1
|
Fu J, Liu L, Fu Q, Zeng X, Yang X. β2-Adrenergic Receptor Agonist Clenbuterol Protects Against Acute Ischemia/Reperfusion-Induced Arrhythmia by Regulation of Akt/eNOS/NO/Cx43 Signaling Pathway. Pharmacol Res Perspect 2025; 13:e70070. [PMID: 39873977 PMCID: PMC11774083 DOI: 10.1002/prp2.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Ventricular arrhythmias induced by ischemia/reperfusion injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction. This study investigated the protective effects of the β2-adrenergic receptor (β2-AR) agonist clenbuterol against ischemia/reperfusion-induced arrhythmias and the underlying mechanism. Anesthetized rats were subjected to 10-min left coronary artery occlusion and 10-min reperfusion in vivo. Langendorff-perfused mice hearts were exposed to 10-min global ischemia and 10-min reperfusion. Arrhythmic events were recorded during early reperfusion. Hearts were collected for measuring nitric oxide (NO) concentration and immunoblotting of Connexin 43 (Cx43), endothelial nitric oxide synthase (eNOS), and protein kinase B (Akt). After the ischemia/reperfusion injury in anesthesia rats, clenbuterol markedly reduced the duration and incidence of ventricular tachycardia and ventricular fibrillation, and arrhythmia score, which was abrogated by selective β2-AR antagonist or Cx43 inhibitor. Furthermore, a marked increase in dephosphorylated Cx43 expression and a decrease in the ratio of phosphorylated Cx43 to total Cx43 were observed after the ischemia/reperfusion injury. Mechanistically, clenbuterol increased the phosphorylation of e-NOS and NO concentration, while L-NAME abolished Cx43 phosphorylation and the protective effect of clenbuterol. Clenbuterol also promoted Akt phosphorylation, and blockade of Akt inhibited eNOS phosphorylation and NO production, as well as Cx43 phosphorylation and protective effect of clenbuterol. The present study elucidates that β2-AR stimulation activates the Akt/eNOS signaling pathway, augments NO bioavailability, maintains Cx43 phosphorylation, and prevents Cx43 remodeling, ultimately attenuating arrhythmia induced by ischemia/reperfusion.
Collapse
Affiliation(s)
- Jing Fu
- Department of Pharmacology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of PharmacyThe Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Li Liu
- Department of Pharmacology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Office of Academic ResearchThe Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qin Fu
- Department of Pharmacology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhanChina
| | - Xiaoman Zeng
- Division of CardiologyWenchang People's HospitalWenchangChina
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhanChina
| |
Collapse
|
2
|
Naryzhnaya NV, Logvinov SV, Kurbatov BK, Derkachev IA, Mustafina LR, Gorbunov AS, Sirotina MA, Kilin M, Gusakova SV, Maslov LN. The β 2-adrenergic receptor agonist formoterol attenuates necrosis and apoptosis in the rat myocardium under experimental stress-induced cardiac injury. Fundam Clin Pharmacol 2024; 38:1116-1130. [PMID: 38956972 DOI: 10.1111/fcp.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Currently, there is no effective therapy for takotsubo syndrome (stress-induced cardiac injury in humans) in the clinics. It has previously been shown that β2-adrenergic receptor (β2-AR) agonist formoterol reduces cardiomyocyte injury in experimental takotsubo syndrome. OBJECTIVES The aim of this study was to investigate whether formoterol prevents apoptosis and necrosis of cardiomyocytes and endothelial cells in stress-induced cardiomyopathy. METHODS Stress-induced cardiac injury was induced by immobilization of rats for 2, 6, and 24 hours. RESULTS The myocardium of stressed rats showed a reduction in contractility and histological manifestations of cardiomyocyte damage: karyopyknosis, perinuclear edema of cardiomyocytes and endothelial cells, and microcirculation disturbances augmented with extended exposure to stress. In addition, apoptosis of endothelial cells was detected 6 hours after the onset of stress and peaked at 24 hours. Apoptosis of cardiomyocytes significantly gained only after 24 hours of stress exposure. These morphological alterations were associated with increased levels of serum creatine kinase-MB, syndecan-1, and thrombomodulin after 24 hours of stress. Administration of β2-AR agonist formoterol (50 μg/kg) four times during 24-hour stress exposure led to the improvement in myocardial inotropy, decrease in the severity of histological signatures, reduction in the number of TUNEL-positive cardiomyocytes, serum creatine kinase-MB, syndecan-1, and thrombomodulin levels. CONCLUSION Present data suggest that apoptosis and necrosis of cardiomyocytes and necrosis of endothelial cells in stress-induced cardiac injury can be mitigated by activation of the β2-AR. However, formoterol did not eliminate completely cardiomyocyte apoptosis, histological alterations, or endothelium injury markers under stress.
Collapse
Affiliation(s)
- Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Sergey V Logvinov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
- Siberian State Medical University, 2, Moskovsky tract, Tomsk, 634050, Russian Federation
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Liliia R Mustafina
- Siberian State Medical University, 2, Moskovsky tract, Tomsk, 634050, Russian Federation
| | - Aleksandr S Gorbunov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Maria A Sirotina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Mikhail Kilin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Svetlana V Gusakova
- Siberian State Medical University, 2, Moskovsky tract, Tomsk, 634050, Russian Federation
| | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| |
Collapse
|
3
|
Kabanov D, Vrana Klimovic S, Beckerová D, Molcan M, Scurek M, Brat K, Bebarova M, Rotrekl V, Pribyl J, Pesl M. Salbutamol attenuates arrhythmogenic effect of aminophylline in a hPSC-derived cardiac model. Sci Rep 2024; 14:27399. [PMID: 39521810 PMCID: PMC11550379 DOI: 10.1038/s41598-024-76846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The combination of aminophylline and salbutamol is frequently used in clinical practice in the treatment of obstructive lung diseases. While the side effects (including arrhythmias) of the individual bronchodilator drugs were well described previously, the side effects of combined treatment are almost unknown. We aimed to study the arrhythmogenic potential of combined aminophylline and salbutamol treatment in vitro. For this purpose, we used the established atomic force microscopy (AFM) model coupled with cardiac organoids derived from human pluripotent stem cells (hPSC-CMs). We focused on the chronotropic, inotropic, and arrhythmogenic effects of salbutamol alone and aminophylline and salbutamol combined treatment. We used a method based on heart rate/beat rate variability (HRV/BRV) analysis to detect arrhythmic events in the hPSC-CM based AFM recordings. Salbutamol and aminophylline had a synergistic chronotropic and inotropic effect compared to the effects of monotherapy. Our main finding was that salbutamol reduced the arrhythmogenic effect of aminophylline, most likely mediated by endothelial nitric oxide synthase activated by beta-2 adrenergic receptors. These findings were replicated and confirmed using hPSC-CM derived from two cell lines (CCTL4 and CCTL12). Data suggest that salbutamol as an add-on therapy may not only deliver a bronchodilator effect but also increase the cardiovascular safety of aminophylline, as salbutamol reduces its arrhythmogenic potential.
