1
|
Majima M, Matsuda Y, Watanabe SI, Ohtaki Y, Hosono K, Ito Y, Amano H. Prostanoids Regulate Angiogenesis and Lymphangiogenesis in Pathological Conditions. Cold Spring Harb Perspect Med 2024; 14:a041182. [PMID: 38565267 PMCID: PMC11610754 DOI: 10.1101/cshperspect.a041182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Angiogenesis, the formation of new blood vessels from the preexistent microvasculature, is an essential component of wound repair and tumor growth. Nonsteroidal anti-inflammatory drugs that suppress prostanoid biosynthesis are known to suppress the incidence and progression of malignancies including colorectal cancers, and also to delay the wound healing. However, the precise mechanisms are not fully elucidated. Accumulated results obtained from prostanoid receptor knockout mice indicate that a prostaglandin E-type receptor signaling EP3 in the host microenvironment is critical in tumor angiogenesis inducing vascular endothelial growth factor A (VEGF-A). Further, lymphangiogenesis was also enhanced by EP signaling via VEGF-C/D inductions in pathological settings. These indicate the importance of EP receptor to facilitate angiogenesis and lymphangiogenesis in vivo. Prostanoids act beyond their commonly understood activities in smooth muscle contraction and vasoactivity, both of which are quick responses elicited within several seconds on stimulations. Prostanoid receptor signaling will be a potential therapeutic target for disease conditions related to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yasuhiro Matsuda
- Department of Life Support Engineering, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shin-Ichi Watanabe
- Department of Exercise Physiology and Health Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Yasuaki Ohtaki
- Department of Human Sensing, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
2
|
Mishima T, Hosono K, Tanabe M, Ito Y, Majima M, Narumiya S, Miyaji K, Amano H. Thromboxane prostanoid signaling in macrophages attenuates lymphedema and facilitates lymphangiogenesis in mice : TP signaling and lymphangiogenesis. Mol Biol Rep 2023; 50:7981-7993. [PMID: 37540456 PMCID: PMC10520203 DOI: 10.1007/s11033-023-08620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Accumulating evidence suggests that prostaglandin E2, an arachidonic acid (AA) metabolite, enhances lymphangiogenesis in response to inflammation. However, thromboxane A2 (TXA2), another AA metabolite, is not well known. Thus, this study aimed to determine the role of thromboxane prostanoid (TP) signaling in lymphangiogenesis in secondary lymphedema. METHODS AND RESULTS Lymphedema was induced by the ablation of lymphatic vessels in mouse tails. Compared with wild-type mice, tail lymphedema in Tp-deficient mice was enhanced, which was associated with suppressed lymphangiogenesis as indicated by decreased lymphatic vessel area and pro-lymphangiogenesis-stimulating factors. Numerous macrophages were found in the tail tissues of Tp-deficient mice. Furthermore, the deletion of TP in macrophages increased tail edema and decreased lymphangiogenesis and pro-lymphangiogenic cytokines, which was accompanied by increased numbers of macrophages and gene expression related to a pro-inflammatory macrophage phenotype in tail tissues. In vivo microscopic studies revealed fluorescent dye leakage in the lymphatic vessels in the wounded tissues. CONCLUSIONS The results suggest that TP signaling in macrophages promotes lymphangiogenesis and prevents tail lymphedema. TP signaling may be a therapeutic target for improving lymphedema-related symptoms by enhancing lymphangiogenesis.
Collapse
Affiliation(s)
- Toshiaki Mishima
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanako Hosono
- Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Mina Tanabe
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshiya Ito
- Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan.
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Kanagawa, 243-0292, Japan
| | - Shuh Narumiya
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Kagami Miyaji
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Amano
- Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
3
|
Matsui K, Torii S, Hara S, Maruyama K, Arai T, Imanaka-Yoshida K. Tenascin-C in Tissue Repair after Myocardial Infarction in Humans. Int J Mol Sci 2023; 24:10184. [PMID: 37373332 DOI: 10.3390/ijms241210184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Adverse ventricular remodeling after myocardial infarction (MI) is progressive ventricular dilatation associated with heart failure for weeks or months and is currently regarded as the most critical sequela of MI. It is explained by inadequate tissue repair due to dysregulated inflammation during the acute stage; however, its pathophysiology remains unclear. Tenascin-C (TNC), an original member of the matricellular protein family, is highly up-regulated in the acute stage after MI, and a high peak in its serum level predicts an increased risk of adverse ventricular remodeling in the chronic stage. Experimental TNC-deficient or -overexpressing mouse models have suggested the diverse functions of TNC, particularly its pro-inflammatory effects on macrophages. The present study investigated the roles of TNC during human myocardial repair. We initially categorized the healing process into four phases: inflammatory, granulation, fibrogenic, and scar phases. We then immunohistochemically examined human autopsy samples at the different stages after MI and performed detailed mapping of TNC in human myocardial repair with a focus on lymphangiogenesis, the role of which has recently been attracting increasing attention as a mechanism to resolve inflammation. The direct effects of TNC on human lymphatic endothelial cells were also assessed by RNA sequencing. The results obtained support the potential roles of TNC in the regulation of macrophages, sprouting angiogenesis, the recruitment of myofibroblasts, and the early formation of collagen fibrils during the inflammatory phase to the early granulation phase of human MI. Lymphangiogenesis was observed after the expression of TNC was down-regulated. In vitro results revealed that TNC modestly down-regulated genes related to nuclear division, cell division, and cell migration in lymphatic endothelial cells, suggesting its inhibitory effects on lymphatic endothelial cells. The present results indicate that TNC induces prolonged over-inflammation by suppressing lymphangiogenesis, which may be one of the mechanisms underlying adverse post-infarct remodeling.
Collapse
Affiliation(s)
- Kenta Matsui
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Sota Torii
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Shigeru Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 3-52 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| |
Collapse
|
4
|
Majima M, Hosono K, Ito Y, Amano H, Nagashima Y, Matsuda Y, Watanabe SI, Nishimura H. A biologically active lipid, thromboxane, as a regulator of angiogenesis and lymphangiogenesis. Biomed Pharmacother 2023; 163:114831. [PMID: 37150029 DOI: 10.1016/j.biopha.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Thromboxane (TX) and prostaglandins are metabolites of arachidonic acid, a twenty-carbon unsaturated fatty acid, and have a variety of actions that are exerted via specific receptors. Angiogenesis is defined as the formation of new blood vessels from pre-existing vascular beds and is a critical component of pathological conditions, including inflammation and cancer. Lymphatic vessels play crucial roles in the regulation of interstitial fluid, immune surveillance, and the absorption of dietary fat from the intestine; and they are also involved in the pathogenesis of various diseases. Similar to angiogenesis, lymphangiogenesis, the formation of new lymphatic vessels, is a critical component of pathological conditions. The TP-dependent accumulation of platelets in microvessels has been reported to enhance angiogenesis under pathological conditions. Although the roles of some growth factors and cytokines in angiogenesis and lymphangiogenesis have been well characterized, accumulating evidence suggests that TX induces the production of proangiogenic and prolymphangiogenic factors through the activation of adenylate cyclase, and upregulates angiogenesis and lymphangiogenesis under disease conditions. In this review, we discuss the role of TX as a regulator of angiogenesis and lymphangiogenesis, and its emerging importance as a therapeutic target.
Collapse
Affiliation(s)
- Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan; Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan.
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinao Nagashima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan; Tokyo Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Yasuhiro Matsuda
- Department of Life Support Engineering, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shin-Ichi Watanabe
- Department of Exercise Physiology and Health Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Hironobu Nishimura
- Department of Biological Information, Faculty of Health and Medical Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| |
Collapse
|
5
|
Abstract
Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics (A.K.), Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (A.K.)
| | - Hai-Chun Yang
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B. Fogo
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Elaine L. Shelton
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
6
|
Lan YL, Wang H, Chen A, Zhang J. Update on the current knowledge of lymphatic drainage system and its emerging roles in glioma management. Immunology 2023; 168:233-247. [PMID: 35719015 DOI: 10.1111/imm.13517] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
The draining of brain interstitial fluid (ISF) to cerebrospinal fluid (CSF) and the subsequent draining of CSF to meningeal lymphatics is well-known. Nonetheless, its role in the development of glioma is a remarkable finding that has to be extensively understood. The glymphatic system (GS) collects CSF from the subarachnoid space and brain ISF through aquaporin-4 (AQP4) water channels. The glial limiting membrane and the perivascular astrocyte-end-feet membrane both have elevated levels of AQP4. CSF is thought to drain through the nerve sheaths of the olfactory and other cranial nerves as well as spinal meningeal lymphatics via dorsal or basal lymphatic vessels. Meningeal lymphatic vessels (MLVs) exist below the skull in the dorsal and basal regions. In this view, MLVs offer a pathway to drain macromolecules and traffic immunological cells from the CNS into cervical lymph nodes (CLNs), and thus can be used as a candidate curing strategy against glioma and other associated complications, such as neuro-inflammation. Taken together, the lymphatic drainage system could provide a route or approach for drug targeting of glioma and other neurological conditions. Nevertheless, its pathophysiological role in glioma remains elusive, which needs extensive research. The current review aims to explore the lymphatic drainage system, its role in glioma progression, and possible therapeutic techniques that target MLVs in the CNS.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjin Wang
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Aiqin Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Zhou Y, Zhu X, Wang H, Duan C, Cui H, Shi J, Shi S, Yuan G, Hu Y. The Role of VEGF Family in Lipid Metabolism. Curr Pharm Biotechnol 2023; 24:253-265. [PMID: 35524661 DOI: 10.2174/1389201023666220506105026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
The vascular endothelial growth factor (VEGF) family plays a major role in tumors and ophthalmic diseases. However, increasingly more data reported its potential in regulating lipids. With its biological functions mainly expressed in lymphatic vessels, some factors in the families, like VEGF-A and VEGF-C, have been proved to regulate intestinal absorption of lipids by affecting chylous ducts. Other effects, including regulating lipoprotein lipase (LPL), endothelial lipase (EL), and recombinant syndecan 1 (SDC1), have also been confirmed. However, given the scant-related studies, further research should be conducted to examine the concrete mechanisms and provide pragmatic ways to apply them in the clinic. The VEGF family may treat dyslipidemia in specific ways that are different from common methods and concurrently contribute to the treatment of other metabolic diseases, like diabetes and obesity.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglin Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Biologically active lipids in the regulation of lymphangiogenesis in disease states. Pharmacol Ther 2021; 232:108011. [PMID: 34614423 DOI: 10.1016/j.pharmthera.2021.108011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Lymphatic vessels have crucial roles in the regulation of interstitial fluids, immune surveillance, and the absorption of dietary fat in the intestine. Lymphatic function is also closely related to the pathogenesis of various disease states such as inflammation, lymphedema, endometriosis, liver dysfunction, and tumor metastasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing lymphatic vessels, is a critical determinant in the above conditions. Although the effect of growth factors on lymphangiogenesis is well-characterized, and biologically active lipids are known to affect smooth muscle contractility and vasoaction, there is accumulating evidence that biologically active lipids are also important inducers of growth factors and cytokines that regulate lymphangiogenesis. This review discusses recent advances in our understanding of biologically active lipids, including arachidonic acid metabolites, sphingosine 1-phosphate, and lysophosphatidic acid, as regulators of lymphangiogenesis, and the emerging importance of the lymphangiogenesis as a therapeutic target.
