1
|
Kumar M, Patel K, Chinnapparaj S, Sharma T, Aggarwal A, Singla N, Karthigeyan M, Singh A, Sahoo SK, Tripathi M, Takkar A, Gupta T, Pal A, Attri SV, Bansal YS, Ratho RK, Gupta SK, Khullar M, Vashishta RK, Mukherjee KK, Grover VK, Prasad R, Chatterjee A, Gowda H, Bhagat H. Dysregulated Genes and Signaling Pathways in the Formation and Rupture of Intracranial Aneurysm. Transl Stroke Res 2024; 15:865-879. [PMID: 37644376 DOI: 10.1007/s12975-023-01178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Intracranial aneurysm (IA) has the potential to rupture. Despite scientific advances, we are still not in a position to screen patients for IA and identify those at risk of rupture. It is critical to comprehend the molecular basis of disease to facilitate the development of novel diagnostic strategies. We used transcriptomics to identify the dysregulated genes and understand their role in the disease biology. In particular, RNA-Seq was performed in tissue samples of controls, unruptured IA, and ruptured IA. Dysregulated genes (DGs) were identified and analyzed to understand the functional aspects of molecules. Subsequently, candidate genes were validated at both transcript and protein level. There were 314 DGs in patients with unruptured IA when compared to control samples. Out of these, SPARC and OSM were validated as candidate molecules in unruptured IA. PI3K-AKT signaling pathway was found to be an important pathway for the formation of IA. Similarly, 301 DGs were identified in the samples of ruptured IA when compared with unruptured IAs. CTSL was found to be a key candidate molecule which along with Hippo signaling pathway may be involved in the rupture of IA. We conclude that activation of PI3K-AKT signaling pathway by OSM along with up-regulation of SPARC is important for the formation of IA. Further, regulation of Hippo pathway through PI3K-AKT signaling results in the down-regulation of YAP1 gene. This along with up-regulation of CTSL leads to further weakening of aneurysm wall and its subsequent rupture.
Collapse
Affiliation(s)
- Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Shobia Chinnapparaj
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanavi Sharma
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singla
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhivanan Karthigeyan
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Apinderpreet Singh
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushanta Kumar Sahoo
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Takkar
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Savita Verma Attri
- Pediatric Biochemistry, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yogender Singh Bansal
- Department of Forensic Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radha Kanta Ratho
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil K Gupta
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Vashishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanchan Kumar Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinod Kumar Grover
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajendra Prasad
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Hemant Bhagat
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
2
|
Maheshwari S, Patel BM. Unravelling the role of cathepsins in cardiovascular diseases. Mol Biol Rep 2024; 51:579. [PMID: 38668953 DOI: 10.1007/s11033-024-09518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Lysosomal cathepsins as a regulatory medium have been assessed as potential therapeutic targets for the treatment of various cardiac diseases such as abdominal aortic aneurysm, hypertension, cardiomyopathy, coronary heart disease, atherosclerosis, etc. They are ubiquitous lysosomal proteases with papain-like folded protein structures that are involved in a variety of physiological processes, such as the digestion of proteins, activation of pro-inflammatory molecules, degradation of extracellular matrix components, and maturation of peptide hormones. Cathepsins are classified into three major groups: cysteine cathepsins, aspartic cathepsins, and serine-threonine cathepsins. Each of these groups is further divided into subgroups based on their substrate specificity, structural characteristics, and biochemical properties. Several studies suggest that cathepsins control the degradation of ECM components such as collagen and elastin fibres. These enzymes are highly expressed in macrophages and inflammatory cells, and their upregulation has been demonstrated to be critical in the progression of atherosclerotic lesions. Additionally, increased cathepsin activity has been linked to increased vascular inflammation and oxidative stress, both of which are associated with CVDs. Specifically, the inhibition of cathepsins may reduce the release of pro-apoptotic mediators such as caspase-3 and PARP-1, which are thought to contribute to plaque instability. The potential of cathepsins as biomarkers and therapeutic targets has also been supported by the identification of potential cathepsin inhibitors, which could be used to modulate the activities of cathepsins in a range of diseases. This review shall familiarise the readers with the role of cysteinyl cathepsins and their inhibitors in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Bhoomika M Patel
- School of Medico-Legal Studies, National Forensic Sciences University, Sector 9, Gandhinagar, 382007, India.
| |
Collapse
|
3
|
Pečar Fonović U, Kos J, Mitrović A. Compensational role between cathepsins. Biochimie 2024:S0300-9084(24)00085-3. [PMID: 38663456 DOI: 10.1016/j.biochi.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Cathepsins, a family of lysosomal peptidases, play a crucial role in maintaining cellular homeostasis by regulating protein turnover and degradation as well as many specific regulatory actions that are important for proper cell function and human health. Alterations in the activity and expression of cathepsins have been observed in many diseases such as cancer, inflammation, neurodegenerative disorders, bone remodelling-related conditions and others. These changes are not exclusively harmful, but rather appear to be a compensatory response on the lack of one cathepsin in order to maintain tissue integrity. The upregulation of specific cathepsins in response to the inhibition or dysfunction of other cathepsins suggests a fine-tuned system of proteolytic balance and understanding the compensatory role of cathepsins may improve therapeutic potential of cathepsin's inhibitors. Selectively targeting one cathepsin or modulating their activity could offer new treatment strategies for a number of diseases. This review emphasises the need for comprehensive research into cathepsin biology in the context of disease. The identification of the specific cathepsins involved in compensatory responses, the elucidation of the underlying molecular mechanisms and the development of targeted interventions could lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Urša Pečar Fonović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
5
|
Cheng XW, Narisawa M, Wang H, Piao L. Overview of multifunctional cysteinyl cathepsins in atherosclerosis-based cardiovascular disease: from insights into molecular functions to clinical implications. Cell Biosci 2023; 13:91. [PMID: 37202785 DOI: 10.1186/s13578-023-01040-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.
Collapse
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China.
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, Jilin PR. 133000, China.
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| |
Collapse
|
6
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Li Z, Cong X, Kong W. Matricellular proteins: Potential biomarkers and mechanistic factors in aortic aneurysms. J Mol Cell Cardiol 2022; 169:41-56. [DOI: 10.1016/j.yjmcc.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
8
|
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest 2022; 52:e13697. [PMID: 34698377 PMCID: PMC9285394 DOI: 10.1111/eci.13697] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-β signalling and regulatory RNA expression. CONCLUSION This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Pan L, Bai P, Weng X, Liu J, Chen Y, Chen S, Ma X, Hu K, Sun A, Ge J. Legumain Is an Endogenous Modulator of Integrin αvβ3 Triggering Vascular Degeneration, Dissection, and Rupture. Circulation 2022; 145:659-674. [PMID: 35100526 DOI: 10.1161/circulationaha.121.056640] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The development of thoracic aortic dissection (TAD) is closely related to extracellular matrix degradation and vascular smooth muscle cell (VSMC) transformation from contractile to synthetic type. LGMN (legumain) degrades extracellular matrix components directly or by activating downstream signals. The role of LGMN in VSMC differentiation and the occurrence of TAD remains elusive. METHODS Microarray datasets concerning vascular dissection or aneurysm were downloaded from the Gene Expression Omnibus database to screen differentially expressed genes. Four-week-old male Lgmn knockout mice (Lgmn-/-), macrophage-specific Lgmn knockout mice (LgmnF/F;LysMCre), and RR-11a-treated C57BL/6 mice were given BAPN (β-aminopropionitrile monofumarate; 1 g/kg/d) in drinking water for 4 weeks for TAD modeling. RNA sequencing analysis was performed to recapitulate transcriptome profile changes. Cell interaction was examined in macrophage and VSMC coculture system. The reciprocity of macrophage-derived LGMN with integrin αvβ3 in VSMCs was tested by coimmunoprecipitation assay and colocalization analyses. RESULTS Microarray datasets from the Gene Expression Omnibus database indicated upregulated LGMN in aorta from patients with TAD and mice with angiotensin II-induced AAA. Elevated LGMN was evidenced in aorta and sera from patients with TAD and mice with BAPN-induced TAD. BAPN-induced TAD progression was significantly ameliorated in Lgmn-deficient or inhibited mice. Macrophage-specific deletion of Lgmn alleviated BAPN-induced extracellular matrix degradation. Unbiased profiler polymerase chain reaction array and Gene Ontology analysis displayed that LGMN regulated VSMC phenotype transformation. Macrophage-specific deletion of Lgmn ameliorated VSMC phenotypic switch in BAPN-treated mice. Macrophage-derived LGMN inhibited VSMC differentiation in vitro as assessed by macrophages and the VSMC coculture system. Macrophage-derived LGMN bound to integrin αvβ3 in VSMCs and blocked integrin αvβ3, thereby attenuating Rho GTPase activation, downregulating VSMC differentiation markers and eventually exacerbating TAD development. ROCK (Rho kinase) inhibitor Y-27632 reversed the protective role of LGMN depletion in vascular dissection. CONCLUSIONS LGMN signaling may be a novel target for the prevention and treatment of TAD.