Collapse
Grants
- A4L_ACTIONS 964997 Horizon 2020
- A4L_ACTIONS 964997 Horizon 2020
- A4L_ACTIONS 964997 Horizon 2020
- and CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium LM2023042 Ministerstvo Školství, Mládeže a Tělovýchovy
- and CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium LM2023042 Ministerstvo Školství, Mládeže a Tělovýchovy
- MUNI/A/1547/2023 Ministerstvo Školství, Mládeže a Tělovýchovy
- MUNI/A/1547/2023 Ministerstvo Školství, Mládeže a Tělovýchovy
- MUNI/A/1547/2023 Ministerstvo Školství, Mládeže a Tělovýchovy
- and CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium LM2023042 Ministerstvo Školství, Mládeže a Tělovýchovy
- MUNI/A/1547/2023 Ministerstvo Školství, Mládeže a Tělovýchovy
- UP CIISB" (No. CZ.02.1.01/0.0/0.0/18_046/0015974), European Regional Development Fund
- UP CIISB" (No. CZ.02.1.01/0.0/0.0/18_046/0015974), European Regional Development Fund
- UP CIISB" (No. CZ.02.1.01/0.0/0.0/18_046/0015974), European Regional Development Fund
- NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
- A4L_Bridge101136453 HORIZON EUROPE European Research Council
- MUQUABIS GA no. 101070546 HORIZON EUROPE European Research Council
- A4L_Bridge101136453 HORIZON EUROPE European Research Council
- A4L_Bridge101136453 HORIZON EUROPE European Research Council
- EXCELES, No. LX22NPO5104 HORIZON EUROPE Framework Programme
- EXCELES, No. LX22NPO5104 HORIZON EUROPE Framework Programme
Collapse
Affiliation(s)
- Daniil Kabanov
- CEITEC MU, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simon Vrana Klimovic
- CEITEC MU, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Molcan
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Scurek
- Department of Respiratory Diseases, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kristian Brat
- Department of Respiratory Diseases, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marketa Bebarova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Pribyl
- CEITEC MU, Masaryk University, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- First Department of Internal Medicine - Cardioangiology, Faculty of Medicine, Masaryk University, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
4
|
Maslov LN, Naryzhnaya NV, Voronkov NS, Kurbatov BK, Derkachev IA, Ryabov VV, Vyshlov EV, Kolpakov VV, Tomilova EA, Sapozhenkova EV, Singh N, Fu F, Pei J. The role of β-adrenergic receptors in the regulation of cardiac tolerance to ischemia/reperfusion. Why do β-adrenergic receptor agonists and antagonists protect the heart? Fundam Clin Pharmacol 2024; 38:658-673. [PMID: 38423796 DOI: 10.1111/fcp.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Catecholamines and β-adrenergic receptors (β-ARs) play an important role in the regulation of cardiac tolerance to the impact of ischemia and reperfusion. This systematic review analyzed the molecular mechanisms of the cardioprotective activity of β-AR ligands. METHODS We performed an electronic search of topical articles using PubMed databases from 1966 to 2023. We cited original in vitro and in vivo studies and review articles that documented the cardioprotective properties of β-AR agonists and antagonists. RESULTS The infarct-reducing effect of β-AR antagonists did not depend on a decrease in the heart rate. The target for β-blockers is not only cardiomyocytes but also neutrophils. β1-blockers (metoprolol, propranolol, timolol) and the selective β2-AR agonist arformoterol have an infarct-reducing effect in coronary artery occlusion (CAO) in animals. Antagonists of β1- and β2-АR (metoprolol, propranolol, nadolol, carvedilol, bisoprolol, esmolol) are able to prevent reperfusion cardiac injury. All β-AR ligands that reduced infarct size are the selective or nonselective β1-blockers. It was hypothesized that β1-AR blocking promotes an increase in cardiac tolerance to I/R. The activation of β1-AR, β2-AR, and β3-AR can increase cardiac tolerance to I/R. The cardioprotective effect of β-AR agonists is mediated via the activation of kinases and reactive oxygen species production. CONCLUSIONS It is unclear why β-blockers with the similar receptor selectivity have the infarct-sparing effect while other β-blockers with the same selectivity do not affect infarct size. What is the molecular mechanism of the infarct-reducing effect of β-blockers in reperfusion? Why did in early studies β-blockers decrease the mortality rate in patients with acute myocardial infarction (AMI) and without reperfusion and in more recent studies β-blockers had no effect on the mortality rate in patients with AMI and reperfusion? The creation of more effective β-AR ligands depends on the answers to these questions.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Vyacheslav V Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny V Vyshlov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | | | | | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Triposkiadis F, Briasoulis A, Kitai T, Magouliotis D, Athanasiou T, Skoularigis J, Xanthopoulos A. The sympathetic nervous system in heart failure revisited. Heart Fail Rev 2024; 29:355-365. [PMID: 37707755 DOI: 10.1007/s10741-023-10345-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Several attempts have been made, by the scientific community, to develop a unifying hypothesis that explains the clinical syndrome of heart failure (HF). The currently widely accepted neurohormonal model has substituted the cardiorenal and the cardiocirculatory models, which focused on salt-water retention and low cardiac output/peripheral vasoconstriction, respectively. According to the neurohormonal model, HF with eccentric left ventricular (LV) hypertrophy (LVH) (systolic HF or HF with reduced LV ejection fraction [LVEF] or HFrEF) develops and progresses because endogenous neurohormonal systems, predominantly the sympathetic nervous system (SNS) and the renin-angiotensin-aldosterone system (RAAS), exhibit prolonged activation following the initial heart injury exerting deleterious hemodynamic and direct nonhemodynamic cardiovascular effects. However, there is evidence to suggest that SNS overactivity often preexists HF development due to its association with HF risk factors, is also present in HF with preserved LVEF (diastolic HF or HFpEF), and that it is linked to immune/inflammatory factors. Furthermore, SNS activity in HF may be augmented by coexisting noncardiac morbidities and modified by genetic factors and demographics. The purpose of this paper is to provide a contemporary overview of the complex associations between SNS overactivity and the development and progression of HF, summarize the underlying mechanisms, and discuss the clinical implications as they relate to therapeutic interventions mitigating SNS overactivity.