Collapse
|
9
|
Cao E, Watt MJ, Nowell CJ, Quach T, Simpson JS, De Melo Ferreira V, Agarwal S, Chu H, Srivastava A, Anderson D, Gracia G, Lam A, Segal G, Hong J, Hu L, Phang KL, Escott ABJ, Windsor JA, Phillips ARJ, Creek DJ, Harvey NL, Porter CJH, Trevaskis NL. Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nat Metab 2021; 3:1175-1188. [PMID: 34545251 DOI: 10.1038/s42255-021-00457-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Visceral adipose tissue (VAT) encases mesenteric lymphatic vessels and lymph nodes through which lymph is transported from the intestine and mesentery. Whether mesenteric lymphatics contribute to adipose tissue inflammation and metabolism and insulin resistance is unclear. Here we show that obesity is associated with profound and progressive dysfunction of the mesenteric lymphatic system in mice and humans. We find that lymph from mice and humans consuming a high-fat diet (HFD) stimulates lymphatic vessel growth, leading to the formation of highly branched mesenteric lymphatic vessels that 'leak' HFD-lymph into VAT and, thereby, promote insulin resistance. Mesenteric lymphatic dysfunction is regulated by cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-C-VEGF receptor (R)3 signalling. Lymph-targeted inhibition of COX-2 using a glyceride prodrug approach reverses mesenteric lymphatic dysfunction, visceral obesity and inflammation and restores glycaemic control in mice. Targeting obesity-associated mesenteric lymphatic dysfunction thus represents a potential therapeutic option to treat metabolic disease.
Collapse
Affiliation(s)
- Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
| | - Matthew J Watt
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Tim Quach
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Jamie S Simpson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Puretech Health, Boston, MA, USA
| | - Vilena De Melo Ferreira
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Sonya Agarwal
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Hannah Chu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Anubhav Srivastava
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Alina Lam
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Gabriela Segal
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Kian Liun Phang
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Alistair B J Escott
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
| |
Collapse
|
10
|
Matsuda H, Ito Y, Hosono K, Tsuru S, Inoue T, Nakamoto S, Kurashige C, Hirashima M, Narumiya S, Okamoto H, Majima M. Roles of Thromboxane Receptor Signaling in Enhancement of Lipopolysaccharide-Induced Lymphangiogenesis and Lymphatic Drainage Function in Diaphragm. Arterioscler Thromb Vasc Biol 2021; 41:1390-1407. [PMID: 33567865 DOI: 10.1161/atvbaha.120.315507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diaphragm/immunology
- Diaphragm/metabolism
- Disease Models, Animal
- Humans
- Inflammation/chemically induced
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/physiopathology
- Lipopolysaccharides
- Lymphangiogenesis/drug effects
- Lymphatic Vessels/drug effects
- Lymphatic Vessels/metabolism
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thromboxane A2/metabolism
- Vascular Endothelial Growth Factor C/metabolism
- Vascular Endothelial Growth Factor D/metabolism
- Mice
Collapse
Affiliation(s)
- Hiromi Matsuda
- Department of Molecular Pharmacology, Graduate School of Medical Sciences (H.M., Y.I., K.H., S.T., T.I., S.N., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology (H.M., Y.I., K.H., S.T., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Anesthesiology (H.M., S.T., C.K., H.O.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences (H.M., Y.I., K.H., S.T., T.I., S.N., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology (H.M., Y.I., K.H., S.T., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences (H.M., Y.I., K.H., S.T., T.I., S.N., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology (H.M., Y.I., K.H., S.T., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Seri Tsuru
- Department of Molecular Pharmacology, Graduate School of Medical Sciences (H.M., Y.I., K.H., S.T., T.I., S.N., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology (H.M., Y.I., K.H., S.T., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Anesthesiology (H.M., S.T., C.K., H.O.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tomoyoshi Inoue
- Department of Molecular Pharmacology, Graduate School of Medical Sciences (H.M., Y.I., K.H., S.T., T.I., S.N., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences (H.M., Y.I., K.H., S.T., T.I., S.N., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Japan (S.N.)
| | - Chie Kurashige
- Department of Anesthesiology (H.M., S.T., C.K., H.O.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masanori Hirashima
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Japan (M.H.)
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Japan (S.N.)
| | - Hirotsugu Okamoto
- Department of Anesthesiology (H.M., S.T., C.K., H.O.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences (H.M., Y.I., K.H., S.T., T.I., S.N., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology (H.M., Y.I., K.H., S.T., M.M.), School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
11
|
Md Yusof K, Rosli R, Abdullah M, Avery-Kiejda KA. The Roles of Non-Coding RNAs in Tumor-Associated Lymphangiogenesis. Cancers (Basel) 2020; 12:cancers12113290. [PMID: 33172072 PMCID: PMC7694641 DOI: 10.3390/cancers12113290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The lymphatic system plays key roles in the bodies’ defence against disease, including cancer. The expansion of this system is termed lymphangiogenesis and it is orchestrated by factors and conditions within the microenvironment. One approach to prevent cancer progression is by interfering with these microenvironment factors that promote this process and that facilitate the spread of cancer cells to distant organs. One of these factors are non-coding RNAs. This review will summarize recent findings of the distinct roles played by non-coding RNAs in the lymphatic system within normal tissues and tumours. Understanding the mechanisms involved in this process can provide new avenues for therapeutic intervention for inhibiting the spread of cancer. Abstract Lymphatic vessels are regarded as the ”forgotten” circulation. Despite this, growing evidence has shown significant roles for the lymphatic circulation in normal and pathological conditions in humans, including cancers. The dissemination of tumor cells to other organs is often mediated by lymphatic vessels that serve as a conduit and is often referred to as tumor-associated lymphangiogenesis. Some of the most well-studied lymphangiogenic factors that govern tumor lymphangiogenesis are the vascular endothelial growth factor (VEGF-C/D and VEGFR-2/3), neuroplilin-2 (NRP2), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF), to name a few. However, recent findings have illustrated that non-coding RNAs are significantly involved in regulating gene expression in most biological processes, including lymphangiogenesis. In this review, we focus on the regulation of growth factors and non-coding RNAs (ncRNAs) in the lymphatic development in normal and cancer physiology. Then, we discuss the lymphangiogenic factors that necessitate tumor-associated lymphangiogenesis, with regards to ncRNAs in various types of cancer. Understanding the different roles of ncRNAs in regulating lymphatic vasculature in normal and cancer conditions may pave the way towards the development of ncRNA-based anti-lymphangiogenic therapy.
Collapse
Affiliation(s)
- Khairunnisa’ Md Yusof
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Kelly A. Avery-Kiejda
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence:
| |
Collapse
|
12
|
Honda M, Ito Y, Hattori K, Hosono K, Sekiguchi K, Tsujikawa K, Unno N, Majima M. Inhibition of receptor activity-modifying protein 1 suppresses the development of endometriosis and the formation of blood and lymphatic vessels. J Cell Mol Med 2020; 24:11984-11997. [PMID: 32869443 PMCID: PMC7578853 DOI: 10.1111/jcmm.15823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Neuroimmune interactions are involved in the development of endometriosis. Here, we examined the role of a neuropeptide, calcitonin gene–related peptide (CGRP), and its receptor, receptor activity–modifying protein (RAMP) 1, in growth of endometrial tissues and the formation of blood and lymphatic vessels in a mouse ectopic endometrial transplantation model. Endometrial fragments from donor wild‐type (WT) mice transplanted into the peritoneal wall of recipient WT mice grew with increased density of blood and lymphatic vessels. When tissues from RAMP1‐deficient (RAMP1−/−) mice were transplanted into RAMP1−/− mice, implant growth and angiogenesis/lymphangiogenesis were decreased. CGRP was up‐regulated in dorsal root ganglia, and CGRP+ nerve fibres were distributed into the implants from the peritoneum. RAMP1 was co‐expressed with CD11b (macrophages) and S100A4 (fibroblasts), but did not co‐localize with blood vessel endothelial cell marker CD31 or lymphatic vessel endothelial hyaluronan receptor (LYVE)‐1. Cultured with CGRP, macrophages up‐regulated vascular endothelial growth factor (VEGF)‐A, VEGF‐C and VEGF‐D, whereas fibroblasts up‐regulated VEGF‐C, but not VEGF‐A or VEGF‐D, in a RAMP1‐dependent manner. CGRP receptor antagonist CGRP8‐37 inhibited growth of and angiogenesis/lymphangiogenesis within endometrial tissue implants. These results suggest that RAMP1 signalling is crucial for growth and angiogenesis/lymphangiogenesis in endometrial tissue. Blockade of RAMP1 is a potential tool for the treatment of endometriosis.
