioprotective effects have not been evaluated. Therefore, the effects of canagliflozin (CANA, 100 mg/kg, p.o.) and dapagliflozin (DAPA, 10 mg/kg, p.o.) on the parameters of hemostasis were investigated in female and male normoglycemic and streptozotocin (180 mg/kg, i.p.)-induced diabetic mice. CANA and DAPA reduced platelet activity in thrombus in male and female mice both normoglycemic and diabetic. CANA decreased thrombus formation in diabetic male mice, and platelet activation to ADP in diabetic female and male mice. Activation of fibrinolysis was observed in female mice, both normoglycemic and diabetic. DAPA reduced thrombus formation in diabetic male and female mice, and decreased platelet activation to ADP and fibrin formation in diabetic male mice. DAPA increased fibrin formation in normoglycemic female mice and activated fibrinolysis in diabetic female mice. CANA and DAPA exerted sex-specific effects, which were more pronounced in hyperglycemia. The antithrombotic effect of CANA and DAPA was more noticeable in male mice and could be due to platelet inhibition. The effect on coagulation and fibrinolysis was not clear since an increased coagulation and fibrinolysis were observed only in female mice.
Collapse
|
6
|
Zhang H, Zhang Z, Liu Z, Mu G, Xie Q, Zhou S, Wang Z, Cao Y, Tan Y, Wei X, Yuan D, Xiang Q, Cui Y. Circulating miR-320a-3p and miR-483-5p level associated with pharmacokinetic-pharmacodynamic profiles of rivaroxaban. Hum Genomics 2022; 16:72. [PMID: 36578040 PMCID: PMC9795792 DOI: 10.1186/s40246-022-00445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Novel biomarkers for personalizing anticoagulation remain undetermined. We aimed to investigate the association of plasma miRNAs with pharmacokinetic-pharmacodynamic (PK-PD) profiles of rivaroxaban. METHODS This is a multicenter, exploratory study of miRNAs in a Chinese population. Healthy volunteers and patients receiving rivaroxaban were enrolled in the study. The area under the plasma concentration-time curve from time 0-t h (AUC0-t) and anti-Xa activity at 3 h (AXA3h) were measured in healthy volunteers, and AXA3h was measured in patients. MiRNAs were detected by miRNA microarray in 26 healthy volunteers with 20 mg rivaroxaban, and quantitative reverse transcription polymerase chain reaction was used to exclude undetectable ones. MiR-320a-3p and miR-483-5p were then quantified in 65 healthy volunteers and 71 patients. MiRNA levels at 3 h were compared between high and low AXA3h or AUC0-t subjects and in matched patients with or without bleeding during follow-up. The miRNA targets were predicted by TargetScan, miRTarBase, and miRDB. Validated genes were included in GO enrichment and KEGG analyses. The protein-protein interaction network was established by STRING and visualized by Cytoscape. RESULTS A total of 136 Chinese subjects completed the study. In healthy volunteers taking 15 mg rivaroxaban, the miR-320a level at 3 h was significantly positively correlated with AXA3h and AUC0-t (r = 0.359, p = 0.025; r = 0.370, p = 0.02, respectively). A positive correlation was also observed between miR-483 and AXA3h or AUC0-t (r = 0.372, p = 0.02; r = 0.523, p = 0.001, respectively). MiR-320a and miR-483 levels at 3 h in the higher AUC0-t group were significantly higher than those at 0 h. MiR-483 levels at 3 h may distinguish healthy volunteers with high or low AXA3h or AUC0-t. In the 10 mg fed subgroup, higher 3 h mir-483 levels were also observed compared with the control group. No significant differences were found in the comparisons among patients. Bioinformatic analysis showed that these miRNAs may play a regulatory role by targeting ABCG2, ITGB3, PTEN, MAPK1/3, etc. CONCLUSIONS: MiR-320a and miR-483 levels were found to be associated with PK and PD profiles of rivaroxaban in healthy Chinese subjects. Further studies are required to verify these findings and explore the mechanisms.
Collapse
Affiliation(s)
- Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 China ,grid.11135.370000 0001 2256 9319School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhuo Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 China
| | - Guangyan Mu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 China
| | - Qiufen Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 China
| | - Shuang Zhou
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 China ,grid.11135.370000 0001 2256 9319School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Wang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 China
| | - Yu Cao
- grid.412521.10000 0004 1769 1119Office of Drug Clinical Trial Management, Affiliated Hospital of Qingdao University, Qingdao, Shandong China
| | - Yunlong Tan
- grid.11135.370000 0001 2256 9319Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Xiaohua Wei
- grid.412604.50000 0004 1758 4073Clinical Trial Research Center, Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Dongdong Yuan
- grid.417239.aDepartment of Pharmacy, The 7Th People’s Hospital of Zhengzhou, Zhengzhou, Henan China
| | - Qian Xiang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 China
| | - Yimin Cui
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 China ,grid.11135.370000 0001 2256 9319School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China ,grid.11135.370000 0001 2256 9319Institute of Clinical Pharmacology, Peking University, Beijing, China
| |
Collapse
|
7
|
Saad AA. Unveiling the Great Therapeutic Potential of MASPs as Hemostatic Agents. J Hematol 2022; 11:240-245. [PMID: 36632573 PMCID: PMC9822654 DOI: 10.14740/jh1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman.
| |
Collapse
|
8
|
Bourguignon A, Tasneem S, Hayward CPM. Update on platelet procoagulant mechanisms in health and in bleeding disorders. Int J Lab Hematol 2022; 44 Suppl 1:89-100. [PMID: 36074709 DOI: 10.1111/ijlh.13866] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
Platelet procoagulant mechanisms are emerging to be complex and important to achieving haemostasis. The mechanisms include the release of procoagulant molecules from platelet storage granules, and strong agonist-induced expression of procoagulant phospholipids on the outer platelet membrane for tenase and prothrombinase assembly. The release of dense granule polyphosphate is important to platelet procoagulant function as it promotes the activation of factors XII, XI and V, inhibits tissue factor pathway inhibitor and fibrinolysis, and strengthens fibrin clots. Platelet procoagulant function also involves the release of partially activated factor V from platelets. Scott syndrome has provided important insights on the mechanisms that regulate procoagulant phospholipids expression on the external platelet membrane, which require strong agonist stimulation that increase cystolic calcium levels, mitochondrial calcium uptake, the loss of flippase function and activation of the transmembrane scramblase protein anoctamin 6. There have been advances in the methods used to directly and indirectly assess platelet procoagulant function in health and disease. Assessments of thrombin generation with platelet rich plasma samples has provided new insights on how platelet procoagulant function is altered in inherited platelet disorders, and how platelets influence the bleeding phenotype of a number of severe coagulation factor deficiencies. Several therapies, including desmopressin and recombinant factor VIIa, improve thrombin generation by platelets. There is growing interest in targeting platelet procoagulant function for therapeutic benefit. This review highlights recent advances in our understanding of platelet-dependent procoagulant mechanisms in health and in bleeding disorders.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
9
|
Lee CM, Chang ML, Chen RH, Chen FW, Liu JC, Kuo SL, Peng HH. Thrombin-Activated Platelets Protect Vascular Endothelium against Tumor Cell Extravasation by Targeting Endothelial VCAM-1. Int J Mol Sci 2022; 23:ijms23073433. [PMID: 35408794 PMCID: PMC8998259 DOI: 10.3390/ijms23073433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
When activated by thrombin, the platelets release their granular store of factors. These thrombin-activated platelets (TAPLT) have been shown to be capable of ameliorating pro-inflammatory processes. In this study, we tested if TAPLT could also protect the endothelium against tumor-related pro-inflammatory changes that promote angiogenesis and metastasis. Using endothelial cell (EC) models in vitro, we demonstrated that TAPLT protected EC against tumor conditioned medium (TCM)-induced increases of reactive oxygen species (ROS) production, EC permeability and angiogenesis, and inhibited transendothelial migration that was critical for cancer cell extravasation and metastasis. In vivo observations of TAPLT-mediated inhibition of angiogenesis and pulmonary colonization in a BALB/c nude mouse model were consistent with the in vitro findings. Neutralization of vascular cell adhesion molecule-1 (VCAM-1) binding significantly inhibited the ability of TAPLT to interact with EC and abrogated the TAPLT-mediated protection of EC against tumor angiogenesis and metastasis. Taken together, these findings suggest that VCAM-1-mediated linkage to EC is required for TAPLT to confer protection of EC against tumor-induced permeation and angiogenesis, thereby resisting tumor extravasation and metastasis.
Collapse
Affiliation(s)
- Chiou-Mei Lee
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (C.-M.L.); (R.-H.C.)
| | - Ming-Ling Chang
- Liver Research Center, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ren-Hao Chen
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (C.-M.L.); (R.-H.C.)
| | - Fan-Wen Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
| | - Jo-Chuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Shun-Li Kuo
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsin-Hsin Peng
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3211-8800 (ext. 3772); Fax: +886-3211-8534
| |
Collapse
|
10
|
Fu X, Lei T, Li SJ, Liu YF, Peng J, Ning JP. Construction of novel antiplatelet modified polyethersulfone membrane and study into its blood compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112659. [DOI: 10.1016/j.msec.2022.112659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 01/17/2023]
|
11
|
Tan JWC, Chew DP, Tsui KL, Tan D, Duplyakov D, Hammoudeh A, Zhang B, Li Y, Xu K, Ong PJ, Firman D, Gamra H, Almahmeed W, Dalal J, Tam LW, Steg G, Nguyen QN, Ako J, Al Suwaidi J, Chan M, Sobhy M, Shehab A, Buddhari W, Wang Z, Fong AYY, Karadag B, Kim BK, Baber U, Chin CT, Han YL. 2021 Asian Pacific Society of Cardiology Consensus Recommendations on the Use of P2Y1 2 Receptor Antagonists in the Asia-Pacific Region: Special Populations. Eur Cardiol 2021; 16:e43. [PMID: 34815751 PMCID: PMC8591619 DOI: 10.15420/ecr.2021.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022] Open
Abstract
Advanced age, diabetes, and chronic kidney disease not only increase the risk for ischaemic events in chronic coronary syndromes (CCS) but also confer a high bleeding risk during antiplatelet therapy. These special populations may warrant modification of therapy, especially among Asians, who have displayed characteristics that are clinically distinct from Western patients. Previous guidance has been provided regarding the classification of high-risk CCS and the use of newer-generation P2Y12 inhibitors (i.e. ticagrelor and prasugrel) after acute coronary syndromes (ACS) in Asia. The authors summarise evidence on the use of these P2Y12 inhibitors during the transition from ACS to CCS and among special populations. Specifically, they present recommendations on the roles of standard dual antiplatelet therapy, shortened dual antiplatelet therapy and single antiplatelet therapy among patients with coronary artery disease, who are either transitioning from ACS to CCS; elderly; or with chronic kidney disease, diabetes, multivessel coronary artery disease and bleeding events during therapy.