Collapse
Affiliation(s)
| | - Alexandros Briasoulis
- Department of Therapeutics, Heart Failure and Cardio-Oncology Clinic, National and Kapodistrian Univesity of Athens, 11527, Athens, Greece
| | - Takeshi Kitai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Dimitrios Magouliotis
- Unit of Quality Improvement, Department of Cardiothoracic Surgery, University of Thessaly, Biopolis, 41110, Greece
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, London, W2 1NY, UK
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 41110, Larissa, Greece
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110, Larissa, Greece
| |
Collapse
|
6
|
Dynamic Regulation of Cysteine Oxidation and Phosphorylation in Myocardial Ischemia-Reperfusion Injury. Cells 2021; 10:cells10092388. [PMID: 34572037 PMCID: PMC8469016 DOI: 10.3390/cells10092388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury significantly alters heart function following infarct and increases the risk of heart failure. Many studies have sought to preserve irreplaceable myocardium, termed cardioprotection, but few, if any, treatments have yielded a substantial reduction in clinical I/R injury. More research is needed to fully understand the molecular pathways that govern cardioprotection. Redox mechanisms, specifically cysteine oxidations, are acute and key regulators of molecular signaling cascades mediated by kinases. Here, we review the role of reactive oxygen species in modifying cysteine residues and how these modifications affect kinase function to impact cardioprotection. This exciting area of research may provide novel insight into mechanisms and likely lead to new treatments for I/R injury.
Collapse
|
7
|
Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021; 10:cells10040922. [PMID: 33923648 PMCID: PMC8073060 DOI: 10.3390/cells10040922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, cAMP signaling plays a key role in the regulation of cardiac function. Activation of this intracellular signaling pathway mirrors cardiomyocyte adaptation to various extracellular stimuli. Extracellular ligand binding to seven-transmembrane receptors (also known as GPCRs) with G proteins and adenylyl cyclases (ACs) modulate the intracellular cAMP content. Subsequently, this second messenger triggers activation of specific intracellular downstream effectors that ensure a proper cellular response. Therefore, it is essential for the cell to keep the cAMP signaling highly regulated in space and time. The temporal regulation depends on the activity of ACs and phosphodiesterases. By scaffolding key components of the cAMP signaling machinery, A-kinase anchoring proteins (AKAPs) coordinate both the spatial and temporal regulation. Myocardial infarction is one of the major causes of death in industrialized countries and is characterized by a prolonged cardiac ischemia. This leads to irreversible cardiomyocyte death and impairs cardiac function. Regardless of its causes, a chronic activation of cardiac cAMP signaling is established to compensate this loss. While this adaptation is primarily beneficial for contractile function, it turns out, in the long run, to be deleterious. This review compiles current knowledge about cardiac cAMP compartmentalization under physiological conditions and post-myocardial infarction when it appears to be profoundly impaired.
Collapse
|
8
|
Anti-apoptotic peptide for long term cardioprotection in a mouse model of myocardial ischemia-reperfusion injury. Sci Rep 2020; 10:18116. [PMID: 33093627 PMCID: PMC7582178 DOI: 10.1038/s41598-020-75154-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/05/2020] [Indexed: 01/19/2023] Open
Abstract
Reperfusion therapy during myocardial infarction (MI) leads to side effects called ischemia–reperfusion (IR) injury for which no treatment exists. While most studies have targeted the intrinsic apoptotic pathway to prevent IR injury with no successful clinical translation, we evidenced recently the potent cardioprotective effect of the anti-apoptotic Tat-DAXXp (TD) peptide targeting the FAS-dependent extrinsic pathway. The aim of the present study was to evaluate TD long term cardioprotective effects against IR injury in a MI mouse model. TD peptide (1 mg/kg) was administered in mice subjected to MI (TD; n = 21), 5 min prior to reperfusion, and were clinically followed-up during 6 months after surgery. Plasma cTnI concentration evaluated 24 h post-MI was 70%-decreased in TD (n = 16) versus Ctrl (n = 20) mice (p***). Strain echocardiography highlighted a 24%-increase (p****) in the ejection fraction mean value in TD-treated (n = 12) versus Ctrl mice (n = 17) during the 6 month-period. Improved cardiac performance was associated to a 54%-decrease (p**) in left ventricular fibrosis at 6 months in TD (n = 16) versus Ctrl (n = 20). In conclusion, targeting the extrinsic pathway with TD peptide at the onset of reperfusion provided long-term cardioprotection in a mouse model of myocardial IR injury by improving post-MI cardiac performance and preventing cardiac remodeling.