Collapse
Affiliation(s)
- Masako Honda
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Kyoko Hattori
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Kazuki Sekiguchi
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobuya Unno
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Sagamihara, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Sagamihara, Japan.,Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Japan
| |
Collapse
|
13
|
Lymphangiogenesis induced by vascular endothelial growth factor receptor 1 signaling contributes to the progression of endometriosis in mice. J Pharmacol Sci 2020; 143:255-263. [DOI: 10.1016/j.jphs.2020.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
|
14
|
Elder AM, Stoller AR, Black SA, Lyons TR. Macphatics and PoEMs in Postpartum Mammary Development and Tumor Progression. J Mammary Gland Biol Neoplasia 2020; 25:103-113. [PMID: 32535810 PMCID: PMC7395889 DOI: 10.1007/s10911-020-09451-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Postpartum mammary gland involution is a mammalian tissue remodeling event that occurs after pregnancy and lactation to return the gland to the pre-pregnant state. This event is characterized by apoptosis and lysosomal-mediated cell death of the majority of the lactational mammary epithelium, followed by remodeling of the extracellular matrix, influx of immune cell populations (in particular, T helper cells, monocytes, and macrophages), and neo-lymphangiogenesis. This postpartum environment has been shown to be promotional for tumor growth and metastases and may partially account for why women diagnosed with breast cancer during the postpartum period or within 5 years of last childbirth have an increased risk of developing metastases when compared to their nulliparous counterparts. The lymphatics and macrophages present during mammary gland involution have been implicated in promoting the observed growth and metastasis. Of importance are the macrophages, which are of the "M2" phenotype and are known to create a pro-tumor microenvironment. In this report, we describe a subset of postpartum macrophages that express lymphatic proteins (PoEMs) and directly interact with lymphatic vessels to form chimeric vessels or "macphatics". Additionally, these PoEMs are very similar to tumor-associated macrophages that also express lymphatic proteins and are present at the sites of lymphatic vessels where tumors escape the tissue and enter the lymphatic vasculature. Further characterizing these PoEMs may offer insight in preventing lymphatic metastasis of breast cancer, as well as provide information for how developmental programming of lymphatic endothelial cells and macrophages can contribute to different disease progression.
Collapse
Affiliation(s)
- Alan M Elder
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, Aurora, CO, 80045, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Graduate Program in Cancer Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander R Stoller
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, Aurora, CO, 80045, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - Sarah A Black
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, Aurora, CO, 80045, USA.
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA.
- Graduate Program in Cancer Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
15
|
Hosono K, Kojo K, Narumiya S, Majima M, Ito Y. Prostaglandin E receptor EP4 stimulates lymphangiogenesis to promote mucosal healing during DSS-induced colitis. Biomed Pharmacother 2020; 128:110264. [PMID: 32447215 DOI: 10.1016/j.biopha.2020.110264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/22/2023] Open
Abstract
In the intestine, the formation of new lymphatic vessels from pre-existing lymphatic vasculature (lymphangiogenesis) is related to the progression of inflammatory bowel disease (IBD). However, it remains unclear whether lymphangiogenesis contributes to mucosal repair after acute colitis. Prostaglandin Ereceptor EP4 suppresses the development of experimental colitis. In this study, we investigated whether EP4 exerts this effect by contributing to lymphangiogenesis, in turn promoting mucosal tissue repair, following acute colitis. We elicited experimental colitis in male C57/BL6 mice by administering dextran sulphate sodium (DSS) via the drinking water for 5 days, followed by normal water for 9 additional days. From Day 5 through Day 13, the experimental mice received a daily dose of EP4-selective agonist, EP4-selective antagonist, or vehicle. On Day 14, mice treated with vehicle had recovered 95 % of body weight and exhibited moderate increases in disease activity and histological score relative to untreated controls. Compared with vehicle, post-treatment with EP4 antagonist increased signs of colitis, colonic tissue destruction, and CD11b+ cell infiltration, associated with elevated lymphatic vessel density (LVD) and reduced percentage of lymphatic vessel area (LVA%). By contrast, post-treatment with EP4 agonist improved disease activity, suppressed CD11b+ infiltration, and decreased levels of inflammatory cytokines; these changes were associated with upregulation of lymphatic growth factors and lymphangiogenesis, as evidenced by increases in LVA% and lymphatic drainage function. Inhibition of vascular endothelial growth factor receptor 3 (VEGFR3) caused a delay in mucosal repair, accompanied by impaired lymphangiogenesis. These results suggest that EP4 stimulation aids in mucosal repair from DSS-induced acute colitis by promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Kanakako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
16
|
Nakamoto S, Ito Y, Nishizawa N, Goto T, Kojo K, Kumamoto Y, Watanabe M, Majima M. Lymphangiogenesis and accumulation of reparative macrophages contribute to liver repair after hepatic ischemia-reperfusion injury. Angiogenesis 2020; 23:395-410. [PMID: 32162023 DOI: 10.1007/s10456-020-09718-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Hepatic tissue repair plays a critical role in determining the outcome of hepatic ischemia-reperfusion (I/R) injury. Hepatic lymphatics participate in the clearance of dead tissues and contribute to the reparative process after acute hepatic injury; however, it remains unknown whether lymphangiogenesis in response to hepatic inflammation is involved in liver repair. Herein, we determined if hepatic lymphangiogenesis improves liver repair after hepatic I/R injury. Using a mouse model of hepatic I/R injury, we investigated hepatic lymphatic structure, growth, and function in injured murine livers. Hepatic I/R injury enhanced lymphangiogenesis around the portal tract and this was associated with increased expression of pro-lymphangiogenic growth factors including vascular endothelial growth factor (VEGF)-C and VEGF-D. Recombinant VEGF-D treatment facilitated liver repair in association with the expansion of lymphatic vessels and increased expression of genes related to the reparative macrophage phenotype. Treatment with a VEGF receptor 3 (VEGFR3) inhibitor suppressed liver repair, lymphangiogenesis, drainage function, and accumulation of VEGFR3-expressing reparative macrophages. VEGF-C and VEGF-D upregulated expression of genes related to lymphangiogenic factors and the reparative macrophage phenotype in cultured macrophages. These results suggest that activation of VEGFR3 signaling increases lymphangiogenesis and the number of reparative macrophages, both of which play roles in liver repair. Expanded lymphatics and induction of reparative macrophage accumulation may be therapeutic targets to enhance liver repair after hepatic injury.
Collapse
Affiliation(s)
- Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Kanagawa, Sagamihara, 252-0374, Japan
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Kanagawa, Sagamihara, 252-0374, Japan
| | - Nobuyuki Nishizawa
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takuya Goto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Kanagawa, Sagamihara, 252-0374, Japan
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Kumamoto
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Kanagawa, Sagamihara, 252-0374, Japan.
| |
Collapse
|
17
|
Nakamoto S, Ito Y, Nishizawa N, Goto T, Kojo K, Kumamoto Y, Watanabe M, Narumiya S, Majima M. EP3 signaling in dendritic cells promotes liver repair by inducing IL-13-mediated macrophage differentiation in mice. FASEB J 2020; 34:5610-5627. [PMID: 32112485 DOI: 10.1096/fj.201901955r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Macrophage plasticity is essential for liver wound healing; however, the mechanisms underlying macrophage phenotype switching are largely unknown. Dendritic cells (DCs) are critical initiators of innate immune responses; as such, they orchestrate inflammation following hepatic injury. Here, we subjected EP3-deficient (Ptger3-/- ) and wild-type (WT) mice to hepatic ischemia-reperfusion (I/R) and demonstrate that signaling via the prostaglandin E (PGE) receptor EP3 in DCs regulates macrophage plasticity during liver repair. Compared with WT mice, Ptger3-/- mice showed delayed liver repair accompanied by reduced expression of hepatic growth factors and accumulation of Ly6Clow reparative macrophages and monocyte-derived DCs (moDCs). MoDCs were recruited to the boundary between damaged and undamaged liver tissue in an EP3-dependent manner. Adoptive transfer of moDCs from Ptger3-/- mice resulted in impaired repair, along with increased numbers of Ly6Chigh inflammatory macrophages. Bone marrow macrophages (BMMs) up-regulated expression of genes related to a reparative macrophage phenotype when co-cultured with moDCs; this phenomenon was dependent on EP3 signaling. In the presence of an EP3 agonist, interleukin (IL)-13 derived from moDCs drove BMMs to increase expression of genes characteristic of a reparative macrophage phenotype. The results suggest that EP3 signaling in moDCs facilitates liver repair by inducing IL-13-mediated switching of macrophage phenotype from pro-inflammatory to pro-reparative.