Collapse
Affiliation(s)
| | - Derek P Chew
- College of Medicine and Public Health, Flinders University Adelaide, Australia
| | - Kin Lam Tsui
- Pamela Youde Nethersole Eastern Hospital Hong Kong, China
| | - Doreen Tan
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore
| | | | | | - Bo Zhang
- Department of Cardiology, First Affiliated Hospital, Dalian Medical University Dalian, China
| | - Yi Li
- Department of Cardiology, General Hospital of Northern Theatre Command Shenyang, China
| | - Kai Xu
- Department of Cardiology, General Hospital of Shenyang Military Shenyang, China
| | - Paul J Ong
- Heart Specialist International, Mount Elizabeth Novena Hospital Singapore.,Tan Tock Seng Hospital Singapore
| | - Doni Firman
- Harapan Kita National Cardiovascular Center/Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia Harapan Kita Jakarta, Indonesia
| | - Habib Gamra
- Cardiology Department, Fattouma Bourguiba University Hospital and University of Monastir Monastir, Tunisia
| | | | - Jamshed Dalal
- Centre for Cardiac Sciences, Kokilaben Dhirubhai Ambani Hospital Mumbai, India
| | | | - Gabriel Steg
- Department of Cardiology, Hôpital Bichat Paris, France
| | - Quang N Nguyen
- Department of Cardiology, Hanoi Medical University Hanoi, Vietnam
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine Sagamihara, Kanagawa, Japan
| | | | - Mark Chan
- National University Heart Centre Singapore
| | | | - Abdulla Shehab
- College of Medicine and Health Sciences, UAE University, Al Ain United Arab Emirates
| | | | - Zulu Wang
- Department of Cardiology, General Hospital of Shenyang Military Shenyang, China
| | | | - Bilgehan Karadag
- Istanbul University-Cerrahpasa School of Medicine Istanbul, Turkey
| | - Byeong-Keuk Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine Seoul, South Korea
| | - Usman Baber
- University of Oklahoma Health Sciences Center Oklahoma City, OK, US
| | | | - Ya Ling Han
- Department of Cardiology, General Hospital of Northern Theatre Command Shenyang, China
| |
Collapse
|
12
|
Tohidi-Esfahani I, Tan S, Tan CW, Johnson L, Marks DC, Chen VM. Platelet procoagulant potential is reduced in platelet concentrates ex vivo but appears restored following transfusion. Transfusion 2021; 61:3420-3431. [PMID: 34611925 DOI: 10.1111/trf.16695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The procoagulant profile of platelet concentrates (PCs) following transfusion has been difficult to evaluate due to lack of specific markers. This study aimed to characterize procoagulant platelets in PCs and the effect of transfusion. STUDY DESIGN AND METHODS Buffy coat-derived PCs from 12 donors were pooled, split, then stored conventionally, cold (2-6°C) or cryopreserved (-80°C). Procoagulant platelet profiles were assessed by flow cytometry (GSAO+ /P-selectin+ ), lactadherin-binding, and calibrated automated thrombogram, during storage, unstimulated, or after thrombin and collagen stimulation and compared with blood from healthy volunteers. Platelet activation (P-selectin) and procoagulant platelet formation potential were measured (flow cytometry) in patients receiving clinically indicated conventional PC transfusion. RESULTS Independent of significant increases with storage, procoagulant platelet proportions with and without agonist stimulation were significantly blunted in conventionally stored PCs (stimulated day 5 conventional PC 4.2 ± 1.3%, healthy volunteer blood 11.1 ± 2.9%; p < .0001). Cryopreserved PCs contained the highest proportion of procoagulant platelets (unstimulated: cryopreserved 25.6 ± 1.8% vs. day 5 conventional 0.5 ± 0.1% vs. day 14 cold-stored 5.8 ± 1.0%, p < .0001), but demonstrated minimal increase with agonist. Transfusion of PCs was associated with an increase in procoagulant platelets (2.2 ± 1.4% vs. 0.6 ± 0.2%; p = .004) and reversal of the blunted agonist response (15.8 ± 5.9% vs. 4.0 ± 1.6%; p < .0001). Procoagulant responses post-transfusion were significantly higher than healthy controls, suggesting a priming effect. The P-selectin agonist response was not restored upon transfusion (79.4 ± 13.9% vs. 82.0 ± 2.5%). CONCLUSION Storage blunts the procoagulant platelet response to agonist stimulation in PCs. Despite this, conventionally stored PCs have high procoagulant potential following transfusion, with a discordant, persistent reduction in P-selectin response.
Collapse
Affiliation(s)
- Ibrahim Tohidi-Esfahani
- ANZAC Research Institute, University of Sydney, Sydney, Australia.,Haematology Department, Concord Repatriation General Hospital, Sydney, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shereen Tan
- Research and Development, Australian Red Cross Lifeblood, Sydney, Australia
| | - Chuen Wen Tan
- ANZAC Research Institute, University of Sydney, Sydney, Australia.,Haematology Department, Singapore General Hospital, Singapore, Singapore
| | - Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Sydney, Australia
| | - Denese C Marks
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Research and Development, Australian Red Cross Lifeblood, Sydney, Australia
| | - Vivien M Chen
- ANZAC Research Institute, University of Sydney, Sydney, Australia.,Haematology Department, Concord Repatriation General Hospital, Sydney, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Yatim N, Boussier J, Chocron R, Hadjadj J, Philippe A, Gendron N, Barnabei L, Charbit B, Szwebel TA, Carlier N, Pène F, Azoulay C, Khider L, Mirault T, Diehl JL, Guerin CL, Rieux-Laucat F, Duffy D, Kernéis S, Smadja DM, Terrier B. Platelet activation in critically ill COVID-19 patients. Ann Intensive Care 2021; 11:113. [PMID: 34273008 PMCID: PMC8286043 DOI: 10.1186/s13613-021-00899-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Microvascular, arterial and venous thrombotic events have been largely described during severe coronavirus disease 19 (COVID-19). However, mechanisms underlying hemostasis dysregulation remain unclear. METHODS We explored two independent cross-sectional cohorts to identify soluble markers and gene-expression signatures that discriminated COVID-19 severity and outcomes. RESULTS We found that elevated soluble (s)P-selectin at admission was associated with disease severity. Elevated sP-selectin was predictive of intubation and death (ROC AUC = 0.67, p = 0.028 and AUC = 0.74, p = 0.0047, respectively). An optimal cutoff value was predictive of intubation with 66% negative predictive value (NPV) and 61% positive predictive value (PPV), and of death with 90% NPV and 55% PPV. An unbiased gene set enrichment analysis revealed that critically ill patients had increased expression of genes related to platelet activation. Hierarchical clustering identified ITG2AB, GP1BB, PPBP and SELPLG to be upregulated in a grade-dependent manner. ROC curve analysis for the prediction of intubation was significant for SELPLG and PPBP (AUC = 0.8, p = 0.046 for both). An optimal cutoff value for PBPP was predictive of intubation with 100% NPV and 45% PPV, and for SELPLG with 100% NPV and 50% PPV. CONCLUSION We provide evidence that platelets contribute to COVID-19 severity. Plasma sP-selectin level was associated with severity and in-hospital mortality. Transcriptional analysis identified PPBP/CXCL7 and SELPLG as biomarkers for intubation. These findings provide additional evidence for platelet activation in driving critical COVID-19. Specific studies evaluating the performance of these biomarkers are required.
Collapse
Affiliation(s)
- Nader Yatim
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, 75015, Paris, France.,Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Jeremy Boussier
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, 75015, Paris, France
| | - Richard Chocron
- Université de Paris, INSERM, U970, PARCC, Paris, France.,Emergency Department, APHP-CUP, 75015, Paris, France
| | - Jérôme Hadjadj
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France.,Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM, UMR 1163, Université de Paris, 75015, Paris, France
| | - Aurélien Philippe
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, 75006, Paris, France.,Hematology Department, APHP-CUP, 75015, Paris, France.,Biosurgical Research Lab (Carpentier Foundation), Georges Pompidou European Hospital, 75015, Paris, France
| | - Nicolas Gendron
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, 75006, Paris, France.,Hematology Department, APHP-CUP, 75015, Paris, France.,Biosurgical Research Lab (Carpentier Foundation), Georges Pompidou European Hospital, 75015, Paris, France
| | - Laura Barnabei
- Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM, UMR 1163, Université de Paris, 75015, Paris, France
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, 75015, Paris, France
| | - Tali-Anne Szwebel
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Nicolas Carlier
- Department of Pulmonology, APHP-CUP, Hôpital Cochin, 75014, Paris, France
| | - Frédéric Pène
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, 75006, Paris, France.,Service de Médecine Intensive and Réanimation, APHP-CUP, Hôpital Cochin, 75014, Paris, France
| | - Célia Azoulay
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Lina Khider
- Biosurgical Research Lab (Carpentier Foundation), Georges Pompidou European Hospital, 75015, Paris, France.,Vascular Medicine Department, APHP-CUP, Université de Paris, 75015, Paris, France
| | - Tristan Mirault
- Vascular Medicine Department, APHP-CUP, Université de Paris, 75015, Paris, France.,Université de Paris, INSERM, U970, PARCC, Paris, France
| | - Jean-Luc Diehl
- Biosurgical Research Lab (Carpentier Foundation), Georges Pompidou European Hospital, 75015, Paris, France.,Department of Pulmonology, APHP-CUP, Hôpital Cochin, 75014, Paris, France.,Intensive Care Unit, APHP-CUP, 75015, Paris, France
| | - Coralie L Guerin
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, 75006, Paris, France
| | - Frédéric Rieux-Laucat
- Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM, UMR 1163, Université de Paris, 75015, Paris, France
| | - Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, 75015, Paris, France.,Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, 75015, Paris, France
| | - Solen Kernéis
- Equipe Mobile d'Infectiologie, APHP-CUP, Hôpital Cochin, 75014, Paris, France.,Epidemiology and Modelling of Antibiotic Evasion (EMAE), Institut Pasteur, 75015, Paris, France.,Université de Paris, INSERM, IAME, Université de Paris, 75006, Paris, France
| | - David M Smadja
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, 75006, Paris, France.,Hematology Department, APHP-CUP, 75015, Paris, France.,Biosurgical Research Lab (Carpentier Foundation), Georges Pompidou European Hospital, 75015, Paris, France
| | - Benjamin Terrier
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France. .,Université de Paris, INSERM, U970, PARCC, Paris, France. .,Department of Internal Medicine, Hôpital Cochin, 27, Rue du Faubourg Saint-Jacques, 75679, Paris Cedex 14, France.