Collapse
|
9
|
Huang J, Wang D, Huang LH, Huang H. Roles of Reconstituted High-Density Lipoprotein Nanoparticles in Cardiovascular Disease: A New Paradigm for Drug Discovery. Int J Mol Sci 2020; 21:ijms21030739. [PMID: 31979310 PMCID: PMC7037452 DOI: 10.3390/ijms21030739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/08/2023] Open
Abstract
Epidemiological results revealed that there is an inverse correlation between high-density lipoprotein (HDL) cholesterol levels and risks of atherosclerotic cardiovascular disease (ASCVD). Mounting evidence supports that HDLs are atheroprotective, therefore, many therapeutic approaches have been developed to increase HDL cholesterol (HDL-C) levels. Nevertheless, HDL-raising therapies, such as cholesteryl ester transfer protein (CETP) inhibitors, failed to ameliorate cardiovascular outcomes in clinical trials, thereby casting doubt on the treatment of cardiovascular disease (CVD) by increasing HDL-C levels. Therefore, HDL-targeted interventional studies were shifted to increasing the number of HDL particles capable of promoting ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux. One such approach was the development of reconstituted HDL (rHDL) particles that promote ABCA1-mediated cholesterol efflux from lipid-enriched macrophages. Here, we explore the manipulation of rHDL nanoparticles as a strategy for the treatment of CVD. In addition, we discuss technological capabilities and the challenge of relating preclinical in vivo mice research to clinical studies. Finally, by drawing lessons from developing rHDL nanoparticles, we also incorporate the viabilities and advantages of the development of a molecular imaging probe with HDL nanoparticles when applied to ASCVD, as well as gaps in technology and knowledge required for putting the HDL-targeted therapeutics into full gear.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, 318 Preston Research Building, 2200 Pierce Avenue, Nashville, TN 37232, USA
- Correspondence:
| | - Dongdong Wang
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland;
| | - Li-Hao Huang
- Pathology and Immunology Department, Washington University School of Medicine, St. Louis, MO 63110-1093, USA;
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
10
|
Chu SY, Peng F, Wang J, Liu L, Meng L, Zhao J, Han XN, Ding WH. Catestatin in defense of oxidative-stress-induced apoptosis: A novel mechanism by activating the beta2 adrenergic receptor and PKB/Akt pathway in ischemic-reperfused myocardium. Peptides 2020; 123:170200. [PMID: 31730792 DOI: 10.1016/j.peptides.2019.170200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Apoptosis induced by oxidative stress is one of the most important cardiomyocytes losses during ischemia-reperfusion (I/R). Catestatin (CST) has been demonstrated to have the anti-oxidative capacity in vitro. We hypothesized that CST intervention could reduce apoptosis of cardiomyocytes induced by oxidative stress in I/R. In Langendorff-perfused rat heart global I/R model, CST was introduced at the reperfusion stage. In comparison to the control group, CST led to preservation on activities of superoxide dismutase and glutathione peroxidase, improvement of hemodynamics, and reduced infarction area in reperfused myocardium. The protection of CST was also shown by less apoptotic cardiomyocytes in TUNEL staining, less caspase-3 activation, and increased phosphorylation of protein kinase B (PKB/Akt) in Western blot. To further demonstrate the benefits of CST and explore the possible underlying mechanism, H2O2-challenged primary-cultured neonatal rat cardiomyocytes were used to simulate the oxidative-stressed scenario. CST incubation with the H2O2-challenged cardiomyocytes led to reduction of apoptosis, which was demonstrated by less Hoechst 33342 positive staining of nuclei, less caspase-3 activation, and DNA fragmentation. The effect of CST was abrogated by pretreatment of the cardiomyocytes with the PI3K inhibitor LY294002. Furthermore, Akt activation and the anti-apoptosis effect of CST were abolished by pretreatment of the cardiomyocytes with β2 receptor inhibitor ICI118551. Thus, the salvage of oxidative-stress-induced apoptotic cardiomyocytes in I/R by CST might involve activation β2 receptor and regulation of PI3K/Akt signaling in reperfusion injury salvage kinase (RISK) pathway.
Collapse
Affiliation(s)
- Song-Yun Chu
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Fen Peng
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China; Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Jie Wang
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Lin Liu
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Lei Meng
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Jing Zhao
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Xiao-Ning Han
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Wen-Hui Ding
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
11
|
Tian Y, Miao B, Charles E, Kron IL, French BA, Yang Z. Stimulation of the Beta2 Adrenergic Receptor at Reperfusion Limits Myocardial Reperfusion Injury via an Interleukin-10-Dependent Anti-Inflammatory Pathway in the Spleen. Circ J 2018; 82:2829-2836. [PMID: 30158399 PMCID: PMC6380896 DOI: 10.1253/circj.cj-18-0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In addition to the airway-relaxing effects, β2 adrenergic receptor (β2AR) agonists are also found to have broad anti-inflammatory effects. The current study was conducted to define the role of β2AR agonists in limiting myocardial ischemia/reperfusion injury (IRI). METHODS AND RESULTS Adult male wild-type (WT) and interleukin (IL)-10 knockout (KO) mice underwent a 40-min left coronary artery ligation and 60-min reperfusion. A selective β2AR agonist, Clenbuterol, at doses of 0.1 μg or 1 μg/g weight i.v. 5 min before reperfusion, significantly reduced myocardial infarct size (IS) by 28% and 39% (vs. control, P<0.05) in WT mice respectively, but had no protective effect in IL-10 KO mice. Inhalational therapy with nebulized Clenbuterol, Albuterol, Salmeterol or Arformoterol immediately before ischemia significantly reduced IS (P<0.05) in WT mice. Splenectomy similarly reduced IS as Clenbuterol-treated mice, but intravenous Clenbuterol did not further reduce IS in splenectomized mice. In splenectomized WT mice, acute transfer of isolated splenocytes, not the Clenbuterol-pretreated splenocytes, restored the myocardial IS to the level of intact mice. Intravenous Clenbuterol significantly increased splenic protein levels of β2AR, phosphorylated Akt and IL-10 and plasma IL-10, and inhibited the expression of pro-inflammatory mRNAs. CONCLUSIONS Both intravenous and inhalational β2AR agonists exert a cardioprotective effect against IRI by activating the anti-inflammatory β2AR-IL-10 pathway.