Collapse
Affiliation(s)
- Lihong Pan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Peiyuan Bai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Jin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (Y.C.)
| | - Siqin Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Xiurui Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.)
| | - Aijun Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| |
Collapse
|
10
|
Kessler V, Klopf J, Eilenberg W, Neumayer C, Brostjan C. AAA Revisited: A Comprehensive Review of Risk Factors, Management, and Hallmarks of Pathogenesis. Biomedicines 2022; 10:94. [PMID: 35052774 PMCID: PMC8773452 DOI: 10.3390/biomedicines10010094] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Despite declining incidence and mortality rates in many countries, the abdominal aortic aneurysm (AAA) continues to represent a life-threatening cardiovascular condition with an overall prevalence of about 2-3% in the industrialized world. While the risk of AAA development is considerably higher for men of advanced age with a history of smoking, screening programs serve to detect the often asymptomatic condition and prevent aortic rupture with an associated death rate of up to 80%. This review summarizes the current knowledge on identified risk factors, the multifactorial process of pathogenesis, as well as the latest advances in medical treatment and surgical repair to provide a perspective for AAA management.
Collapse
Affiliation(s)
| | | | | | | | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (V.K.); (J.K.); (W.E.); (C.N.)
| |
Collapse
|
11
|
XIST knockdown suppresses vascular smooth muscle cell proliferation and induces apoptosis by regulating miR-1264/WNT5A/β-catenin signaling in aneurysm. Biosci Rep 2021; 41:227680. [PMID: 33501488 PMCID: PMC7960886 DOI: 10.1042/bsr20201810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been ascertained as vital modulators in abdominal aortic aneurysm (AAA) development. In this research, the function and molecular mechanisms of the lncRNA X-inactive specific transcript (XIST) in the evolution of vascular smooth muscle cells (VSMCs) were assessed. Results showed that XIST expression was increased but miR-1264 expression level was reduced in the serum of AAA patients. XIST depletion impeded human aorta VSMCs (HA-VSMCs’) ability to proliferate and stimulate apoptosis, while repressing miR-1264 expression through an unmediated interaction. Additionally, the influence of XIST knockdown on apoptosis and proliferation could be rescued by an miR-1264 inhibitor. Subsequent molecular investigations indicated that WNT5A was miR-1264’s target, and XIST functioned as a competing endogenous RNA (ceRNA) of miR-1264 to raise WNT5A expression. Further, an miR-1264 inhibitor stimulated the proliferation and suppressed the apoptosis of HA-VSMCs through the activation of WNT/β-catenin signaling. Taken together, XIST impeded the apoptosis and stimulated the proliferation of HA-VSMCs via the WNT/β-catenin signaling pathway through miR-1264, demonstrating XIST’s underlying role in AAA.
Collapse
|
12
|
Yu C, Wan Y, Xu W, Jin X, Zhang S, Xin M, Jiang H, Cheng X. Increased Circulating Cathepsin L in Patients with Coronary Artery Disease. Int Heart J 2020; 62:9-15. [PMID: 33390563 DOI: 10.1536/ihj.20-182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cathepsin L (CatL) is a potent collagenase involved in atherosclerotic vascular remodeling and dysfunction in animals and humans. This study investigated the hypothesis that plasma CatL is associated with the prevalence of coronary artery disease (CAD). Between February May 2011 and January 2013, 206 consecutive subjects were enrolled from among patients who underwent coronary angiography and percutaneous coronary intervention treatment. Age-matched subjects (n = 215) served as controls. Plasma CatL and high-sensitive C-reactive protein (hs-CRP) and high-density lipoprotein cholesterol were measured. The patients with CAD had significantly higher plasma CatL levels compared to the controls (1.4 ± 0.4 versus 0.4 ± 0.2 ng/mL, P < 0.001), and the patients with acute coronary syndrome had significantly higher plasma CatL levels compared to those with stable angina pectoris (1.7 ± 0.7 versus 0.8 ± 0.4 ng/mL, P < 0.01). Linear regression analysis showed that overall, the plasma CatL levels were inversely correlated with the high-density lipoprotein levels (r = -0.32, P < 0.01) and positively with hs-CRP levels (r = 0.35, P < 0.01). Multiple logistic regression analyses shows that cathepsin L levels were independent predictors of CAD (add ratio, 1.8; 95% CI, 1.2 to 2.1; P < 0.01). These data demonstrated that increased levels of plasma CatL are closely associated with the presence of CAD and that circulating CatL serves as a useful biomarker for CAD.
Collapse
Affiliation(s)
- Chenglin Yu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Ying Wan
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Wenhu Xu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Xiongjie Jin
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Shengming Zhang
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Minglong Xin
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Jiaxing University Medical College
| | - Xianwu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital.,Department of Physiology and Pathophysiology, Jiaxing University Medical College
| |
Collapse
|
13
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Reassessing enzyme kinetics: Considering protease-as-substrate interactions in proteolytic networks. Proc Natl Acad Sci U S A 2020; 117:3307-3318. [PMID: 31980525 DOI: 10.1073/pnas.1912207117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Enzymes are catalysts in biochemical reactions that, by definition, increase rates of reactions without being altered or destroyed. However, when that enzyme is a protease, a subclass of enzymes that hydrolyze other proteins, and that protease is in a multiprotease system, protease-as-substrate dynamics must be included, challenging assumptions of enzyme inertness, shifting kinetic predictions of that system. Protease-on-protease inactivating hydrolysis can alter predicted protease concentrations used to determine pharmaceutical dosing strategies. Cysteine cathepsins are proteases capable of cathepsin cannibalism, where one cathepsin hydrolyzes another with substrate present, and misunderstanding of these dynamics may cause miscalculations of multiple proteases working in one proteolytic network of interactions occurring in a defined compartment. Once rates for individual protease-on-protease binding and catalysis are determined, proteolytic network dynamics can be explored using computational models of cooperative/competitive degradation by multiple proteases in one system, while simultaneously incorporating substrate cleavage. During parameter optimization, it was revealed that additional distraction reactions, where inactivated proteases become competitive inhibitors to remaining, active proteases, occurred, introducing another network reaction node. Taken together, improved predictions of substrate degradation in a multiple protease network were achieved after including reaction terms of autodigestion, inactivation, cannibalism, and distraction, altering kinetic considerations from other enzymatic systems, since enzyme can be lost to proteolytic degradation. We compiled and encoded these dynamics into an online platform (https://plattlab.shinyapps.io/catKLS/) for individual users to test hypotheses of specific perturbations to multiple cathepsins, substrates, and inhibitors, and predict shifts in proteolytic network reactions and system dynamics.
Collapse
|
16
|
Zhang X, Luo S, Wang M, Shi GP. Cysteinyl cathepsins in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140360. [PMID: 31926332 DOI: 10.1016/j.bbapap.2020.140360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
Cysteinyl cathepsins are lysosomal/endosomal proteases that mediate bulk protein degradation in these intracellular acidic compartments. Yet, studies indicate that these proteases also appear in the nucleus, nuclear membrane, cytosol, plasma membrane, and extracellular space. Patients with cardiovascular diseases (CVD) show increased levels of cathepsins in the heart, aorta, and plasma. Plasma cathepsins often serve as biomarkers or risk factors of CVD. In aortic diseases, such as atherosclerosis and abdominal aneurysms, cathepsins play pathogenic roles, but many of the same cathepsins are cardioprotective in hypertensive, hypertrophic, and infarcted hearts. During the development of CVD, cathepsins are regulated by inflammatory cytokines, growth factors, hypertensive stimuli, oxidative stress, and many others. Cathepsin activities in inflammatory molecule activation, immunity, cell migration, cholesterol metabolism, neovascularization, cell death, cell signaling, and tissue fibrosis all contribute to CVD and are reviewed in this article in memory of Dr. Nobuhiko Katunuma for his contribution to the field.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Minjie Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
17
|
Lu Y, Sun X, Peng L, Jiang W, Li W, Yuan H, Cai J. Angiotensin II-Induced vascular remodeling and hypertension involves cathepsin L/V- MEK/ERK mediated mechanism. Int J Cardiol 2020; 298:98-106. [DOI: 10.1016/j.ijcard.2019.09.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/06/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
|
18
|
Jana S, Hu M, Shen M, Kassiri Z. Extracellular matrix, regional heterogeneity of the aorta, and aortic aneurysm. Exp Mol Med 2019; 51:1-15. [PMID: 31857579 PMCID: PMC6923362 DOI: 10.1038/s12276-019-0286-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Aortic aneurysm is an asymptomatic disease with dire outcomes if undiagnosed. Aortic aneurysm rupture is a significant cause of death worldwide. To date, surgical repair or endovascular repair (EVAR) is the only effective treatment for aortic aneurysm, as no pharmacological treatment has been found effective. Aortic aneurysm, a focal dilation of the aorta, can be formed in the thoracic (TAA) or the abdominal (AAA) region; however, our understanding as to what determines the site of aneurysm formation remains quite limited. The extracellular matrix (ECM) is the noncellular component of the aortic wall, that in addition to providing structural support, regulates bioavailability of an array of growth factors and cytokines, thereby influencing cell function and behavior that ultimately determine physiological or pathological remodeling of the aortic wall. Here, we provide an overview of the ECM proteins that have been reported to be involved in aortic aneurysm formation in humans or animal models, and the experimental models for TAA and AAA and the link to ECM manipulations. We also provide a comparative analysis, where data available, between TAA and AAA, and how aberrant ECM proteolysis versus disrupted synthesis may determine the site of aneurysm formation. A review of aneurysm formation, swelling in blood vessel, in the aorta, examines distinctions between two forms of the condition and the role of proteins in the extracellular matrix which surrounds cells of the arterial wall. Rupture of aneurysms in the aorta, the body’s main artery, is a major cause of death. Researchers led by Zamaneh Kassiri at the University of Alberta, Edmonton, Canada, emphasize that aneurysms in the thoracic and abdominal regions of the aorta are distinct conditions with crucial differences in their causes. Disrupted production and assembly of the extracellular matrix and its proteins may underlie thoracic aneurysm formation. Factors triggering the degradation of extracellular matrix proteins may be more significant in abdominal aneurysms. Understanding the differing molecular mechanisms involved could help address the current lack of effective drug treatments for these dangerous conditions.