| |
Collapse
|
14
|
Vishalakshi GJ, Hemshekhar M, Sandesha VD, Prashanth KS, Jagadish S, Paul M, Kemparaju K, Girish KS. Bisphenol AF elevates procoagulant platelets by inducing necroptosis via RIPK1-inflammasome axis. Toxicology 2021; 454:152742. [PMID: 33662508 DOI: 10.1016/j.tox.2021.152742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Bisphenol AF, an analogue of Bisphenol A, is an important raw material used in the production of plastic and rubber substances like plastic bottles and containers, toys, and medical supplies. Increased contamination of air, water, dust, and food with BPA/BPAF, poses an enormous threat to humans, globally. BPAF/BPA are endocrine-disrupting chemicals that mimic estrogen hormone, thus increasing the risks of various metabolic and chronic disorders. Exposure of human blood cells to BPA/BPAF induces oxidative stress and genotoxicity. However, its effects on platelets, which play central roles in hemostasis and thrombosis, are not well-documented. In this study, we demonstrate that BPAF induces RIPK1-inflammasome axis-mediated necroptosis in platelets, increasing procoagulant platelet levels in vivo and in vitro. We also show that BPAF-induced rise in procoagulant platelets worsens pulmonary thromboembolism in vivo. The elevated procoagulant platelets are shown to increase platelet-neutrophil/monocyte aggregates that mediate pathogenesis of CVD, thrombosis, and chronic inflammatory diseases. Our results demonstrate the toxic effects of BPAF on platelets and how it propagates the clinical complications by elevating procoagulant platelet numbers. Altogether, our study sends a cautionary message against extensive use of BPAF in the plastic and rubber industries, resulting in frequent human exposure to it, thus endangering platelet functions.
Collapse
Affiliation(s)
- Gopalapura J Vishalakshi
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - Mahadevappa Hemshekhar
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | | | - Kunthurumole S Prashanth
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - Swamy Jagadish
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - Manoj Paul
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India.
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India; Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, 572 103, India.
| |
Collapse
|
15
|
Tohidi-Esfahani I, Lee CSM, Liang HPH, Chen VMY. Procoagulant platelets: Laboratory detection and clinical significance. Int J Lab Hematol 2021; 42 Suppl 1:59-67. [PMID: 32543068 DOI: 10.1111/ijlh.13197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Platelets play a critical role in both haemostasis and thrombosis, and it is now evident that not all platelets behave the same when they are called to action. A functionally distinct subpopulation of platelets forms in response to maximal agonist stimulation: the procoagulant platelet. This platelet subpopulation is defined by its ability to expose phosphatidylserine on its surface, allowing for coagulation factor complexes to form and generate bursts of thrombin and fibrin to stabilize platelet clots. Reduced levels of procoagulant platelets have been linked to bleeding in Scott's syndrome and haemophilia A patients, and elevated levels have been demonstrated in many thrombotic disorders, including identifying patients at higher risk for stroke recurrence. One obstacle for incorporating an assay for measuring procoagulant platelets into clinical management algorithms is the lack of consensus on the exact definition and markers for this subpopulation. This review will outline the biological characteristics of procoagulant platelets and the laboratory assays currently used to identify them in research settings. It will summarize the findings of clinical research demonstrating the relevance of measuring the procoagulant platelet levels in patients and will discuss how an appropriate assay can be used to elucidate the mechanism behind the formation of this subpopulation, facilitating novel drug discovery to improve upon current outcomes in cardiovascular and other thrombotic disorders.
Collapse
Affiliation(s)
- Ibrahim Tohidi-Esfahani
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Christine S M Lee
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Hai Po H Liang
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Vivien M Y Chen
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Hegde S, Wellendorf AM, Zheng Y, Cancelas JA. Antioxidant prevents clearance of hemostatically competent platelets after long-term cold storage. Transfusion 2020; 61:557-567. [PMID: 33247486 DOI: 10.1111/trf.16200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/27/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cold storage of platelets (PLTs) has the potential advantage of prolonging storage time while reducing posttransfusion infection given the decreased likelihood of bacterial outgrowth during storage and possibly beneficial effects in treating bleeding patients. However, cold storage reduces PLT survival through the induction of complex storage lesions, which are more accentuated when storage is prolonged. STUDY DESIGN AND METHODS Whole blood-derived PLT-rich plasma concentrates from seven PLT pools (n = 5 donors per pool). PLT additive solution was added (67%/33% plasma) and the product was split into 50-mL bags. Split units were stored in the presence or absence of 1 mM of N-acetylcysteine (NAC) under agitation for up to 14 days at room temperature or in the cold and were analyzed for PLT activation, fibrinogen-dependent spreading, microparticle formation, mitochondrial respiratory activity, reactive oxygen species (ROS) generation, as well as in vivo survival and bleeding time correction in immunodeficient mice. RESULTS Cold storage of PLTs for 7 days or longer induces significant PLT activation, cytoskeletal damage, impaired fibrinogen spreading, enhances mitochondrial metabolic decoupling and ROS generation, and increases macrophage-dependent phagocytosis and macrophage-independent clearance. Addition of NAC prevents PLT clearance and allows a correction of the prolonged bleeding time in thrombocytopenic, aspirin-treated, immunodeficient mice. CONCLUSIONS Long-term cold storage induces mitochondrial uncoupling and increased proton leak and ROS generation. The resulting ROS is a crucial contributor to the increased macrophage-dependent and -independent clearance of functional PLTs and can be prevented by the antioxidant NAC in a magnesium-containing additive solution.
Collapse
Affiliation(s)
- Shailaja Hegde
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ashley M Wellendorf
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jose A Cancelas
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Monzón Manzano E, Fernández-Bello I, Justo Sanz R, Robles Marhuenda Á, López-Longo FJ, Acuña P, Álvarez Román MT, Jiménez Yuste V, Butta NV. Insights into the Procoagulant Profile of Patients with Systemic Lupus Erythematosus without Antiphospholipid Antibodies. J Clin Med 2020; 9:jcm9103297. [PMID: 33066506 PMCID: PMC7602183 DOI: 10.3390/jcm9103297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
We aimed to identify the key players in the prothrombotic profile of patients with systemic lupus erythematosus (SLE) not mediated by antiphospholipid antibodies, as well as the potential utility of global coagulation tests to characterize hemostasis in these patients. Patients with SLE without antiphospholipid antibodies and without signs of thrombosis were included. The kinetics of clot formation were determined by ROTEM®. Platelet activation markers were determined by flow cytometry. Thrombin generation associated with Neutrophil Extracellular Traps (NETs) and microparticles (MPs) was measured by calibrated automated thrombogram (CAT). The plasma levels of PAI-1 were also determined. ROTEM® showed a procoagulant profile in SLE patients. SLE patients had activated platelets and more leukocyte/platelet aggregates at basal conditions. The plasma PAI-1 and platelet aggregates correlated with several ROTEM® parameters. The thrombin generation associated withthe tissue factor (TF) content of MPs and with NETs was increased. Our results suggest the utility of global tests for studying hemostasis in SLE patients because they detect their procoagulant profile, despite having had neither antiphospholipid antibodies nor any previous thrombotic event. A global appraisal of hemostasis should, if possible, be incorporated into clinical practice to detect the risk of a thrombotic event in patients with SLE and to consequently act to prevent its occurrence.
Collapse
Affiliation(s)
- Elena Monzón Manzano
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
| | - Ihosvany Fernández-Bello
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
| | - Raúl Justo Sanz
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
| | | | | | - Paula Acuña
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
| | - María Teresa Álvarez Román
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
| | - Víctor Jiménez Yuste
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Nora V. Butta
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
- Correspondence: ; Tel.: +34-91-727-0000 (ext. 42258)
| |
Collapse
|
18
|
Jongen MSA, MacArthur BD, Englyst NA, West J. Single platelet variability governs population sensitivity and initiates intrinsic heterotypic responses. Commun Biol 2020; 3:281. [PMID: 32499608 PMCID: PMC7272428 DOI: 10.1038/s42003-020-1002-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Investigations into the nature of platelet functional variety and consequences for homeostasis require new methods for resolving single platelet phenotypes. Here we combine droplet microfluidics with flow cytometry for high throughput single platelet function analysis. A large-scale sensitivity continuum was shown to be a general feature of human platelets from individual donors, with hypersensitive platelets coordinating significant sensitivity gains in bulk platelet populations and shown to direct aggregation in droplet-confined minimal platelet systems. Sensitivity gains scaled with agonist potency (convulxin > TRAP-14>ADP) and reduced the collagen and thrombin activation threshold required for platelet population polarization into pro-aggregatory and pro-coagulant states. The heterotypic platelet response results from an intrinsic behavioural program. The method and findings invite future discoveries into the nature of hypersensitive platelets and how community effects produce population level responses in health and disease. Maaike S. A. Jongen et al. combine droplet microfluidics with flow cytometry to resolve single platelet responses to agonists. They demonstrate that hyperactive platelets enhance the platelet population response by paracrine signaling as a function of agonist potency and heterotypic responses result from an intrinsic behavioural program.
