1
|
Sinha A, Gupta M, Bhaskar SMM. Evolucollateral dynamics in stroke: Evolutionary pathophysiology, remodelling and emerging therapeutic strategies. Eur J Neurosci 2024. [PMID: 39498733 DOI: 10.1111/ejn.16585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Leptomeningeal collaterals (LMCs) are crucial in mitigating the impact of acute ischemic stroke (AIS) by providing alternate blood flow routes when primary arteries are obstructed. This article explores the evolutionary pathophysiology of LMCs, highlighting their critical function in stroke and the genetic and molecular mechanisms governing their development and remodelling. We address the translational challenges of applying animal model findings to human clinical scenarios, emphasizing the need for further research to validate emerging therapies-such as pharmacological agents, gene therapy and mechanical interventions-in clinical settings, aimed at enhancing collateral perfusion. Computational modelling emerges as a promising method for integrating experimental data, which requires precise parameterization and empirical validation. We introduce the 'Evolucollateral Dynamics' hypothesis, proposing a novel framework that incorporates evolutionary biology principles into therapeutic strategies, offering new perspectives on enhancing collateral circulation. This hypothesis emphasizes the role of genetic predispositions and environmental influences on collateral circulation, which may impact therapeutic strategies and optimize treatment outcomes. Future research must incorporate human clinical data to create robust treatment protocols, thereby maximizing the therapeutic potential of LMCs and improving outcomes for stroke patients.
Collapse
Affiliation(s)
- Akansha Sinha
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Muskaan Gupta
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Sonu M M Bhaskar
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital and South West Sydney Local Health District, Liverpool, NSW, Australia
- Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Center (NCVC), Suita, Osaka, Japan
| |
Collapse
|
2
|
Ahmed B, Rahman AA, Lee S, Malhotra R. The Implications of Aging on Vascular Health. Int J Mol Sci 2024; 25:11188. [PMID: 39456971 PMCID: PMC11508873 DOI: 10.3390/ijms252011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Vascular aging encompasses structural and functional changes in the vasculature, significantly contributing to cardiovascular diseases, which are the leading cause of death globally. The incidence and prevalence of these diseases increase with age, with most morbidity and mortality attributed to myocardial infarction and stroke. Diagnosing and intervening in vascular aging while understanding the mechanisms behind age-induced vascular phenotypic and pathophysiological alterations offers the potential for delaying and preventing cardiovascular mortality in an aging population. This review delves into various aspects of vascular aging by examining age-related changes in arterial health at the cellular level, including endothelial dysfunction, cellular senescence, and vascular smooth muscle cell transdifferentiation, as well as at the structural level, including arterial stiffness and changes in wall thickness and diameter. We also explore aging-related changes in perivascular adipose tissue deposition, arterial collateralization, and calcification, providing insights into the physiological and pathological implications. Overall, aging induces phenotypic changes that augment the vascular system's susceptibility to disease, even in the absence of traditional risk factors, such as hypertension, diabetes, obesity, and smoking. Overall, age-related modifications in cellular phenotype and molecular homeostasis increase the vulnerability of the arterial vasculature to structural and functional alterations, thereby accelerating cardiovascular risk. Increasing our understanding of these modifications is crucial for success in delaying or preventing cardiovascular diseases. Non-invasive techniques, such as measuring carotid intima-media thickness, pulse wave velocity, and flow-mediated dilation, as well as detecting vascular calcifications, can be used for the early detection of vascular aging. Targeting specific pathological mechanisms, such as cellular senescence and enhancing angiogenesis, holds promise for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Ahmed A. Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sujin Lee
- Division of Vascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Babaei S, Dobrucki LW, Insana MF. Power-Doppler Ultrasonic Imaging of Peripheral Perfusion in Diabetic Mice. IEEE Trans Biomed Eng 2024; 71:2421-2431. [PMID: 38442044 PMCID: PMC11292584 DOI: 10.1109/tbme.2024.3373254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
OBJECTIVE We explored the capabilities of power-Doppler ultrasonic (PD-US) imaging without contrast enhancement for monitoring changes in muscle perfusion over time. METHODS Ischemic recovery was observed in healthy and type II diabetic male and female mice with and without exercise. In separate studies, perfusion was measured during and after 5-min ischemic periods and during four-week recovery periods following irreversible femoral ligation. A goal was to assess how well PD-US estimates tracked the diabetic-related changes in endothelial function that influenced perfusion. RESULTS The average perfusion recovery time following femoral ligation increased 47% in diabetic males and 74% in diabetic females compared with non-diabetic mice. Flow-mediated dilation in conduit arteries and the reactive hyperemia index in resistive vessels each declined by one half in sedentary diabetic mice compared with sedentary non-diabetic mice. We found that exercise reduced the loss of endothelial function from diabetes in both sexes. The reproducibility of perfusion measurements was limited primarily by our ability to select the same region in muscle and to effectively filter tissue clutter. CONCLUSIONS/SIGNIFICANCE PD-US measurements can precisely follow site-specific changes in skeletal muscle perfusion related to diabetes over time, which fills the need for techniques capable of regularly monitoring atherosclerotic changes leading to ischemic vascular pathologies.
Collapse
|
4
|
Salafia G, Carandina A, Sacco RM, Ferri E, Montano N, Arosio B, Tobaldini E. Soluble Triggering Receptors Expressed on Myeloid Cells (sTREM) in Acute Ischemic Stroke: A Potential Pathway of sTREM-1 and sTREM-2 Associated with Disease Severity. Int J Mol Sci 2024; 25:7611. [PMID: 39062850 PMCID: PMC11277504 DOI: 10.3390/ijms25147611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
In 2022, stroke emerged as the most significant cerebrovascular disorder globally, causing 6.55 million deaths. Microglia, crucial for CNS preservation, can exacerbate brain damage in ischemic stroke by triggering neuroinflammation. This process is mediated by receptors on microglia, triggering receptors expressed on myeloid cells (TREM-1 and TREM-2), which have contrasting roles in neuroinflammation. In this study, we recruited 38 patients within 4.5 h from the onset of ischemic stroke. The degree of severity was evaluated by means of the National Institutes of Health Stroke Scale (NIHSS) at admission (T0) and after one week of ischemic events (TW) and the Modified Rankin Scale (mRS) at three months. The plasma concentration of TREMs (sTREM) was analyzed by next-generation ELISA at T0 and TW. The sTREM-1 concentrations at T0 were associated with mRS, while the sTREM-2 concentrations at T0 were associated with both the NIHSS at T0 and the mRS. A strong correlation between sTREM-1 and sTREM-2 was observed, suggesting a dependent modulation of the levels. This study provides insights into the potential pathway of TREM-1 and TREM-2 as a future biomarker for stratifying high-risk patients with ischemic stroke.
Collapse
Affiliation(s)
- Greta Salafia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20122 Milan, Italy; (G.S.); (A.C.); (N.M.); (B.A.)
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20122 Milan, Italy; (G.S.); (A.C.); (N.M.); (B.A.)
| | - Roberto Maria Sacco
- Emergency Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20122 Milan, Italy; (G.S.); (A.C.); (N.M.); (B.A.)
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20122 Milan, Italy; (G.S.); (A.C.); (N.M.); (B.A.)
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20122 Milan, Italy; (G.S.); (A.C.); (N.M.); (B.A.)
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
5
|
Mei J, Salim HA, Lakhani DA, Balar A, Musmar B, Adeeb N, Hoseinyazdi M, Luna L, Deng F, Hyson NZ, Dmytriw AA, Guenego A, Faizy TD, Heit JJ, Albers GW, Urrutia VC, Llinas R, Marsh EB, Hillis AE, Nael K, Yedavalli VS. Lower admission stroke severity is associated with good collateral status in distal medium vessel occlusion stroke. J Neuroimaging 2024; 34:424-429. [PMID: 38797931 DOI: 10.1111/jon.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Distal medium vessel occlusions (DMVOs) are a significant contributor to acute ischemic stroke (AIS), with collateral status (CS) playing a pivotal role in modulating ischemic damage progression. We aimed to explore baseline characteristics associated with CS in AIS-DMVO. METHODS This retrospective analysis of a prospectively collected database enrolled 130 AIS-DMVO patients from two comprehensive stroke centers. Baseline characteristics, including patient demographics, admission National Institutes of Health Stroke Scale (NIHSS) score, admission Los Angeles Motor Scale (LAMS) score, and co-morbidities, including hypertension, hyperlipidemia, diabetes, coronary artery disease, atrial fibrillation, and history of transient ischemic attack or stroke, were collected. The analysis was dichotomized to good CS, reflected by hypoperfusion index ratio (HIR) <.3, versus poor CS, reflected by HIR ≥.3. RESULTS Good CS was observed in 34% of the patients. As to the occluded location, 43.8% occurred in proximal M2, 16.9% in mid M2, 35.4% in more distal middle cerebral artery, and 3.8% in distal anterior cerebral artery. In multivariate logistic analysis, a lower NIHSS score and a lower LAMS score were both independently associated with a good CS (odds ratio [OR]: 0.88, 95% confidence interval [CI]: 0.82-0.95, p < .001 and OR: 0.77, 95% CI: 0.62-0.96, p = .018, respectively). Patients with poor CS were more likely to manifest as moderate to severe stroke (29.1% vs. 4.5%, p < .001), while patients with good CS had a significantly higher chance of having a minor stroke clinically (40.9% vs. 12.8%, p < .001). CONCLUSIONS CS remains an important determinant in the severity of AIS-DMVO. Collateral enhancement strategies may be a worthwhile pursuit in AIS-DMVO patients with more severe initial stroke presentation, which can be swiftly identified by the concise LAMS and serves as a proxy for underlying poor CS.
Collapse
Affiliation(s)
- Janet Mei
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Hamza A Salim
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
- Neuroendovascular Program, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Dhairya A Lakhani
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Aneri Balar
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Basel Musmar
- Department of Neurosurgery and Interventional Neuroradiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nimer Adeeb
- Department of Neurosurgery and Interventional Neuroradiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Meisam Hoseinyazdi
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Licia Luna
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Francis Deng
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Nathan Z Hyson
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Adam A Dmytriw
- Neuroendovascular Program, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
- Neurovascular Centre, Departments of Medical Imaging and Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Adrien Guenego
- Department of Diagnostic and Interventional Neuroradiology, Erasme University Hospital, Brussels, Belgium
| | - Tobias D Faizy
- Department of Radiology, Neuroendovascular Program, University Medical Center Münster, Munster, Germany
| | - Jeremy J Heit
- Department of Interventional Neuroradiology, Stanford Medical Center, Palo Alto, California, USA
| | - Gregory W Albers
- Department of Interventional Neuroradiology, Stanford Medical Center, Palo Alto, California, USA
| | - Victor C Urrutia
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Raf Llinas
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Elisabeth B Marsh
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Argye E Hillis
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Kambiz Nael
- Dept. Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Vivek S Yedavalli
- Division of Neuroradiology, Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
7
|
Reeson PL, Brown CE. Collaterals and stroke reperfusion: Too few leads to too much. Neuron 2024; 112:1378-1380. [PMID: 38697020 DOI: 10.1016/j.neuron.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024]
Abstract
Adequate reperfusion after ischemic stroke is a major determinant of functional outcome yet remains unpredictable and insufficient for most survivors. In this issue of Neuron, Binder et al.1 identify leptomeningeal collaterals (LMCs) in mice and human patients as a key factor in regulating reperfusion and hemorrhagic transformation following stroke.
Collapse
Affiliation(s)
- Patrick L Reeson
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P5C2, Canada
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P5C2, Canada.
| |
Collapse
|
8
|
Bandet MV, Winship IR. Aberrant cortical activity, functional connectivity, and neural assembly architecture after photothrombotic stroke in mice. eLife 2024; 12:RP90080. [PMID: 38687189 PMCID: PMC11060715 DOI: 10.7554/elife.90080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within 'remapped' forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.