Collapse
Affiliation(s)
- Sayantan Jana
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | - Mei Hu
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Zhang X, Zhou Y, Yu X, Huang Q, Fang W, Li J, Bonventre JV, Sukhova GK, Libby P, Shi GP. Differential Roles of Cysteinyl Cathepsins in TGF-β Signaling and Tissue Fibrosis. iScience 2019; 19:607-622. [PMID: 31446224 PMCID: PMC6715892 DOI: 10.1016/j.isci.2019.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 08/06/2019] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor beta (TGF-β) signaling contributes to tissue fibrosis. Here we demonstrate that TGF-β enhances CatS and CatK expression but reduces CatB and CatL expression in mouse kidney tubular epithelial cells (TECs). CatS- and CatK deficiency reduces TEC nuclear membrane importer importin-β expression, Smad-2/3 activation, and extracellular matrix (ECM) production. Yet CatB- and CatL-deficiency displays the opposite observations with reduced nuclear membrane exporter RanBP3 expression. CatS and CatK form immunocomplexes with the importin-β and RanBP3 more effectively than do CatB and CatL. On the plasma membrane, CatS and CatK preferentially form immunocomplexes with and activate TGF-β receptor-2, whereas CatB and CatL form immunocomplexes with and inactivate TGF-β receptor-1. Unilateral ureteral obstruction-induced renal injury tests differential cathepsin activities in TGF-β signaling and tissue fibrosis. CatB- or CatL-deficiency exacerbates fibrosis, whereas CatS- or CatK-deficiency protects kidneys from fibrosis. These cathepsins exert different effects in the TGF-β signaling cascade independent of their proteolytic properties.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA; School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Zhou
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA; Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qin Huang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenqian Fang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Jie Li
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Galina K Sukhova
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Guo-Ping Shi
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA.
| |
Collapse
|
20
|
He X, Wang S, Li M, Zhong L, Zheng H, Sun Y, Lai Y, Chen X, Wei G, Si X, Han Y, Huang S, Li X, Liao W, Liao Y, Bin J. Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis. Am J Cancer Res 2019; 9:5558-5576. [PMID: 31534503 PMCID: PMC6735383 DOI: 10.7150/thno.34463] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: Long noncoding RNAs (lncRNAs) may serve as specific targets for the treatment of abdominal aortic aneurysms (AAAs). LncRNA GAS5, functionally associated with smooth muscle cell (SMC) apoptosis and proliferation, is likely involved in AAA formation, but the exact role of GAS5 in AAA is unknown. We thus explored the contribution of GAS5 to SMC-regulated AAA formation and its underlying mechanisms. Methods: Human specimens were used to verify the diverse expression of GAS5 in normal and AAA tissues. The angiotensin II (Ang II)-induced AAA model in ApoE-/- mice and the CaCl2-induced AAA model in wild-type C57BL/6 mice were used. RNA pull-down and luciferase reporter gene assays were performed in human aortic SMCs to detect the interaction between GAS5 and its downstream targets of protein or microRNA (miR). Results: GAS5 expression was significantly upregulated in human AAA specimens and two murine AAA models compared to human normal aortas and murine sham-operated controls. GAS5 overexpression induced SMC apoptosis and repressed its proliferation, thereby promoting AAA formation in two murine AAA models. Y-box-binding protein 1 (YBX1) was identified as a direct target of GAS5 while it also formed a positive feedback loop with GAS5 to regulate the downstream target p21. Furthermore, GAS5 acted as a miR-21 sponge to release phosphatase and tensin homolog from repression, which blocked the activation and phosphorylation of Akt to inhibit proliferation and promote apoptosis in SMCs. Conclusion: The LncRNA GAS5 contributes to SMC survival during AAA formation. Thus, GAS5 might serve as a novel target against AAA.
Collapse
|
21
|
Wang H, Meng X, Piao L, Inoue A, Xu W, Yu C, Nakamura K, Hu L, Sasaki T, Wu H, Unno K, Umegaki H, Murohara T, Shi GP, Kuzuya M, Cheng XW. Cathepsin S Deficiency Mitigated Chronic Stress-Related Neointimal Hyperplasia in Mice. J Am Heart Assoc 2019; 8:e011994. [PMID: 31296090 PMCID: PMC6662117 DOI: 10.1161/jaha.119.011994] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Exposure to chronic psychosocial stress is a risk factor for atherosclerosis-based cardiovascular disease. We previously demonstrated the increased expressions of cathepsin S (CatS) in atherosclerotic lesions. Whether CatS participates directly in stress-related neointimal hyperplasia has been unknown. Methods and Results Male wild-type and CatS-deficient mice that underwent carotid ligation injury were subjected to chronic immobilization stress for morphological and biochemical studies at specific times. On day 14 after stress/surgery, stress enhanced the neointima formation. At the early time points, the stressed mice had increased plaque elastin disruption, cell proliferation, macrophage accumulation, mRNA and/or protein levels of vascular cell adhesion molecule-1, angiotensin II type 1 receptor, monocyte chemoattractant protein-1, gp91phox, stromal cell-derived factor-1, C-X-C chemokine receptor-4, toll-like receptor-2, toll-like receptor-4, SC 35, galectin-3, and CatS as well as targeted intracellular proliferating-related molecules (mammalian target of rapamycin, phosphorylated protein kinase B, and p-glycogen synthase kinase-3α/β). Stress also increased the plaque matrix metalloproteinase-9 and matrix metalloproteinase-2 mRNA expressions and activities and aorta-derived smooth muscle cell migration and proliferation. The genetic or pharmacological inhibition of CatS by its specific inhibitor (Z- FL -COCHO) ameliorated the stressed arterial targeted molecular and morphological changes and stressed aorta-derived smooth muscle cell migration. Both the genetic and pharmacological interventions had no effect on increased blood pressure in stressed mice. Conclusions These results demonstrate an essential role of CatS in chronic stress-related neointimal hyperplasia in response to injury, possibly via the reduction of toll-like receptor-2/toll-like receptor-4-mediated inflammation, immune action, and smooth muscle cell proliferation, suggesting that CatS will be a novel therapeutic target for stress-related atherosclerosis-based cardiovascular disease.
Collapse
Affiliation(s)
- Hailong Wang
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Xiangkun Meng
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Limei Piao
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Aiko Inoue
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Wenhu Xu
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Chenglin Yu
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Kae Nakamura
- 4 Department of Obstetrics and Gynecology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Lina Hu
- 5 Department of Public Health Guilin Medical College Guangxi China
| | - Takeshi Sasaki
- 6 Department of Anatomy and Neuroscience Hamamatsu University School of Medicine Hamamatsu Japan
| | - Hongxian Wu
- 7 Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Kazumasa Unno
- 8 Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hiroyuki Umegaki
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Toyoaki Murohara
- 8 Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Guo-Ping Shi
- 9 Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Masafumi Kuzuya
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Xian Wu Cheng
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
22
|
Liu Y, Jiao Y, He Y, Ding X, Su Q, Zhao Y, Jiang J. Expression levels of cathepsin L and cystatin C in a hyperglycemic environment were associated with aortic aneurysm development in a mouse model. J Int Med Res 2019; 47:2499-2506. [PMID: 31096818 PMCID: PMC6567726 DOI: 10.1177/0300060519847880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives Diabetes mellitus (DM) attenuates the development of aortic aneurysms (AA). This study investigated the expression of cathepsin L and cystatin C in a hyperglycemic environment, and the influence of these proteins on AA development. Methods Mice were divided into AA and DM+AA groups (n=30 per group). DM was induced by injection of streptozotocin; AA was induced by injection of angiotensin II. Doppler examination was used to measure aortic diameter, and Weigert’s elastic stain was used to detect elastin degradation. Cathepsin L and cystatin C in aortic tissue were examined by western blotting, immunohistochemistry, and polymerase chain reaction. Results Aortic diameter in the DM+AA group was less than that in the AA group, and elastin fragmentation grade of the aortic wall was reduced in the DM+AA group. More cathepsin L-positive cells were observed in the AA group than in the DM+AA group; conversely, more cystatin C-positive cells were observed in the DM+AA group than in the AA group. Both protein and mRNA levels of cathepsin L and cystatin C showed similar trends to those observed in immunohistochemistry. Conclusions Expression levels of cathepsin L and cystatin C in a hyperglycemic environment were associated with AA development in a mouse model.