Collapse
Affiliation(s)
- Maaike S A Jongen
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ben D MacArthur
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Nicola A Englyst
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jonathan West
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK. .,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
19
|
Reddy EC, Rand ML. Procoagulant Phosphatidylserine-Exposing Platelets in vitro and in vivo. Front Cardiovasc Med 2020; 7:15. [PMID: 32195268 PMCID: PMC7062866 DOI: 10.3389/fcvm.2020.00015] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
The physiological heterogeneity of platelets leads to diverse responses and the formation of discrete subpopulations upon platelet stimulation. Procoagulant platelets are an example of such subpopulations, a key characteristic of which is exposure either of the anionic aminophospholipid phosphatidylserine (PS) or of tissue factor on the activated platelet surface. This review focuses on the former, in which PS exposure on a subpopulation of platelets facilitates assembly of the intrinsic tenase and prothrombinase complexes, thereby accelerating thrombin generation on the activated platelet surface, contributing importantly to the hemostatic process. Mechanisms involved in platelet PS exposure, and accompanying events, induced by physiologically relevant agonists are considered then contrasted with PS exposure resulting from intrinsic pathway-mediated apoptosis in platelets. Pathologies of PS exposure, both inherited and acquired, are described. A consideration of platelet PS exposure as an antithrombotic target concludes the review.
Collapse
Affiliation(s)
- Emily C Reddy
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Margaret L Rand
- Division of Haematology/Oncology, Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Laboratory Medicine & Pathobiology, Biochemistry, and Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Agbani EO, Zhao X, Williams CM, Aungraheeta R, Hers I, Swenson ER, Poole AW. Carbonic Anhydrase Inhibitors suppress platelet procoagulant responses and in vivo thrombosis. Platelets 2020; 31:853-859. [PMID: 31893963 DOI: 10.1080/09537104.2019.1709632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbonic anhydrase (CA) inhibitors have a long history of safe clinical use as mild diuretics, in the treatment of glaucoma and for altitude sickness prevention. In this study, we aimed to determine if CA inhibition may be an alternative approach to control thrombosis. We utilized a high-resolution dynamic imaging approach to provide mechanistic evidence that CA inhibitors may be potent anti-procoagulant agents in vitro and effective anti-thrombotics in vivo. Acetazolamide and methazolamide, while sparing platelet secretion, attenuated intracellular chloride ion entry and suppressed the procoagulant response of activated platelets in vitro and thrombosis in vivo. The chemically similar N-methyl acetazolamide, which lacks CA inhibitory activity, did not affect platelet procoagulant response in vitro. Outputs from rotational thromboelastometry did not reflect changes in procoagulant activity and reveal the need for a suitable clinical test for procoagulant activity. Drugs specifically targeting procoagulant remodeling of activated platelets, by blockade of carbonic anhydrases, may provide a new way to control platelet-driven thrombosis without blocking essential platelet secretion responses.
Collapse
Affiliation(s)
- Ejaife O Agbani
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta, Canada.,Vascular Basic Science, Libin Cardiovascular Institute of Alberta , Calgary, Alberta, Canada
| | - Xiaojuan Zhao
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK
| | - Christopher M Williams
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK
| | - Riyaad Aungraheeta
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, Medical Service, VA Puget Sound Health Care System, University of Washington , Seattle, WA, USA
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK
| |
Collapse
|
21
|
Deb S, Boknäs N, Sjöström C, Tharmakulanathan A, Lotfi K, Ramström S. Varying effects of tyrosine kinase inhibitors on platelet function-A need for individualized CML treatment to minimize the risk for hemostatic and thrombotic complications? Cancer Med 2020; 9:313-323. [PMID: 31714021 PMCID: PMC6943147 DOI: 10.1002/cam4.2687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 01/02/2023] Open
Abstract
Since their introduction, tyrosine kinase inhibitors (TKIs, eg, imatinib, nilotinib, dasatinib, bosutinib, ponatinib) have revolutionized the treatment of chronic myeloid leukemia (CML). However, long-term treatment with TKIs is associated with serious adverse events including both bleeding and thromboembolism. Experimental studies have shown that TKIs can cause platelet dysfunction. Herein, we present the first side-by-side investigation comparing the effects of currently used TKIs on platelet function and thrombin generation when used in clinically relevant concentrations. A flow cytometry multiparameter protocol was used to study a range of significant platelet activation events (fibrinogen receptor activation, alpha granule, and lysosomal exocytosis, procoagulant membrane exposure, and mitochondrial permeability changes). In addition, thrombin generation was measured in the presence of TKIs to assess the effects on global hemostasis. Results show that dasatinib generally inhibited platelet function, while bosutinib, nilotinib, and ponatinib showed less consistent effects. In addition to these general trends for each TKI, we observed a large degree of interindividual variability in the effects of the different TKIs. Interindividual variation was also observed when blood from CML patients was studied ex vivo with whole blood platelet aggregometry, free oscillation rheometry (FOR), and flow cytometry. Based on the donor responses in the side-by-side TKI study, a TKI sensitivity map was developed. We propose that such a sensitivity map could potentially become a valuable tool to help in decision-making regarding the choice of suitable TKIs for a CML patient with a history of bleeding or atherothrombotic disease.
Collapse
Affiliation(s)
- Suryyani Deb
- Department of BiotechnologyMaulana Abul Kazam Azad University of TechnologyWest BengalIndia
| | - Niklas Boknäs
- Department of Clinical Chemistry and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
- Department of Haematology and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Clara Sjöström
- Department of Clinical Chemistry and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Anjana Tharmakulanathan
- Department of Clinical Chemistry and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Kourosh Lotfi
- Department of Haematology and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
| |
Collapse
|
22
|
Meershoek AJA, Leunissen TC, van Waes JAR, Klei WA, Huisman A, de Groot MCH, Hoefer IE, van Solinge WW, Moll FL, de Borst GJ. Reticulated Platelets as Predictor of Myocardial Injury and 30 Day Mortality After Non-cardiac Surgery. Eur J Vasc Endovasc Surg 2019; 59:309-318. [PMID: 31812606 DOI: 10.1016/j.ejvs.2019.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 04/09/2019] [Accepted: 06/22/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE A pre-operative marker for identification of patients at risk of peri-operative adverse events and 30 day mortality might be the percentage of young, reticulated platelets (pRP). This study aimed to determine the predictive value of pre-operative pRP on post-operative myocardial injury (PMI) and 30 day mortality, in patients aged ≥ 60 years undergoing moderate to high risk non-cardiac surgery. METHODS The incidence of PMI (troponin I > 0.06 μg/L) and 30 day mortality was compared for patients with normal and high pRP (≥2.82%) obtained from The Utrecht Patient Orientated Database. The predictive pRP value was assessed using logistic regression. A prediction model for PMI or 30 day mortality with known risk factors was compared with a model including increased pRP using the area under the receiving operator characteristics curve (AUROC). RESULTS In total, 26.5% (607/2289) patients showed pre-operative increased pRP. Increased pRP was associated with more PMI and 30 day mortality compared with normal pRP (36.1% vs. 28.3%, p < .001 and 8.6% vs. 3.6%, p < .001). The median pRP was higher in patients suffering PMI and 30 day mortality compared with not (2.21 [IQR: 1.57-3.11] vs. 2.07 [IQR: 1.52-1.78], p = .002, and 2.63 [IQR: 1.76-4.15] vs. 2.09 [IQR: 1.52-3.98], p < .001). pRP was independently related to PMI (OR: 1.28 [95% CI: 1.04-1.59], p = .02) and 30 day mortality (OR: 2.35 [95% CI: 1.56-3.55], p < .001). Adding increased pRP to the predictive model of PMI or 30 day mortality did not increase the AUROC 0.71 vs. 0.72, and 0.80 vs. 0.81. CONCLUSION In patients undergoing major non-cardiac surgery, increased pre-operative pRP is related to 30 day mortality and PMI.
Collapse
Affiliation(s)
- Armelle J A Meershoek
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Tesse C Leunissen
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Judith A R van Waes
- Department of Anaesthesiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Wilton A Klei
- Department of Anaesthesiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Albert Huisman
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Mark C H de Groot
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Imo E Hoefer
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Frans L Moll
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
23
|
Coppin L, Sokal E, Stéphenne X. Thrombogenic Risk Induced by Intravascular Mesenchymal Stem Cell Therapy: Current Status and Future Perspectives. Cells 2019; 8:cells8101160. [PMID: 31569696 PMCID: PMC6829440 DOI: 10.3390/cells8101160] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are currently studied and used in numerous clinical trials. Nevertheless, some concerns have been raised regarding the safety of these infusions and the thrombogenic risk they induce. MSCs express procoagulant activity (PCA) linked to the expression of tissue factor (TF) that, when in contact with blood, initiates coagulation. Some even describe a dual activation of both the coagulation and the complement pathway, called Instant Blood-Mediated Inflammatory Reaction (IBMIR), explaining the disappointing results and low engraftment rates in clinical trials. However, nowadays, different approaches to modulate the PCA of MSCs and thus control the thrombogenic risk after cell infusion are being studied. This review summarizes both in vitro and in vivo studies on the PCA of MSC of various origins. It further emphasizes the crucial role of TF linked to the PCA of MSCs. Furthermore, optimization of MSC therapy protocols using different methods to control the PCA of MSCs are described.