Collapse
Affiliation(s)
- Mischa Vance Bandet
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| | - Ian Robert Winship
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| |
Collapse
|
9
|
Yang Y, Wang Z, Hu Q, Liu L, Ma G, Yang C. Enhancing the clinical value of single-phase computed tomography angiography in the assessment of collateral circulation in acute ischemic stroke: A narrative review. Brain Circ 2024; 10:35-41. [PMID: 38655435 PMCID: PMC11034444 DOI: 10.4103/bc.bc_54_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 04/26/2024] Open
Abstract
Acute ischemic stroke (AIS) condition assessment and clinical prognosis are significantly influenced by the compensatory state of cerebral collateral circulation. A standard clinical test known as single-phase computed tomography angiography (sCTA) is useful for quickly and accurately assessing the creation or opening of cerebral collateral circulation, which is crucial for the diagnosis and treatment of AIS. To improve the clinical application of sCTA in the clinical assessment of collateral circulation, we examine the present use of sCTA in AIS in this work.
Collapse
Affiliation(s)
- Yunqiu Yang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Intelligent Equipment Research Center, Zhuhai Institutes of Advanced Technology,Chinese Academy of Sciences, Zhuhai,Guangdong Province, China
| | - Zhen Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Intelligent Equipment Research Center, Zhuhai Institutes of Advanced Technology,Chinese Academy of Sciences, Zhuhai,Guangdong Province, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Libo Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guorui Ma
- Intelligent Equipment Research Center, Zhuhai Institutes of Advanced Technology,Chinese Academy of Sciences, Zhuhai,Guangdong Province, China
| | - Chen Yang
- Obstetric Ward Center, Shenzhen Futian District Maternity & Child Healthcare Hospital,Shenzhen, China
| |
Collapse
|
10
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Shourav MMI, Anisetti B, Godasi RR, Mateti N, Salem AM, Huynh T, Meschia JF, Lin MP. Association between left atrial enlargement and poor cerebral collaterals in large vessel occlusion. J Stroke Cerebrovasc Dis 2023; 32:107372. [PMID: 37738918 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
OBJECTIVES Left atrial enlargement (LAE) is a known risk factor for atrial fibrillation, a common cause of large vessel occlusion (LVO) leading to ischemic stroke. While robust cerebral collaterals protect penumbral tissue from infarction, the effect of structural heart disease on cerebral collaterals remains uncertain. This study aims to investigate the association between LAE and cerebral collaterals in patients with acute LVO stroke. MATERIALS AND METHODS We conducted a retrospective study of consecutive patients with middle cerebral and/or internal carotid LVO who underwent endovascular thrombectomy (EVT) between 2012 to 2020. Consecutive patients with echocardiography and computed tomography angiography (CTA) of the head were included. Multivariate logistic regression analysis was performed to evaluate the relationship between LAE and poor cerebral collaterals, adjusting for demographics (age, sex, race) and vascular risk factors (hypertension, diabetes and smoking). RESULTS The study included 235 patients with mean age of 69±15 years and an initial mean National Institutes of Health Stroke Scale score of 18. Of these, 89 (37.9 %) had LAE, and 105 (44.7 %) had poor collaterals. Patients with LAE were more likely to have poor collaterals compared to those without LAE (58.4 % vs 36.3 %, P = 0.001). LAE was independently associated with higher odds of poor collaterals (odds ratio, 2.47; P = 0.001), even after adjusting for covariables (odds ratio 1.84, P = 0.048). CONCLUSIONS Our study demonstrated a significant association between LAE and poor cerebral collaterals in patients with LVO stroke undergoing EVT. Further research is warranted to explore potential shared mechanisms, such as endothelial dysfunction, underlying this heart-brain association.
Collapse
Affiliation(s)
| | - Bhrugun Anisetti
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, United States
| | - Raja R Godasi
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, United States
| | - Nihas Mateti
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, United States
| | - Amr M Salem
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, United States
| | - Thien Huynh
- Department of Radiology, Mayo Clinic, Jacksonville, Florida, United States
| | - James F Meschia
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, United States
| | - Michelle P Lin
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, United States.
| |
Collapse
|
12
|
Song X, Wei C, Huang H, Cao X, Chen Z, Chen Y, Wu B. Effects of resveratrol on tolerance to ischemia/reperfusion injury in aged male mice: Role of autophagy and apoptosis. Food Sci Nutr 2023; 11:5938-5947. [PMID: 37823125 PMCID: PMC10563695 DOI: 10.1002/fsn3.3525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 10/13/2023] Open
Abstract
Aged myocardium is more susceptible to ischemia/reperfusion (I/R) injury. Autophagy and apoptosis play important roles in cardiac I/R injury. However, whether resveratrol can reduce the I/R vulnerability of aged myocardium by regulating apoptosis and autophagy remains unclear. The present study aimed to investigate the effect of resveratrol on the tolerance to I/R injury in aged male mice and to determine the contribution of apoptosis and autophagy. We used aged C57 mice as our research subjects. The hearts of mice were isolated after 6 weeks of intragastric administration with resveratrol and subsequently perfused with Krebs-Henseleit buffer to produce the I/R model. We found that resveratrol alleviated cardiac I/R injury in aged mice, but not in SIRT1+/- mice. Aged mice exhibited decreased LC3 and Beclin1 expressions, which were significantly rescued by resveratrol treatment. In addition, resveratrol decreased the expression of Bax and the activity of Caspase-3, while increasing the expression of Bcl-2 and the activity of SIRT1 in aged mouse hearts. Coimmunoprecipitation assays revealed that resveratrol facilitated the binding of Bax to Bcl-2 and the dissociation of Bcl-2 from Beclin1 in aged mouse myocardium. Conversely, SIRT1 knockout enhanced the formation of the Beclin1/Bcl-2 complex and disrupted the interaction between Bcl-2 and Bax. The above results indicate that resveratrol can reduce the vulnerability of myocardial I/R injury in senile myocardium by inhibiting apoptosis and upregulating autophagy through the SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Xiaogang Song
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Department of CardiologyThe 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation ArmyLanzhouChina
| | - Chao Wei
- Department of NeurologyThe First Medical Center of the Chinese People's Liberation Army General HospitalBeijingChina
| | - Hui Huang
- Department of GeriatricsThe 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation ArmyLanzhouChina
| | - Xingdan Cao
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Department of CardiologyThe 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation ArmyLanzhouChina
| | - Ziyi Chen
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Department of CardiologyThe 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation ArmyLanzhouChina
| | - Yongqing Chen
- Department of CardiologyThe Gansu Provincial Central HospitalLanzhouChina
| | - Bing Wu
- Department of GeriatricsThe 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation ArmyLanzhouChina
| |
Collapse
|
13
|
Heitkamp C, Winkelmeier L, Heit JJ, Flottmann F, Thaler C, Kniep H, Broocks G, Meyer L, Geest V, Albers GW, Lansberg MG, Fiehler J, Faizy TD. The negative effect of aging on cerebral venous outflow in acute ischemic stroke. J Cereb Blood Flow Metab 2023; 43:1648-1655. [PMID: 37254736 PMCID: PMC10581231 DOI: 10.1177/0271678x231179558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Cortical venous outflow (VO) represents an imaging biomarker of increasing interest in patients with acute ischemic stroke due to large vessel occlusion (AIS-LVO). We conducted a retrospective multicenter cohort study to investigate the effect of aging on VO. A total of 784 patients met the inclusion criteria. Cortical Vein Opacification Score (COVES) was used to assess VO profiles on admission CT angiography. Cerebral microperfusion was determined using the hypoperfusion intensity ratio (HIR) derived from perfusion imaging. Arterial collaterals were assessed using the Tan scale. Multivariable regression analysis was performed to identify independent determinants of VO, HIR and arterial collaterals. In multivariable regression, higher age correlated with worse VO (adjusted odds ratio [95% CI]; 0.83 [0.73-0.95]; P = 0.006) and poorer HIR (β coefficient [95% CI], 0.014 [0.005-0.024]; P = 0.002). The negative effect of higher age on VO was mediated by the extent of HIR (17.3%). We conclude that higher age was associated with worse VO in AIS-LVO, partially explained by the extent of HIR reflecting cerebral microperfusion. Our study underlines the need to assess collateral blood flow beyond the arterial system and provides valuable insights into deteriorated cerebral blood supply in elderly AIS-LVO patients.
Collapse
Affiliation(s)
- Christian Heitkamp
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laurens Winkelmeier
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jeremy J Heit
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabian Flottmann
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Thaler
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helge Kniep
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriel Broocks
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Meyer
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vincent Geest
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregory W Albers
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maarten G Lansberg
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Fiehler
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias D Faizy
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Mangiardi M, Bonura A, Iaccarino G, Alessiani M, Bravi MC, Crupi D, Pezzella FR, Fabiano S, Pampana E, Stilo F, Alfano G, Anticoli S. The Pathophysiology of Collateral Circulation in Acute Ischemic Stroke. Diagnostics (Basel) 2023; 13:2425. [PMID: 37510169 PMCID: PMC10378392 DOI: 10.3390/diagnostics13142425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral collateral circulation is a network of blood vessels which stabilizes blood flow and maintains cerebral perfusion whenever the main arteries fail to provide an adequate blood supply, as happens in ischemic stroke. These arterial networks are able to divert blood flow to hypoperfused cerebral areas. The extent of the collateral circulation determines the volume of the salvageable tissue, the so-called "penumbra". Clinically, this is associated with greater efficacy of reperfusion therapies (thrombolysis and thrombectomy) in terms of better short- and long-term functional outcomes, lower incidence of hemorrhagic transformation and of malignant oedema, and smaller cerebral infarctions. Recent advancements in brain imaging techniques (CT and MRI) allow us to study these anastomotic networks in detail and increase the likelihood of making effective therapeutic choices. In this narrative review we will investigate the pathophysiology, the clinical aspects, and the possible diagnostic and therapeutic role of collateral circulation in acute ischemic stroke.