Collapse
Affiliation(s)
- Yikui Tian
- Departments of Surgery, University of Virginia, Charlottesville, VA
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Miao
- Departments of Surgery, University of Virginia, Charlottesville, VA
- Department of Transplant Surgery, Third Hospital of Zhongshan University, Guangzhou, China
| | - Eric Charles
- Departments of Surgery, University of Virginia, Charlottesville, VA
| | - Irving L. Kron
- Departments of Surgery, University of Virginia, Charlottesville, VA
| | - Brent A. French
- Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Zequan Yang
- Departments of Surgery, University of Virginia, Charlottesville, VA
- Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|
12
|
Grisanti LA, Thomas TP, Carter RL, de Lucia C, Gao E, Koch WJ, Benovic JL, Tilley DG. Pepducin-mediated cardioprotection via β-arrestin-biased β2-adrenergic receptor-specific signaling. Theranostics 2018; 8:4664-4678. [PMID: 30279730 PMCID: PMC6160776 DOI: 10.7150/thno.26619] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
Reperfusion as a therapeutic intervention for acute myocardial infarction-induced cardiac injury itself induces further cardiomyocyte death. β-arrestin (βarr)-biased β-adrenergic receptor (βAR) activation promotes survival signaling responses in vitro; thus, we hypothesize that this pathway can mitigate cardiomyocyte death at the time of reperfusion to better preserve function. However, a lack of efficacious βarr-biased orthosteric small molecules has prevented investigation into whether this pathway relays protection against ischemic injury in vivo. We recently demonstrated that the pepducin ICL1-9, a small lipidated peptide fragment designed from the first intracellular loop of β2AR, allosterically engaged pro-survival signaling cascades in a βarr-dependent manner in vitro. Thus, in this study we tested whether ICL1-9 relays cardioprotection against ischemia/reperfusion (I/R)-induced injury in vivo. Methods: Wild-type (WT) C57BL/6, β2AR knockout (KO), βarr1KO and βarr2KO mice received intracardiac injections of either ICL1-9 or a scrambled control pepducin (Scr) at the time of ischemia (30 min) followed by reperfusion for either 24 h, to assess infarct size and cardiomyocyte death, or 4 weeks, to monitor the impact of ICL1-9 on long-term cardiac structure and function. Neonatal rat ventricular myocytes (NRVM) were used to assess the impact of ICL1-9 versus Scr pepducin on cardiomyocyte survival and mitochondrial superoxide formation in response to either serum deprivation or hypoxia/reoxygenation (H/R) in vitro and to investigate the associated mechanism(s). Results: Intramyocardial injection of ICL1-9 at the time of I/R reduced infarct size, cardiomyocyte death and improved cardiac function in a β2AR- and βarr-dependent manner, which led to improved contractile function early and less fibrotic remodeling over time. Mechanistically, ICL1-9 attenuated mitochondrial superoxide production and promoted cardiomyocyte survival in a RhoA/ROCK-dependent manner. RhoA activation could be detected in cardiomyocytes and whole heart up to 24 h post-treatment, demonstrating the stability of ICL1-9 effects on βarr-dependent β2AR signaling. Conclusion: Pepducin-based allosteric modulation of βarr-dependent β2AR signaling represents a novel therapeutic approach to reduce reperfusion-induced cardiac injury and relay long-term cardiac remodeling benefits.
Collapse
|
13
|
Acute and long-term cardioprotective effects of the Traditional Chinese Medicine MLC901 against myocardial ischemia-reperfusion injury in mice. Sci Rep 2017; 7:14701. [PMID: 29089640 PMCID: PMC5665902 DOI: 10.1038/s41598-017-14822-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
MLC901, a traditional Chinese medicine containing a cocktail of active molecules, both reduces cerebral infarction and improves recovery in patients with ischemic stroke. The aim of this study was to evaluate the acute and long-term benefits of MLC901 in ischemic and reperfused mouse hearts. Ex vivo, under physiological conditions, MLC901 did not show any modification in heart rate and contraction amplitude. However, upon an ischemic insult, MLC901 administration during reperfusion, improved coronary flow in perfused hearts. In vivo, MLC901 (4 µg/kg) intravenous injection 5 minutes before reperfusion provided a decrease in both infarct size (49.8%) and apoptosis (49.9%) after 1 hour of reperfusion. Akt and ERK1/2 survival pathways were significantly activated in the myocardium of those mice. In the 4-month clinical follow-up upon an additional continuous per os administration, MLC901 treatment decreased cardiac injury as revealed by a 45%-decrease in cTnI plasmatic concentrations and an improved cardiac performance assessed by echocardiography. A histological analysis revealed a 64%-decreased residual scar fibrosis and a 44%-increased vascular density in the infarct region. This paper demonstrates that MLC901 treatment was able to provide acute and long-term cardioprotective effects in a murine model of myocardial ischemia-reperfusion injury in vivo.
Collapse
|
14
|
Liu J, Sun F, Wang Y, Yang W, Xiao H, Zhang Y, Lu R, Zhu H, Zhuang Y, Pan Z, Wang Z, Du Z, Lu Y. Suppression of microRNA-16 protects against acute myocardial infarction by reversing beta2-adrenergic receptor down-regulation in rats. Oncotarget 2017; 8:20122-20132. [PMID: 28423616 PMCID: PMC5386749 DOI: 10.18632/oncotarget.15391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022] Open
Abstract
microRNA-16 (miR-16) has been shown to be up-regulated in ischemic heart. Beta2-adrenoreceptor (β2-AR) exerts cardioprotective property in ischemic injury. This study aims to determine the effect of miR-16 in cardiac injury in rats and the possible involvement of β2-AR in this process. Acute myocardial infarction (AMI) model in rats was induced by ligation of left coronary artery. Neonatal rat ventricular cells (NRVCs) were cultured in vitro tests. The cardiomyocyte model of oxidative injury was mimicked by hydrogen peroxide. The expression of miR-16 was obviously up-regulated and β2-AR was remarkably down-regulated in both AMI rats and NRVCs under oxidative stress. miR-16 over-expression in NRVCs reduced cell viability and increased apoptosis. Conversely, inhibition of endogenous miR-16 with its specific inhibitor reversed these changes. Over-expression of miR-16 using an miR-16 lentivirus in AMI rats markedly increased cardiac infarct area, lactate dehydrogenase and creatine kinase activity, and exacerbated cardiac dysfunction. Lentivirus-mediated knockdown of miR-16 alleviated acute cardiac injury. Moreover, miR-16 over-expression significantly suppressed β2-AR protein expression in both cultured NRVCs and AMI rats, while inhibition of miR-16 displayed opposite effect on β2-AR protein expression. Luciferase assay confirmed that miR-16 could directly target the 3′untranslated region of β2-AR mRNA. miR-16 is detrimental to the infarct heart and suppression of miR-16 protects rat hearts from ischemic injury via up-regulating of β2-AR by binding to the 3′untranslated region of β2-AR gene. This study indicates that targeting miR-16/β2-AR axis may be a promising strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, P.R. China
| | - Fei Sun
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, P.R. China
| | - Yuying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Wanqi Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Hongwen Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yue Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Renzhong Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Haixia Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yuting Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Zhiguo Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Zhimin Du
- Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin, P.R. China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
15
|
Fu Q, Wang Q, Xiang YK. Insulin and β Adrenergic Receptor Signaling: Crosstalk in Heart. Trends Endocrinol Metab 2017; 28:416-427. [PMID: 28256297 PMCID: PMC5535765 DOI: 10.1016/j.tem.2017.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/29/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
Abstract
Recent advances show that insulin may affect β adrenergic receptor (βAR) signaling in the heart to modulate cardiac function in clinically relevant states, such as diabetes mellitus (DM) and heart failure (HF). Conversely, activation of βAR regulates cardiac glucose uptake and promotes insulin resistance (IR) in HF. Here, we discuss the recent characterization of the interaction between the cardiac insulin receptor (InsR) and βAR in the myocardium, in which insulin stimulation crosstalks with cardiac βAR via InsR substrate (IRS)-dependent and G-protein receptor kinase 2 (GRK2)-mediated phosphorylation of β2AR. The insulin-induced phosphorylation promotes β2AR coupling to Gi and expression of phosphodiesterase 4D, which both inhibit cardiac adrenergic signaling and compromise cardiac contractile function. These recent developments could support new approaches for the effective prevention or treatment of obesity- or DM-related HF.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China.