Collapse
Affiliation(s)
- Yang Liu
- 1 Department of Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yang Jiao
- 2 Department of General Surgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China
| | - Yuxiang He
- 3 Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xiangjiu Ding
- 1 Department of Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qingbo Su
- 1 Department of Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Zhao
- 1 Department of Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianjun Jiang
- 1 Department of Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Mohajeri M, Kovanen PT, Bianconi V, Pirro M, Cicero AFG, Sahebkar A. Mast cell tryptase - Marker and maker of cardiovascular diseases. Pharmacol Ther 2019; 199:91-110. [PMID: 30877022 DOI: 10.1016/j.pharmthera.2019.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Mast cells are tissue-resident cells, which have been proposed to participate in various inflammatory diseases, among them the cardiovascular diseases (CVDs). For mast cells to be able to contribute to an inflammatory process, they need to be activated to exocytose their cytoplasmic secretory granules. The granules contain a vast array of highly bioactive effector molecules, the neutral protease tryptase being the most abundant protein among them. The released tryptase may act locally in the inflamed cardiac or vascular tissue, so contributing directly to the pathogenesis of CVDs. Moreover, a fraction of the released tryptase reaches the systemic circulation, thereby serving as a biomarker of mast cell activation. Actually, increased levels of circulating tryptase have been found to associate with CVDs. Here we review the biological relevance of the circulating tryptase as a biomarker of mast cell activity in CVDs, with special emphasis on the relationship between activation of mast cells in their tissue microenvironments and the pathophysiological pathways of CVDs. Based on the available in vitro and in vivo studies, we highlight the potential molecular mechanisms by which tryptase may contribute to the pathogenesis of CVDs. Finally, the synthetic and natural inhibitors of tryptase are reviewed for their potential utility as therapeutic agents in CVDs.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Abstract
Cathepsins (CTS) are mainly lysosomal acid hydrolases extensively involved in the prognosis of different diseases, and having a distinct role in tumor progression by regulating cell proliferation, autophagy, angiogenesis, invasion, and metastasis. As all these processes conjunctively lead to cancer progression, their site-specific regulation might be beneficial for cancer treatment. CTS regulate activation of the proteolytic cascade and protein turnover, while extracellular CTS is involved in promoting extracellular matrix degradation and angiogenesis, thereby stimulating invasion and metastasis. Despite cancer regulation, the involvement of CTS in cellular adaptation toward chemotherapy and radiotherapy augments their therapeutic potential. However, lysosomal permeabilization mediated cytosolic translocation of CTS induces programmed cell death. This complex behavior of CTS generates the need to discuss the different aspects of CTS associated with cancer regulation. In this review, we mainly focused on the significance of each cathepsin in cancer signaling and their targeting which would provide noteworthy information in the context of cancer biology and therapeutics.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
25
|
Deficiency of mouse mast cell protease 4 mitigates cardiac dysfunctions in mice after myocardium infarction. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1170-1181. [PMID: 30639224 DOI: 10.1016/j.bbadis.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Mouse mast cell protease-4 (mMCP4) is a chymase that has been implicated in cardiovascular diseases, including myocardial infarction (MI). This study tested a direct role of mMCP4 in mouse post-MI cardiac dysfunction and myocardial remodeling. Immunoblot and immunofluorescent double staining demonstrated mMCP4 expression in cardiomyocytes from the infarct zone from mouse heart at 28 day post-MI. At this time point, mMCP4-deficient Mcpt4-/- mice showed no difference in survival from wild-type (WT) control mice, yet demonstrated smaller infarct size, improved cardiac functions, reduced macrophage content but increased T-cell accumulation in the infarct region compared with those of WT littermates. mMCP4-deficiency also reduced cardiomyocyte apoptosis and expression of TGF-β1, p-Smad2, and p-Smad3 in the infarct region, but did not affect collagen deposition or α-smooth muscle actin expression in the same area. Gelatin gel zymography and immunoblot analysis revealed reduced activities of matrix metalloproteinases and expression of cysteinyl cathepsins in the myocardium, macrophages, and T cells from Mcpt4-/- mice. Immunoblot analysis also found reduced p-Smad2 and p-Smad3 in the myocardium from Mcpt4-/- mice, yet fibroblasts from Mcpt4-/- mice showed comparable levels of p-Smad2 and p-Smad3 to those of WT fibroblasts. Flow cytometry, immunoblot analysis, and immunofluorescent staining demonstrated that mMCP4-deficiency reduced the expression of proapoptotic cathepsins in cardiomyocytes and protected cardiomyocytes from H2O2-induced apoptosis. This study established a role of mMCP4 in mouse post-MI dysfunction by regulating myocardial protease expression and cardiomyocyte death without significant impact on myocardial fibrosis or survival post-MI in mice.
Collapse
|
26
|
Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biol 2019; 75-76:141-159. [DOI: 10.1016/j.matbio.2018.01.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/14/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
|
27
|
Cathepsin K-deficiency impairs mouse cardiac function after myocardial infarction. J Mol Cell Cardiol 2018; 127:44-56. [PMID: 30465799 DOI: 10.1016/j.yjmcc.2018.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extracellular matrix metabolism and cardiac cell death participate centrally in myocardial infarction (MI). This study tested the roles of collagenolytic cathepsin K (CatK) in post-MI left ventricular remodeling. METHODS AND RESULTS Patients with acute MI had higher plasma CatK levels (20.49 ± 7.07 pmol/L, n = 26) than those in subjects with stable angina pectoris (8.34 ± 1.66 pmol/L, n = 28, P = .01) or those without coronary heart disease (6.63 ± 0.84 pmol/L, n = 93, P = .01). CatK protein expression increases in mouse hearts at 7 and 28 days post-MI. Immunofluorescent staining localized CatK expression in cardiomyocytes, endothelial cells, fibroblasts, macrophages, and CD4+ T cells in infarcted mouse hearts at 7 days post-MI. To probe the direct participation of CatK in MI, we produced experimental MI in CatK-deficient mice (Ctsk-/-) and their wild-type (Ctsk+/+) littermates. CatK-deficiency yielded worsened cardiac function at 7 and 28 days post-MI, compared to Ctsk+/+ littermates (fractional shortening percentage: 5.01 ± 0.68 vs. 8.62 ± 1.04, P < .01, 7 days post-MI; 4.32 ± 0.52 vs. 7.60 ± 0.82, P < .01, 28 days post-MI). At 7 days post-MI, hearts from Ctsk-/- mice contained less CatK-specific type-I collagen fragments (10.37 ± 1.91 vs. 4.60 ± 0.49 ng/mg tissue extract, P = .003) and more fibrosis (1.67 ± 0.93 vs. 0.69 ± 0.20 type-III collagen positive area percentage, P = .01; 14.25 ± 4.12 vs. 6.59 ± 0.79 α-smooth muscle actin-positive area percentage, P = .016; and 0.82 ± 0.06 vs. 0.31 ± 0.08 CD90-positive area percentage, P = .008) than those of Ctsk+/+ mice. Immunostaining demonstrated that CatK-deficiency yielded elevated cardiac cell death but reduced cardiac cell proliferation. In vitro studies supported a role of CatK in cardiomyocyte survival. CONCLUSION Plasma CatK levels are increased in MI patients. Heart CatK expression is also elevated post-MI, but CatK-deficiency impairs post-MI cardiac function in mice by increasing myocardial fibrosis and cardiomyocyte death.
Collapse
|
28
|
Carino D, Sarac TP, Ziganshin BA, Elefteriades JA. Abdominal Aortic Aneurysm: Evolving Controversies and Uncertainties. Int J Angiol 2018; 27:58-80. [PMID: 29896039 PMCID: PMC5995687 DOI: 10.1055/s-0038-1657771] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is defined as a permanent dilatation of the abdominal aorta that exceeds 3 cm. Most AAAs arise in the portion of abdominal aorta distal to the renal arteries and are defined as infrarenal. Most AAAs are totally asymptomatic until catastrophic rupture. The strongest predictor of AAA rupture is the diameter. Surgery is indicated to prevent rupture when the risk of rupture exceeds the risk of surgery. In this review, we aim to analyze this disease comprehensively, starting from an epidemiological perspective, exploring etiology and pathophysiology, and concluding with surgical controversies. We will pursue these goals by addressing eight specific questions regarding AAA: (1) Is the incidence of AAA increasing? (2) Are ultrasound screening programs for AAA effective? (3) What causes AAA: Genes versus environment? (4) Animal models: Are they really relevant? (5) What pathophysiology leads to AAA? (6) Indications for AAA surgery: Are surgeons over-eager to operate? (7) Elective AAA repair: Open or endovascular? (8) Emergency AAA repair: Open or endovascular?
Collapse
Affiliation(s)
- Davide Carino
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Timur P. Sarac
- Section of Vascular and Endovascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
- Department of Surgical Diseases # 2, Kazan State Medical University, Kazan, Russia
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
29
|
Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol 2018; 15:351-370. [DOI: 10.1038/s41569-018-0002-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Kidholm CL, Beck HC, Madsen JB, Palstrøm NB, Lindholt JS, Rasmussen LM. Preliminary analysis of proteome alterations in non-aneurysmal, internal mammary artery tissue from patients with abdominal aortic aneurysms. PLoS One 2018; 13:e0192957. [PMID: 29470511 PMCID: PMC5823374 DOI: 10.1371/journal.pone.0192957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Objective The pathogenesis of abdominal aortic aneurysms (AAA) involves a disturbed balance of breakdown and buildup of arterial proteins. We envision that individuals with AAA carry generalized arterial protein alterations either because of effects of genetically or environmental AAA risk factors or because of compensatory changes due to signaling molecules released from the affected aneurysmal tissue. Approach Protein extraction and quantitative proteome analysis by LC-MS/MS (liquid chromatography-mass spectrometry) was done on individual samples from the internal mammary artery from 11 individuals with AAA and 33 sex- and age-matched controls without AAA. Samples were selected from a biobank of leftover internal mammary arterial tissue gathered at coronary by-pass operations. Results We identified and quantitated 877 proteins, of which 44 were differentially expressed between the two groups (nominal p-values without correction for multiple testing). Some proteins related to the extracellular matrix displayed altered concentrations in the AAA group, particularly among elastin-related molecules [elastin, microfibrillar-associated protein 4 (MFAP4), lysyl oxidase]. In addition, several histones e.g. (e.g. HIST1H1E, HIST1H2BB) and other vascular cell proteins (e.g. versican, type VI collagen) were altered. Conclusions Our results support the notion that generalized alterations occur in the arterial tree in patients with AAA. Elastin-related proteins and histones seem to be part of such changes, however these preliminary results require replication in an independent set of specimens and validation by functional studies.