Collapse
Affiliation(s)
- Marilena Mangiardi
- Department of Stroke Unit, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Adriano Bonura
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Gianmarco Iaccarino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Michele Alessiani
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Maria Cristina Bravi
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Domenica Crupi
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Francesca Romana Pezzella
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Sebastiano Fabiano
- Department of Neuroradiology and Interventional Neuroradiology, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Enrico Pampana
- Department of Neuroradiology and Interventional Neuroradiology, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Stilo
- Unit of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy
| | - Guido Alfano
- Department of Radiology and Interventional Radiology, M.G. Vannini Hospital, 00177 Rome, Italy
| | - Sabrina Anticoli
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| |
Collapse
|
15
|
Jullienne A, Szu JI, Quan R, Trinh MV, Norouzi T, Noarbe BP, Bedwell AA, Eldridge K, Persohn SC, Territo PR, Obenaus A. Cortical cerebrovascular and metabolic perturbations in the 5xFAD mouse model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1220036. [PMID: 37533765 PMCID: PMC10392850 DOI: 10.3389/fnagi.2023.1220036] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The 5xFAD mouse is a popular model of familial Alzheimer's disease (AD) that is characterized by early beta-amyloid (Aβ) deposition and cognitive decrements. Despite numerous studies, the 5xFAD mouse has not been comprehensively phenotyped for vascular and metabolic perturbations over its lifespan. Methods Male and female 5xFAD and wild type (WT) littermates underwent in vivo 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging at 4, 6, and 12 months of age to assess regional glucose metabolism. A separate cohort of mice (4, 8, 12 months) underwent "vessel painting" which labels all cerebral vessels and were analyzed for vascular characteristics such as vessel density, junction density, vessel length, network complexity, number of collaterals, and vessel diameter. Results With increasing age, vessels on the cortical surface in both 5xFAD and WT mice showed increased vessel length, vessel and junction densities. The number of collateral vessels between the middle cerebral artery (MCA) and the anterior and posterior cerebral arteries decreased with age but collateral diameters were significantly increased only in 5xFAD mice. MCA total vessel length and junction density were decreased in 5xFAD mice compared to WT at 4 months. Analysis of 18F-FDG cortical uptake revealed significant differences between WT and 5xFAD mice spanning 4-12 months. Broadly, 5xFAD males had significantly increased 18F-FDG uptake at 12 months compared to WT mice. In most cortical regions, female 5xFAD mice had reduced 18F-FDG uptake compared to WT across their lifespan. Discussion While the 5xFAD mouse exhibits AD-like cognitive deficits as early as 4 months of age that are associated with increasing Aβ deposition, we only found significant differences in cortical vascular features in males, not in females. Interestingly, 5xFAD male and female mice exhibited opposite effects in 18F-FDG uptake. The MCA supplies blood to large portions of the somatosensory cortex and portions of motor and visual cortex and increased vessel length alongside decreased collaterals which coincided with higher metabolic rates in 5xFAD mice. Thus, a potential mismatch between metabolic demand and vascular delivery of nutrients in the face of increasing Aβ deposition could contribute to the progressive cognitive deficits seen in the 5xFAD mouse model.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Jenny I. Szu
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ryan Quan
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Michelle V. Trinh
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Tannoz Norouzi
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Brenda P. Noarbe
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Amanda A. Bedwell
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Kierra Eldridge
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Scott C. Persohn
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul R. Territo
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Xiao P, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Wang J, Zhang Y, Zhou Z, Zhong X, Yan W. Impaired angiogenesis in ageing: the central role of the extracellular matrix. J Transl Med 2023; 21:457. [PMID: 37434156 PMCID: PMC10334673 DOI: 10.1186/s12967-023-04315-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
Each step in angiogenesis is regulated by the extracellular matrix (ECM). Accumulating evidence indicates that ageing-related changes in the ECM driven by cellular senescence lead to a reduction in neovascularisation, reduced microvascular density, and an increased risk of tissue ischaemic injury. These changes can lead to health events that have major negative impacts on quality of life and place a significant financial burden on the healthcare system. Elucidating interactions between the ECM and cells during angiogenesis in the context of ageing is neceary to clarify the mechanisms underlying reduced angiogenesis in older adults. In this review, we summarize ageing-related changes in the composition, structure, and function of the ECM and their relevance for angiogenesis. Then, we explore in detail the mechanisms of interaction between the aged ECM and cells during impaired angiogenesis in the older population for the first time, discussing diseases caused by restricted angiogenesis. We also outline several novel pro-angiogenic therapeutic strategies targeting the ECM that can provide new insights into the choice of appropriate treatments for a variety of age-related diseases. Based on the knowledge gathered from recent reports and journal articles, we provide a better understanding of the mechanisms underlying impaired angiogenesis with age and contribute to the development of effective treatments that will enhance quality of life.
Collapse
Affiliation(s)
- Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dehong Yang
- Department of Orthopedics Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jilei Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Liu N, Butcher JT, Nakano A, del Campo A. Changes in macrophage immunometabolism as a marker of skeletal muscle dysfunction across the lifespan. Aging (Albany NY) 2023; 15:4035-4050. [PMID: 37244285 PMCID: PMC10258037 DOI: 10.18632/aging.204750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
One of the most pronounced changes in the elderly is loss of strength and mobility due to the decline of skeletal muscle function, resulting in a multifactorial condition termed sarcopenia. Although significant clinical changes begin to manifest at advanced ages, recent studies have shown that changes at the cellular and molecular level precede the symptomatology of sarcopenia. By utilizing a single-cell transcriptomic atlas of mouse skeletal muscle across the lifespan, we identified a clear sign of immune senescence that presents during middle age. More importantly, the change in macrophage phenotype in middle age may explain the changes in extracellular matrix composition, especially collagen synthesis, that contributes to fibrosis and overall muscle weakness with advanced age. Our results show a novel paradigm whereby skeletal muscle dysfunction is driven by alterations in tissue-resident macrophages before the appearance of clinical symptoms in middle-aged mice, providing a new therapeutic approach via regulation of immunometabolism.
Collapse
Affiliation(s)
- Norika Liu
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua T. Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Atsushi Nakano
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergetica Celular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| |
Collapse
|
18
|
Zhu Q, Liu X, Wu H, Yang C, Wang M, Chen F, Cui Y, Hao H, Hill MA, Liu Z. CARD9 deficiency improves the recovery of limb ischemia in mice with ambient fine particulate matter exposure. Front Cardiovasc Med 2023; 10:1125717. [PMID: 36860276 PMCID: PMC9968734 DOI: 10.3389/fcvm.2023.1125717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Background Exposure to fine particulate matter (PM) is a significant risk for cardiovascular diseases largely due to increased reactive oxygen species (ROS) production and inflammation. Caspase recruitment domain (CARD)9 is critically involved in innate immunity and inflammation. The present study was designed to test the hypothesis that CARD9 signaling is critically involved in PM exposure-induced oxidative stress and impaired recovery of limb ischemia. Methods and results Critical limb ischemia (CLI) was created in male wildtype C57BL/6 and age matched CARD9 deficient mice with or without PM (average diameter 2.8 μm) exposure. Mice received intranasal PM exposure for 1 month prior to creation of CLI and continued for the duration of the experiment. Blood flow and mechanical function were evaluated in vivo at baseline and days 3, 7, 14, and 21 post CLI. PM exposure significantly increased ROS production, macrophage infiltration, and CARD9 protein expression in ischemic limbs of C57BL/6 mice in association with decreased recovery of blood flow and mechanical function. CARD9 deficiency effectively prevented PM exposure-induced ROS production and macrophage infiltration and preserved the recovery of ischemic limb with increased capillary density. CARD9 deficiency also significantly attenuated PM exposure-induced increase of circulating CD11b+/F4/80+ macrophages. Conclusion The data indicate that CARD9 signaling plays an important role in PM exposure-induced ROS production and impaired limb recovery following ischemia in mice.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hao Wu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Chunlin Yang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Feng Chen
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States,*Correspondence: Zhenguo Liu ✉
| |
Collapse
|
19
|
Törteli A, Tóth R, Berger S, Samardzic S, Bari F, Menyhárt Á, Farkas E. Spreading depolarization causes reperfusion failure after cerebral ischemia. J Cereb Blood Flow Metab 2023; 43:655-664. [PMID: 36703609 PMCID: PMC10108181 DOI: 10.1177/0271678x231153745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite successful recanalization, reperfusion failure associated with poor neurological outcomes develops in half of treated stroke patients. We explore here whether spreading depolarization (SD) is a predictor of reperfusion failure. Global forebrain ischemia/reperfusion was induced in male and female C57BL/6 mice (n = 57). SD and cerebral blood flow (CBF) changes were visualized with transcranial intrinsic optical signal and laser speckle contrast imaging. To block SD, MK801 was applied (n = 26). Neurological deficit, circle of Willis (CoW) anatomy and neuronal injury were evaluated 24 hours later. SD emerged after ischemia onset in one or both hemispheres under a perfusion threshold (CBF drop to 21.1 ± 4.6 vs. 33.6 ± 4.4%, SD vs. no SD). The failure of later reperfusion (44.4 ± 12.5%) was invariably linked to previous SD. In contrast, reperfusion was adequate (98.9 ± 7.4%) in hemispheres devoid of SD. Absence of the P1 segment of the posterior cerebral artery in the CoW favored SD occurrence and reperfusion failure. SD occurrence and reperfusion failure were associated with poor neurologic function, and neuronal necrosis 24 hours after ischemia. The inhibition of SD significantly improved reperfusion. SD occurrence during ischemia impairs later reperfusion, prognosticating poor neurological outcomes. The increased likelihood of SD occurrence is predicted by inadequate collaterals.
Collapse
Affiliation(s)
- Anna Törteli
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary.,Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Réka Tóth
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary.,Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Sarah Berger
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Sarah Samardzic
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary.,Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary.,Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
21
|
Winicki NM, Nanavati AP, Morrell CH, Moen JM, Axsom JE, Krawczyk M, Petrashevskaya NN, Beyman MG, Ramirez C, Alfaras I, Mitchell SJ, Juhaszova M, Riordon DR, Wang M, Zhang J, Cerami A, Brines M, Sollott SJ, de Cabo R, Lakatta EG. A small erythropoietin derived non-hematopoietic peptide reduces cardiac inflammation, attenuates age associated declines in heart function and prolongs healthspan. Front Cardiovasc Med 2023; 9:1096887. [PMID: 36741836 PMCID: PMC9889362 DOI: 10.3389/fcvm.2022.1096887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background Aging is associated with increased levels of reactive oxygen species and inflammation that disrupt proteostasis and mitochondrial function and leads to organism-wide frailty later in life. ARA290 (cibinetide), an 11-aa non-hematopoietic peptide sequence within the cardioprotective domain of erythropoietin, mediates tissue protection by reducing inflammation and fibrosis. Age-associated cardiac inflammation is linked to structural and functional changes in the heart, including mitochondrial dysfunction, impaired proteostasis, hypertrophic cardiac remodeling, and contractile dysfunction. Can ARA290 ameliorate these age-associated cardiac changes and the severity of frailty in advanced age? Methods We conducted an integrated longitudinal (n = 48) and cross-sectional (n = 144) 15 months randomized controlled trial in which 18-month-old Fischer 344 x Brown Norway rats were randomly assigned to either receive chronic ARA290 treatment or saline. Serial echocardiography, tail blood pressure and body weight were evaluated repeatedly at 4-month intervals. A frailty index was calculated at the final timepoint (33 months of age). Tissues were harvested at 4-month intervals to define inflammatory markers and left ventricular tissue remodeling. Mitochondrial and myocardial cell health was assessed in isolated left ventricular myocytes. Kaplan-Meier survival curves were established. Mixed ANOVA tests and linear mixed regression analysis were employed to determine the effects of age, treatment, and age-treatment interactions. Results Chronic ARA290 treatment mitigated age-related increases in the cardiac non-myocyte to myocyte ratio, infiltrating leukocytes and monocytes, pro-inflammatory cytokines, total NF-κB, and p-NF-κB. Additionally, ARA290 treatment enhanced cardiomyocyte autophagy flux and reduced cellular accumulation of lipofuscin. The cardiomyocyte mitochondrial permeability transition pore response to oxidant stress was desensitized following chronic ARA290 treatment. Concurrently, ARA290 significantly blunted the age-associated elevation in blood pressure and preserved the LV ejection fraction. Finally, ARA290 preserved body weight and significantly reduced other markers of organism-wide frailty at the end of life. Conclusion Administration of ARA290 reduces cell and tissue inflammation, mitigates structural and functional changes within the cardiovascular system leading to amelioration of frailty and preserved healthspan.