Collapse
Affiliation(s)
- Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nobuyuki Nishizawa
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takuya Goto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yusuke Kumamoto
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
18
|
Tamura R, Yoshida K, Toda M. Current understanding of lymphatic vessels in the central nervous system. Neurosurg Rev 2019; 43:1055-1064. [PMID: 31209659 DOI: 10.1007/s10143-019-01133-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022]
Abstract
Lymphangiogenesis is associated with some pathological conditions such as inflammation, tissue repair, and tumor growth. Recently, a paradigm shift occurred following the discovery of meningeal lymphatic structures in the human central nervous system (CNS); these structures may be a key drainage route for cerebrospinal fluid (CSF) into the peripheral blood and may also contribute to inflammatory reaction and immune surveillance of the CNS. Lymphatic vessels located along the dural sinuses absorb CSF from the adjacent subarachnoid space and brain interstitial fluid via the glymphatic system, which is composed of aquaporin-4 water channels expressed on perivascular astrocytic end-feet membranes. Magnetic resonance imaging (MRI) clearly visualized these lymphatic vessels in the human dura mater. The conception of some neurological disorders, such as multiple sclerosis and Alzheimer's disease, has been changed by this paradigm shift. Meningeal lymphatic vessels could be a promising therapeutic target for the prevention of neurological disorders. However, the involvement of meningeal lymphatic vessels in the pathophysiology has not been fully elucidated and is the subject of future investigations. In this article, to understand the involvement of meningeal lymphatic vessels in neurological disorders, we review the differences between lymphangiogenesis in the CNS and in other tissues during both developmental and adulthood stages, and pathological conditions that may be associated with meningeal lymphatic vessels in the CNS.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
19
|
Iwasaki R, Tsuge K, Kishimoto K, Hayashi Y, Iwaana T, Hohjoh H, Inazumi T, Kawahara A, Tsuchiya S, Sugimoto Y. Essential role of prostaglandin E 2 and the EP3 receptor in lymphatic vessel development during zebrafish embryogenesis. Sci Rep 2019; 9:7650. [PMID: 31114004 PMCID: PMC6529442 DOI: 10.1038/s41598-019-44095-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Lymphatic endothelial cells arise from the venous endothelial cells in embryonic lymphatic development. However, the molecular mechanisms remain to be elucidated. We here report that prostaglandin (PG) E2 plays essential roles in the embryonic lymphatic development through the EP3 receptor, one of the PGE2 receptors. Knockdown of the EP3 receptor or inhibition of cyclooxygenases (COX; rate-limiting enzymes for PG synthesis) impaired lymphatic development by perturbing lymphatic specification during zebrafish development. These impairments by COX inhibition were recovered by treatment with sulprostone (EP1/3 agonist). Knockdown of the EP3 receptor further demonstrated its requirement in the expression of sex determining region Y-box 18 (sox18) and nuclear receptor subfamily 2, group F, member 2 (nr2f2), essential factors of the lymphatic specification. The EP3 receptor was expressed in the posterior cardinal vein (region of embryonic lymphatic development) and the adjacent intermediate cell mass (ICM) during the lymphatic specification. COX1 was expressed in the region more upstream of the posterior cardinal vein relative to the EP3 receptor, and the COX1-selective inhibitor impaired the lymphatic specification. On the other hand, two COX2 subtypes did not show distinct sites of expression around the region of expression of the EP3 receptor. Finally, we generated EP3-deficient zebrafish, which also showed defect in lymphatic specification and development. Thus, we demonstrated that COX1-derived PGE2-EP3 pathway is required for embryonic lymphatic development by upregulating the expression of key factors for the lymphatic specification.
Collapse
Affiliation(s)
- Ryo Iwasaki
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Kyoshiro Tsuge
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Koichiro Kishimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Yuta Hayashi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Takuya Iwaana
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Hirofumi Hohjoh
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), 1-7-1 Otemachi, Chiyoda-ku, 100-0004, Tokyo, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Yamanashi, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan. .,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), 1-7-1 Otemachi, Chiyoda-ku, 100-0004, Tokyo, Japan.
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan. .,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), 1-7-1 Otemachi, Chiyoda-ku, 100-0004, Tokyo, Japan.
| |
Collapse
|
20
|
Abstract
Tumor tissue is composed of tumor cells and surrounding non-tumor endothelial and immune cells, collectively known as the tumor microenvironment. Tumor cells manipulate tumor microenvironment to obtain sufficient oxygen and nutrient supply, and evade anti-tumor immunosurveillance. Various types of signaling molecules, including cytokines, chemokines, growth factors, and lipid mediators, are secreted, which co-operate to make up the complex tumor microenvironment. Prostaglandins, cyclooxygenase metabolites of arachidonic acid, are abundantly produced in tumor tissues. Ever since treatment with nonsteroidal anti-inflammatory drugs showed anti-tumor effect in mouse models and human patients by inhibiting whole prostaglandin production, investigators have focused on the importance of prostaglandins in tumor malignancies. However, most studies that followed focused on the role of an eminent prostaglandin, prostaglandin E2, in tumor onset, growth, and metastasis. It remained unclear how other prostaglandin species affected tumor malignancies. Recently, we identified prostaglandin D2, a well-known sleep-inducing prostaglandin, as a factor with strong anti-angiogenic and anti-tumor properties, in genetically modified mice. In this review, we summarize recent studies focusing on the importance of prostaglandins and their metabolites in the tumor microenvironment.
Collapse
Affiliation(s)
- Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keisuke Omori
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
21
|
Sekiguchi K, Ito Y, Hattori K, Inoue T, Hosono K, Honda M, Numao A, Amano H, Shibuya M, Unno N, Majima M. VEGF Receptor 1-Expressing Macrophages Recruited from Bone Marrow Enhances Angiogenesis in Endometrial Tissues. Sci Rep 2019; 9:7037. [PMID: 31065021 PMCID: PMC6504918 DOI: 10.1038/s41598-019-43185-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis is critical in maintenance of endometrial tissues. Here, we examined the role of VEGF receptor 1 (VEGFR1) signaling in angiogenesis and tissue growth in an endometriosis model. Endometrial fragments were implanted into the peritoneal wall of mice, and endometrial tissue growth and microvessel density (MVD) were determined. Endometrial fragments from wild-type (WT) mice grew slowly with increased angiogenesis determined by CD31+ MVD, peaking on Day 14. When tissues from WT mice were transplanted into VEGFR1 tyrosine kinase-knockout mice, implant growth and angiogenesis were suppressed on Day 14 compared with growth of WT implants in a WT host. The blood vessels in the implants were not derived from the host peritoneum. Immunostaining for VEGFR1 suggested that high numbers of VEGFR1+ cells such as macrophages were infiltrated into the endometrial tissues. When macrophages were deleted with Clophosome N, both endometrial tissue growth and angiogenesis were significantly suppressed. Bone marrow chimera experiments revealed that growth and angiogenesis in endometrial implants were promoted by host bone marrow-derived VEGFR1+/CD11b+ macrophages that accumulated in the implants, and secreted basic fibroblast growth factor (bFGF). A FGF receptor kinase inhibitor, PD173047 significantly reduced size of endometrial tissues and angiogenesis. VEGFR1 signaling in host-derived cells is crucial for growth and angiogenesis in endometrial tissue. Thus, VEGFR1 blockade is a potential treatment for endometriosis.
Collapse
Affiliation(s)
- Kazuki Sekiguchi
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.,Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kyoko Hattori
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.,Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tomoyoshi Inoue
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masako Honda
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.,Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Akiko Numao
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masabumi Shibuya
- Gakubunkan Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Nobuya Unno
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan. .,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
22
|
Roles of prostaglandins in tumor-associated lymphangiogenesis with special reference to breast cancer. Cancer Metastasis Rev 2019; 37:369-384. [PMID: 29858743 DOI: 10.1007/s10555-018-9734-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Lymphangiogenesis (formation of new lymphatic vessels), unlike angiogenesis, has been a lesser-focused field in cancer biology, because of earlier controversy regarding whether lymphatic metastasis occurs via pre-existing or newly formed lymphatics. Recent evidence reveals that peri-tumoral or intra-tumoral lymphangiogenesis is a precursor for lymphatic metastasis in most carcinomas and melanomas. Two major lymphangiogenic factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, are produced by cancer cells or immune cells such as macrophages in the tumor-stroma to promote sprouting of lymphatics from lymphatic endothelial cells (LEC) or LEC precursors (LECP) by binding to their primary (high affinity) receptor VEGF-R3 or secondary receptors VEGF-R2, neuropilin (NRP)2 and α9/β1 integrin. Many other growth factors/receptors such as VEGF-A/VEGF-R2, fibroblast growth factor (FGF)2/FGF-R, platelet-derived growth factor (PDGF)/PDGF-R, hepatocyte growth factor (HGF)/C-Met, angiopoietins (Ang)1, 2/Tie2, and chemokines/ chemokine receptors (CCL21/CCR7, CCL12/CCR4) can also stimulate LEC sprouting directly or indirectly. This review deals with the roles of prostaglandins (PG), in particular PGE2, in cancer-associated lymphangiogenesis, with special emphasis on breast cancer. We show that cyclooxygenase (COX)-2 expression by breast cancer cells or tumor stroma leading to high PGE2 levels in the tumor milieu promotes lymphangiogenesis and lymphatic metastases, resulting from binding of PGE2 to PGE receptors (EP, in particular EP4) on multiple cell types: tumor cells, tumor-infiltrating immune cells, and LEC. EP4 activation on cancer cells and macrophages upregulated VEGF-C/D production to stimulate LEC sprouting. Furthermore, ligation of EP4 with PGE2 on cancer or host cells can initiate a new cascade of molecular events leading to cross-talk between cancer cells and LEC, facilitating lymphangiogenesis and lympho-vascular transport of cancer cells. We make a case for EP4 as a potential therapeutic target for breast cancer.