Collapse
Affiliation(s)
- Christina Lund Kidholm
- Centre of Individualized Medicine in Arterial Disease (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- * E-mail:
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Julie Bukh Madsen
- Centre of Individualized Medicine in Arterial Disease (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Nikolai Bjødstrup Palstrøm
- Centre of Individualized Medicine in Arterial Disease (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Jes Sanddal Lindholt
- Centre of Individualized Medicine in Arterial Disease (CIMA), Odense University Hospital, Odense, Denmark
- Department of Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Lars Melholt Rasmussen
- Centre of Individualized Medicine in Arterial Disease (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
31
|
Wu H, Du Q, Dai Q, Ge J, Cheng X. Cysteine Protease Cathepsins in Atherosclerotic Cardiovascular Diseases. J Atheroscler Thromb 2017; 25:111-123. [PMID: 28978867 PMCID: PMC5827079 DOI: 10.5551/jat.rv17016] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is an inflammatory disease characterized by extensive arterial wall matrix protein degradation. Cysteine protease cathepsins play a pivotal role in extracellular matrix (ECM) remodeling and have been implicated in the development and progression of atherosclerosis-based cardiovascular diseases. An imbalance in expression between cathepsins (such as cathepsins S, K, L, C) and their inhibitor cystatin C may favor proteolysis of ECM in the pathogenesis of cardiovascular disease such as atherosclerosis, aneurysm formation, restenosis, and neovascularization. New insights into cathepsin functions have been made possible by the generation of knock-out mice and by the application of specific inhibitors. Inflammatory cytokines regulate the expression and activities of cathepsins in cultured vascular cells and macrophages. In addition, evaluations of the possibility of cathepsins as a diagnostic tool revealed that the circulating levels of cathepsin S, K, and L, and their endogenous inhibitor cystatin C could be promising biomarkers in the diagnosis of coronary artery disease, aneurysm, adiposity, peripheral arterial disease, and coronary artery calcification. In this review, we summarize the available information regarding the mechanistic contributions of cathepsins to ASCVD.
Collapse
Affiliation(s)
- Hongxian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Qiuna Du
- Department of Nephrology, Tongji Hospital, Tongji University
| | - Qiuyan Dai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Xianwu Cheng
- Department of Cardiology, Yanbian University Hospital.,Institute of Innovation for Future Society, Nagoya University, Graduate School of Medicine.,Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Manchanda M, Das P, Gahlot GPS, Singh R, Roeb E, Roderfeld M, Datta Gupta S, Saraya A, Pandey RM, Chauhan SS. Cathepsin L and B as Potential Markers for Liver Fibrosis: Insights From Patients and Experimental Models. Clin Transl Gastroenterol 2017; 8:e99. [PMID: 28617446 PMCID: PMC5518948 DOI: 10.1038/ctg.2017.25] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Cathepsin L (CTSL) and B (CTSB) have a crucial role in extracellular matrix (ECM) degradation and tissue remodeling, which is a prominent feature of fibrogenesis. The aim of this study was to determine the role and clinical significance of these cathepsins in liver fibrosis. METHODS Hepatic histological CTSL and CTSB expression were assessed in experimental models of liver fibrosis, patients with liver cirrhosis, chronic viral hepatitis, and controls by real-time PCR and immunohistochemistry. Plasma levels of CTSL and CTSB were analyzed in 51 liver cirrhosis patients (Child-Pugh stages A, B and C) and 15 controls. RESULTS Significantly enhanced CTSL mRNA (P=0.02) and protein (P=0.01) levels were observed in the liver of carbon tetrachloride-treated mice compared with controls. Similarly, hepatic CTSL and CTSB mRNA levels (P=0.02) were markedly increased in Abcb4-/- (ATP-binding cassette transporter knockout) mice compared with wild-type littermates. Elevated levels of CTSL and CTSB were also found in the liver (P=0.001) and plasma (P<0.0001) of patients with hepatic cirrhosis compared with healthy controls. Furthermore, CTSL and CTSB levels correlated well with the hepatic collagen (r=0.5, P=0.007; r=0.64, P=0.0001). CTSL and CTSB levels increased with the Child-Pugh stage of liver cirrhosis and correlated with total bilirubin content (r=0.4/0.2; P≤0.05). CTSL, CTSB, and their combination had a high diagnostic accuracy (area under the curve: 0.91, 0.89 and 0.96, respectively) for distinguishing patients from controls. CONCLUSIONS Our data demonstrate the overexpression of CTSL and CTSB in patients and experimental mouse models, suggesting their potential as diagnostic biomarkers for chronic liver diseases.
Collapse
Affiliation(s)
- Mansi Manchanda
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Gaurav P S Gahlot
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratnakar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Elke Roeb
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | | | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - R M Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
33
|
Cai J, Zhong H, Wu J, Chen RF, Yang H, Al-Abed Y, Li Y, Li X, Jiang W, Montenegro MF, Yuan H, Billiar TR, Chen AF. Cathepsin L promotes Vascular Intimal Hyperplasia after Arterial Injury. Mol Med 2017; 23:92-100. [PMID: 28332696 PMCID: PMC5468173 DOI: 10.2119/molmed.2016.00222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/15/2017] [Indexed: 01/02/2023] Open
Abstract
The inflammatory pathways that drive the development of intimal hyperplasia (IH) following arterial injury are not fully understood. We hypothesized that the lysosomal cysteine protease cathepsin L activates processes leading to IH after arterial injury. Using a mouse model of wire-induced carotid artery injury we showed that cathepsin L activity peaks at day 7 and remains elevated to 28 days. The genetic deletion of cathepsin L prevented IH and monocyte recruitment in the carotid wall. The injury-induced increases in cathepsin L mRNA and activity were mitigated in mice with myeloid-specific deletion of toll like receptor 4 (TLR4) or myeloid differentiation primary response gene 88 (MyD88). We further discovered that a HIV-protease inhibitor saquinavir (SQV), which is known to block recombinant mouse cathepsin L activity in vitro, prevented IH after arterial injury. SQV also suppressed LPS (TLR4 agonist) induced monocyte adhesion to endothelial monolayers. These findings establish cathepsin L as a critical regulator of the inflammation that leads to IH and that the TLR4- MyD88 pathway in myeloid lineages regulates cathepsin L expression in the vessel wall following wire injury. The FDA approved drug, SQV blocks IH though mechanisms that may include the suppression of cathepsin L.
Collapse
Affiliation(s)
- Jingjing Cai
- Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hua Zhong
- Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jinze Wu
- Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Rui-Fang Chen
- Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yousef Al-Abed
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ying Li
- Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohui Li
- Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Weihong Jiang
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Marcelo F Montenegro
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Hong Yuan
- Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Timothy R Billiar
- Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alex F Chen
- Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Cao Y, Liu X, Li Y, Lu Y, Zhong H, Jiang W, Chen AF, Billiar TR, Yuan H, Cai J. Cathepsin L activity correlates with proteinuria in chronic kidney disease in humans. Int Urol Nephrol 2017; 49:1409-1417. [PMID: 28534128 DOI: 10.1007/s11255-017-1626-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/19/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND The presence and severity of proteinuria is considered an important prognostic marker in patients with chronic kidney disease (CKD) and is associated with mortality and morbidity. Cathepsin L is highly expressed in the foot processes of podocytes in the kidney, which serves as an ultrafiltration barrier. Cathepsin L is also up-regulated in the setting of inflammation as a feature of CKD. Therefore, we postulated that proteinuria severity in CKD patients might correlate with increased serum levels of cathepsin L. METHODS AND RESULTS In this retrospective observational study, a total of 135 patients diagnosed with CKD, 31 renal transplant patients and 48 healthy controls were included. The demographic characteristics and clinical indicators were analyzed. Serum cathepsin L activity was significantly higher in patients with CKD than in renal transplant recipients and healthy controls (P < 0.01). Patients with severe proteinuria had a higher cathepsin L activity compared to those with moderate or mild proteinuria (P < 0.01). Serum cathepsin L activity positively associated with age, body mass index, nitrite level, neutrophil count, high-sensitivity C-reactive protein (hs-CRP), N-terminal pro-brain natriuretic peptide, high-mobility group box-1 protein (HMGB1) and 24-h proteinuria. In the ROC analysis, the sensitivity of cathepsin L activity in diagnosis of moderate and heavy is 0.86 and the specificity is 0.73. Moreover, CKD patients with higher cathepsin L activity had a significantly higher hospital admission rate. The data also showed patients with statin administration present significantly lower cathepsin L activity (P < 0.01), hs-CRP (P < 0.01), HMGB1 (P < 0.01) and proteinuria (P < 0.01) compared to non-statin treatment group. CONCLUSION This study revealed that serum cathepsin L activity is significantly elevated in CKD patients and its level correlates with the severity of proteinuria as well as prognosis, suggesting that serum cathepsin L may serve as a potential biomarker for CKD. Further prospective study is needed to explore its clinical implications in the future.