Collapse
Affiliation(s)
- Nolan M. Winicki
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Alay P. Nanavati
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Jack M. Moen
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Jessie E. Axsom
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Melissa Krawczyk
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Natalia N. Petrashevskaya
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Max G. Beyman
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Christopher Ramirez
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Irene Alfaras
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Sarah J. Mitchell
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Daniel R. Riordon
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Jing Zhang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Anthony Cerami
- Araim Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Michael Brines
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Steven J. Sollott
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Rafael de Cabo
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Edward G. Lakatta
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States,*Correspondence: Edward G. Lakatta,
| |
Collapse
|
22
|
Cattaneo M, Beltrami AP, Thomas AC, Spinetti G, Alvino V, Avolio E, Veneziano C, Rolle IG, Sponga S, Sangalli E, Maciag A, Dal Piaz F, Vecchione C, Alenezi A, Paisey S, Puca AA, Madeddu P. The longevity-associated BPIFB4 gene supports cardiac function and vascularization in aging cardiomyopathy. Cardiovasc Res 2023:6986428. [PMID: 36635236 DOI: 10.1093/cvr/cvad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
AIMS The aging heart naturally incurs a progressive decline in function and perfusion that available treatments cannot halt. However, some exceptional individuals maintain good health until the very late stage of their life due to favourable gene-environment interaction. We have previously shown that carriers of a longevity-associated variant (LAV) of the BPIFB4 gene enjoy prolonged health spans and lesser cardiovascular complications. Moreover, supplementation of LAV-BPIFB4 via an adeno-associated viral vector improves cardiovascular performance in limb ischemia, atherosclerosis, and diabetes models. Here, we asked if the LAV-BPIFB4 gene could address the unmet therapeutic need to delay the heart's spontaneous aging. METHODS AND RESULTS Immunohistological studies showed a remarkable reduction in vessel coverage by pericytes in failing hearts explanted from elderly patients. This defect was attenuated in patients carrying the homozygous LAV-BPIFB4 genotype. Moreover, pericytes isolated from older hearts showed low levels of BPIFB4, depressed pro-angiogenic activity, and loss of ribosome biogenesis. LAV-BPIFB4 supplementation restored pericyte function and pericyte-endothelial cell interactions through a mechanism involving the nucleolar protein nucleolin. Conversely, BPIFB4 silencing in normal pericytes mimed the heart failure pericytes. Finally, gene therapy with LAV-BPIFB4 prevented cardiac deterioration in middle-aged mice and rescued cardiac function and myocardial perfusion in older mice by improving microvasculature density and pericyte coverage. CONCLUSIONS We report the success of the LAV-BPIFB4 gene/protein in improving homeostatic processes in the heart's aging. These findings open to using LAV-BPIFB4 to reverse the decline of heart performance in older people.
Collapse
Affiliation(s)
| | - Antonio P Beltrami
- Department of Medicine, University of Udine, Academic Hospital of Udine, ASUFC, Udine, Italy
| | - Anita C Thomas
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gaia Spinetti
- Cardiovascular Department, IRCCS Multimedica, Milan, Italy
| | - Valeria Alvino
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Elisa Avolio
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claudia Veneziano
- Department of Medicine, University of Udine, Academic Hospital of Udine, ASUFC, Udine, Italy
| | - Irene Giulia Rolle
- Department of Medicine, University of Udine, Academic Hospital of Udine, ASUFC, Udine, Italy
| | - Sandro Sponga
- Department of Medicine, University of Udine, Academic Hospital of Udine, ASUFC, Udine, Italy
| | - Elena Sangalli
- Cardiovascular Department, IRCCS Multimedica, Milan, Italy
| | - Anna Maciag
- Cardiovascular Department, IRCCS Multimedica, Milan, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy.,Department of Vascular Physiopathology, IRCCS Neuromed, Pozzilli, Italy
| | - Aishah Alenezi
- Wales Research & Diagnostic Positron Emission Tomography Imaging Centre, Cardiff University, UK
| | - Stephen Paisey
- Wales Research & Diagnostic Positron Emission Tomography Imaging Centre, Cardiff University, UK
| | - Annibale A Puca
- Cardiovascular Department, IRCCS Multimedica, Milan, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Paolo Madeddu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
23
|
Kecskés S, Menyhárt Á, Bari F, Farkas E. Nimodipine augments cerebrovascular reactivity in aging but runs the risk of local perfusion reduction in acute cerebral ischemia. Front Aging Neurosci 2023; 15:1175281. [PMID: 37181624 PMCID: PMC10174256 DOI: 10.3389/fnagi.2023.1175281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The efficacy of cerebrovascular reactivity (CVR) is taken as an indicator of cerebrovascular health. Methods and Results We found that CVR tested with the inhalation of 10 % CO2 declined in the parietal cortex of 18-20-month-old rats. The CVR deficit in old rats was coincident with cerebrovascular smooth muscle cell and astrocyte senescence, revealed by the immuno-labeling of the cellular senescence marker p16 in these cells. In a next series of experiments, CVR was severely impaired in the acute phase of incomplete global forebrain ischemia produced by the bilateral occlusion of the common carotid arteries in young adult rats. In acute ischemia, CVR impairment often manifested as a perfusion drop rather than blood flow elevation in response to hypercapnia. Next, nimodipine, an L-type voltage-gated calcium channel antagonist was administered topically to rescue CVR in both aging, and cerebra ischemia. Nimodipine augmented CVR in the aged brain, but worsened CVR impairment in acute cerebral ischemia. Discussion A careful evaluation of benefits and side effects of nimodipine is recommended, especially in acute ischemic stroke.
Collapse
Affiliation(s)
- Szilvia Kecskés
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- *Correspondence: Eszter Farkas,
| |
Collapse
|
24
|
Sugimoto S, Ishida T, Kawada K, Jobu K, Morisawa S, Tamura N, Takuma D, Yoshioka S, Miyamura M. Central Nervous System Ischemia Associated with Bevacizumab: An Analysis of the Japanese Adverse Drug Event Report Database. Biol Pharm Bull 2022; 45:1805-1811. [DOI: 10.1248/bpb.b22-00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Shohei Sugimoto
- Graduate School of Integrated Arts and Sciences, Kochi University
| | | | - Kei Kawada
- Graduate School of Integrated Arts and Sciences, Kochi University
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital
| | | | - Naohisa Tamura
- Graduate School of Integrated Arts and Sciences, Kochi University
| | | | - Saburo Yoshioka
- Graduate School of Integrated Arts and Sciences, Kochi University
| | | |
Collapse
|
25
|
Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 2022; 16:1067411. [PMID: 36507357 PMCID: PMC9732261 DOI: 10.3389/fnins.2022.1067411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability and death worldwide. Owing to the aging population and unhealthy lifestyles, the incidence of cerebrovascular disease is high. Vascular risk factors include hypertension, diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and effective reperfusion therapy for IS, it is crucial to actively control these risk factors to reduce the incidence and recurrence rates of IS. Evidence from human and animal studies suggests that moderate intermittent hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate common vascular risk factors and comorbidities. Given the complex pathophysiological mechanisms underlying IS, effective treatment must focus on reducing injury in the acute phase and promoting repair in the recovery phase. Therefore, this review discusses the preclinical perspectives on IH conditioning as a potential treatment for neurovascular injury and highlights IH pre and postconditioning strategies for IS. Hypoxia conditioning reduces brain injury by increasing resistance to acute ischemic and hypoxic stress, exerting neuroprotective effects, and promoting post-injury repair and regeneration. However, whether IH produces beneficial effects depends not only on the hypoxic regimen but also on inter-subject differences. Therefore, we discuss the factors that may influence the effectiveness of IH treatment, including age, sex, comorbidities, and circadian rhythm, which can be used to help identify the optimal intervention population and treatment protocols for more accurate, individualized clinical translation. In conclusion, IH conditioning as a non-invasive, non-pharmacological, systemic, and multi-targeted intervention can not only reduce brain damage after stroke but can also be applied to the prevention and functional recovery of IS, providing brain protection at different stages of the disease. It represents a promising therapeutic strategy. For patients with IS and high-risk groups, IH conditioning is expected to develop as an adjunctive clinical treatment option to reduce the incidence, recurrence, disability, and mortality of IS and to reduce disease burden.
Collapse
Affiliation(s)
- Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xunming Ji,
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China,Guangxian Nan,
| |
Collapse
|
26
|
Uniken Venema SM, Dankbaar JW, van der Lugt A, Dippel DWJ, van der Worp HB. Cerebral Collateral Circulation in the Era of Reperfusion Therapies for Acute Ischemic Stroke. Stroke 2022; 53:3222-3234. [PMID: 35938420 DOI: 10.1161/strokeaha.121.037869] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical outcomes of patients with acute ischemic stroke depend in part on the extent of their collateral circulation. A good collateral circulation has also been associated with greater benefit of intravenous thrombolysis and endovascular treatment. Treatment decisions for these reperfusion therapies are increasingly guided by a combination of clinical and imaging parameters, particularly in later time windows. Computed tomography and magnetic resonance imaging enable a rapid assessment of both the collateral extent and cerebral perfusion. Yet, the role of the collateral circulation in clinical decision-making is currently limited and may be underappreciated due to the use of rather coarse and rater-dependent grading methods. In this review, we discuss determinants of the collateral circulation in patients with acute ischemic stroke, report on commonly used and emerging neuroimaging techniques for assessing the collateral circulation, and discuss the therapeutic and prognostic implications of the collateral circulation in relation to reperfusion therapies for acute ischemic stroke.
Collapse
Affiliation(s)
- Simone M Uniken Venema
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, the Netherlands. (S.M.U.V., H.B.v.d.W.)
| | - Jan Willem Dankbaar
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, the Netherlands. (J.W.D.)
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center Rotterdam, the Netherlands. (A.v.d.L.)
| | - Diederik W J Dippel
- Department of Neurology, Erasmus Medical Center Rotterdam, the Netherlands. (D.W.J.D.)
| | - H Bart van der Worp
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, the Netherlands. (S.M.U.V., H.B.v.d.W.)
| |
Collapse
|
27
|
Baseline Characteristics Associated with Good Collateral Status Using Hypoperfusion Index as an Outcome. Tomography 2022; 8:1885-1894. [PMID: 35894024 PMCID: PMC9330882 DOI: 10.3390/tomography8040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Up to 30% of ischemic stroke cases are due to large vessel occlusion (LVO), causing significant morbidity. Studies have shown that the collateral circulation of patients with acute ischemic stroke (AIS) secondary to LVO can predict their clinical and radiological outcomes. The aim of this study is to identify baseline patient characteristics that can help predict the collateral status of these patients for improved triage. In this IRB approved retrospective study, consecutive patients presenting with AIS secondary to anterior circulation LVO were identified between September 2019 and August 2021. The baseline patient characteristics, laboratory values, imaging features and outcomes were collected using a manual chart review. From the 181 consecutive patients initially reviewed, 54 were confirmed with a clinical diagnosis of AIS and anterior circulation LVO. In patients with poor collateral status, the body mass index (BMI) was found to be significantly lower compared to those with good collateral status (26.4 ± 5.6 vs. 31.7 ± 12.3; p = 0.045). BMI of >35 kg/m2 was found to predict the presence of good collateral status. Age was found to be significantly higher (70.5 ± 9.6 vs. 58.9 ± 15.6; p = 0.034) in patients with poor collateral status and M1 strokes associated with older age and BMI.