Collapse
|
23
|
Kataru RP, Mehrara BJ, Kim H. Investigative strategies on lymphatic vessel modulation for treating lymphedema in future medicine. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11:125. [PMID: 30305116 PMCID: PMC6180572 DOI: 10.1186/s13045-018-0669-2] [Citation(s) in RCA: 415] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
The interaction of tumor cells with platelets is a prerequisite for successful hematogenous metastatic dissemination. Upon tumor cell arrival in the blood, tumor cells immediately activate platelets to form a permissive microenvironment. Platelets protect tumor cells from shear forces and assault of NK cells, recruit myeloid cells by secretion of chemokines, and mediate an arrest of the tumor cell platelet embolus at the vascular wall. Subsequently, platelet-derived growth factors confer a mesenchymal-like phenotype to tumor cells and open the capillary endothelium to expedite extravasation in distant organs. Finally, platelet-secreted growth factors stimulate tumor cell proliferation to micrometastatic foci. This review provides a synopsis on the current literature on platelet-mediated effects in cancer metastasis and particularly focuses on platelet adhesion receptors and their role in metastasis. Immunoreceptor tyrosine-based activation motif (ITAM) and hemi ITAM (hemITAM) comprising receptors, especially, glycoprotein VI (GPVI), FcγRIIa, and C-type lectin-like-2 receptor (CLEC-2) are turned in the spotlight since several new mechanisms and contributions to metastasis have been attributed to this family of platelet receptors in the last years.
Collapse
|
25
|
Mishima T, Ito Y, Nishizawa N, Amano H, Tsujikawa K, Miyaji K, Watanabe M, Majima M. RAMP1 signaling improves lymphedema and promotes lymphangiogenesis in mice. J Surg Res 2017; 219:50-60. [PMID: 29078910 DOI: 10.1016/j.jss.2017.05.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/27/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Secondary lymphedema commonly arises as a complication of cancer surgery and radiation treatment; however, the underlying mechanisms are poorly understood. Receptor activity-modifying protein 1 (RAMP1) forms a complex with calcitonin receptor-like receptor to generate the receptor for calcitonin gene-related peptide. The present study examined whether RAMP1 plays a role in increased lymphangiogenesis during secondary lymphedema. METHODS A model of lymphedema was generated by surgical removal of pre-existing lymphatic vessels from the subcutaneous tissue on the tails of RAMP1-deficient (RAMP1-/-) mice and their wild-type (WT) counterparts. The maximum diameter of the tail, lymphangiogenesis, and macrophage recruitment were then examined. RESULTS Compared with that in WT mice, lymphedema in the tails in RAMP1-/- mice was sustained, with suppressed lymphangiogenesis and reduced expression of vascular endothelial growth factor-C and vascular endothelial growth factor receptor 3 at the distal edge of the lesions. The newly formed lymphatic vessels in RAMP1-/- mice were dilated, with impaired lymphatic flow. RAMP1 was expressed by macrophages recruited into edematous tail tissues distal to the wound. The number of macrophages in RAMP1-/- mice was higher than that in WT mice. Expression of messenger RNA encoding M1 macrophage-related genes, including tumor necrosis factor-α and interleukin-1, was higher in RAMP1-/- mice than in WT mice, whereas expression of messenger RNA encoding M2 macrophage genes, including interleukin-10, was lower. CONCLUSIONS RAMP1 signaling improves lymphedema and accelerates lymphangiogenesis associated with reduced recruitment of pro-inflammatory macrophages.
Collapse
Affiliation(s)
- Toshiaki Mishima
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Nobuyuki Nishizawa
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kagami Miyaji
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
26
|
Vascular Endothelial Growth Factor Receptor Type 1 Signaling Prevents Delayed Wound Healing in Diabetes by Attenuating the Production of IL-1β by Recruited Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1481-98. [DOI: 10.1016/j.ajpath.2016.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 01/01/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
|
27
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
28
|
Matsuda H, Hosono K, Tsuru S, Kurashige C, Sekiguchi K, Akira S, Uematsu S, Okamoto H, Majima M. Roles of mPGES-1, an inducible prostaglandin E synthase, in enhancement of LPS-induced lymphangiogenesis in a mouse peritonitis model. Life Sci 2015; 142:1-7. [DOI: 10.1016/j.lfs.2015.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
|
29
|
Lund AW, Medler TR, Leachman SA, Coussens LM. Lymphatic Vessels, Inflammation, and Immunity in Skin Cancer. Cancer Discov 2015; 6:22-35. [PMID: 26552413 DOI: 10.1158/2159-8290.cd-15-0023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Skin is a highly ordered immune organ that coordinates rapid responses to external insult while maintaining self-tolerance. In healthy tissue, lymphatic vessels drain fluid and coordinate local immune responses; however, environmental factors induce lymphatic vessel dysfunction, leading to lymph stasis and perturbed regional immunity. These same environmental factors drive the formation of local malignancies, which are also influenced by local inflammation. Herein, we discuss clinical and experimental evidence supporting the tenet that lymphatic vessels participate in regulation of cutaneous inflammation and immunity, and are important contributors to malignancy and potential biomarkers and targets for immunotherapy. SIGNIFICANCE The tumor microenvironment and tumor-associated inflammation are now appreciated not only for their role in cancer progression but also for their response to therapy. The lymphatic vasculature is a less-appreciated component of this microenvironment that coordinates local inflammation and immunity and thereby critically shapes local responses. A mechanistic understanding of the complexities of lymphatic vessel function in the unique context of skin provides a model to understand how regional immune dysfunction drives cutaneous malignancies, and as such lymphatic vessels represent a biomarker of cutaneous immunity that may provide insight into cancer prognosis and effective therapy.
Collapse
Affiliation(s)
- Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon. Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon. Department of Dermatology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.
| | - Terry R Medler
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
30
|
Zhang MZ, Yao B, Wang Y, Yang S, Wang S, Fan X, Harris RC. Inhibition of cyclooxygenase-2 in hematopoietic cells results in salt-sensitive hypertension. J Clin Invest 2015; 125:4281-94. [PMID: 26485285 DOI: 10.1172/jci81550] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/03/2015] [Indexed: 01/11/2023] Open
Abstract
Inhibition of prostaglandin (PG) production with either nonselective or selective inhibitors of cyclooxygenase-2 (COX-2) activity can induce or exacerbate salt-sensitive hypertension. This effect has been previously attributed to inhibition of intrinsic renal COX-2 activity and subsequent increase in sodium retention by the kidney. Here, we found that macrophages isolated from kidneys of high-salt-treated WT mice have increased levels of COX-2 and microsomal PGE synthase-1 (mPGES-1). Furthermore, BM transplantation (BMT) from either COX-2-deficient or mPGES-1-deficient mice into WT mice or macrophage-specific deletion of the PGE2 type 4 (EP4) receptor induced salt-sensitive hypertension and increased phosphorylation of the renal sodium chloride cotransporter (NCC). Kidneys from high-salt-treated WT mice transplanted with Cox2-/- BM had increased macrophage and T cell infiltration and increased M1- and Th1-associated markers and cytokines. Skin macrophages from high-salt-treated mice with either genetic or pharmacologic inhibition of the COX-2 pathway expressed decreased M2 markers and VEGF-C production and exhibited aberrant lymphangiogenesis. Together, these studies demonstrate that COX-2-derived PGE2 in hematopoietic cells plays an important role in both kidney and skin in maintaining homeostasis in response to chronically increased dietary salt. Moreover, these results indicate that inhibiting COX-2 expression or activity in hematopoietic cells can result in a predisposition to salt-sensitive hypertension.
Collapse
|
31
|
Vascular endothelial growth factor receptor-3 is a novel target to improve net ultrafiltration in methylglyoxal-induced peritoneal injury. J Transl Med 2015; 95:1029-43. [PMID: 26121315 DOI: 10.1038/labinvest.2015.87] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 01/31/2023] Open
Abstract
Appropriate fluid balance is important for good clinical outcomes and survival in patients on peritoneal dialysis. We recently reported that lymphangiogenesis associated with fibrosis developed in the peritoneal cavity via the transforming growth factor-β1-vascular endothelial growth factor-C (VEGF-C) pathway. We investigated whether VEGF receptor-3 (VEGFR-3), the receptor for VEGF-C and -D, might be a new target to improve net ultrafiltration by using adenovirus-expressing soluble VEGFR-3 (Adeno-sVEGFR-3) in rodent models of peritoneal injury induced by methylglyoxal (MGO). We demonstrated that lymphangiogenesis developed in these MGO models, especially in the diaphragm, indicating that lymphangiogenesis is a common feature in the peritoneal cavity with inflammation and fibrosis. In MGO models, VEGF-D was significantly increased in the diaphragm; however, VEGF-C was not significantly upregulated. Adeno-sVEGFR-3, which was detected on day 50 after administration via tail vein injections, successfully suppressed lymphangiogenesis in the diaphragm and parietal peritoneum in mouse MGO models without significant effects on fibrosis, inflammation, or neoangiogenesis. Drained volume in the peritoneal equilibration test using a 7.5% icodextrin peritoneal dialysis solution (the 7.5% icodextrin peritoneal equilibration test) was improved by Adeno-sVEGFR-3 on day 22 (P<0.05) and day 50 after reduction of inflammation (P<0.01), indicating that the 7.5% icodextrin peritoneal equilibration test identifies changes in lymphangiogenesis. The solute transport rate was not affected by suppression of lymphangiogenesis. In human peritoneal dialysis patients, the dialysate to plasma ratio of creatinine positively correlated with the dialysate VEGF-D concentration (P<0.001). VEGF-D mRNA was significantly higher in the peritoneal membranes of patients with ultrafiltration failure, indicating that VEGF-D is involved in the development of lymphangiogenesis in peritoneal dialysis patients. These results indicate that VEGFR-3 is a new target to improve net ultrafiltration by suppressing lymphatic absorption and that the 7.5% icodextrin peritoneal equilibration test is useful for estimation of lymphatic absorption.