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, CA, USA; VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
16
|
Headrick JP, Peart JN, Budiono BP, Shum DH, Neumann DL, Stapelberg NJ. The heartbreak of depression: ‘Psycho-cardiac’ coupling in myocardial infarction. J Mol Cell Cardiol 2017; 106:14-28. [PMID: 28366738 DOI: 10.1016/j.yjmcc.2017.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
|
17
|
Therapeutic synergy and complementarity for ischemia/reperfusion injury: β1-adrenergic blockade and phosphodiesterase-3 inhibition. Int J Cardiol 2016; 214:374-80. [DOI: 10.1016/j.ijcard.2016.03.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/08/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022]
|
18
|
Grisanti LA, Gumpert AM, Traynham CJ, Gorsky JE, Repas AA, Gao E, Carter RL, Yu D, Calvert JW, García AP, Ibáñez B, Rabinowitz JE, Koch WJ, Tilley DG. Leukocyte-Expressed β2-Adrenergic Receptors Are Essential for Survival After Acute Myocardial Injury. Circulation 2016; 134:153-67. [PMID: 27364164 DOI: 10.1161/circulationaha.116.022304] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/17/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Immune cell-mediated inflammation is an essential process for mounting a repair response after myocardial infarction (MI). The sympathetic nervous system is known to regulate immune system function through β-adrenergic receptors (βARs); however, their role in regulating immune cell responses to acute cardiac injury is unknown. METHODS Wild-type (WT) mice were irradiated followed by isoform-specific βAR knockout (βARKO) or WT bone-marrow transplantation (BMT) and after full reconstitution underwent MI surgery. Survival was monitored over time, and alterations in immune cell infiltration after MI were examined through immunohistochemistry. Alterations in splenic function were identified through the investigation of altered adhesion receptor expression. RESULTS β2ARKO BMT mice displayed 100% mortality resulting from cardiac rupture within 12 days after MI compared with ≈20% mortality in WT BMT mice. β2ARKO BMT mice displayed severely reduced post-MI cardiac infiltration of leukocytes with reciprocally enhanced splenic retention of the same immune cell populations. Splenic retention of the leukocytes was associated with an increase in vascular cell adhesion molecule-1 expression, which itself was regulated via β-arrestin-dependent β2AR signaling. Furthermore, vascular cell adhesion molecule-1 expression in both mouse and human macrophages was sensitive to β2AR activity, and spleens from human tissue donors treated with β-blocker showed enhanced vascular cell adhesion molecule-1 expression. The impairments in splenic retention and cardiac infiltration of leukocytes after MI were restored to WT levels via lentiviral-mediated re-expression of β2AR in β2ARKO bone marrow before transplantation, which also resulted in post-MI survival rates comparable to those in WT BMT mice. CONCLUSIONS Immune cell-expressed β2AR plays an essential role in regulating the early inflammatory repair response to acute myocardial injury by facilitating cardiac leukocyte infiltration.
Collapse
Affiliation(s)
- Laurel A Grisanti
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Anna M Gumpert
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Christopher J Traynham
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Joshua E Gorsky
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Ashley A Repas
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Erhe Gao
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Rhonda L Carter
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Daohai Yu
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - John W Calvert
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Andrés Pun García
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Borja Ibáñez
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Joseph E Rabinowitz
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Walter J Koch
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Douglas G Tilley
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.).
| |
Collapse
|
19
|
Shlomai G, Berkovitch A, Pinchevski-Kadir S, Bornstein G, Leibowitz A, Goldenberg I, Grossman E. The association between normal-range admission potassium levels in Israeli patients with acute coronary syndrome and early and late outcomes. Medicine (Baltimore) 2016; 95:e3778. [PMID: 27281080 PMCID: PMC4907658 DOI: 10.1097/md.0000000000003778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abnormal serum potassium levels are associated with an increased risk of ventricular arrhythmias and mortality in patients with acute myocardial infarction (AMI). The aim of the present study was to evaluate whether different levels of serum potassium, within the normal range, are associated with worse outcomes. The present study comprised 1277 patients with AMI and normal-range admission potassium levels (3.5-5.2 mEq/L), who were enrolled and prospectively followed up in the Acute Coronary Syndrome Israeli Survey between 2010 and 2013. Patients were divided into 4 quartiles based on admission potassium levels; "normal-low" (K ≥ 3.5 and K ≤ 3.9), "normal-moderate" (K > 3.9 and K ≤ 4.18), "normal-high" (K > 4.18 and K ≤ 4.45), and "normal-very high" (K > 4.45 and K ≤ 5.2). We analyzed the association between admission serum potassium levels and 7 days in-hospital complication rates, and 30-day and 1-year all-cause mortality rates. Patients with "normal-very high" potassium displayed increased frequency of baseline clinical risk factors and experienced a higher rate of acute kidney injury during hospitalization compared with the "normal-low" group (7.7% vs 2.4%; P = 0.002). However, the rate of in-hospital ventricular arrhythmias was similar across the range of admission potassium levels (overall P = 0.26), Multivariate analysis showed that compared with "low-normal" potassium values, patients with "normal-very high" potassium levels experienced increased risk for 30-days (adjusted hazard ratio 2.88, 95% confidence interval 1.05-7.87, P = 0.039) and 1-year all-cause mortality (adjusted hazard ratio 1.98, 95% confidence interval 1.05-3.75, P = 0.034). In patients admitted with AMI, admission serum potassium levels of 4.45 to 5.2 mEq/L are not associated with in-hospital ventricular arrhythmias, but are associated with increased short and long-term mortality.