Collapse
|
28
|
Pi C, Wang J, Zhao D, Yu S. The determinants of collateral circulation status in patients with chronic cerebral arterial circle occlusion: A STROBE Study. Medicine (Baltimore) 2022; 101:e29703. [PMID: 35777030 PMCID: PMC9239625 DOI: 10.1097/md.0000000000029703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The condition of collateral pathways is an important predictor of stroke prognoses; however the major determinants of collaterals are still unknown. The purpose of this study is to identify potentially determinants for collateral circulation status in patients with chronic occlusion of cerebral arterial circle. All patients with chronic occlusion of either unilateral internal carotid artery or middle cerebral artery M1 or M2 segment, diagnosed by digital subtraction angiography at the neurology department of the First Medical Centre of Chinese PLA General Hospital from January 2015 to December 2017, were retrospectively collected in our sample. After screening according to inclusion and exclusion criteria, the patients' relevant clinical data were collected and analyzed. Collateral circulations were assessed by 2 independent raters using the American society of interventional and therapeutic neuroradiology/society of interventional radiology flow-grading system. Baseline characteristics (n = 163): our sample consists of 116 (71.2%) male and 47 (28.8%) female patients with an average age of 57.5 ± 11.9 years. Cerebral collateral flow was poor in 59 (36.2%) patients. Our univariate analyses showed that poor collateral circulation was associated with lower high-density lipoproteins cholesterol (HDL), elevated homocysteine levels, aging and hyperlipidemia. A multivariate analysis identified HDL, homocysteine levels and ageing as major predictors for collateral circulation status. In the subgroup analysis, the HDL contributed to collateral angiogenesis internal carotid artery occlusion group. In the middle cerebral artery occlusion group, the homocysteine and ageing were related to the poor collateral status. Low HDL, high levels of homocysteine and ageing are identified as possible risk factors for a poor collateral vessel blood flow in patients with chronic anterior circulation occlusion.
Collapse
Affiliation(s)
- Chenghui Pi
- Nankai University, College of Medicine, Tianjin, China
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jun Wang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Dengfa Zhao
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- Nankai University, College of Medicine, Tianjin, China
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shengyuan Yu, College of Medicine, Nankai University, Tianjin, China )
| |
Collapse
|
29
|
Qiu B, Zhang X, Li Z, Chhablani J, Fan H, Wang Y, Xie R. Characterization of Choroidal Morphology and Vasculature in the Phenotype of Pachychoroid Diseases by Swept-Source OCT and OCTA. J Clin Med 2022; 11:jcm11113243. [PMID: 35683628 PMCID: PMC9181685 DOI: 10.3390/jcm11113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/04/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to characterize the choroidal morphology and vasculature in pachychoroid diseases (PCD). A total of 49 eyes with polypoidal choroidal vasculopathy (PCV), 43 eyes with neovascular age-related macular degeneration (nAMD), and 50 eyes with central serous chorioretinopathy (CSC), along with 80 healthy eyes, were enrolled in this nested case-control study. The swept-source optical coherent tomography (OCT), OCT angiography, and En face images were quantitatively analyzed. Multivariate logistic regression models showed that older age and increased vessel density (VD) in the choriocapillaris (CC) layer were independent risk factors for both PCV (page < 0.001, pVD = 0.004), and nAMD (page < 0.001, pVD = 0.005). Decreased VD in the Sattler’s layer was an independent risk factor for PCV (p = 0.014). Increased VD in the Haller’s layer was an independent risk factor for CSC (p = 0.001). The proportion of the diffuse type of collateral circulation in the Sattler’ layer in CSC group was significantly higher than in the other three groups (p < 0.001). We concluded that the involvement of the blood flow in the CC, Haller’s, and Sattler’s layers are differently affected in CSC, nAMD, and PCV eyes, indicating the different pathological mechanism underlying the phenotype of PCD. The age-dependent establishment of collateral circulation in the Sattler’s layer may play a compensatory role regarding ischemic injury in the development of PCD.
Collapse
Affiliation(s)
- Bingjie Qiu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (B.Q.); (R.X.)
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing 100730, China
| | - Xinyuan Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (B.Q.); (R.X.)
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing 100730, China
- Correspondence: ; Tel.: +86-10-582-69911; Fax: +86-10-651-25617
| | - Zhiqing Li
- Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300392, China; (Z.L.); (H.F.)
| | - Jay Chhablani
- UPMC Eye Center, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Hao Fan
- Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300392, China; (Z.L.); (H.F.)
| | - Yanhong Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China;
| | - Rui Xie
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (B.Q.); (R.X.)
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing 100730, China
| |
Collapse
|
30
|
Zhu Q, Liu X, Zhu Q, Liu Z, Yang C, Wu H, Zhang L, Xia X, Wang M, Hao H, Cui Y, Zhang G, Hill MA, Flaker GC, Zhou S, Liu Z. N-Acetylcysteine Enhances the Recovery of Ischemic Limb in Type-2 Diabetic Mice. Antioxidants (Basel) 2022; 11:antiox11061097. [PMID: 35739993 PMCID: PMC9219773 DOI: 10.3390/antiox11061097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Critical limb ischemia (CLI) is a severe complication of diabetes mellitus that occurs without effective therapy. Excessive reactive oxygen species (ROS) production and oxidative stress play critical roles in the development of diabetic cardiovascular complications. N-acetylcysteine (NAC) reduces ischemia-induced ROS production. The present study aimed to investigate the effect of NAC on the recovery of ischemic limb in an experimental model of type-2 diabetes. TALLYHO/JngJ diabetic and SWR/J non-diabetic mice were used for developing a CLI model. For NAC treatment, mice received NAC (1 mg/mL) in their drinking water for 24 h before initiating CLI, and continuously for the duration of the experiment. Blood flow, mechanical function, histology, expression of antioxidant enzymes including superoxide dismutase (SOD)-1, SOD-3, glutathione peroxidase (Gpx)-1, catalase, and phosphorylated insulin receptor substrate (IRS)-1, Akt, and eNOS in ischemic limb were evaluated in vivo or ex vivo. Body weight, blood glucose, plasma advanced glycation end-products (AGEs), plasma insulin, insulin resistance index, and plasma TNF-a were also evaluated during the experiment. NAC treatment effectively attenuated ROS production with preserved expressions of SOD-1, Gpx-1, catalase, phosphorylated Akt, and eNOS, and enhanced the recovery of blood flow and function of the diabetic ischemic limb. NAC treatment also significantly decreased the levels of phosphorylated IRS-1 (Ser307) expression and plasma TNF-α in diabetic mice without significant changes in blood glucose and AGEs levels. In conclusion, NAC treatment enhanced the recovery of blood flow and mechanical function in ischemic limbs in T2D mice in association with improved tissue redox/inflammatory status and insulin resistance.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Xuanyou Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Qingyi Zhu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Zehao Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Chunlin Yang
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Hao Wu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Linfang Zhang
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Xiujuan Xia
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Meifang Wang
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Hong Hao
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Yuqi Cui
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Guangsen Zhang
- Institute of Molecular Hematopathy, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA;
| | - Gregory C. Flaker
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Shenghua Zhou
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
- Correspondence: ; Tel.: +1-573-884-3278; Fax: +1-573-884-7743
| |
Collapse
|
31
|
p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent mitochondrial dynamics. Sci Rep 2022; 12:5938. [PMID: 35396524 PMCID: PMC8994030 DOI: 10.1038/s41598-022-09757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process. We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α−/− VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion. These findings may open new therapeutic opportunities for peripheral vascular diseases.
Collapse
|
32
|
Hung SH, Kramer S, Werden E, Campbell BCV, Brodtmann A. Pre-stroke Physical Activity and Cerebral Collateral Circulation in Ischemic Stroke: A Potential Therapeutic Relationship? Front Neurol 2022; 13:804187. [PMID: 35242097 PMCID: PMC8886237 DOI: 10.3389/fneur.2022.804187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Favorable cerebral collateral circulation contributes to hindering penumbral tissue from progressing to infarction and is associated with positive clinical outcomes after stroke. Given its clinical importance, improving cerebral collateral circulation is considered a therapeutic target to reduce burden after stroke. We provide a hypothesis-generating discussion on the potential association between pre-stroke physical activity and cerebral collateral circulation in ischemic stroke. The recruitment of cerebral collaterals in acute ischemic stroke may depend on anatomical variations, capacity of collateral vessels to vasodilate, and individual risk factors. Physical activity is associated with improved cerebral endothelial and vascular function related to vasodilation and angiogenic adaptations, and risk reduction in individual risk factors. More research is needed to understand association between cerebral collateral circulation and physical activity. A presentation of different methodological considerations for measuring cerebral collateral circulation and pre-stroke physical activity in the context of acute ischemic stroke is included. Opportunities for future research into cerebral collateral circulation, physical activity, and stroke recovery is presented.
Collapse
Affiliation(s)
- Stanley Hughwa Hung
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sharon Kramer
- Centre for Quality and Patient Safety Research, Alfred Health Partnership, Melbourne, VIC, Australia.,Faculty of Health, School of Nursing and Midwifery, Deakin University, Geelong, VIC, Australia
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Bruce C V Campbell
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
33
|
Kaloss AM, Theus MH. Leptomeningeal anastomoses: Mechanisms of pial collateral remodeling in ischemic stroke. WIREs Mech Dis 2022; 14:e1553. [PMID: 35118835 PMCID: PMC9283306 DOI: 10.1002/wsbm.1553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Arterial collateralization, as determined by leptomeningeal anastomoses or pial collateral vessels, is a well‐established vital player in cerebral blood flow restoration and neurological recovery from ischemic stroke. A secondary network of cerebral collateral circulation apart from the Circle of Willis, exist as remnants of arteriole development that connect the distal arteries in the pia mater. Recent interest lies in understanding the cellular and molecular adaptations that control the growth and remodeling, or arteriogenesis, of these pre‐existing collateral vessels. New findings from both animal models and human studies of ischemic stroke suggest a multi‐factorial and complex, temporospatial interplay of endothelium, immune and vessel‐associated cell interactions may work in concert to facilitate or thwart arteriogenesis. These valuable reports may provide critical insight into potential predictors of the pial collateral response in patients with large vessel occlusion and may aid in therapeutics to enhance collateral function and improve recovery from stroke. This article is categorized under:Neurological Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA.,School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA.,Center for Regenerative Medicine, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
34
|
Quiroz HJ, Valencia SF, Shao H, Li Y, Ortiz YY, Parikh PP, Lassance-Soares RM, Vazquez-Padron RI, Liu ZJ, Velazquez OC. E-Selectin-Overexpressing Mesenchymal Stem Cell Therapy Confers Improved Reperfusion, Repair, and Regeneration in a Murine Critical Limb Ischemia Model. Front Cardiovasc Med 2022; 8:826687. [PMID: 35174227 PMCID: PMC8841646 DOI: 10.3389/fcvm.2021.826687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
AIMS Novel cell-based therapeutic angiogenic treatments for patients with critical limb ischemia may afford limb salvage. Mesenchymal stem cells (MSCs) do not overexpress E-selectin; however, we have previously demonstrated the cell-adhesion molecule's vital role in angiogenesis and wound healing. Thus, we created a viral vector to overexpress E-selectin on MSCs to increase their therapeutic profile. METHODS AND RESULTS Femoral artery ligation induced hind limb ischemia in mice and intramuscular injections were administered of vehicle or syngeneic donor MSCs, transduced ex vivo with an adeno-associated viral vector to express either GFP+ (MSCGFP) or E-selectin-GFP+ (MSCE-selectin-GFP). Laser Doppler Imaging demonstrated significantly restored reperfusion in MSCE-selectin-GFP-treated mice vs. controls. After 3 weeks, the ischemic limbs in mice treated with MSCE-selectin-GFP had increased footpad blood vessel density, hematoxylin and eosin stain (H&E) ischemic calf muscle sections revealed mitigated muscular atrophy with restored muscle fiber size, and mice were able to run further before exhaustion. PCR array-based gene profiling analysis identified nine upregulated pro-angiogenic/pro-repair genes and downregulated Tumor necrosis factor (TNF) gene in MSCE-selectin-GFP-treated limb tissues, indicating that the therapeutic effect is likely achieved via upregulation of pro-angiogenic cytokines and downregulation of inflammation. CONCLUSION This innovative cell therapy confers increased limb reperfusion, neovascularization, improved functional recovery, decreased muscle atrophy, and thus offers a potential therapeutic method for future clinical studies.