Collapse
|
32
|
Ogawa F, Amano H, Eshima K, Ito Y, Matsui Y, Hosono K, Kitasato H, Iyoda A, Iwabuchi K, Kumagai Y, Satoh Y, Narumiya S, Majima M. Prostanoid induces premetastatic niche in regional lymph nodes. J Clin Invest 2014; 124:4882-94. [PMID: 25271626 DOI: 10.1172/jci73530] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 08/21/2014] [Indexed: 01/17/2023] Open
Abstract
The lymphatic system is an important route for cancer dissemination, and lymph node metastasis (LNM) serves as a critical prognostic determinant in cancer patients. We investigated the contribution of COX-2-derived prostaglandin E2 (PGE2) in the formation of a premetastatic niche and LNM. A murine model of Lewis lung carcinoma (LLC) cell metastasis revealed that COX-2 is expressed in DCs from the early stage in the lymph node subcapsular regions, and COX-2 inhibition markedly suppressed mediastinal LNM. Stromal cell-derived factor-1 (SDF-1) was elevated in DCs before LLC cell infiltration to the lymph nodes, and a COX-2 inhibitor, an SDF-1 antagonist, and a CXCR4 neutralizing antibody all reduced LNM. Moreover, LNM was reduced in mice lacking the PGE2 receptor EP3, and stimulation of cultured DCs with an EP3 agonist increased SDF-1 production. Compared with WT CD11c+ DCs, injection of EP3-deficient CD11c+ DCs dramatically reduced accumulation of SDF-1+CD11c+ DCs in regional LNs and LNM in LLC-injected mice. Accumulation of Tregs and lymph node lymphangiogenesis, which may influence the fate of metastasized tumor cells, was also COX-2/EP3-dependent. These results indicate that DCs induce a premetastatic niche during LNM via COX-2/EP3-dependent induction of SDF-1 and suggest that inhibition of this signaling axis may be an effective strategy to suppress premetastatic niche formation and LNM.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/secondary
- Celecoxib
- Cell Line, Tumor
- Chemokine CXCL12/metabolism
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Dendritic Cells/immunology
- Dinoprostone/physiology
- Drug Screening Assays, Antitumor
- Gene Knockout Techniques
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymphangiogenesis
- Lymphatic Metastasis
- Male
- Mice, Knockout
- Neoplasm Transplantation
- Pyrazoles/pharmacology
- Receptors, CXCR4/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Signal Transduction
- Sulfonamides/pharmacology
- T-Lymphocytes, Regulatory/immunology
Collapse
|
33
|
Ohkubo H, Ito Y, Minamino T, Eshima K, Kojo K, Okizaki SI, Hirata M, Shibuya M, Watanabe M, Majima M. VEGFR1-positive macrophages facilitate liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion injury. PLoS One 2014; 9:e105533. [PMID: 25162491 PMCID: PMC4146544 DOI: 10.1371/journal.pone.0105533] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/22/2014] [Indexed: 01/19/2023] Open
Abstract
Liver repair after acute liver injury is characterized by hepatocyte proliferation, removal of necrotic tissue, and restoration of hepatocellular and hepatic microvascular architecture. Macrophage recruitment is essential for liver tissue repair and recovery from injury; however, the underlying mechanisms are unclear. Signaling through vascular endothelial growth factor receptor 1 (VEGFR1) is suggested to play a role in macrophage migration and angiogenesis. The aim of the present study was to examine the role of VEGFR1 in liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion (I/R). VEGFR1 tyrosine kinase knockout mice (VEGFR1 TK-/- mice) and wild-type (WT) mice were subjected to hepatic warm I/R, and the processes of liver repair and sinusoidal reconstruction were examined. Compared with WT mice, VEGFR1 TK-/- mice exhibited delayed liver repair after hepatic I/R. VEGFR1-expressing macrophages recruited to the injured liver showed reduced expression of epidermal growth factor (EGF). VEGFR1 TK-/- mice also showed evidence of sustained sinusoidal functional and structural damage, and reduced expression of pro-angiogenic factors. Treatment of VEGFR1 TK-/- mice with EGF attenuated hepatoceullar and sinusoidal injury during hepatic I/R. VEGFR1 TK-/- bone marrow (BM) chimeric mice showed impaired liver repair and sinusoidal reconstruction, and reduced recruitment of VEGFR1-expressing macrophages to the injured liver. VEGFR1-macrophages recruited to the liver during hepatic I/R contribute to liver repair and sinusoidal reconstruction. VEGFR1 activation is a potential therapeutic strategy for promoting liver repair and sinusoidal restoration after acute liver injury.
Collapse
Affiliation(s)
- Hirotoki Ohkubo
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tsutomu Minamino
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shin-ichiro Okizaki
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mitsuhiro Hirata
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masabumi Shibuya
- Gakubunkan Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
34
|
Abstract
Lymphangiogenesis, the growth of lymphatic vessels, is essential in embryonic development. In adults, it is involved in many pathological processes such as lymphedema, inflammatory diseases, and tumor metastasis. Advances during the past decade have dramatically increased the knowledge of the mechanisms of lymphangiogenesis, including the roles of transcription factors, lymphangiogenic growth factors and their receptors, and intercellular and intracellular signaling cascades. Strategies based on these mechanisms are being tested in the treatment of various human diseases such as cancer, lymphedema, and tissue allograft rejection. This Review summarizes the recent progress on lymphangiogenic mechanisms and their applications in disease treatment.
Collapse
|
35
|
Kim H, Kataru RP, Koh GY. Inflammation-associated lymphangiogenesis: a double-edged sword? J Clin Invest 2014; 124:936-42. [PMID: 24590279 DOI: 10.1172/jci71607] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lymphangiogenesis and lymphatic vessel remodeling are complex biological processes frequently observed during inflammation. Accumulating evidence indicates that inflammation-associated lymphangiogenesis (IAL) is not merely an endpoint event, but actually a phenomenon actively involved in the pathophysiology of various inflammatory disorders. The VEGF-C/VEGFR-3 and VEGF-A/VEGF-R2 signaling pathways are two of the best-studied pathways in IAL. Methods targeting these molecules, such as prolymphangiogenic or antilymphatic treatments, were found to be beneficial in various preclinical and/or clinical studies. This Review focuses on the most recent achievements in the fields of lymphatic biology relevant to inflammatory conditions. Additionally, preclinical and clinical therapies that modulate IAL are summarized.
Collapse
|
36
|
Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 2014; 14:159-72. [PMID: 24561443 DOI: 10.1038/nrc3677] [Citation(s) in RCA: 579] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of new lymphatic vessels through lymphangiogenesis and the remodelling of existing lymphatics are thought to be important steps in cancer metastasis. The past decade has been exciting in terms of research into the molecular and cellular biology of lymphatic vessels in cancer, and it has been shown that the molecular control of tumour lymphangiogenesis has similarities to that of tumour angiogenesis. Nevertheless, there are significant mechanistic differences between these biological processes. We are now developing a greater understanding of the specific roles of distinct lymphatic vessel subtypes in cancer, and this provides opportunities to improve diagnostic and therapeutic approaches that aim to restrict the progression of cancer.
Collapse
Affiliation(s)
- Steven A Stacker
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [3] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Steven P Williams
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Tara Karnezis
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| | - Ramin Shayan
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia. [3] Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia. [4] O'Brien Institute, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Stephen B Fox
- 1] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [2] Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Marc G Achen
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [3] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
37
|
Sato T, Amano H, Ito Y, Eshima K, Minamino T, Ae T, Katada C, Ohno T, Hosono K, Suzuki T, Shibuya M, Koizumi W, Majima M. Vascular endothelial growth factor receptor 1 signaling facilitates gastric ulcer healing and angiogenesis through the upregulation of epidermal growth factor expression on VEGFR1+CXCR4 + cells recruited from bone marrow. J Gastroenterol 2014; 49:455-69. [PMID: 23982810 DOI: 10.1007/s00535-013-0869-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 08/01/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Angiogenesis is essential for gastric ulcer healing. Recent results suggest that vascular endothelial growth factor receptor 1 (VEGFR1), which binds to VEGF, promotes angiogenesis. In the present study, we investigated the role of VEGFR1 signaling in gastric ulcer healing and angiogenesis. METHODS Gastric ulcers were induced by serosal application of 100 % acetic acid in wild-type (WT) and tyrosine kinase-deficient VEGFR1 mice (VEGFR1 TK(-/-)). Bone marrow transplantation into irradiated WT mice was carried out using bone marrow cells isolated from WT and VEGFR1 TK(-/-) mice. RESULTS Ulcer healing was delayed in VEGFR1 TK(-/-) mice compared to WT mice and this was accompanied by decreased angiogenesis, as evidenced by reduced mRNA levels of CD31 and decreased microvessel density. Recruitment of cells expressing VEGFR1 and C-X-C chemokine receptor type 4 (CXCR4) was suppressed and epidermal growth factor (EGF) expression in ulcer granulation tissue was attenuated. Treatment of WT mice with neutralizing antibodies against VEGF or CXCR4 also delayed ulcer healing. In WT mice transplanted with bone marrow cells from VEGFR1 TK(-/-) mice, ulcer healing and angiogenesis were suppressed, and this was associated with reduced recruitment of bone marrow cells to ulcer granulation tissue. VEGFR1 TK(-/-) bone marrow chimeras also exhibited downregulation of EGF expression on CXCR4(+)VEGFR1(+) cells recruited from the bone marrow into ulcer lesions. CONCLUSION VEGFR1-mediated signaling plays a critical role in gastric ulcer healing and angiogenesis through enhanced EGF expression on VEGFR1(+)CXCR4(+) cells recruited from the bone marrow into ulcer granulation tissue.