Collapse
Affiliation(s)
- Yu Cao
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xing Liu
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Li
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yao Lu
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hua Zhong
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weihong Jiang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Alex F Chen
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.,The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hong Yuan
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.,The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China. .,The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China. .,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
36
|
Zhou Y, Chen H, Liu L, Yu X, Sukhova GK, Yang M, Kyttaris VC, Stillman IE, Gelb B, Libby P, Tsokos GC, Shi GP. Cathepsin K Deficiency Ameliorates Systemic Lupus Erythematosus-like Manifestations in Faslpr Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:1846-1854. [PMID: 28093526 DOI: 10.4049/jimmunol.1501145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
Cysteinyl cathepsin K (CatK) is expressed in osteoclasts to mediate bone resorption, but is also inducible under inflammatory conditions. Faslpr mice on a C57BL/6 background develop spontaneous systemic lupus erythematosus-like manifestations. Although normal mouse kidneys expressed negligible CatK, those from Faslpr mice showed elevated CatK expression in the glomeruli and tubulointerstitial space. Faslpr mice also showed elevated serum CatK levels. CatK deficiency in Faslpr mice reduced all tested kidney pathologies, including glomerulus and tubulointerstitial scores, glomerulus complement C3 and IgG deposition, chemokine expression and macrophage infiltration, and serum autoantibodies. CatK contributed to Faslpr mouse autoimmunity and pathology in part by its activity in TLR-7 proteolytic processing and consequent regulatory T (Treg) cell biology. Elevated TLR7 expression and proteolytic processing in Faslpr mouse kidneys and Tregs showed significantly reduced levels in CatK-deficient mice, leading to increased spleen and kidney Treg content. Purified CD4+CD25highFoxp3+ Tregs from CatK-deficient mice doubled their immunosuppressive activity against T effector cells, compared with those from CatK-sufficient mice. In Faslpr mice, repopulation of purified Tregs from CatK-sufficient mice reduced spleen sizes, autoantibody titers, and glomerulus C3 and IgG deposition, and increased splenic and kidney Treg contents. Tregs from CatK-deficient mice had significantly more potency than CatK-sufficient Tregs in reducing spleen sizes, serum autoantibody titers, and glomerulus C3 deposition, and in increasing splenic and kidney Treg content. This study established a possible role of CatK in TLR7 proteolytic activation, Treg immunosuppressive activity, and lupus autoimmunity and pathology.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Huimei Chen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Research Institute of Nephrology, Nanjing University School of Medicine, Nanjing 210002, China
| | - Li Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Department of Biology, School of Life Science, Huzhou Teachers College, Huzhou, Zhejiang 313000, China
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Min Yang
- Department of Rheumatology, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Vasileios C Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Bruce Gelb
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
37
|
Ruddy JM, Akerman AW, Kimbrough D, Nadeau EK, Stroud RE, Mukherjee R, Ikonomidis JS, Jones JA. Differential hypertensive protease expression in the thoracic versus abdominal aorta. J Vasc Surg 2016; 66:1543-1552. [PMID: 28034583 DOI: 10.1016/j.jvs.2016.07.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/24/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Hypertension (HTN), which is a major risk factor for cardiovascular morbidity and mortality, can drive pathologic remodeling of the macro- and microcirculation. Patterns of aortic pathology differ, however, suggesting regional heterogeneity of the pressure-sensitive protease systems triggering extracellular matrix remodeling in the thoracic (TA) and abdominal aortas (AA). This study tested the hypothesis that the expression of two major protease systems (matrix metalloproteinases [MMPs] and cathepsins) in the TA and AA would be differentially affected with HTN. METHODS Normotensive (BPN3) mice at 14-16 weeks of age underwent implantation of osmotic infusion pumps for 28-day angiotensin II (AngII) delivery (1.46 mg/kg/day; BPN3+AngII; n = 8) to induce HTN. The TA and AA were harvested to determine levels of MMP-2, MMP-9, and membrane type 1-MMP, and cathepsins S, K, and L were evaluated in age-matched BPN3 (n = 8) control and BPH2 spontaneously hypertensive mice (non-AngII pathway; n = 7). Blood pressure was monitored via CODA tail cuff plethysmography (Kent Scientific Corporation, Torrington, Conn). Quantitative real-time polymerase chain reaction and immunoblotting/zymography were used to measure MMP and cathepsin messenger RNA expression and protein abundance, respectively. Target protease values were compared within each aortic region via analysis of variance. RESULTS Following 28 days infusion, the BPN3+AngII mice had a 17% increase in systolic blood pressure, matching that of the BPH2 spontaneously hypertensive mice (both P < .05 vs BPN3). MMP-2 gene expression demonstrated an AngII-dependent increase in the TA (P < .05), but MMP-9 was not altered with HTN. Expression of tissue inhibitor of metalloproteinases-1 was markedly increased in TA of BPN3+AngII mice, but tissue inhibitor of metalloproteinases-2 demonstrated decreased expression in the AA of both hypertensive groups (P < .05). Only cathepsin K responded to AngII-induced HTN with significant elevation in the TA of those mice, but expression of cathepsin L and cystatin C was inhibited in AA of both hypertensive groups (P < .05). Apoptotic markers were not significantly elevated in any experimental group. CONCLUSIONS By using two different models of HTN, this study has identified pressure-dependent as well as AngII-dependent regional alterations in aortic gene expression of MMPs and cathepsins that may lead to differential remodeling responses in each of the aortic regions. Further studies will delineate mechanisms and may provide targeted therapies to attenuate down-stream aortic pathology based on demonstrated regional heterogeneity.
Collapse
Affiliation(s)
- Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC; Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC.
| | - Adam W Akerman
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| | - Denise Kimbrough
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| | - Elizabeth K Nadeau
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| | - Robert E Stroud
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| | - Rupak Mukherjee
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| | - John S Ikonomidis
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC; Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Jeffrey A Jones
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
38
|
Xu X, Greenland JR, Gotts JE, Matthay MA, Caughey GH. Cathepsin L Helps to Defend Mice from Infection with Influenza A. PLoS One 2016; 11:e0164501. [PMID: 27716790 PMCID: PMC5055332 DOI: 10.1371/journal.pone.0164501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023] Open
Abstract
Host-derived proteases can augment or help to clear infections. This dichotomy is exemplified by cathepsin L (CTSL), which helps Hendra virus and SARS coronavirus to invade cells, but is essential for survival in mice with mycoplasma pneumonia. The present study tested the hypothesis that CTSL protects mice from serious consequences of infection by the orthomyxovirus influenza A, which is thought to be activated by host-supplied proteases other than CTSL. Ctsl-/- mice infected with influenza A/Puerto Rico/8/34(H1N1) had larger lung viral loads and higher mortality than infected Ctsl+/+ mice. Lung inflammation in surviving infected mice peaked 14 days after initial infection, accompanied marked focal distal airway bronchiolization and epithelial metaplasia followed by desquamation and fibrotic interstitial remodeling, and persisted for at least 6 weeks. Most deaths occurred during the second week of infection in both groups of mice. In contrast to mycoplasma pneumonia, infiltrating cells were predominantly mononuclear rather than polymorphonuclear. The histopathology of lung inflammation and remodeling in survivors was similar in Ctsl-/- and Ctsl+/+ mice, although Ctsl+/+ mice cleared immunoreactive virus sooner. Furthermore, Ctsl-/- mice had profound deficits in CD4+ lymphocytes before and after infection and weaker production of pathogen-specific IgG. Thus, CTSL appears to support innate as well as adaptive responses, which confer a survival advantage on mice infected with the orthomyxovirus influenza A.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Medicine, University of California at San Francisco, San Francisco, California, United States of America
| | - John R. Greenland
- Department of Medicine, University of California at San Francisco, San Francisco, California, United States of America
- Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Jeffrey E. Gotts
- Department of Medicine, University of California at San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California, United States of America
| | - Michael A. Matthay
- Department of Medicine, University of California at San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California, United States of America
| | - George H. Caughey
- Department of Medicine, University of California at San Francisco, San Francisco, California, United States of America
- Veterans Affairs Medical Center, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Busch A, Holm A, Wagner N, Ergün S, Rosenfeld M, Otto C, Baur J, Kellersmann R, Lorenz U. Extra- and Intraluminal Elastase Induce Morphologically Distinct Abdominal Aortic Aneurysms in Mice and Thus Represent Specific Subtypes of Human Disease. J Vasc Res 2016; 53:49-57. [DOI: 10.1159/000447263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/28/2016] [Indexed: 11/19/2022] Open
|
40
|
Activation of the vitamin D receptor selectively interferes with calcineurin-mediated inflammation: a clinical evaluation in the abdominal aortic aneurysm. J Transl Med 2016; 96:784-90. [PMID: 27239732 DOI: 10.1038/labinvest.2016.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 12/23/2022] Open
Abstract
In vitro and in vivo studies attribute potent immune regulatory properties to the vitamin D receptor (VDR). Yet, it is unclear to what extend these observations translate to the clinical context of (vascular) inflammation. This clinical study evaluates the potential of a VDR agonist to quench vascular inflammation. Patients scheduled for open abdominal aneurysm repair received paricalcitol 1 μg daily during 2-4 weeks before repair. Results were compared with matched controls. Evaluation in a parallel group showed that AAA patients are vitamin D insufficient (median plasma vitamin D: 43 (30-62 (IQR)) nmol/l). Aneurysm wall samples were collected during surgery, and the inflammatory footprint was studied. The brief paricalcitol intervention resulted in a selective 73% reduction in CD4+ T-helper cell content (P<0.024) and a parallel 35% reduction in T-cell (CD3+) content (P<0.032). On the mRNA level, paricalcitol reduced expression of T-cell-associated cytokines IL-2, 4, and 10 (P<0.019). No effect was found on other inflammatory mediators. On the protease level, selective effects were found for cathepsin K (P<0.036) and L (P<0.005). Collectively, these effects converge at the level of calcineurin activity. An effect of the VDR agonist on calcineurin activity was confirmed in a mixed lymphocyte reaction. In conclusion, brief course of the VDR agonist paricalcitol has profound effects on local inflammation via reduced T-cell activation. The anti-inflammatory potential of VDR activation in vitamin D insufficient patients is highly selective and appears to be mediated by an effect on calcineurin-mediated responses.