Collapse
Affiliation(s)
- Hallie J. Quiroz
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samantha F. Valencia
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hongwei Shao
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yan Li
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yulexi Y. Ortiz
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Punam P. Parikh
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roberta M. Lassance-Soares
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roberto I. Vazquez-Padron
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhao-Jun Liu
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Omaida C. Velazquez
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
35
|
Lee S, Jiang B, Wintermark M, Mlynash M, Christensen S, Sträter R, Broocks G, Grams A, Dorn F, Nikoubashman O, Kaiser D, Morotti A, Jensen-Kondering U, Trenkler J, Möhlenbruch M, Fiehler J, Wildgruber M, Kemmling A, Psychogios M, Sporns PB. Cerebrovascular Collateral Integrity in Pediatric Large Vessel Occlusion: Analysis of the Save ChildS Study. Neurology 2022; 98:e352-e363. [PMID: 34795051 DOI: 10.1212/wnl.0000000000013081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/22/2021] [Accepted: 11/04/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Robust cerebrovascular collaterals in adult patients with large vessel occlusion stroke have been associated with longer treatment windows, better recanalization rates, and improved outcomes, but the role of collaterals in pediatric stroke is not known. The primary aim was to determine whether favorable collaterals correlated with better radiographic and clinical outcomes in children with ischemic stroke who underwent thrombectomy. METHODS This study analyzed a subset of children enrolled in SaveChildS, a retrospective, multicenter, observational cohort study of 73 pediatric patients with stroke who underwent thrombectomy between 2000 and 2018 at 27 US and European centers. Included patients had baseline angiographic imaging and follow-up modified Rankin Scale scores available for review. Posterior circulation occlusions were excluded. Cerebrovascular collaterals were graded on acute neuroimaging by 2 blinded neuroradiologists according to the Tan collateral score, in which favorable collaterals are defined as >50% filling and unfavorable collaterals as <50% filling distal to the occluded vessel. Collateral status was correlated with clinical and neuroimaging characteristics and outcomes. Between-group comparisons were performed with the Wilcoxon rank-sum test for continuous variables or Fisher exact test for binary variables. RESULTS Thirty-three children (mean age 10.9 [SD ±4.9]) years were included; 14 (42.4%) had favorable collaterals. Median final stroke volume as a percent of total brain volume (TBV) was significantly lower in patients with favorable collaterals (1.35% [interquartile range (IQR) 1.14%-3.76%] vs 7.86% [IQR 1.54%-11.07%], p = 0.049). Collateral status did not correlate with clinical outcome, infarct growth, or final Alberta Stroke Program Early CT Score (ASPECTS) in our cohort. Patients with favorable collaterals had higher baseline ASPECTS (7 [IQR 6-8] vs 5.5 [4-6], p = 0.006), smaller baseline ischemic volume (1.57% TBV [IQR 1.09%-2.29%] vs 3.42% TBV [IQR 1.26%-5.33%], p = 0.035), and slower early infarct growth rate (2.4 mL/h [IQR 1.5-5.1 mL/h] vs 10.4 mL/h [IQR 3.0-30.7 mL/h], p = 0.028). DISCUSSION Favorable collaterals were associated with smaller final stroke burden and slower early infarct growth rate but not with better clinical outcome in our study. Prospective studies are needed to determine the impact of collaterals in childhood stroke. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in children with ischemic stroke undergoing thrombectomy, favorable collaterals were associated with improved radiographic outcomes but not with better clinical outcomes.
Collapse
Affiliation(s)
- Sarah Lee
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland.
| | - Bin Jiang
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Max Wintermark
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Michael Mlynash
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Soren Christensen
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Ronald Sträter
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Gabriel Broocks
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Astrid Grams
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Franziska Dorn
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Omid Nikoubashman
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Daniel Kaiser
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Andrea Morotti
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Ulf Jensen-Kondering
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Johannes Trenkler
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Markus Möhlenbruch
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Jens Fiehler
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Moritz Wildgruber
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - André Kemmling
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Marios Psychogios
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| | - Peter B Sporns
- From the Department of Neurology & Neurological Sciences, Stanford Stroke Center (S.L., M. Mlynash, S.C.), Department of Neurology & Neurological Sciences (S.L.), Division of Child Neurology, and Department of Radiology (B.J., M. Wintermark), Division of Neuroradiology, Stanford University School of Medicine, CA; Department of Pediatrics (R.S.), University Hospital of Muenster; Department of Diagnostic and Interventional Neuroradiology (G.B., J.F., P.B.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neuroradiology (A.G.), Medical University of Innsbruck, Austria; Department of Neuroradiology (F.D.), University Hospital Bonn; Department of Neuroradiology (O.N.), RWTH Aachen University; Department of Neuroradiology (D.K.), University Hospital Carl Gustav Carus, Dresden, Germany; ASST Valcamonica (A.M.), UOSD Neurology, Esine (BS), Brescia, Italy; Department of Radiology and Neuroradiology (U.J.-K.), University Hospital of Schleswig-Holstein, Campus Kiel; Institute of Neuroradiology (U.J.-K.), UKSH Campus Lübeck, Germany; Department of Neuroradiology (J.T.), Kepler University Hospital, Johannes Kepler University Linz, Austria; Department of Neuroradiology (M. Möhlenbruch), Heidelberg University Hospital; Department of Radiology (M. Wildgruber), University Hospital, LMU Munich; Department of Neuroradiology (A.K.), Marburg University Hospital, Germany; and Department of Neuroradiology (M.P., P.B.S.), Clinic for Radiology & Nuclear Medicine, University Hospital Basel, Switzerland
| |
Collapse
|
36
|
Lowerison MR, Sekaran NVC, Zhang W, Dong Z, Chen X, Llano DA, Song P. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. Sci Rep 2022; 12:619. [PMID: 35022482 PMCID: PMC8755738 DOI: 10.1038/s41598-021-04712-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
Aging-related cognitive decline is an emerging health crisis; however, no established unifying mechanism has been identified for the cognitive impairments seen in an aging population. A vascular hypothesis of cognitive decline has been proposed but is difficult to test given the requirement of high-fidelity microvascular imaging resolution with a broad and deep brain imaging field of view, which is restricted by the fundamental trade-off of imaging penetration depth and resolution. Super-resolution ultrasound localization microscopy (ULM) offers a potential solution by exploiting circulating microbubbles to achieve a vascular resolution approaching the capillary scale without sacrificing imaging depth. In this report, we apply ULM imaging to a mouse model of aging and quantify differences in cerebral vascularity, blood velocity, and vessel tortuosity across several brain regions. We found significant decreases in blood velocity, and significant increases in vascular tortuosity, across all brain regions in the aged cohort, and significant decreases in blood volume in the cerebral cortex. These data provide the first-ever ULM measurements of subcortical microvascular dynamics in vivo within the context of the aging brain and reveal that aging has a major impact on these measurements.
Collapse
Affiliation(s)
- Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Nathiya Vaithiyalingam Chandra Sekaran
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Wei Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Wuhan City, Hubei Province, China
| | - Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Xi Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Daniel A Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
37
|
Huang ZX, Li YK, Li SZ, Huang XJ, Chen Y, Hong QL, Cai QK, Han YF. A Dynamic Nomogram for 3-Month Prognosis for Acute Ischemic Stroke Patients After Endovascular Therapy: A Pooled Analysis in Southern China. Front Aging Neurosci 2021; 13:796434. [PMID: 34966271 PMCID: PMC8710662 DOI: 10.3389/fnagi.2021.796434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral edema (CDE) is a common complication in patients with acute ischemic stroke (AIS) and can reduce the benefit of endovascular therapy (EVT). To determine whether certain risk factors are associated with a poor prognosis mediated by CDE after EVT. The 759 patients with anterior circulation stroke treated by EVT at three comprehensive stroke centers in China from January 2014 to October 2020 were analyzed. Patients underwent follow-up for 3 months after inclusion. The primary endpoint was a measure of a poor prognosis (modified Rankin Scale score ≥ 3) at 3 months assessed in all patients receiving EVT. Least absolute shrinkage and selection operator and multivariate logistic regression were used to select variables for the prognostic nomogram. Based on these variables, the nomogram was established and validated. In addition, structural equation modeling was used to explore the pathways linking CDE and a poor prognosis. Seven predictors were identified, namely, diabetes, age, baseline Alberta Stroke Program Early CT score, modified Thrombolysis in Cerebral Infarction score, early angiogenic CDE, National Institutes of Health Stroke Scale score, and collateral circulation. The nomogram consisting of these variables showed the best performance, with a large area under the curve in both the internal validation set (0.850; sensitivity, 0.737; specificity, 0.887) and external validation set (0.875; sensitivity, 0.752; specificity, 0.878). In addition, CDE (total path coefficient = 0.24, P < 0.001) served as a significant moderator. A nomogram for predicting a poor prognosis after EVT in AIS patients was established and validated with CDE as a moderator.
Collapse
Affiliation(s)
- Zhi-Xin Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Department of Neurology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The School of Medicine, Jinan University, Guangzhou, China
| | - Yong-Kun Li
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China.,Department of Neurology, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Shi-Zhan Li
- Department of Neurology, The No. 1 People's Hospital of Yulin, Yulin, China
| | - Xian-Jun Huang
- Department of Neurology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Ying Chen
- Department of Neurology, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Quan-Long Hong
- Department of Neurology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Qian-Kun Cai
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yun-Fei Han
- Department of Neurology, Medical School of Nanjing University, Jinling Hospital, Nanjing, China
| |
Collapse
|
38
|
Kang P, Ying C, Chen Y, Ford AL, An H, Lee JM. Oxygen Metabolic Stress and White Matter Injury in Patients With Cerebral Small Vessel Disease. Stroke 2021; 53:1570-1579. [PMID: 34886686 PMCID: PMC9038643 DOI: 10.1161/strokeaha.121.035674] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Chronic hypoxia-ischemia is a putative mechanism underlying the development of white matter hyperintensities (WMH) and microstructural disruption in cerebral small vessel disease. WMH fall primarily within deep white matter (WM) watershed regions. We hypothesized that elevated oxygen extraction fraction (OEF), a signature of hypoxia-ischemia, would be detected in the watershed where WMH density is highest. We further hypothesized that OEF would be elevated in regions immediately surrounding WMH, at the leading edge of growth. METHODS In this cross-sectional study conducted from 2016 to 2019 at an academic medical center in St Louis, MO, participants (age >50) with a range of cerebrovascular risk factors underwent brain magnetic resonance imaging using pseudocontinuous arterial spin labeling, asymmetric spin echo, fluid-attenuated inversion recovery and diffusion tensor imaging to measure cerebral blood flow (CBF), OEF, WMH, and WM integrity, respectively. We defined the physiologic watershed as a region where CBF was below the 10th percentile of mean WM CBF in a young healthy cohort. We conducted linear regression to evaluate the relationship between CBF and OEF with structural and microstructural WM injury defined by fluid-attenuated inversion recovery WMH and diffusion tensor imaging, respectively. We conducted ANOVA to determine if OEF was increased in proximity to WMH lesions. RESULTS In a cohort of 42 participants (age 50-80), the physiologic watershed region spatially overlapped with regions of highest WMH lesion density. As CBF decreased and OEF increased, WMH density increased. Elevated watershed OEF was associated with greater WMH burden and microstructural disruption, after adjusting for vascular risk factors. In contrast, WM and watershed CBF were not associated with WMH burden or microstructural disruption. Moreover, OEF progressively increased while CBF decreased, in concentric contours approaching WMH lesions. CONCLUSIONS Chronic hypoxia-ischemia in the watershed region may contribute to cerebral small vessel disease pathogenesis and development of WMH. Watershed OEF may hold promise as an imaging biomarker to identify individuals at risk for cerebral small vessel disease progression.