Collapse
Affiliation(s)
- Louise Coppin
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Etienne Sokal
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Xavier Stéphenne
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| |
Collapse
|
24
|
Balle CM, Jeppesen AN, Christensen S, Hvas AM. Platelet Function During Extracorporeal Membrane Oxygenation in Adult Patients. Front Cardiovasc Med 2019; 6:114. [PMID: 31440518 PMCID: PMC6694790 DOI: 10.3389/fcvm.2019.00114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Hemorrhagic and thromboembolic complications are common during support with extracorporeal membrane oxygenation (ECMO). As platelets play a pivotal role in hemostasis, we aimed to clarify how ECMO support affects platelet function. Methods: We included 33 adult patients undergoing ECMO support at a tertiary ECMO referral center at Aarhus University Hospital, Denmark. Blood samples were collected on the first morning following ECMO initiation, and subsequently every morning until the 7th (±1) day. Platelet aggregation was evaluated by whole blood impedance aggregometry (Multiplate® Analyzer) using adenosine diphosphate (ADPtest), arachidonic acid (ASPItest), and thrombin-receptor-agonist-peptide-6 (TRAPtest) as agonists. A new model was applied, taking platelet count into consideration in interpretation of impedance aggregometry analyses. On the 1st and 3rd day, platelet activation was assessed by flow cytometry (Navios) using collagen-related peptide, ADP, TRAP, and arachidonic acid as agonists. Results: Blood samples from all 33 patients were analyzed on day 1 of ECMO support; 24 patients were still receiving ECMO and analyzed on day 3; 12 patients were analyzed on day 7 (±1). After ECMO initiation, platelet counts decreased significantly (p < 0.002) and remained low during ECMO support. ECMO patients demonstrated significantly reduced platelet aggregation on day 1 compared with healthy controls (all p < 0.001). However, when taking platelet count into consideration, platelet aggregation relative to platelet count did not differ from healthy controls. Flow cytometry analyses demonstrated impaired platelet activation in ECMO patients on day 1 compared with healthy controls (all p < 0.03). No substantial difference was found in platelet activation from day 1 to day 3 on ECMO support. Conclusions: Employing impedance aggregometry and flow cytometry, we found both impaired platelet aggregation and decreased platelet activation on day 1 of ECMO support compared with healthy controls. However, platelet aggregation was not impaired, when interpreted relative to the low platelet counts. Furthermore, levels of bound fibrinogen, on the surface of activated platelets in ECMO patients, were higher than in healthy controls. Together, these findings suggestively oppose that platelets are universally impaired during ECMO support. No marked difference in activation from day 1 to day 3 was seen during ECMO support.
Collapse
Affiliation(s)
- Camilla Mains Balle
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anni Nørgaard Jeppesen
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Christensen
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Senchenkova EY, Russell J, Yildirim A, Granger DN, Gavins FNE. Novel Role of T Cells and IL-6 (Interleukin-6) in Angiotensin II-Induced Microvascular Dysfunction. Hypertension 2019; 73:829-838. [PMID: 30739537 PMCID: PMC6422352 DOI: 10.1161/hypertensionaha.118.12286] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
Hypertension is an established risk factor for subsequent cardiovascular diseases, with Ang II (angiotensin II) playing a major role in mediating thrombotic and inflammatory abnormalities. Although T cells and IL-6 (interleukin-6) play an important role in adaptive immune responses, little is known about their role(s) in the thromboinflammatory responses associated with Ang II. Here we show using intravital microscopy coupled with the light/dye injury model that Rag-1 deficient (Rag-1-/-) and IL-6 deficient (IL-6-/-) mice are afforded protection against Ang II-induced thrombosis. Blocking IL-6 receptors (using CD126 and gp130 antibodies) significantly diminished Ang II-mediated thrombosis and inflammatory cell recruitment in mice. Furthermore, the adoptive transfer of IL-6-/--derived T cells into Rag-1-/- mice failed to accelerate Ang II-induced thrombosis compared with Rag-1-/- mice reconstituted with wild-type-derived T cells, suggesting T cell IL-6 mediates the thrombotic abnormalities associated Ang II hypertension. Interestingly, adoptive transfer of WT T cells into Rag-1-/-/Ang II mice resulted in increased numbers of immature platelets, which constitutes a more active platelet population, that is, prothrombotic and proinflammatory. To translate our in vivo findings, we used clinical samples to demonstrate that IL-6 also predisposes platelets to an interaction with collagen receptors, thereby increasing the propensity for platelets to aggregate and cause thrombosis. In summary, we provide compelling evidence for the involvement of IL-6, IL-6R, and T-cell-dependent IL-6 signaling in Ang II-induced thromboinflammation, which may provide new therapeutic possibilities for drug discovery programs for the management of hypertension.
Collapse
Affiliation(s)
- Elena Y. Senchenkova
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71105, USA
| | - Janice Russell
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71105, USA
| | - Alper Yildirim
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71105, USA
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - D. Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71105, USA
| | - Felicity N. E. Gavins
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71105, USA
| |
Collapse
|
26
|
Thrombin Generation and Cancer: Contributors and Consequences. Cancers (Basel) 2019; 11:cancers11010100. [PMID: 30654498 PMCID: PMC6356447 DOI: 10.3390/cancers11010100] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
The high occurrence of cancer-associated thrombosis is associated with elevated thrombin generation. Tumour cells increase the potential for thrombin generation both directly, through the expression and release of procoagulant factors, and indirectly, through signals that activate other cell types (including platelets, leukocytes and erythrocytes). Furthermore, cancer treatments can worsen these effects. Coagulation factors, including tissue factor, and inhibitors of coagulation are altered and extracellular vesicles (EVs), which can promote and support thrombin generation, are released by tumour and other cells. Some phosphatidylserine-expressing platelet subsets and platelet-derived EVs provide the surface required for the assembly of coagulation factors essential for thrombin generation in vivo. This review will explore the causes of increased thrombin production in cancer, and the availability and utility of tests and biomarkers. Increased thrombin production not only increases blood coagulation, but also promotes tumour growth and metastasis and as a consequence, thrombin and its contributors present opportunities for treatment of cancer-associated thrombosis and cancer itself.
Collapse
|
27
|
Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133:906-918. [PMID: 30642917 DOI: 10.1182/blood-2018-11-882993] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Thrombosis with associated inflammation (thromboinflammation) occurs commonly in a broad range of human disorders. It is well recognized clinically in the context of superficial thrombophlebitis (thrombosis and inflammation of superficial veins); however, it is more dangerous when it develops in the microvasculature of injured tissues and organs. Microvascular thrombosis with associated inflammation is well recognized in the context of sepsis and ischemia-reperfusion injury; however, it also occurs in organ transplant rejection, major trauma, severe burns, the antiphospholipid syndrome, preeclampsia, sickle cell disease, and biomaterial-induced thromboinflammation. Central to thromboinflammation is the loss of the normal antithrombotic and anti-inflammatory functions of endothelial cells, leading to dysregulation of coagulation, complement, platelet activation, and leukocyte recruitment in the microvasculature. α-Thrombin plays a critical role in coordinating thrombotic and inflammatory responses and has long been considered an attractive therapeutic target to reduce thromboinflammatory complications. This review focuses on the role of basic aspects of coagulation and α-thrombin in promoting thromboinflammatory responses and discusses insights gained from clinical trials on the effects of various inhibitors of coagulation on thromboinflammatory disorders. Studies in sepsis patients have been particularly informative because, despite using anticoagulant approaches with different pharmacological profiles, which act at distinct points in the coagulation cascade, bleeding complications continue to undermine clinical benefit. Future advances may require the development of therapeutics with primary anti-inflammatory and cytoprotective properties, which have less impact on hemostasis. This may be possible with the growing recognition that components of blood coagulation and platelets have prothrombotic and proinflammatory functions independent of their hemostatic effects.
Collapse
|
28
|
|
29
|
Reddy EC, Wang H, Christensen H, McMillan‐Ward E, Israels SJ, Bang KWA, Rand ML. Analysis of procoagulant phosphatidylserine-exposing platelets by imaging flow cytometry. Res Pract Thromb Haemost 2018; 2:736-750. [PMID: 30349893 PMCID: PMC6178738 DOI: 10.1002/rth2.12144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/24/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Upon platelet activation, a subpopulation of procoagulant platelets is formed, characterized by the exposure of the anionic aminophospholipid phosphatidylserine (PS) on the surface membrane. OBJECTIVE To evaluate procoagulant PS-exposing platelets by imaging flow cytometry. METHODS Platelet ultrastructure was examined by transmission electron microscopy, and a comprehensive analysis of procoagulant platelets was performed using imaging flow cytometry; platelets were fluorescently labeled for the markers glycoprotein (GP)IX, activated integrin αIIbβ3, CD62P, and PS exposure. RESULTS A subpopulation of platelets stimulated in suspension by the physiological agonists thrombin+collagen, and all platelets stimulated by the calcium ionophore A23187, had a distinct round morphology. These platelets were PS-exposing, larger in size, had an increased circularity index, and had reduced internal complexity compared with non-PS-exposing platelets. They expressed CD62P and αIIbβ3 in an inactive conformation on the surface, and demonstrated depolarized inner mitochondrial membranes. For the first time, using imaging flow cytometry, a large proportion of PS-exposing platelets possessing platelet-associated extracellular vesicles (EVs) was observed, which demonstrated heterogeneous platelet marker expression that was different from free released EVs. CONCLUSIONS Innovative imaging flow cytometry allowed detailed fluorescence-based, quantitative morphometric analysis of PS-exposing platelets; in becoming procoagulant, platelets undergo remarkable morphological changes, transforming into spherical "balloons," almost devoid of their normal internal architecture. Almost all PS-exposing platelets have associated EVs that are not detectable by traditional flow cytometry. While their functions have yet to be fully elucidated, the heterogeneity of platelet-associated and released EVs suggests that they may contribute to different aspects of hemostasis and of thrombosis.