Collapse
Affiliation(s)
- Gadi Shlomai
- Department of Internal Medicine D and Hypertension Unit
- The Dr Pinchas Borenstein Talpiot Medical Leadership Program 2013
| | - Anat Berkovitch
- Department of Internal Medicine D and Hypertension Unit
- Heart Institute and the Neufeld Cardiac Research Institute, Leviev Heart Center, the Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Gil Bornstein
- Department of Internal Medicine D and Hypertension Unit
| | | | - Ilan Goldenberg
- Heart Institute and the Neufeld Cardiac Research Institute, Leviev Heart Center, the Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ehud Grossman
- Department of Internal Medicine D and Hypertension Unit
- ∗Correspondence: Ehud Grossman, Dean, Sackler Faculty of Medicine, Tel-Aviv University, Head of Internal Medicine D and Hypertension Unit, The Chaim Sheba Medical Center, Tel Hashomer 52621, Israel ()
| |
Collapse
|
20
|
Schranz D, Voelkel NF. "Nihilism" of chronic heart failure therapy in children and why effective therapy is withheld. Eur J Pediatr 2016; 175:445-55. [PMID: 26895877 PMCID: PMC4806719 DOI: 10.1007/s00431-016-2700-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/06/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Major advances in chronic heart failure (cHF) therapy have been achieved and documented in adult patients, while research regarding the mechanisms and therapy of cHF in children has lagged behind. Based on receptor physiological studies and pharmacological knowledge, treatment with specific ß1-adrenergic receptor blocker (ARB), tissue angiotensin-converting enzyme inhibitor (ACE-I), and mineralocorticoid antagonists have to be recommended in children despite lack of sufficient data derived from prospective randomized studies. At our institution, bisoprolol, lisinopril, and spironolactone have been firmly established to treat systolic cHF, hypoplastic left heart syndrome (HLHS) following hybrid approach and congenital left-right shunt diseases, latest in patients where surgery has to be delayed. Chronic therapy with long-acting diuretics and fluid restriction are not advocated because short-term effects are achieved at the expense of further neuro-humoral stimulation. It remains unclear why diuretics are recommended although evidence-based studies, documenting long-term benefit, are missing. However, that is true for all currently used drugs for pediatric cHF. CONCLUSION This review focuses on the prevailing "nihilism" of cHF therapy in children with the goal to encourage physicians to treat pediatric cHF with a rationally designed therapy, which combines available agents that have been shown to improve survival in adult patients with cHF. Because of the lack of clinical trials, which generate the needed evidence, surrogate variables like heart and respiratory rate, weight gain, image-derived data, and biomarkers should be monitored and used instead. The recommended pharmacological therapy for systolic heart failure is also provided as the basis for utilizing reversible pulmonary arterial banding (PAB) as a novel strategy in young children with dilative cardiomyopathy (DCM) with preserved right ventricular function. WHAT IS KNOWN • Heart failure (HF) in children is a serious public health concern. • HF has numerous etiologies, but unspecific symptoms. • HF interplays among neuro-humoral, and molecular abnormalities. • Pediatric cHF-therapy is currently based on loop-diuretics, fluid restriction and digoxin. What is New: • Cardiac function analysis has to include cardiac synchrony and VVI. • Considering enormous potential of cardiac regeneration, therapy has to extend with selective ß1-ARB, tissue ACE-I and mineralocorticoid blockers, loop-diuretics avoided as ever possible. • Inhibition of the endogenous neuro-humoral stimulation is monitored by surrogate parameters as heart and breath rate and systolic and diastolic blood pressure. • Advocated HF therapy serves for regenerative strategies as reversible Pulmonary Artery Banding in DCM.
Collapse
Affiliation(s)
- Dietmar Schranz
- />Pediatric Heart Center, Justus-Liebig University Clinic, Feulgenstr. 12, 30385 Giessen, Germany
| | - Norbert F. Voelkel
- />School of Pharmacy, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
21
|
Aimo A, Borrelli C, Giannoni A, Pastormerlo LE, Barison A, Mirizzi G, Emdin M, Passino C. Cardioprotection by remote ischemic conditioning: Mechanisms and clinical evidences. World J Cardiol 2015; 7:621-632. [PMID: 26516416 PMCID: PMC4620073 DOI: 10.4330/wjc.v7.i10.621] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/29/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023] Open
Abstract
In remote ischemic conditioning (RIC), several cycles of ischemia and reperfusion render distant organ and tissues more resistant to the ischemia-reperfusion injury. The intermittent ischemia can be applied before the ischemic insult in the target site (remote ischemic preconditioning), during the ischemic insult (remote ischemic perconditioning) or at the onset of reperfusion (remote ischemic postconditioning). The mechanisms of RIC have not been completely defined yet; however, these mechanisms must be represented by the release of humoral mediators and/or the activation of a neural reflex. RIC has been discovered in the heart, and has been arising great enthusiasm in the cardiovascular field. Its efficacy has been evaluated in many clinical trials, which provided controversial results. Our incomplete comprehension of the mechanisms underlying the RIC could be impairing the design of clinical trials and the interpretation of their results. In the present review we summarize current knowledge about RIC pathophysiology and the data about its cardioprotective efficacy.
Collapse
|
22
|
Alleman RJ, Stewart LM, Tsang AM, Brown DA. Why Does Exercise "Trigger" Adaptive Protective Responses in the Heart? Dose Response 2015; 13:10.2203_dose-response.14-023.Alleman. [PMID: 26674259 PMCID: PMC4674163 DOI: 10.2203/dose-response.14-023.alleman] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Numerous epidemiological studies suggest that individuals who exercise have decreased cardiac morbidity and mortality. Pre-clinical studies in animal models also find clear cardioprotective phenotypes in animals that exercise, specifically characterized by lower myocardial infarction and arrhythmia. Despite the clear benefits, the underlying cellular and molecular mechanisms that are responsible for exercise preconditioning are not fully understood. In particular, the adaptive signaling events that occur during exercise to "trigger" cardioprotection represent emerging paradigms. In this review, we discuss recent studies that have identified several different factors that appear to initiate exercise preconditioning. We summarize the evidence for and against specific cellular factors in triggering exercise adaptations and identify areas for future study.