Collapse
Affiliation(s)
- Takehito Sato
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ogawa F, Amano H, Ito Y, Matsui Y, Hosono K, Kitasato H, Satoh Y, Majima M. Aspirin reduces lung cancer metastasis to regional lymph nodes. Biomed Pharmacother 2014; 68:79-86. [DOI: 10.1016/j.biopha.2013.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/11/2013] [Indexed: 11/27/2022] Open
|
39
|
Le C, Karnezis T, Achen MG, Stacker S, Sloan E. Lymphovascular and neural regulation of metastasis: shared tumour signalling pathways and novel therapeutic approaches. Best Pract Res Clin Anaesthesiol 2013; 27:409-25. [PMID: 24267548 PMCID: PMC4007214 DOI: 10.1016/j.bpa.2013.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
Abstract
The progression of cancer is supported by a wide variety of non-neoplastic cell types which make up the tumour stroma, including immune cells, endothelial cells, cancer-associated fibroblasts and nerve fibres. These host cells contribute molecular signals that enhance primary tumour growth and provide physical avenues for metastatic dissemination. This article provides an overview of the role of blood vessels, lymphatic vessels and nerve fibres in the tumour microenvironment and highlights the interconnected molecular signalling pathways that control their development and activation in cancer. Further, this article highlights the known pharmacological agents which target these pathways and discusses the potential therapeutic uses of drugs that target angiogenesis, lymphangiogenesis and stress-response pathways in the different stages of cancer care.
Collapse
Affiliation(s)
- C.P. Le
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - T. Karnezis
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| | - M. G. Achen
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - S.A. Stacker
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - E.K. Sloan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Cancer Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, UCLA AIDS Institute and Jonsson Comprehensive Cancer Center, University of California Los Angeles, USA
| |
Collapse
|
40
|
Dieterich LC, Seidel CD, Detmar M. Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis 2013; 17:359-71. [PMID: 24212981 DOI: 10.1007/s10456-013-9406-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
The lymphatic system plays an important role in the physiological control of the tissue fluid balance and in the initiation of immune responses. Recent studies have shown that lymphangiogenesis, the growth of new lymphatic vessels and/or the expansion of existing lymphatic vessels, is a characteristic feature of acute inflammatory reactions and of chronic inflammatory diseases. In these conditions, lymphatic vessel expansion occurs at the tissue level but also within the draining lymph nodes. Surprisingly, activation of lymphatic vessel function by delivery of vascular endothelial growth factor-C exerts anti-inflammatory effects in several models of cutaneous and joint inflammation. These effects are likely mediated by enhanced drainage of extravasated fluid and inflammatory cells, but also by lymphatic vessel-mediated modulation of immune responses. Although some of the underlying mechanisms are just beginning to be identified, lymphatic vessels have emerged as important targets for the development of new therapeutic strategies to treat inflammatory conditions. In this context, it is of great interest that some of the currently used anti-inflammatory drugs also potently activate lymphatic vessels.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Strasse 10, HCI H 303, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
41
|
NSAID, aspirin delays gastric ulcer healing with reduced accumulation of CXCR4(+)VEGFR1(+) cells to the ulcer granulation tissues. Biomed Pharmacother 2013; 67:607-13. [PMID: 23809370 DOI: 10.1016/j.biopha.2013.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/24/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ulcer healing is a complex process, which involves cell migration, proliferation, angiogenesis and re-epithelialization. Several growth factors have been implicated in this process but the precise mechanism is not well understood. This study examined the involvement of VEGFR1 signaling in the gastric ulcer healing. METHODS Gastric ulcers were induced by the serosal application of 100% acetic acid, and the areas of the ulcers were measured thereafter. RESULTS The healing of acetic acid induced ulcers and the progenitor cells expressing CXCR4(+)VEGFR1(+) cell were significantly delayed in NSAID treated mice. The areas of the ulcer was significantly suppressed in tyrosine kinase-deficient VEGFR1 mice (VEGFR1TKKO) compared with wild type (WT) mice. The plasma level of SDF-1 and stem cell factor (SCF) and bone marrow level of pro-matrix metallopeptidase 9 (pro-MMP-9) were significantly reduced in VEGFR1TKKO mice. In VEGFR1 TKKOmice, the progenitor cells expressing CXCR4(+)VEGFR1(+) cell from bone marrow and the recruitment of these cells in healing ulcer were suppressed. Furthermore, VEGFR1 TKKO mice treated with NSAID did not suppress gastric ulcer healing compared to vehicle mice. These results suggested that NSAID suppressed VEGFR1 TK signaling plays a critical role in ulcer healing through mobilization of CXCR4(+)VEGFR1(+) cells. CONCLUSION VEGFR1 signaling is required for healing of NSAID induced gastric ulcer and angiogenesis with increased recruitment of CXCR4(+)VEGFR1(+) cells to the ulcerative lesion.
Collapse
|
42
|
Konya V, Marsche G, Schuligoi R, Heinemann A. E-type prostanoid receptor 4 (EP4) in disease and therapy. Pharmacol Ther 2013; 138:485-502. [PMID: 23523686 PMCID: PMC3661976 DOI: 10.1016/j.pharmthera.2013.03.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/06/2023]
Abstract
The large variety of biological functions governed by prostaglandin (PG) E2 is mediated by signaling through four distinct E-type prostanoid (EP) receptors. The availability of mouse strains with genetic ablation of each EP receptor subtype and the development of selective EP agonists and antagonists have tremendously advanced our understanding of PGE2 as a physiologically and clinically relevant mediator. Moreover, studies using disease models revealed numerous conditions in which distinct EP receptors might be exploited therapeutically. In this context, the EP4 receptor is currently emerging as most versatile and promising among PGE2 receptors. Anti-inflammatory, anti-thrombotic and vasoprotective effects have been proposed for the EP4 receptor, along with its recently described unfavorable tumor-promoting and pro-angiogenic roles. A possible explanation for the diverse biological functions of EP4 might be the multiple signaling pathways switched on upon EP4 activation. The present review attempts to summarize the EP4 receptor-triggered signaling modules and the possible therapeutic applications of EP4-selective agonists and antagonists.
Collapse
Key Words
- ampk, amp-activated protein kinase
- camp, cyclic adenylyl monophosphate
- cftr, cystic fibrosis transmembrane conductance regulator
- clc, chloride channel
- cox, cyclooxygenase
- creb, camp-response element-binding protein
- dp, d-type prostanoid receptor
- dss, dextran sodium sulfate
- egfr, epidermal growth factor receptor
- enos, endothelial nitric oxide synthase
- ep, e-type prostanoid receptor
- epac, exchange protein activated by camp
- eprap, ep4 receptor-associated protein
- erk, extracellular signal-regulated kinase
- fem1a, feminization 1 homolog a
- fp, f-type prostanoid receptor
- grk, g protein-coupled receptor kinase
- 5-hete, 5-hydroxyeicosatetraenoic acid
- icer, inducible camp early repressor
- icam-1, intercellular adhesion molecule-1
- ig, immunoglobulin
- il, interleukin
- ifn, interferon
- ip, i-type prostanoid receptor
- lps, lipopolysaccharide
- map, mitogen-activated protein kinase
- mcp, monocyte chemoattractant protein
- mek, map kinase kinase
- nf-κb, nuclear factor kappa-light-chain-enhancer of activated b cells
- nsaid, non-steroidal anti-inflammatory drug
- pg, prostaglandin
- pi3k, phosphatidyl insositol 3-kinase
- pk, protein kinase
- tp, t-type prostanoid receptor
- tx, thromboxane receptor
- prostaglandins
- inflammation
- vascular disease
- cancerogenesis
- renal function
- osteoporosis
Collapse
Affiliation(s)
| | | | | | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
43
|
Hosono K, Majima M. [Lymphangiogenesis]. Nihon Yakurigaku Zasshi 2013; 141:290-1. [PMID: 23665561 DOI: 10.1254/fpj.141.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Ohkubo H, Ito Y, Minamino T, Mishima T, Hirata M, Hosono K, Shibuya M, Yokomizo T, Shimizu T, Watanabe M, Majima M. Leukotriene B4 type-1 receptor signaling promotes liver repair after hepatic ischemia/reperfusion injury through the enhancement of macrophage recruitment. FASEB J 2013; 27:3132-43. [PMID: 23629862 DOI: 10.1096/fj.13-227421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recruited macrophages play a critical role in liver repair after acute liver injury. Leukotriene B4 (LTB4) is a potent chemoattractant for macrophages. In this study, we investigated the role of LTB4 receptor type 1 (BLT1) in liver repair during hepatic ischemia/reperfusion (I/R) injury. BLT1-knockout mice (BLT1(-/-)) or their wild-type counterparts (WT) were subjected to partial hepatic I/R. Compared with WT, BLT1(-/-) exhibited delayed liver repair and hepatocyte proliferation accompanied by a 70% reduction in the recruitment of macrophages and a 70-80% attenuation in hepatic expression of epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and VEGF receptor 1 (VEGFR1). Disruption of BLT1 signaling also reduced the expression of EGF by 67% on recruited macrophages expressing VEGFR1 in the injured liver. Treatment of WT mice with an EGF-neutralizing antibody delayed liver repair and reduced macrophage recruitment, compared with control immunoglobulin G (IgG). BLT1 signaling enhanced the expression of VEGF, VEGFR1, and EGF in isolated peritoneal macrophages in vitro. These results indicate that BLT1 signaling plays a role in liver repair after hepatic I/R through enhanced expression of EGF in recruited macrophages and that the development of a specific agonist for BLT1 could be useful for liver recovery from acute liver injury.