Collapse
|
41
|
Sudhan DR, Rabaglino MB, Wood CE, Siemann DW. Cathepsin L in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94. Clin Exp Metastasis 2016; 33:461-73. [PMID: 27055649 DOI: 10.1007/s10585-016-9790-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
A significant proportion of breast cancer patients harbor clinically undetectable micrometastases at the time of diagnosis. If left untreated, these micro-metastases may lead to disease relapse and possibly death. Hence, there is significant interest in the development of novel anti-metastatic agents that could also curb the growth of pre-established micrometastases. Like primary tumor, the growth of metastases also is driven by angiogenesis. Although the role of cysteine protease Cathepsin L (CTSL) in metastasis associated tumor cell functions such as migration and invasion is well recognized, its role in tumor angiogenesis remains less explored. The present study examines the contribution of CTSL to breast cancer angiogenesis and evaluates the anti-angiogenic efficacy of CTSL inhibitor KGP94. CTSL semi-quantitative RT-PCR analysis on breast tissue panels revealed significant upregulation of CTSL in breast cancer patients which strongly correlated with increased relapse and metastatic incidence and poor overall survival. Preclinically, CTSL ablation using shRNA or KGP94 treatment led to a significant reduction in MDA-MB-231 tumor cell induced angiogenesis in vivo. In-vitro assessments demonstrated a significant decrease in various angiogenic properties such as endothelial cell sprouting, migration, invasion, tube formation and proliferation in the presence of KGP94. Microarray analyses revealed a significant upregulation of cell cycle related genes by CTSL. Western blot analyses further confirmed upregulation of members of the cyclin family by CTSL. Collectively, these data indicate that CTSL is an important contributor to tumor angiogenesis and that the CTSL inhibition may have therapeutic utility in the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Dhivya R Sudhan
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, USA. .,Cancer and Genetics Research Complex, University of Florida Health Cancer Center, Room 485E, Gainesville, FL, 32610, USA.
| | - Maria B Rabaglino
- CEPROCOR, National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
| | - Charles E Wood
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, USA.,Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, USA
| |
Collapse
|
42
|
Duca L, Blaise S, Romier B, Laffargue M, Gayral S, El Btaouri H, Kawecki C, Guillot A, Martiny L, Debelle L, Maurice P. Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc Res 2016; 110:298-308. [DOI: 10.1093/cvr/cvw061] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/07/2016] [Indexed: 12/17/2022] Open
|
43
|
Folkesson M, Vorkapic E, Gulbins E, Japtok L, Kleuser B, Welander M, Länne T, Wågsäter D. Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms. J Vasc Surg 2016; 65:1171-1179.e1. [PMID: 26960947 DOI: 10.1016/j.jvs.2015.12.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a deadly irreversible weakening and distension of the abdominal aortic wall. The pathogenesis of AAA remains poorly understood. Investigation into the physical and molecular characteristics of perivascular adipose tissue (PVAT) adjacent to AAA has not been done before and is the purpose of this study. METHODS AND RESULTS Human aortae, periaortic PVAT, and fat surrounding peripheral arteries were collected from patients undergoing elective surgical repair of AAA. Control aortas were obtained from recently deceased healthy organ donors with no known arterial disease. Aorta and PVAT was found in AAA to larger extent compared with control aortas. Immunohistochemistry revealed neutrophils, macrophages, mast cells, and T-cells surrounding necrotic adipocytes. Gene expression analysis showed that neutrophils, mast cells, and T-cells were found to be increased in PVAT compared with AAA as well as cathepsin K and S. The concentration of ceramides in PVAT was determined using mass spectrometry and correlated with content of T-cells in the PVAT. CONCLUSIONS Our results suggest a role for abnormal necrotic, inflamed, proteolytic adipose tissue to the adjacent aneurysmal aortic wall in ongoing vascular damage.
Collapse
Affiliation(s)
- Maggie Folkesson
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Emina Vorkapic
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany; Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Martin Welander
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of Cardiovascular Surgery, County Council of Östergötland, Linköping, Sweden
| | - Toste Länne
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of Cardiovascular Surgery, County Council of Östergötland, Linköping, Sweden
| | - Dick Wågsäter
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
44
|
Zhao G, Li Y, Cui L, Li X, Jin Z, Han X, Fang E, Gao Y, Zhou D, Jiang H, Jin X, Piao G, Li X, Yang G, Jin J, Zhu E, Piao M, Piao L, Yuan K, Lei Y, Ding D, Jin C, Nan Y, Cheng X. Increased Circulating Cathepsin K in Patients with Chronic Heart Failure. PLoS One 2015; 10:e0136093. [PMID: 26302400 PMCID: PMC4547812 DOI: 10.1371/journal.pone.0136093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/29/2015] [Indexed: 12/22/2022] Open
Abstract
Cysteinyl cathepsin K (CatK) is one of the most potent mammalian collagenases involved in cardiovascular disease. Here, we investigated the clinical predictive value of serum CatK levels in patients with chronic heart failure (CHF). We examined 134 patients with CHF, measuring their serum CatK, troponin I, high-sensitive C-reactive protein, and pre-operative N-terminal pro-brain natriuretic peptide levels. The patients were divided into two groups: the 44 patients who showed a left ventricular (LV) ejection fraction (LVEF) < 40% (the “lowLVEF” group) and the 90 patients showing LVEF values ≥ 40% (the “highLVEF” group). The lowLVEF patients had significantly higher serum CatK levels compared to the highLVEF patients (58.4 ± 12.2 vs. 44.7 ± 16.4, P < 0.001). Overall, a linear regression analysis showed that CatK levels correlated negatively with LVEF (r = −0.4, P < 0.001) and positively with LV end-diastolic dimensions (r = 0.2, P < 0.01), LV end-systolic dimensions (r = 0.3, P < 0.001), and left atrial diameters (r = 0.3, P < 0.01). A multiple logistic regression analysis showed that CatK levels were independent predictors of CHF (odds ratio, 0.90; 95% confidence interval, 0.84–0.95; P < 0.01). These data indicate that elevated levels of CatK are closely associated with the presence of CHF and that the measurement of circulating CatK provides a noninvasive method of documenting and monitoring the extent of cardiac remodeling and dysfunction in patients with CHF.
Collapse
Affiliation(s)
- Guangxian Zhao
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Yuzi Li
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Lan Cui
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
- * E-mail: (LC); (XC)
| | - Xiang Li
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Zhenyi Jin
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Xiongyi Han
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Ennan Fang
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Yihua Gao
- Department of Clinical Examination, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Dongmei Zhou
- Department of Central Laboratory, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Yanbian University Medical College, Yanji, Jilin, P.R., China
| | - Xueying Jin
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Guanghao Piao
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Xiangshan Li
- Department of Central Laboratory, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Guang Yang
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Jiyong Jin
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Enbo Zhu
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Meina Piao
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Limei Piao
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Kuichang Yuan
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Yanna Lei
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Dazhi Ding
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Chengzhi Jin
- Department of Clinical Examination, Yanbian University Hospital, Yanji, Jilin, P.R., China
| | - Yongshan Nan
- Department of Anesthesiology, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Xianwu Cheng
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin, P.R., China
- * E-mail: (LC); (XC)
| |
Collapse
|
45
|
Yamac AH, Sevgili E, Kucukbuzcu S, Nasifov M, Ismailoglu Z, Kilic E, Ercan C, Jafarov P, Uyarel H, Bacaksiz A. Role of cathepsin D activation in major adverse cardiovascular events and new-onset heart failure after STEMI. Herz 2015; 40:912-20. [PMID: 25911051 DOI: 10.1007/s00059-015-4311-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/13/2015] [Accepted: 03/22/2015] [Indexed: 01/19/2023]
Abstract
AIM Increased serum levels of the activated aspartic lysosomal endopeptidase cathepsin D (CatD) have been found in patients with acute myocardial infarction (AMI). However, to date there have been no analyses of clinical follow-up data measuring the enzyme course and its role in the development of post-MI heart failure. This study aimed to evaluate the role of serum CatD activity in the development of heart failure in patients with ST-segment elevation acute myocardial infarction (STEMI). PATIENTS AND METHODS Eighty-eight consecutive patients (79.5 % men, mean age 57.4 ± 10.2 years) with STEMI were included in this study. Serum CatD activity was measured directly after primary percutaneous coronary intervention (PCI), before discharge, and at the 6-month follow-up. Patients were monitored for major adverse cardiovascular events (MACE), defined as hospitalization due to cardiovascular causes, recurrent nonfatal myocardial infarction, unplanned PCI, new-onset heart failure, and cardiovascular mortality. RESULTS Serum CatD activity was significantly higher in patients with AMI after PCI and during follow-up (FU) than that in age-matched controls (16.2 ± 7.5 and 29.8 ± 8.9 vs. 8.5 ± 4.2 RFU; p < 0.001 for each time point). At the 6-month follow-up, serum CatD activity in these patients was inversely related to new-onset cardiac dysfunction compared with patients with preserved and improved LVEF after treatment (23.1 ± 3.2 vs. 28.8 ± 7.0 and 29.7 ± 5.0 RFU respectively, p < 0.01). Patients suffering from MACE during a follow-up period of 6 months had lower serum levels of activated CatD than those without any MACE (23.8 ± 4.6 vs 29.6 ± 6.9 RFU; p < 0.001). CONCLUSIONS Serum CatD activity as a marker of healthy endogenous phagocytosis and remodeling was impaired in patients with new-onset cardiac dysfunction, and lower levels of serum CatD were associated with MACE at the 6-month post-MI follow-up.