Collapse
Affiliation(s)
- Emily C. Reddy
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
| | - Hong Wang
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
| | - Hilary Christensen
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
| | | | - Sara J. Israels
- Department of Pediatrics and Child HealthUniversity of ManitobaWinnipegCanada
| | - K. W. Annie Bang
- Lunenfeld‐Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
| | - Margaret L. Rand
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
- Division of Haematology/OncologyThe Hospital for Sick ChildrenTorontoCanada
- Departments of Laboratory Medicine and Pathobiology, Biochemistry, and PaediatricsUniversity of TorontoTorontoCanada
| |
Collapse
|
30
|
Fager AM, Machlus KR, Ezban M, Hoffman M. Human platelets express endothelial protein C receptor, which can be utilized to enhance localization of factor VIIa activity. J Thromb Haemost 2018; 16:1817-1829. [PMID: 29879294 PMCID: PMC6166658 DOI: 10.1111/jth.14165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 12/01/2022]
Abstract
Essentials Factor VIIa binds activated platelets to promote hemostasis in hemophilia patients with inhibitors. The interactions and sites responsible for platelet-FVIIa binding are not fully understood. Endothelial cell protein C receptor (EPCR) is expressed on activated human platelets. EPCR binding enhances the efficacy of a FVIIa variant and could impact design of new therapeutics. SUMMARY Background High-dose factor VIIa (FVIIa) is routinely used as an effective bypassing agent to treat hemophilia patients with inhibitory antibodies that compromise factor replacement. However, the mechanism by which FVIIa binds activated platelets to promote hemostasis is not fully understood. FVIIa-DVQ is an analog of FVIIa with enhanced tissue factor (TF)-independent activity and hemostatic efficacy relative to FVIIa. Our previous studies have shown that FVIIa-DVQ exhibits greater platelet binding, thereby suggesting that features in addition to lipid composition contribute to platelet-FVIIa interactions. Objectives Endothelial cell protein C receptor (EPCR) also functions as a receptor for FVIIa on endothelial cells. We therefore hypothesized that an interaction with EPCR might play a role in platelet-FVIIa binding. Methods/results In the present study, we used flow cytometric analyses to show that platelet binding of both FVIIa and FVIIa-DVQ is partially inhibited in the presence of excess protein C or an anti-EPCR antibody. This decreased binding results in a corresponding decrease in the activity of both molecules in FXa and thrombin generation assays. Enhanced binding to EPCR was sufficient to account for the increased platelet binding of FVIIa-DVQ compared with wild-type FVIIa. As EPCR protein expression has not previously been shown in platelets, we confirmed the presence of EPCR in platelets using immunofluorescence, flow cytometry, immunoprecipitation, and mass spectrometry. Conclusions This work represents the first demonstration that human platelets express EPCR and suggests that modulation of EPCR binding could be utilized to enhance the hemostatic efficacy of rationally designed FVIIa analogs.
Collapse
Affiliation(s)
- A M Fager
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Pathology and Laboratory Medicine Service, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - K R Machlus
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Ezban
- Pharmacology, Novo Nordisk A/S, Måløv, Denmark
| | - M Hoffman
- Pathology and Laboratory Medicine Service, Durham Veterans Affairs Medical Center, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
31
|
Abstract
Platelets play a key role in the pathophysiology of coronary artery disease and acute coronary syndromes. Our understanding of platelet function in thrombus formation has increased considerably, resulting in the development of clinically effective treatment strategies and identification of new targets. An underappreciated platelet function is their contribution toward acute and chronic inflammatory processes including atherogenesis. In this review, we discuss the role of platelets in atherosclerosis and thrombosis, platelet function testing, and the pharmacology of currently available antiplatelet drugs.
Collapse
|
32
|
Pasalic L, Wing‐Lun E, Lau JK, Campbell H, Pennings GJ, Lau E, Connor D, Liang HP, Muller D, Kritharides L, Hogg PJ, Chen VM. Novel assay demonstrates that coronary artery disease patients have heightened procoagulant platelet response. J Thromb Haemost 2018; 16:1198-1210. [PMID: 29569428 PMCID: PMC6635759 DOI: 10.1111/jth.14008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 01/08/2023]
Abstract
Essentials Procoagulant platelets can be detected using GSAO in human whole blood. Stable coronary artery disease is associated with a heightened procoagulant platelet response. Agonist-induced procoagulant platelet response is not inhibited by aspirin alone. Collagen plus thrombin induced procoagulant platelet response is partially resistant to clopidogrel. SUMMARY Background Procoagulant platelets are a subset of highly activated platelets with a critical role in thrombin generation. Evaluation of their clinical utility in thrombotic disorders, such as coronary artery disease (CAD), has been thwarted by the lack of a sensitive and specific whole blood assay. Objectives We developed a novel assay, utilizing the cell death marker, GSAO [(4-(N-(S-glutathionylacetyl)amino)phenylarsonous acid], and the platelet activation marker, P-selectin, to identify procoagulant platelets in whole blood by flow cytometry. Patients/Methods Using this assay, we characterized the procoagulant platelet population in healthy controls and a cohort of patients undergoing elective coronary angiography. Results In patients with CAD, compared with patients without CAD, there was a heightened procoagulant platelet response to thrombin (25.2% vs. 12.2%), adenosine diphosphate (ADP) (7.8% vs. 2.7%) and thrombin plus collagen (27.2% vs. 18.3%). The heightened procoagulant platelet potential in CAD patients was not associated with other markers of platelet function, including aggregation, dense granule release and activation of α2b β3 integrin. Although dual antiplatelet therapy (DAPT) was associated with partial suppression of procoagulant platelets, this inhibitory effect on a patient level could not be predicted by aggregation response to ADP and was not fully suppressed by clopidogrel. Conclusions We report for the first time that procoagulant platelets can be efficiently detected in a few microliters of whole blood using the cell death marker, GSAO, and the platelet activation marker, P-selectin. A heightened procoagulant platelet response may provide insight into the thrombotic risk of CAD and help identify a novel target for antiplatelet therapies in CAD.
Collapse
Affiliation(s)
- L. Pasalic
- Prince of Wales Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyAustralia
- Departments of Clinical and Laboratory HaematologyInstitute of Clinical Pathology and Medical Research (ICPMR)NSW Health Pathology and Westmead HospitalWestmeadAustralia
- Sydney Centres for Thrombosis and HaemostasisWestmeadAustralia
| | | | - J. K. Lau
- ANZAC Research InstituteUniversity of SydneySydneyAustralia
- Department of CardiologyConcord Repatriation General HospitalSydneyAustralia
| | - H. Campbell
- Prince of Wales Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyAustralia
| | - G. J. Pennings
- ANZAC Research InstituteUniversity of SydneySydneyAustralia
| | - E. Lau
- Departments of Clinical and Laboratory HaematologyInstitute of Clinical Pathology and Medical Research (ICPMR)NSW Health Pathology and Westmead HospitalWestmeadAustralia
- Sydney Centres for Thrombosis and HaemostasisWestmeadAustralia
| | - D. Connor
- Blood, Stem Cell and Cancer Research UnitSt Vincent's Centre for Applied Medical ResearchSydneyAustralia
| | - H. P. Liang
- ANZAC Research InstituteUniversity of SydneySydneyAustralia
| | - D. Muller
- St Vincent's HospitalSydneyAustralia
| | - L. Kritharides
- ANZAC Research InstituteUniversity of SydneySydneyAustralia
- Department of CardiologyConcord Repatriation General HospitalSydneyAustralia
| | - P. J. Hogg
- The Centenary InstituteSydneyAustralia
- Trials CentreNational Health and Medical Research Council Clinical Trials CentreUniversity of SydneySydneyAustralia
| | - V. M. Chen
- Prince of Wales Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyAustralia
- ANZAC Research InstituteUniversity of SydneySydneyAustralia
- Department of HaematologyConcord Repatriation General HospitalSydneyAustralia
| |
Collapse
|
33
|
McDonnell A, Bride KL, Lim D, Paessler M, Witmer CM, Lambert MP. Utility of the immature platelet fraction in pediatric immune thrombocytopenia: Differentiating from bone marrow failure and predicting bleeding risk. Pediatr Blood Cancer 2018; 65. [PMID: 28921855 DOI: 10.1002/pbc.26812] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Differentiating childhood immune thrombocytopenia (ITP) from other cause of thrombocytopenia remains a diagnosis of exclusion. Additionally factors that predict bleeding risk for those patients with ITP are currently not well understood. Previous small studies have suggested that immature platelet fraction (IPF) may differentiate ITP from other causes of thrombocytopenia and in combination with other factors may predict bleeding risk. METHODS We performed a retrospective chart review of thrombocytopenic patients with an IPF measured between November 1, 2013 and July 1, 2015. Patients were between 2 months and 21 years of age with a platelet count <50 × 109 /l. Each patient chart was reviewed for final diagnosis and bleeding symptoms. A bleeding severity score was retrospectively assigned. RESULTS Two hundred seventy two patients met inclusion criteria, 97 with ITP, 11 with bone marrow failure (BMF), 126 with malignancy, and 38 with other causes of thrombocytopenia. An IPF > 5.2% differentiated ITP from BMF with 93% sensitivity and 91% specificity. Absolute immature platelet number (AIPN) was significantly lower in ITP patients with severe to life-threatening hemorrhage than those without, despite similar platelet counts. On multivariate analysis, an IPF < 10.4% was confirmed as an independent predictor of bleeding risk at platelet counts <10 × 109 /l in patients with ITP. CONCLUSIONS IPF measurement alone has utility in both the diagnosis of ITP and identifying patients at increased risk of hemorrhage. Further study is required to understand the pathophysiological differences of ITP patients with lower IPF/AIPN.
Collapse
Affiliation(s)
- Alicia McDonnell
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karen L Bride
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Derick Lim
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michele Paessler
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Char M Witmer
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michele P Lambert
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
|
35
|
Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis. Blood 2017; 130:2171-2179. [DOI: 10.1182/blood-2017-05-787259] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
Abstract
Current understanding of how platelets localize coagulation to wound sites has come mainly from studies of a subpopulation of activated platelets. In this review, we summarize data from the last 4 decades that have described these platelets with a range of descriptive titles and attributes. We identify striking overlaps in the reported characteristics of these platelets, which imply a single subpopulation of versatile platelets and thus suggest that their commonality requires unification of their description. We therefore propose the term procoagulant platelet as the unifying terminology. We discuss the agonist requirements and molecular drivers for the dramatic morphological transformation platelets undergo when becoming procoagulant. Finally, we provide perspectives on the biomarker potential of procoagulant platelets for thrombotic events as well as on the possible clinical benefits of inhibitors of carbonic anhydrase enzymes and the water channel Aquaporin-1 for targeting this subpopulation of platelets as antiprocoagulant antithrombotics.