Collapse
Affiliation(s)
- Hirotoki Ohkubo
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara Kanagawa, 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Amano H, Ito Y, Ogawa F, Eshima K, Suzuki T, Oba K, Matsui Y, Kato S, Fukui T, Nakamura M, Kitasato H, Fukamizu A, Majima M. Angiotensin II type 1A receptor signaling facilitates tumor metastasis formation through P-selectin-mediated interaction of tumor cells with platelets and endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:553-64. [PMID: 23219751 DOI: 10.1016/j.ajpath.2012.10.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 10/09/2012] [Accepted: 10/31/2012] [Indexed: 11/28/2022]
Abstract
Angiotensin II is involved in tumor growth; however, the precise mechanism is not known. Platelets also contribute to tumor growth, and angiotensin II type 1 receptor (AT1) is expressed on the platelet surface. We hypothesized that interaction of platelets with tumor cells through AT1 receptor signaling promotes tumor metastasis. B16F1 melanoma cells were intravenously injected into Agtr1a knockout mice (AT1a(-/-)) and wild-type littermates (WT); the AT1a(-/-) mice exhibited a reduction in lung colonies. Angiotensin II induced expression of P-selectin on platelets in WT but not in AT1a(-/-) mice. A selective P-selectin neutralizing antibody decreased lung colony numbers in WT but not in AT1a(-/-) mice. Levels of vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1 (SDF-1) receptor in platelets at metastatic locus were lower in AT1a(-/-) mice. Treatment of neutralizing antibodies against VEGF and CXCR4 decreased lung colony numbers in WT but not in AT1a(-/-) mice. In AT1a(-/-) mice, and both mobilization of progenitor cells expressing CXCR4(+)VEGFR1(+) cells from bone marrow and their recruitment to lung tissues were suppressed. These results suggest that AT1A signaling plays a critical role in tumor metastasis through P-selectin-mediated interactions of platelets with tumor and endothelial cells and through the AT1A signaling-dependent production of VEGF and SDF-1, which may be involved in mobilization of CXCR4(+)VEGFR1(+) cells.
Collapse
Affiliation(s)
- Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Miyata Y, Ohba K, Matsuo T, Watanabe SI, Hayashi T, Sakai H, Kanetake H. Tumor-associated stromal cells expressing E-prostanoid 2 or 3 receptors in prostate cancer: correlation with tumor aggressiveness and outcome by angiogenesis and lymphangiogenesis. Urology 2012; 81:136-42. [PMID: 23149328 DOI: 10.1016/j.urology.2012.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/24/2012] [Accepted: 08/08/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To clarify the detailed pathologic roles of prostaglandin E(2) in prostate cancer tissues, the present study investigated the clinical significance and prognostic roles of the density of tumor-associated stromal cells expressing specific receptors for prostaglandin E2, termed "E-prostanoid (EP)1-4 receptors (EP1R-4Rs)." METHODS The expression of each receptor was immunohistochemically examined in 114 formalin-fixed biopsy specimens. Correlations with clinicopathologic features were investigated in these specimens. Angiogenesis and lymphangiogenesis were measured by the percentage of CD34-stained vessels (microvessel density) and D2-40-stained vessels (lymph vessel density). The relationships between the density of each EPR-stained cells and the microvessel density or lymph vessel density were evaluated in 62 prostate cancer tissues obtained by radical surgery for more detailed analysis in a wider area of prostate cancer tissue. RESULTS The density of tumor-associated cells with EP2R expression was positively associated with the N (P<.001) and M (P=.002) stages. Similarly, EP3R-positive stromal cell density was significantly associated with the N (P=.033) and M (P=.026) stages. The density of EP2R- and EP3R-stained cells correlated with the microvessel density (r=0.42, P<.001) and lymph vessel density (r=0.36, P=.012), respectively. A greater density of EP2R-stained cells was recognized as an independent predictor of progression (hazard ratio 7.26, P=.002) on multivariate analysis. CONCLUSION EP2R- and EP3R-stained cells might play important roles in tumor progression, angiogenesis, and lymphangiogenesis in prostate cancer. The density of EP2R-stained stromal cells could offer a useful predictor of biochemical recurrence after radical surgery.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Biomarkers, Tumor/metabolism
- Disease Progression
- Humans
- Kaplan-Meier Estimate
- Lymphangiogenesis
- Male
- Multivariate Analysis
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Staging
- Neovascularization, Physiologic
- Proportional Hazards Models
- Prostate/cytology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Stromal Cells/metabolism
- Stromal Cells/pathology
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Nephro-urology, Nagasaki University Graduate School of Biomedical Sciences, and Department of Pathology, Nagasaki University Hospital, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Pedersen IH, Willerslev-Olsen A, Vetter-Kauczok C, Krejsgaard T, Lauenborg B, Kopp KL, Geisler C, Bonefeld CM, Zhang Q, Wasik MA, Dabelsteen S, Woetmann A, Becker JC, Odum N. Vascular endothelial growth factor receptor-3 expression in mycosis fungoides. Leuk Lymphoma 2012; 54:819-26. [PMID: 22946664 DOI: 10.3109/10428194.2012.726720] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Here, we have studied vascular endothelial growth factor receptor-3 (VEGFR-3) expression in mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma (CTCL). Immunohistochemistry revealed that in two-thirds of 34 patients, VEGFR-3 was expressed in situ by both tumor and stromal cells irrespective of the disease stage. The natural VEGFR-3 ligand, VEGF-C, partially protected malignant T-cell lines from growth inhibition by the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA). Whereas the malignant T cells did not produce VEGF-C in vitro, its expression was induced during tumor formation in vivo in a xenograft mouse model of MF. In conclusion, malignant and stromal cells express high levels of VEGFR-3 in all stages of MF. Moreover, malignant T cells trigger enhanced VEGF-C expression in fibroblasts, suggesting that cross-talk between tumor and stromal cells plays a role in lymphangiogenesis and possibly disease progression.
Collapse
Affiliation(s)
- Ida Holst Pedersen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Karnezis T, Shayan R, Fox S, Achen MG, Stacker SA. The connection between lymphangiogenic signalling and prostaglandin biology: a missing link in the metastatic pathway. Oncotarget 2012; 3:893-906. [PMID: 23097685 PMCID: PMC3478465 DOI: 10.18632/oncotarget.593] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/17/2012] [Indexed: 12/21/2022] Open
Abstract
Substantial evidence supports important independent roles for lymphangiogenic growth factor signaling and prostaglandins in the metastatic spread of cancer. The significance of the lymphangiogenic growth factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, is well established in animal models of metastasis, and a strong correlation exits between an increase in expression of VEGF-C and VEGF-D, and metastatic spread in various solid human cancers. Similarly, key enzymes that control the production of prostaglandins, cyclooxygenases (COX-1 and COX-2, prototypic targets of Non-steroidal anti-inflammatory drugs (NSAIDs)), are frequently over-expressed or de-regulated in the progression of cancer. Recent data have suggested an intersection of lymphangiogenic growth factor signaling and the prostaglandin pathways in the control of metastatic spread via the lymphatic vasculature. Furthermore, this correlates with current clinical data showing that some NSAIDs enhance the survival of cancer patients through reducing metastasis. Here, we discuss the potential biochemical and cellular basis for such anti-cancer effects of NSAIDs through the prostaglandin and VEGF signaling pathways.
Collapse
Affiliation(s)
- Tara Karnezis
- Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, East Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
49
|
Xin X, Majumder M, Girish GV, Mohindra V, Maruyama T, Lala PK. Targeting COX-2 and EP4 to control tumor growth, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast cancer model. J Transl Med 2012; 92:1115-28. [PMID: 22641101 DOI: 10.1038/labinvest.2012.90] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We reported that cyclo-oxygenase (COX)-2 expression in human breast cancer stimulated cancer cell migration and invasiveness, production of vascular endothelial growth factor (VEGF)-C and lymphangiogenesis in situ, largely from endogenous PGE2-mediated stimulation of prostaglandin E (EP)1 and EP4 receptors, presenting them as candidate therapeutic targets against lymphatic metastasis. As human breast cancer xenografts in immuno-compromised mice have limitations for preclinical testing, we developed a syngeneic murine breast cancer model of spontaneous lymphatic metastasis mimicking human and applied it for mechanistic and therapeutic studies. We tested the roles of COX-2 and EP receptors in VEGF-C and -D production by a highly metastatic COX-2 expressing murine breast cancer cell line C3L5. These cells expressed all EP receptors and produced VEGF-C and -D, both inhibited with COX-2 inhibitors or EP4 (but not EP1, EP2 or EP3) antagonists. C3H/HeJ mice, when implanted SC in both inguinal regions with C3L5 cells suspended in growth factor-reduced Matrigel, exhibited rapid tumor growth, tumor-associated angiogenesis and lymphangiogenesis (respectively measured with CD31 and LYVE-1 immunostaining), metastasis to the inguinal and axillary lymph nodes and the lungs. Chronic oral administration of COX-1/COX-2 inhibitor indomethacin, COX-2 inhibitor celecoxib and an EP4 antagonist ONO-AE3-208, but not an EP1 antagonist ONO-8713 at nontoxic doses markedly reduced tumor growth, lymphangiogenesis, angiogenesis, and metastasis to lymph nodes and lungs. Residual tumors in responding mice revealed reduced VEGF-C and -D proteins, AkT phosphorylation and increased apoptotic/proliferative cell ratios consistent with blockade of EP4 signaling. We suggest that EP4 antagonists deserve clinical testing for chemo-intervention of lymphatic metastasis in human breast cancer.
Collapse
Affiliation(s)
- Xiping Xin
- Departments of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Ever since the discovery of prostaglandin E(2)(PGE(2)), this lipid mediator has been the focus of intense research. The diverse biological effects of PGE(2) are due, at least in part, to the existence of four distinct receptors (EP(1-4)). This can complicate the analysis of the biological effects produced by PGE2. While there are currently selective pharmacological tools to explore the roles of the EP(1,3,4) receptors in cellular and tissue responses, analysis of EP(2) receptor-induced responses has been hampered by the lack of a selective EP(2) receptor antagonist. The recent publication in this journal by af Forselles et al. suggests that such a tool compound is now available. In their manuscript, the authors describe a series of experiments that show PF-04418948 to be a potent and selective EP(2) receptor antagonist. The discovery of this tool compound will interest many scientists and through collaborations with Pfizer they may have access to PF-04418948 to facilitate further investigation of the biology of this fascinating lipid mediator.
Collapse
Affiliation(s)
- Mark A Birrell
- Respiratory Pharmacology, Pharmacology & Toxicology Section, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, London, UK.
| | | |
Collapse
|