Collapse
Affiliation(s)
- Peter Kang
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.)
| | - Chunwei Ying
- Department of Biomedical Engineering, Washington University (C.Y., H.A., J.-M.L.)
| | - Yasheng Chen
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.)
| | - Andria L Ford
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.).,Mallinckrodt Institute of Radiology, Washington University School of Medicine. (A.L.F., H.A., J.-M.L.)
| | - Hongyu An
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.).,Mallinckrodt Institute of Radiology, Washington University School of Medicine. (A.L.F., H.A., J.-M.L.).,Department of Biomedical Engineering, Washington University (C.Y., H.A., J.-M.L.)
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.).,Mallinckrodt Institute of Radiology, Washington University School of Medicine. (A.L.F., H.A., J.-M.L.).,Department of Biomedical Engineering, Washington University (C.Y., H.A., J.-M.L.)
| |
Collapse
|
39
|
Seker FB, Fan Z, Gesierich B, Gaubert M, Sienel RI, Plesnila N. Neurovascular Reactivity in the Aging Mouse Brain Assessed by Laser Speckle Contrast Imaging and 2-Photon Microscopy: Quantification by an Investigator-Independent Analysis Tool. Front Neurol 2021; 12:745770. [PMID: 34858312 PMCID: PMC8631776 DOI: 10.3389/fneur.2021.745770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The brain has a high energy demand but little to no energy stores. Therefore, proper brain function relies on the delivery of glucose and oxygen by the cerebral vasculature. The regulation of cerebral blood flow (CBF) occurs at the level of the cerebral capillaries and is driven by a fast and efficient crosstalk between neurons and vessels, a process termed neurovascular coupling (NVC). Experimentally NVC is mainly triggered by sensory stimulation and assessed by measuring either CBF by laser Doppler fluxmetry, laser speckle contrast imaging (LSCI), intrinsic optical imaging, BOLD fMRI, near infrared spectroscopy (NIRS) or functional ultrasound imaging (fUS). Since these techniques have relatively low spatial resolution, diameters of cerebral vessels are mainly assessed by 2-photon microscopy (2-PM). Results of studies on NVC rely on stable animal physiology, high-quality data acquisition, and unbiased data analysis, criteria, which are not easy to achieve. In the current study, we assessed NVC using two different imaging modalities, i.e., LSCI and 2-PM, and analyzed our data using an investigator-independent Matlab-based analysis tool, after manually defining the area of analysis in LSCI and vessels to measure in 2-PM. By investigating NVC in 6–8 weeks, 1-, and 2-year-old mice, we found that NVC was maximal in 1-year old mice and was significantly reduced in aged mice. These findings suggest that NVC is differently affected during the aging process. Most interestingly, specifically pial arterioles, seem to be distinctly affected by the aging. The main finding of our study is that the automated analysis tool works very efficiently in terms of time and accuracy. In fact, the tool reduces the analysis time of one animal from approximately 23 h to about 2 s while basically making no mistakes. In summary, we developed an experimental workflow, which allows us to reliably measure NVC with high spatial and temporal resolution in young and aged mice and to analyze these data in an investigator-independent manner.
Collapse
Affiliation(s)
- Fatma Burcu Seker
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Ziyu Fan
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Malo Gaubert
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Rebecca Isabella Sienel
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
40
|
Endothelial Progenitor Cells: An Appraisal of Relevant Data from Bench to Bedside. Int J Mol Sci 2021; 22:ijms222312874. [PMID: 34884679 PMCID: PMC8657735 DOI: 10.3390/ijms222312874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The mobilization of endothelial progenitor cells (EPCs) into circulation from bone marrow is well known to be present in several clinical settings, including acute coronary syndrome, heart failure, diabetes and peripheral vascular disease. The aim of this review was to explore the current literature focusing on the great opportunity that EPCs can have in terms of regenerative medicine.
Collapse
|
41
|
Mairot K, Sené T, Lecler A, Philibert M, Clavel G, Hemmendinger A, Denis D, Vignal-Clermont C, Mauget-Faÿsse M, Hage R. Paracentral Acute Middle Maculopathy in Giant Cell Arteritis. Retina 2021; 42:476-484. [PMID: 34723898 DOI: 10.1097/iae.0000000000003339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To report the occurrence of Paracentral Acute Middle Maculopathy (PAMM) in Giant Cell Arteritis (GCA), describe its features and outcome, and identify risk factors associated with PAMM in GCA patients. METHODS Review of medical records of patients with GCA who were examined in the Rothschild Foundation Hospital. Patients were divided in 3 groups: GCA with PAMM (group 1), GCA with ophthalmic involvement but without PAMM (group 2), and GCA without ophthalmic involvement (group 3). We analyzed the data in terms of age, gender, medical history, laboratory testing, visual acuity, and posterior segment vascular involvement. RESULTS Among the 96 patients who met the inclusion criteria, 52 had ophthalmic involvement, and 16 patients were included in group 1 (GCA with PAMM). In this subgroup, mean age was 81.6, and was found to be older than others groups. Visual prognosis was similar between groups 1 and 2. Of the 20 eyes with PAMM, 35% were also associated with homolateral anterior ischemic optic neuropathy. No statistical difference was found in term of initial symptoms, signs and laboratory testing. CONCLUSION PAMM are frequently observed lesions in ocular GCA. Patients can present with isolated findings of PAMM as the only indication of GCA. An OCT of the macula should be routinely performed in patients with suspected GCA, specifically if they complain of visual changes, to look for signs of ischemia in the middle layers of the retina. Isolated PAMM should raise suspicion for GCA in patients at risk.
Collapse
Affiliation(s)
- Kevin Mairot
- Rothschild Foundation Hospital, 25-29 rue Manin, 75019 Paris, France Centre Hospitalier Universitaire de l'Hôpital Nord, chemin des Bourrely, 13015 Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xing Z, Wang X, Pei J, Zhu Z, Tai S, Hu X. The association of interferon-alpha with development of collateral circulation after artery occlusion. Clin Cardiol 2021; 44:1621-1627. [PMID: 34599832 PMCID: PMC8571556 DOI: 10.1002/clc.23734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 01/15/2023] Open
Abstract
Background Previous studies have demonstrated that interferon (IFN) signaling is enhanced in patients with poor collateral circulation (CC). However, the role and mechanisms of IFN‐alpha in the development of CC remain unknown. Methods We studied the serum levels of IFN‐alpha and coronary CC in a case–control study using logistics regression, including 114 coronary chronic total occlusion (CTO) patients with good coronary CC and 94 CTO patients with poor coronary CC. Restricted cubic splines was used to flexibly model the association of the levels of IFN‐alpha with the incidence of good CC perfusion restoration after systemic treatment with IFN‐alpha was assessed in a mice hind‐limb ischemia model. Results Compared with the first IFN‐alpha tertile, the risk of poor CC was higher in the third IFN‐alpha tertile (OR: 4.79, 95% CI: 2.22–10.4, p < .001). A cubic spline‐smoothing curve showed that the risk of poor CC increased with increasing levels of serum IFN‐alpha. IFN‐alpha inhibited the development of CC in a hindlimb ischemia model. Arterioles of CC in the IFN‐alpha group were smaller in diameter than in the control group. Conclusion Patients with CTO and with poor CC have higher serum levels of IFN‐alpha than CTO patients with good CC. IFN‐alpha might impair the development of CC after artery occlusion.
Collapse
Affiliation(s)
- Zhenhua Xing
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaopu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junyu Pei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhaowei Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinqun Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Jia D, Pan Q, Zhang Y, Yu Y, Song Z, Liu YF, Jia Z, Guo S, Cheng Y. Ischemic postconditioning improves the outcome of organs from donors after cardiac death in a pig liver transplantation model and provides synergistic protection with hypothermic machine perfusion. Clin Transplant 2021; 35:e14417. [PMID: 34231926 DOI: 10.1111/ctr.14417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022]
Abstract
AIM This study investigated whether ischemic postconditioning (IPO) improved the outcome of organs from donors after cardiac death and had a synergistic effect with hypothermic machine perfusion (HMP) in a pig liver transplantation model. METHODS A donor after cardiac death (DCD) model was developed in 48 healthy Bama miniature pigs randomly divided into four groups: simple cold storage group (SCS group), IPO group, HMP group, HMP-IPO group. The levels of serum alanine aminotransferase (ALT), total bilirubin, histopathological findings, apoptotic activity of hepatocytes, international normalized ratio (INR), tumor necrosis factor-α (TNF-α), and Malondialdehyde (MDA) were compared. RESULTS All recipients in the SCS group died within 6 h after transplantation. The livers of the recipients in the IPO had 50% survival on day 5. HMP allowed 83.3% survival and HMP-IPO allowed 100% survival. After reperfusion, the recipients in the IPO and HMP-IPO group had lower ALT and total bilirubin levels, less Suzuki score, less apoptosis, and less injury to hepatocytes and biliary ducts and attenuated inflammatory response and oxidative load. CONCLUSIONS IPO improved the outcome of organs from donors after cardiac death and had a synergistic effect with HMP in the pig liver transplantation model.
Collapse
Affiliation(s)
- Degong Jia
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Qi Pan
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yijie Zhang
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhanyu Song
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong Feng Liu
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhixing Jia
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Shanshan Guo
- School of Anesthesiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
44
|
Determinants of Leptomeningeal Collateral Status Variability in Ischemic Stroke Patients. Can J Neurol Sci 2021; 49:767-773. [PMID: 34585652 DOI: 10.1017/cjn.2021.226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Collateral status is an indicator of a favorable outcome in stroke. Leptomeningeal collaterals provide alternative routes for brain perfusion following an arterial occlusion or flow-limiting stenosis. Using a large cohort of ischemic stroke patients, we examined the relative contribution of various demographic, laboratory, and clinical variables in explaining variability in collateral status. METHODS Patients with acute ischemic stroke in the anterior circulation were enrolled in a multi-center hospital-based observational study. Intracranial occlusions and collateral status were identified and graded using multiphase computed tomography angiography. Based on the percentage of affected territory filled by collateral supply, collaterals were graded as either poor (0-49%), good (50-99%), or optimal (100%). Between-group differences in demographic, laboratory, and clinical factors were explored using ordinal regression models. Further, we explored the contribution of measured variables in explaining variance in collateral status. RESULTS 386 patients with collateral status classified as poor (n = 64), good (n = 125), and optimal (n = 197) were included. Median time from symptom onset to CT was 120 (IQR: 78-246) minutes. In final multivariable model, male sex (OR 1.9, 95% CIs [1.2, 2.9], p = 0.005) and leukocytosis (OR 1.1, 95% CIs [1.1, 1.2], p = 0.001) were associated with poor collaterals. Measured variables only explained 44.8-53.0% of the observed between-patient variance in collaterals. CONCLUSION Male sex and leukocytosis are associated with poorer collaterals. Nearly half of the variance in collateral flow remains unexplained and could be in part due to genetic differences.