Collapse
|
36
|
Dahlbäck B. Novel insights into the regulation of coagulation by factor V isoforms, tissue factor pathway inhibitorα, and protein S. J Thromb Haemost 2017; 15:1241-1250. [PMID: 28671348 DOI: 10.1111/jth.13665] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Factor V (FV) is a regulator of both pro- and anticoagulant pathways. It circulates as a single-chain procofactor, which is activated by thrombin or FXa to FVa that serves as cofactor for FXa in prothrombin activation. The cofactor function of FVa is regulated by activated protein C (APC) and protein S. FV can also function as an anticoagulant APC cofactor in the inhibition of FVIIIa in the membrane-bound tenase complex (FIXa/FVIIIa). In recent years, it has become clear that FV also functions in multiple ways in the tissue factor pathway inhibitor (TFPI) anticoagulant pathway. Of particular importance is a FV splice variant (FV-Short) that serves as a carrier and cofactor to TFPIα in the inhibition of FXa. FV-Short is generated through alternative splicing of exon 13 that encodes the large activation B domain. A highly negatively charged binding site for TFPIα is exposed in the C-terminus of the FV-Short B domain, which binds the positively charged C-terminus of TFPIα, thus keeping TFPIα in circulation. The binding of TFPIα to FV-Short is also instrumental in localizing the inhibitor to the surface of negatively charged phospholipids, where TFPIα inhibits FXa in process that is stimulated by protein S. Plasma FV activation intermediates and partially proteolyzed platelet FV similarly bind TFPIα with high affinity and regulate formation of prothrombinase. The novel insights gained into the interaction between FV isoforms, TFPIα, and protein S have opened a new avenue for research about the mechanisms of coagulation regulation and also for future development of therapeutics aimed at modulating coagulation.
Collapse
Affiliation(s)
- B Dahlbäck
- Department of Translational Medicine, Lund University, University Hospital SUS, Malmö, Sweden
| |
Collapse
|
37
|
Abstract
Oral Antiplatelet Drugs (OAD) have a proven track record in the risk reduction of major cardiovascular events in patients with cardiovascular disease and normal kidney function. However, major gaps exist in our understanding of their effects on thrombosis and bleeding in chronic kidney disease (CKD). Clinical practice guidelines are ambiguous about use of such drugs in CKD patients, because patients with moderate to severe CKD were systematically excluded from clinical trials evaluating the efficacy and safety of OAD. Paradoxically, CKD patients are at high risk of thrombosis and major bleeding events. Thus, choosing the right combination of OAD for cardiovascular protection in these patients is challenging. Patients with CKD exhibit high rates of OAD hyporesponsiveness. It is, therefore, imperative to explore the mechanisms responsible for poor response to OAD in CKD patients in order to use these drugs more safely and effectively. This review explores suggested mechanisms of platelet dysfucntion in CKD patients and the available evidence on the efficacy and safety of oral antiplatelet drugs in patients with renal dysfunction.
Collapse
|
38
|
Reddy EC, Wang H, Bang KA, Packham MA, Rand ML. Young steady-state rabbit platelets do not have an enhanced capacity to expose procoagulant phosphatidylserine. Platelets 2017; 29:27-33. [DOI: 10.1080/09537104.2017.1295434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Emily C. Reddy
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hong Wang
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - K.W. Annie Bang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Marian A. Packham
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Margaret L. Rand
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, and Departments of Laboratory Medicine and Pathobiology, and Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Kapustin AN, Schoppet M, Schurgers LJ, Reynolds JL, McNair R, Heiss A, Jahnen-Dechent W, Hackeng TM, Schlieper G, Harrison P, Shanahan CM. Prothrombin Loading of Vascular Smooth Muscle Cell-Derived Exosomes Regulates Coagulation and Calcification. Arterioscler Thromb Vasc Biol 2017; 37:e22-e32. [PMID: 28104608 DOI: 10.1161/atvbaha.116.308886] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/28/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The drug warfarin blocks carboxylation of vitamin K-dependent proteins and acts as an anticoagulant and an accelerant of vascular calcification. The calcification inhibitor MGP (matrix Gla [carboxyglutamic acid] protein), produced by vascular smooth muscle cells (VSMCs), is a key target of warfarin action in promoting calcification; however, it remains unclear whether proteins in the coagulation cascade also play a role in calcification. APPROACH AND RESULTS Vascular calcification is initiated by exosomes, and proteomic analysis revealed that VSMC exosomes are loaded with Gla-containing coagulation factors: IX and X, PT (prothrombin), and proteins C and S. Tracing of Alexa488-labeled PT showed that exosome loading occurs by direct binding to externalized phosphatidylserine (PS) on the exosomal surface and by endocytosis and recycling via late endosomes/multivesicular bodies. Notably, the PT Gla domain and a synthetic Gla domain peptide inhibited exosome-mediated VSMC calcification by preventing nucleation site formation on the exosomal surface. PT was deposited in the calcified vasculature, and there was a negative correlation between vascular calcification and the levels of circulating PT. In addition, we found that VSMC exosomes induced thrombogenesis in a tissue factor-dependent and PS-dependent manner. CONCLUSIONS Gamma-carboxylated coagulation proteins are potent inhibitors of vascular calcification suggesting warfarin action on these factors also contributes to accelerated calcification in patients receiving this drug. VSMC exosomes link calcification and coagulation acting as novel activators of the extrinsic coagulation pathway and inducers of calcification in the absence of Gla-containing inhibitors.
Collapse
MESH Headings
- Aged
- Anticoagulants/adverse effects
- Blood Coagulation/drug effects
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Endocytosis
- Endosomes/metabolism
- Exosomes/drug effects
- Exosomes/metabolism
- Extracellular Matrix Proteins/metabolism
- Female
- Humans
- Male
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Peptides/pharmacology
- Phosphatidylserines/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Transport
- Prothrombin/metabolism
- Signal Transduction
- Vascular Calcification/chemically induced
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- Warfarin/adverse effects
- Matrix Gla Protein
Collapse
Affiliation(s)
- Alexander N Kapustin
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Michael Schoppet
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Leon J Schurgers
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Joanne L Reynolds
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Rosamund McNair
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Alexander Heiss
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Willi Jahnen-Dechent
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Tilman M Hackeng
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Georg Schlieper
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Paul Harrison
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Catherine M Shanahan
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.).
| |
Collapse
|
40
|
Podoplelova NA, Sveshnikova AN, Kurasawa JH, Sarafanov AG, Chambost H, Vasil'ev SA, Demina IA, Ataullakhanov FI, Alessi MC, Panteleev MA. Hysteresis-like binding of coagulation factors X/Xa to procoagulant activated platelets and phospholipids results from multistep association and membrane-dependent multimerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1216-27. [DOI: 10.1016/j.bbamem.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
41
|
Tafur AJ, McBane RD, Ammash N, Asirvatham SJ, Miller RD, Janczak D, Slusser JP, Grill DE, Whelan SL, Wysokinski WE. Impact of Atrial Fibrillation and Sinus Rhythm Restoration on Reticulated Platelets. Mayo Clin Proc 2015; 90:1650-8. [PMID: 26527035 DOI: 10.1016/j.mayocp.2015.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/20/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess the impact of nonvalvular atrial fibrillation (NVAF) and sinus rhythm restoration on the distribution of reticulated platelets (RPs), which are known to be associated with thrombotic propensity and have a greater predilection for thrombus participation. PARTICIPANTS AND METHODS The RP content was assessed by flow cytometry (thiazole orange/CD61) in 110 consecutive patients with NVAF before and 3 to 4 months after catheter ablation of the pulmonary veins. Results were compared with those of 55 age- and sex-matched controls with normal sinus rhythm. RESULTS The mean ± SD percentage of RPs was higher in patients with NVAF compared with controls (28.5%±7.3% vs 6.4%±5.3%; P<.001). The RP content did not vary by CHA2DS2-VASc score. After catheter ablation of the pulmonary veins, 63 patients were available for follow-up assessment. A significant reduction of RPs was observed compared with preintervention values (29.85%±7.1% vs 20.79%±7.6%; P<.001). During follow-up, 19% of patients (12 of 63) had confirmed AF recurrence. The mean ± SD percentage of RPs was higher in this group than in those without a recurrence (24.7%±6.5% vs 18.9%±7.5%; P=.01). CONCLUSION Nonvalvular atrial fibrillation affects the percentage of RPs, independent of the CHA2DS2-VASc score. After ablation, RP content dropped significantly. High RP content in patients with NVAF may explain the potential mechanism of thromboembolic complications and the lack of efficacy of currently available antiplatelet therapy for stroke prevention in this dysrhythmia.
Collapse
Affiliation(s)
- Alfonso J Tafur
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Robert D McBane
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Naser Ammash
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | | | - Randall D Miller
- Department of Laboratory Medicine and Pathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, MN
| | - Dawid Janczak
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Joshua P Slusser
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Diane E Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Shelly L Whelan
- Department of Laboratory Medicine and Pathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
42
|
Necrotic platelets provide a procoagulant surface during thrombosis. Blood 2015; 126:2852-62. [PMID: 26474813 DOI: 10.1182/blood-2015-08-663005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
A subpopulation of platelets fulfills a procoagulant role in hemostasis and thrombosis by enabling the thrombin burst required for fibrin formation and clot stability at the site of vascular injury. Excess procoagulant activity is linked with pathological thrombosis. The identity of the procoagulant platelet has been elusive. The cell death marker 4-[N-(S-glutathionylacetyl)amino]phenylarsonous acid (GSAO) rapidly enters a subpopulation of agonist-stimulated platelets via an organic anion-transporting polypeptide and is retained in the cytosol through covalent reaction with protein dithiols. Labeling with GSAO, together with exposure of P-selectin, distinguishes necrotic from apoptotic platelets and correlates with procoagulant potential. GSAO(+) platelets form in occluding murine thrombi after ferric chloride injury and are attenuated with megakaryocyte-directed deletion of the cyclophilin D gene. These platelets form a procoagulant surface, supporting fibrin formation, and reduction in GSAO(+) platelets is associated with reduction in platelet thrombus size and fibrin formation. Analysis of platelets from human subjects receiving aspirin therapy indicates that these procoagulant platelets form despite aspirin therapy, but are attenuated by inhibition of the necrosis pathway. These findings indicate that the major subpopulation of platelets involved in fibrin formation are formed via regulated necrosis involving cyclophilin D, and that they may be targeted independent of platelet activation.