Collapse
Affiliation(s)
- Aylin Hatice Yamac
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey.
| | - Emrah Sevgili
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Sitki Kucukbuzcu
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Muharrem Nasifov
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Ziya Ismailoglu
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Elif Kilic
- Faculty of Medicine, Department of Biochemistry, BezmiÂlem Foundation University, Istanbul, Turkey
| | - Cilem Ercan
- Faculty of Medicine, Department of Medical Biology, BezmiÂlem Foundation University, Istanbul, Turkey
| | - Parviz Jafarov
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Hüseyin Uyarel
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Ahmet Bacaksiz
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| |
Collapse
|
46
|
Wang J, Lindholt JS, Sukhova GK, Shi MA, Xia M, Chen H, Xiang M, He A, Wang Y, Xiong N, Libby P, Wang JA, Shi GP. IgE actions on CD4+ T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms. EMBO Mol Med 2015; 6:952-69. [PMID: 24963147 PMCID: PMC4119357 DOI: 10.15252/emmm.201303811] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Immunoglobulin E (IgE) activates mast cells (MCs). It remains unknown whether IgE also activates other inflammatory cells, and contributes to the pathogenesis of abdominal aortic aneurysms (AAAs). This study demonstrates that CD4+ T cells express IgE receptor FcεR1, at much higher levels than do CD8+ T cells. IgE induces CD4+ T-cell production of IL6 and IFN-γ, but reduces their production of IL10. FcεR1 deficiency (Fcer1a−/−) protects apolipoprotein E-deficient (Apoe−/−) mice from angiotensin-II infusion-induced AAAs and reduces plasma IL6 levels. Adoptive transfer of CD4+ T cells (but not CD8+ T cells), MCs, and macrophages from Apoe−/− mice, but not those from Apoe−/−Fcer1a−/− mice, increases AAA size and plasma IL6 in Apoe−/−Fcer1a−/− recipient mice. Biweekly intravenous administration of an anti-IgE monoclonal antibody ablated plasma IgE and reduced AAAs in Apoe−/− mice. Patients with AAAs had significantly higher plasma IgE levels than those without AAAs. This study establishes an important role of IgE in AAA pathogenesis by activating CD4+ T cells, MCs, and macrophages and supports consideration of neutralizing plasma IgE in the therapeutics of human AAAs.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jes S Lindholt
- Department of Cardiovascular and Thoracic Surgery, Elitary Research Centre of Individualized Medicine in Arterial Diseases, University Hospital of Odense, Odense, Denmark
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael A Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingcan Xia
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Han Chen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Meixiang Xiang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Aina He
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Na Xiong
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian-An Wang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Li X, Li Y, Jin J, Jin D, Cui L, Li X, Rei Y, Jiang H, Zhao G, Yang G, Zhu E, Nan Y, Cheng X. Increased serum cathepsin K in patients with coronary artery disease. Yonsei Med J 2014; 55:912-9. [PMID: 24954318 PMCID: PMC4075394 DOI: 10.3349/ymj.2014.55.4.912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Cathepsin K is a potent collagenase implicated in human and animal atherosclerosis-based vascular remodeling. This study examined the hypothesis that serum CatK is associated with the prevalence of coronary artery disease (CAD). MATERIALS AND METHODS Between January 2011 and December 2012, 256 consecutive subjects were enrolled from among patients who underwent coronary angiography and percutaneous coronary intervention treatment. A total of 129 age-matched subjects served as controls. RESULTS The subjects' serum cathepsin K and high sensitive C-reactive protein (hs-CRP) and high-density lipoprotein cholesterol were measured. The patients with CAD had significantly higher serum cathepsin K levels compared to the controls (130.8±25.5 ng/mL vs. 86.9±25.5 ng/mL, p<0.001), and the patients with acute coronary syndrome had significantly higher serum cathepsin K levels compared to those with stable angina pectoris (137.1±26.9 ng/mL vs. 102.6±12.9 ng/mL, p<0.001). A linear regression analysis showed that overall, the cathepsin K levels were inversely correlated with the high-density lipoprotein levels (r=-0.29, p<0.01) and positively with hs-CRP levels (r=0.32, p<0.01). Multiple logistic regression analyses shows that cathepsin K levels were independent predictors of CAD (odds ratio, 1.76; 95% confidence interval, 1.12 to 1.56; p<0.01). CONCLUSION These data indicated that elevated levels of cathepsin K are closely associated with the presence of CAD and that circulating cathepsin K serves a useful biomarker for CAD.
Collapse
Affiliation(s)
- Xiang Li
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Yuzi Li
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Jiyong Jin
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Dehao Jin
- Intervention Laboratory, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Lan Cui
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin P.R., China.
| | - Xiangshan Li
- Central Laboratory, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Yanna Rei
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin P.R., China. ; Department of Anesthesiology, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Yanbian University Medical College, Yanji, Jilin P.R., China
| | - Guangxian Zhao
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Guang Yang
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Enbo Zhu
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Yongshan Nan
- Department of Anesthesiology, Yanbian University Hospital, Yanji, Jilin P.R., China
| | - Xianwu Cheng
- Department of Cardiology, Yanbian University Hospital, Yanji, Jilin P.R., China. ; Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan. ; Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| |
Collapse
|
48
|
The tick salivary protein sialostatin L2 inhibits caspase-1-mediated inflammation during Anaplasma phagocytophilum infection. Infect Immun 2014; 82:2553-64. [PMID: 24686067 DOI: 10.1128/iai.01679-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saliva from arthropod vectors facilitates blood feeding by altering host inflammation. Whether arthropod saliva counters inflammasome signaling, a protein scaffold that regulates the activity of caspase-1 and cleavage of interleukin-1β (IL-1β) and IL-18 into mature molecules, remains elusive. In this study, we provide evidence that a tick salivary protein, sialostatin L2, inhibits inflammasome formation during pathogen infection. We show that sialostatin L2 targets caspase-1 activity during host stimulation with the rickettsial agent Anaplasma phagocytophilum. A. phagocytophilum causes macrophage activation and hemophagocytic syndrome features. The effect of sialostatin L2 in macrophages was not due to direct caspase-1 enzymatic inhibition, and it did not rely on nuclear factor κB or cathepsin L signaling. Reactive oxygen species from NADPH oxidase and the Loop2 domain of sialostatin L2 were important for the regulatory process. Altogether, our data expand the knowledge of immunoregulatory pathways of tick salivary proteins and unveil an important finding in inflammasome biology.
Collapse
|
49
|
Shi HT, Wang Y, Jia LX, Qin YW, Liu Y, Li HH, Qi YF, Du J. Cathepsin S contributes to macrophage migration via degradation of elastic fibre integrity to facilitate vein graft neointimal hyperplasia. Cardiovasc Res 2014; 101:454-463. [DOI: 10.1093/cvr/cvt273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
50
|
Hu L, Cheng XW, Song H, Inoue A, Jiang H, Li X, Shi GP, Kozawa E, Okumura K, Kuzuya M. Cathepsin K activity controls injury-related vascular repair in mice. Hypertension 2013; 63:607-15. [PMID: 24343118 DOI: 10.1161/hypertensionaha.113.02141] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cathepsin K (CatK) is one of the most potent mammalian collagenases. We showed previously the increased expression of CatK in human and animal atherosclerotic lesions. Here, we hypothesized that ablation of CatK mitigates injury-induced neointimal hyperplasia. Male wild-type (CatK(+/+)) and CatK-deficient (CatK(-/-)) mice underwent ligation or a combination of ligation and polyethylene cuff-replacement injuries to the right common carotid artery just proximal to its bifurcation, and they were then processed for morphological and biochemical studies at specific time points. On operative day 28, CatK(-/-) significantly reduced neointimal formation and neovessel formation in both single- and combination-injured arteries compared with the Cat K(+/+) mice. At early time points, CatK(-/-) reduced the lesion macrophage contents and medial smooth muscle cell proliferation, the mRNA levels of monocyte chemoattractant protein-1, toll-like receptor-2, toll-like receptor-4, chemokine ligand-12, and the gelatinolytic activity related to matrix metalloproteinase-2/-9. An aorta-explant assay revealed that smooth muscle cell movement was impaired in the CatK(-/-) mice compared with the CatK(+/+) mice. In addition, the smooth muscle cells and macrophages from CatK(-/-) mice had less invasive ability through a reconstituted basement membrane barrier. This vasculoprotective effect was mimicked by Cat inhibition with trans-epoxysuccinyl-L-leucylamido-{4-guanidino} butane (E64d). These results demonstrate an essential role of CatK in neointimal lesion formation in response to injury, possibly via the reduction of toll-like receptor-2/-4-mediated inflammation and smooth muscle cell proliferation, suggesting a novel therapeutic strategy for the control of endovascular treatment-related restenosis by regulating CatK activity.
Collapse
Affiliation(s)
- Lina Hu
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan. or
| | | | | | | | | | | | | | | | | | | |
Collapse
|