Collapse
|
45
|
Butt JH, Kragholm K, Kruuse C, Christensen H, Iversen HK, Johnsen SP, Rørth R, Vinding NE, Yafasova A, Christiansen CB, Gislason GH, Torp-Pedersen C, Køber L, Fosbøl EL. Workforce Attachment after Ischemic Stroke - The Importance of Time to Thrombolytic Therapy. J Stroke Cerebrovasc Dis 2021; 30:106031. [PMID: 34450481 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 08/01/2021] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVES The ability to remain in employment addresses an important consequence of stroke beyond the usual clinical parameters. However, data on the association between time to intravenous thrombolysis and workforce attachment in patients with acute ischemic stroke are sparse. MATERIALS AND METHODS In this nationwide cohort study, stroke patients of working age (18-60 years) treated with thrombolysis (2011-2016) who were part of the workforce prior to admission and alive at discharge were identified using the Danish Stroke Registry. The association between time to thrombolysis and workforce attachment one year later was examined with multivariable logistic regression. RESULTS The study population comprised 1,329 patients (median age 51 years [25th-75th percentile 45-56], 67.3% men). The median National Institutes of Health Stroke Scale score at presentation was 4 (25th-75th percentile 2-8), and the median time from symptom-onset to initiation of thrombolysis was 140min (25th-75th percentile 104-196min). The proportion of patients who were part of the workforce at one-year follow-up was 64.6%, 64.3%, 64.9%, and 60.0% in patients receiving thrombolysis within 90min, between 91-180min, between 181-270min, and after 270min, respectively. In adjusted analysis, time to thrombolysis between 91-180min, 181-270min, and >270min was not significantly associated with workforce attachment compared with thrombolysis received ≤90min of symptom-onset (ORs 0.89 [95%CI 0.60-1.31], 0.93 [0.66-1.31], and 0.80 [0.43-1.52], respectively). CONCLUSIONS In patients of working age admitted with stroke and treated with thrombolysis, two out of three were part of the workforce one year after discharge. There was no graded relationship between time to thrombolysis and the likelihood of workforce attachment.
Collapse
Affiliation(s)
- Jawad H Butt
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark.
| | | | - Christina Kruuse
- Department of Neurology, Herlev-Gentofte University Hospital, Denmark
| | - Hanne Christensen
- Department of Neurology, Bispebjerg Hospital, Copenhagen University Hospital, Denmark
| | - Helle K Iversen
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Søren Paaske Johnsen
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Denmark
| | - Rasmus Rørth
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Naja Emborg Vinding
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Adelina Yafasova
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | | | - Gunnar H Gislason
- Department of Cardiology, Herlev-Gentofte University Hospital, Denmark
| | | | - Lars Køber
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Emil L Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| |
Collapse
|
46
|
Cipolla MJ. Thomas Willis Lecture: Targeting Brain Arterioles for Acute Stroke Treatment. Stroke 2021; 52:2465-2477. [PMID: 34102855 PMCID: PMC8238908 DOI: 10.1161/strokeaha.121.034620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebral infarction or ischemic death of brain tissue, most notably neurons, is a primary response to vascular occlusion that if minimized leads to better stroke outcome. However, many cell types are affected in the brain during ischemia and reperfusion, including vascular cells of the cerebral circulation. Importantly, the structure and function of all brain vascular segments are major determinants of the depth of ischemia during the occlusion, the extent of collateral flow (and therefore amount of potentially salvageable tissue) and the degree of reperfusion. Thus, appropriate function of the cerebral circulation can influence stroke outcome. The brain vasculature is also directly involved in secondary injury to ischemia, including edema, hemorrhage, and infarct expansion, and provides a key delivery route for neuroprotective agents. Therefore, the cerebral circulation provides a therapeutic target for multiple aspects of stroke injury, including aiding neuroprotection. Understanding how ischemia and reperfusion affect the brain vasculature is key to this therapeutic potential, that is, vascular protection. This report is focused on regional differences in the cerebral circulation, how ischemia and reperfusion differentially affects these segments, and how the response of large versus small vessels in the brain to ischemia and reperfusion can influence stroke outcome. Last, how chronic hypertension, a common comorbidity in patients with stroke, affects the brain microvasculature to worsen stroke outcome will be described.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont, Burlington
| |
Collapse
|
47
|
Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, Jickling GC. Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Front Neurol 2021; 12:661955. [PMID: 34054705 PMCID: PMC8160112 DOI: 10.3389/fneur.2021.661955] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Hemorrhagic transformation (HT) is a common complication in patients with acute ischemic stroke. It occurs when peripheral blood extravasates across a disrupted blood brain barrier (BBB) into the brain following ischemic stroke. Preventing HT is important as it worsens stroke outcome and increases mortality. Factors associated with increased risk of HT include stroke severity, reperfusion therapy (thrombolysis and thrombectomy), hypertension, hyperglycemia, and age. Inflammation and the immune system are important contributors to BBB disruption and HT and are associated with many of the risk factors for HT. In this review, we present the relationship of inflammation and immune activation to HT in the context of reperfusion therapy, hypertension, hyperglycemia, and age. Differences in inflammatory pathways relating to HT are discussed. The role of inflammation to stratify the risk of HT and therapies targeting the immune system to reduce the risk of HT are presented.
Collapse
Affiliation(s)
- Elena Spronk
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gina Sykes
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sarina Falcione
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Danielle Munsterman
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Twinkle Joy
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Joseph Kamtchum-Tatuene
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Glen C Jickling
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
48
|
Merkus D, Muller-Delp J, Heaps CL. Coronary microvascular adaptations distal to epicardial artery stenosis. Am J Physiol Heart Circ Physiol 2021; 320:H2351-H2370. [PMID: 33961506 DOI: 10.1152/ajpheart.00992.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until recently, epicardial coronary stenosis has been considered the primary outcome of coronary heart disease, and clinical interventions have been dedicated primarily to the identification and removal of flow-limiting stenoses. However, a growing body of literature indicates that both epicardial stenosis and microvascular dysfunction contribute to damaging myocardial ischemia. In this review, we discuss the coexistence of macro- and microvascular disease, and how the structure and function of the distal microcirculation is impacted by the hemodynamic consequences of an epicardial, flow-limiting stenosis. Mechanisms of endothelial dysfunction as well as alterations of smooth muscle function in the coronary microcirculation distal to stenosis are discussed. Risk factors including diabetes, metabolic syndrome, and aging exacerbate microvascular dysfunction in the myocardium distal to a stenosis, and our current understanding of the role of these factors in limiting collateralization and angiogenesis of the ischemic myocardium is presented. Importantly, exercise training has been shown to promote collateral growth and improve microvascular function distal to stenosis; thus, the current literature reporting the mechanisms that underlie the beneficial effects of exercise training in the microcirculation distal to epicardial stenosis is reviewed. We also discuss recent studies of therapeutic interventions designed to improve microvascular function and stimulate angiogenesis in clinically relevant animal models of epicardial stenosis and microvascular disease. Finally, microvascular adaptation to removal of epicardial stenosis is considered.
Collapse
Affiliation(s)
- Daphne Merkus
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine (WBex), University Clinic, LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Munich, Germany.,Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Judy Muller-Delp
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.,Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
49
|
Gao X, Gao M, Gorecka J, Langford J, Liu J, Luo J, Taniguchi R, Matsubara Y, Liu H, Guo L, Gu Y, Qyang Y, Dardik A. Human-Induced Pluripotent Stem-Cell-Derived Smooth Muscle Cells Increase Angiogenesis to Treat Hindlimb Ischemia. Cells 2021; 10:792. [PMID: 33918299 PMCID: PMC8066461 DOI: 10.3390/cells10040792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSC) represent an innovative, somatic cell-derived, easily obtained and renewable stem cell source without considerable ethical issues. iPSC and their derived cells may have enhanced therapeutic and translational potential compared with other stem cells. We previously showed that human iPSC-derived smooth muscle cells (hiPSC-SMC) promote angiogenesis and wound healing. Accordingly, we hypothesized that hiPSC-SMC may be a novel treatment for human patients with chronic limb-threatening ischemia who have no standard options for therapy. We determined the angiogenic potential of hiPSC-SMC in a murine hindlimb ischemia model. hiPSC-SMC were injected intramuscularly into nude mice after creation of hindlimb ischemia. Functional outcomes and perfusion were measured using standardized scores, laser Doppler imaging, microCT, histology and immunofluorescence. Functional outcomes and blood flow were improved in hiPSC-SMC-treated mice compared with controls (Tarlov score, p < 0.05; Faber score, p < 0.05; flow, p = 0.054). hiPSC-SMC-treated mice showed fewer gastrocnemius fibers (p < 0.0001), increased fiber area (p < 0.0001), and enhanced capillary density (p < 0.01); microCT showed more arterioles (<96 μm). hiPSC-SMC treatment was associated with fewer numbers of macrophages, decreased numbers of M1-type (p < 0.05) and increased numbers of M2-type macrophages (p < 0.0001). Vascular endothelial growth factor (VEGF) expression in ischemic limbs was significantly elevated with hiPSC-SMC treatment (p < 0.05), and inhibition of VEGFR-2 with SU5416 was associated with fewer capillaries in hiPSC-SMC-treated limbs (p < 0.0001). hiPSC-SMC promote VEGF-mediated angiogenesis, leading to improved hindlimb ischemia. Stem cell therapy using iPSC-derived cells may represent a novel and potentially translatable therapy for limb-threatening ischemia.
Collapse
Affiliation(s)
- Xixiang Gao
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China; (X.G.); (L.G.); (Y.G.)
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Mingjie Gao
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Vascular Ultrasound, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jolanta Gorecka
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - John Langford
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Jia Liu
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Jiesi Luo
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Ryosuke Taniguchi
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Yutaka Matsubara
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Surgery and Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hao Liu
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China; (X.G.); (L.G.); (Y.G.)
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China; (X.G.); (L.G.); (Y.G.)
| | - Yibing Qyang
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Alan Dardik
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, CT 06519, USA; (M.G.); (J.G.); (J.L.); (J.L.); (J.L.); (R.T.); (Y.M.); (H.L.); (Y.Q.)
- Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Surgery, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
50
|
Shahjouei S, Ghodsi SM, Zangeneh Soroush M, Ansari S, Kamali-Ardakani S. Artificial Neural Network for Predicting the Safe Temporary Artery Occlusion Time in Intracranial Aneurysmal Surgery. J Clin Med 2021; 10:1464. [PMID: 33918168 PMCID: PMC8037800 DOI: 10.3390/jcm10071464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Temporary artery clipping facilitates safe cerebral aneurysm management, besides a risk for cerebral ischemia. We developed an artificial neural network (ANN) to predict the safe clipping time of temporary artery occlusion (TAO) during intracranial aneurysm surgery. METHOD We devised a three-layer model to predict the safe clipping time for TAO. We considered age, the diameter of the right and left middle cerebral arteries (MCAs), the diameter of the right and left A1 segment of anterior cerebral arteries (ACAs), the diameter of the anterior communicating artery, mean velocity of flow at the right and left MCAs, and the mean velocity of flow at the right and left ACAs, as well as the Fisher grading scale of brain CT scans as the input values for the model. RESULTS This study included 125 patients: 105 patients from a retrospective cohort for training the model and 20 patients from a prospective cohort for validating the model. The output of the neural network yielded up to 960 s overall safe clipping time for TAO. The input values with the greatest impact on safe TAO were mean velocity of blood at left MCA and left ACA, and Fisher grading scale of brain CT scan. CONCLUSION This study presents an axillary framework to improve the accuracy of the estimated safe clipping time interval of temporary artery occlusion in intracranial aneurysm surgery.
Collapse
Affiliation(s)
- Shima Shahjouei
- Neurology Department, Neuroscience Institute, Geisinger Health System, Danville, PA 17822, USA
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran 14155-6559, Iran; (S.M.G.); (S.K.-A.)
| | - Seyed Mohammad Ghodsi
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran 14155-6559, Iran; (S.M.G.); (S.K.-A.)
| | - Morteza Zangeneh Soroush
- Bio-Intelligence Research Unit, Electrical Engeneering Department, Sharif University of Technology, Tehran 14588-89694, Iran;
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran
| | - Saeed Ansari
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD 20892, USA;
| | - Shahab Kamali-Ardakani
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran 14155-6559, Iran; (S.M.G.); (S.K.-A.)
| |
Collapse
|