Collapse
|
43
|
Lyu M, Li Y, Xue F, Liu X, Liu W, Sun T, Lyu C, Fu R, Zhang L, Yang R. [Application of immature platelet fraction absolute immature platelet fraction and thrombelastograph on assessment of bleeding risk in patients with immune thrombocytopenia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:759-64. [PMID: 26462776 PMCID: PMC7342705 DOI: 10.3760/cma.j.issn.0253-2727.2015.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To explore the clinical value of immature platelet fraction (IPF), absolute immature platelet fraction (A- IPF) and thrombelastograph (TEG) on assessment of bleeding risk of immune thrombocytopenia (ITP). METHODS two hundred and seventy- one patients with ITP were assessed based on ITP-BAT bleeding grading system. IPF, A-IPF were determined in 271 patients ,TEG in 125 patients. The correlations between bleeding grades and IPF, A-IPF, variables of TEG in subgroups were analyzed by statistical method. The predictive value of IPF, A-IPF, and variables of TEG on bleeding risk of ITP patients was evaluated. RESULTS There were no significant differences in bleeding degree in all patients with different gender and disease stage (P>0.05). Mild bleeding rate in children was higher than that in adult (P<0.05). PLT inversely correlated with bleeding grade for the entire cohort (P<0.001). In all subjects, PLT< 30 × 10⁹/L and pediatric cohorts with PLT< 30 × 10⁹/L, PLT were negatively correlated with IPF (P<0.05), positive correlated with A-IPF (P<0.001) and the maximum amplitude (MA (P<0.05). Bleeding grades were significantly correlated with IPF, A-IPF, MA in all subjects and patients with PLT< 30 × 10⁹/L (P<0.001). IPF, A-IPF and MA did not correlate with bleeding grades in children with PLT< 30 × 10⁹/L (P>0.05). ROC curve analysis revealed IPF, A-IPF and MA had better predictive value (AUC 0.745, 0.744, 0.813, P<0.001). Multivariate analysis showed that IPF and MA were independence factors for predicting bleeding risk in ITP patients and comprehensive predictive value was higher (AUC 0.846, P<0.001) than single variable. CONCLUSION IPF, A-IPF and MA could accurately evaluate bleeding risk in ITP patients. It may be considered as reference index of the treatment and observation index of curative effect.
Collapse
Affiliation(s)
- Ming'en Lyu
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Yang Li
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Feng Xue
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Xiaofan Liu
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Wenjie Liu
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Tiantian Sun
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Cuicui Lyu
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Rongfeng Fu
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Lei Zhang
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Renchi Yang
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
44
|
Pujol-Moix N, Vázquez-Santiago M, Morera A, Ziyatdinov A, Remacha A, Nomdedeu JF, Fontcuberta J, Soria JM, Souto JC. Genetic determinants of Platelet Large-Cell Ratio, Immature Platelet Fraction, and other platelet-related phenotypes. Thromb Res 2015; 136:361-6. [DOI: 10.1016/j.thromres.2015.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/18/2015] [Accepted: 06/14/2015] [Indexed: 11/26/2022]
|
45
|
Lippi G, Pasalic L, Favaloro EJ. Detection of mild inherited disorders of blood coagulation: current options and personal recommendations. Expert Rev Hematol 2015; 8:527-42. [DOI: 10.1586/17474086.2015.1039978] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Ibrahim H, Schutt RC, Hannawi B, DeLao T, Barker CM, Kleiman NS. Association of immature platelets with adverse cardiovascular outcomes. J Am Coll Cardiol 2014; 64:2122-9. [PMID: 25457402 DOI: 10.1016/j.jacc.2014.06.1210] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Immature platelets are less responsive to the effects of antiplatelet drugs and contain messenger ribonucleic acid that is translationally active. They can be measured easily using an automated hematoanalyzer and reported as part of the complete blood count. OBJECTIVES The purpose of this study was to determine the prognostic significance of elevated immature platelet count (IPC) in patients with coronary artery disease (CAD). METHODS In this prospective cohort study in patients with CAD, patients underwent IPC measurement and were then followed up for the composite endpoint of major adverse cardiovascular events (MACE), defined as a composite of all-cause mortality, myocardial infarction, unplanned revascularization, or hospitalization for angina. For the purposes of analysis, patients were stratified into tertiles of IPC. RESULTS Eighty-nine patients were followed up for a median of 31 months. Stratification to the high IPC tertile was associated with higher rates of MACE compared with the intermediate and low tertiles (60% vs. 24% vs. 16%, respectively; p < 0.001). Time-dependent receiver-operating characteristic analysis revealed that an IPC level ≥7,632 platelets/μl was 70.7% sensitive and 82.1% specific for MACE. After adjustment for age, admission diagnosis, index revascularization, heart failure, smoking, hematocrit, and baseline platelet count, patients with an IPC level ≥7,632 platelets/μl were more likely to experience a MACE (hazard ratio: 4.65; 95% confidence interval: 1.78 to 12.16; p < 0.002). CONCLUSIONS IPC is a novel biomarker for MACE risk stratification in patients with CAD. Future studies should focus on the utilization of this marker for individualized antiplatelet therapy.
Collapse
Affiliation(s)
- Homam Ibrahim
- Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas; Weill-Cornell Medical College, New York, New York
| | - Robert C Schutt
- Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas; Weill-Cornell Medical College, New York, New York
| | - Bashar Hannawi
- Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas; Weill-Cornell Medical College, New York, New York
| | - Timothy DeLao
- Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas
| | - Colin M Barker
- Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas; Weill-Cornell Medical College, New York, New York
| | - Neal S Kleiman
- Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas; Weill-Cornell Medical College, New York, New York.
| |
Collapse
|
47
|
Estcourt LJ, Stanworth SJ, Harrison P, Powter G, McClure M, Murphy MF, Mumford AD. Prospective observational cohort study of the association between thromboelastometry, coagulation and platelet parameters and bleeding in patients with haematological malignancies- The ATHENA study. Br J Haematol 2014; 166:581-91. [DOI: 10.1111/bjh.12928] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/24/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Lise J. Estcourt
- NHS Blood and Transplant; Oxford UK
- Radcliffe Department of Medicine; University of Oxford; Oxford UK
| | - Simon J. Stanworth
- NHS Blood and Transplant; Oxford UK
- Radcliffe Department of Medicine; University of Oxford; Oxford UK
| | - Paul Harrison
- School of Immunity and Infection; College of Medical and Dental Sciences; University of Birmingham; Birmingham UK
| | | | - Marianne McClure
- Haematology Department; University of Oxford Hospitals NHS Trust; Oxford UK
| | - Michael F. Murphy
- NHS Blood and Transplant; Oxford UK
- Radcliffe Department of Medicine; University of Oxford; Oxford UK
| | - Andrew D. Mumford
- School of Cellular and Molecular Medicine; University of Bristol; Bristol UK
| |
Collapse
|
48
|
Abaeva AA, Canault M, Kotova YN, Obydennyy SI, Yakimenko AO, Podoplelova NA, Kolyadko VN, Chambost H, Mazurov AV, Ataullakhanov FI, Nurden AT, Alessi MC, Panteleev MA. Procoagulant platelets form an α-granule protein-covered "cap" on their surface that promotes their attachment to aggregates. J Biol Chem 2013; 288:29621-32. [PMID: 23995838 DOI: 10.1074/jbc.m113.474163] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Strongly activated "coated" platelets are characterized by increased phosphatidylserine (PS) surface expression, α-granule protein retention, and lack of active integrin αIIbβ3. To study how they are incorporated into thrombi despite a lack of free activated integrin, we investigated the structure, function, and formation of the α-granule protein "coat." Confocal microscopy revealed that fibrin(ogen) and thrombospondin colocalized as "cap," a single patch on the PS-positive platelet surface. In aggregates, the cap was located at the point of attachment of the PS-positive platelets. Without fibrin(ogen) retention, their ability to be incorporated in aggregates was drastically reduced. The surface fibrin(ogen) was strongly decreased in the presence of a fibrin polymerization inhibitor GPRP and also in platelets from a patient with dysfibrinogenemia and a fibrinogen polymerization defect. In contrast, a fibrinogen-clotting protease ancistron increased the amount of fibrin(ogen) and thrombospondin on the surface of the PS-positive platelets stimulated with collagen-related peptide. Transglutaminases are also involved in fibrin(ogen) retention. However, platelets from patients with factor XIII deficiency had normal retention, and a pan-transglutaminase inhibitor T101 had only a modest inhibitory effect. Fibrin(ogen) retention was normal in Bernard-Soulier syndrome and kindlin-3 deficiency, but not in Glanzmann thrombasthenia lacking the platelet pool of fibrinogen and αIIbβ3. These data show that the fibrin(ogen)-covered cap, predominantly formed as a result of fibrin polymerization, is a critical mechanism that allows coated (or rather "capped") platelets to become incorporated into thrombi despite their lack of active integrins.
Collapse
Affiliation(s)
- Anastasia A Abaeva
- From the Center for Theoretical Problems of Physicochemical Pharmacology, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Platelets contribute to hemostasis by forming the platelet plug and then contributing to coagulation by providing a catalytic surface where thrombin generation occurs efficiently. This catalytic activity, known as the platelet procoagulant response, is being recognized as a nuanced response. This review examines platelets’ response to strong stimuli, which results in the formation of a platelet subpopulation (superactivated platelets) with several unique properties, including enhanced procoagulant activity. These platelets contribute uniquely to thrombus architecture and seem to have thrombus regulatory activity. Superactivated platelets’ role in diseases of thrombosis and hemostasis, as either potentiating or mitigating factors, is not currently known, but may be an important pharmacological target.
Collapse
Affiliation(s)
- Marshall Mazepa
- From the Department of Pathology, University of North Carolina Hospitals, Chapel Hill, NC (M.M.); Department of Pathology, Duke University, Lab Service Durham Veterans Affairs Medical Center, Durham, NC (M.H.); and Division of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, NC (D.M.)
| | - Maureane Hoffman
- From the Department of Pathology, University of North Carolina Hospitals, Chapel Hill, NC (M.M.); Department of Pathology, Duke University, Lab Service Durham Veterans Affairs Medical Center, Durham, NC (M.H.); and Division of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, NC (D.M.)
| | - Dougald Monroe
- From the Department of Pathology, University of North Carolina Hospitals, Chapel Hill, NC (M.M.); Department of Pathology, Duke University, Lab Service Durham Veterans Affairs Medical Center, Durham, NC (M.H.); and Division of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, NC (D.M.)
| |
Collapse
|
50
|
Whelihan MF, Mann KG. The role of the red cell membrane in thrombin generation. Thromb Res 2013; 131:377-82. [DOI: 10.1016/j.thromres.2013.01.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
|