Collapse
Affiliation(s)
- Rick J Alleman
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| | - Luke M Stewart
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| | - Alvin M Tsang
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| | - David A Brown
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| |
Collapse
|
23
|
See Hoe LE, Schilling JM, Tarbit E, Kiessling CJ, Busija AR, Niesman IR, Du Toit E, Ashton KJ, Roth DM, Headrick JP, Patel HH, Peart JN. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection. Am J Physiol Heart Circ Physiol 2014; 307:H895-903. [PMID: 25063791 DOI: 10.1152/ajpheart.00081.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02-1.0 mM MβCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MβCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10-30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 μM MβCD, whereas SLP was more robust and only inhibited with ≥200 μM MβCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression.
Collapse
Affiliation(s)
- Louise E See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia
| | - Jan M Schilling
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Emiri Tarbit
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia
| | - Can J Kiessling
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia; and
| | - Anna R Busija
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Ingrid R Niesman
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Eugene Du Toit
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia
| | - Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia; and
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, California
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, California
| | - Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia;
| |
Collapse
|
24
|
Role of soluble adenylyl cyclase in cell death and growth. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2646-55. [PMID: 25010002 DOI: 10.1016/j.bbadis.2014.06.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
cAMP signaling is an evolutionarily conserved intracellular communication system controlling numerous cellular functions. Until recently, transmembrane adenylyl cyclase (tmAC) was considered the major source for cAMP in the cell, and the role of cAMP signaling was therefore attributed exclusively to the activity of this family of enzymes. However, increasing evidence demonstrates the role of an alternative, intracellular source of cAMP produced by type 10 soluble adenylyl cyclase (sAC). In contrast to tmAC, sAC produces cAMP in various intracellular microdomains close to specific cAMP targets, e.g., in nucleus and mitochondria. Ongoing research demonstrates involvement of sAC in diverse physiological and pathological processes. The present review is focused on the role of cAMP signaling, particularly that of sAC, in cell death and growth. Although the contributions of sAC to the regulation of these cellular functions have only recently been discovered, current data suggest that sAC plays key roles in mitochondrial bioenergetics and the mitochondrial apoptosis pathway, as well as cell proliferation and development. Furthermore, recent reports suggest the importance of sAC in several pathologies associated with apoptosis as well as in oncogenesis. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
|
25
|
García-Prieto J, García-Ruiz JM, Sanz-Rosa D, Pun A, García-Alvarez A, Davidson SM, Fernández-Friera L, Nuno-Ayala M, Fernández-Jiménez R, Bernal JA, Izquierdo-Garcia JL, Jimenez-Borreguero J, Pizarro G, Ruiz-Cabello J, Macaya C, Fuster V, Yellon DM, Ibanez B. β3 adrenergic receptor selective stimulation during ischemia/reperfusion improves cardiac function in translational models through inhibition of mPTP opening in cardiomyocytes. Basic Res Cardiol 2014; 109:422. [PMID: 24951958 DOI: 10.1007/s00395-014-0422-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 01/19/2023]
Abstract
Selective stimulation of β3 adrenergic-receptor (β3AR) has been shown to reduce infarct size in a mouse model of myocardial ischemia/reperfusion. However, its functional long-term effect and the cardioprotective mechanisms at the level of cardiomyocytes have not been elucidated, and the impact of β3AR stimulation has not been evaluated in a more translational large animal model. This study aimed at evaluating pre-perfusion administration of BRL37344 both in small and large animal models of myocardial ischemia/reperfusion. Pre-reperfusion administration of the β3AR agonist BRL37344 (5 μg/kg) reduced infarct size at 2-and 24-h reperfusion in wild-type mice. Long-term (12-weeks) left ventricular (LV) function assessed by echocardiography and cardiac magnetic resonance (CMR) was significantly improved in β3AR agonist-treated mice. Incubation with β3AR agonist (BRL37344, 7 μmol/L) significantly reduced cell death in isolated adult mouse cardiomyocytes during hypoxia/reoxygenation and decreased susceptibility to deleterious opening of the mitochondrial permeability transition pore (mPTP), via a mechanism dependent on the Akt-NO signaling pathway. Pre-reperfusion BRL37344 administration had no effect on infarct size in cyclophilin-D KO mice, further implicating mPTP in the mechanism of protection. Large-white pigs underwent percutaneous coronary ischemia/reperfusion and 3-T CMR at 7 and 45 days post-infarction. Pre-perfusion administration of BRL37344 (5 μg/kg) decreased infarct size and improved long-term LV contractile function. A single-dose administration of β3AR agonist before reperfusion decreased infarct size and resulted in a consistent and long-term improvement in cardiac function, both in small and large animal models of myocardial ischemia/reperfusion. This protection appears to be executed through inhibition of mPTP opening in cardiomyocytes.
Collapse
MESH Headings
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Animals
- Cardiotonic Agents/pharmacology
- Cell Death/drug effects
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/deficiency
- Cyclophilins/genetics
- Disease Models, Animal
- Ethanolamines/pharmacology
- Magnetic Resonance Imaging
- Male
- Mice, Knockout
- Mitochondrial Membrane Transport Proteins/antagonists & inhibitors
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Permeability Transition Pore
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nitric Oxide/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Adrenergic, beta-3/drug effects
- Receptors, Adrenergic, beta-3/metabolism
- Signal Transduction/drug effects
- Swine
- Time Factors
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Jaime García-Prieto
- Imaging, Epidemiology and Atherothrombosis Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bhushan S, Kondo K, Polhemus DJ, Otsuka H, Nicholson CK, Tao YX, Huang H, Georgiopoulou VV, Murohara T, Calvert JW, Butler J, Lefer DJ. Nitrite therapy improves left ventricular function during heart failure via restoration of nitric oxide-mediated cytoprotective signaling. Circ Res 2014; 114:1281-91. [PMID: 24599803 DOI: 10.1161/circresaha.114.301475] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE Nitric oxide (NO) bioavailability is reduced in the setting of heart failure. Nitrite (NO2) is a critically important NO intermediate that is metabolized to NO during pathological states. We have previously demonstrated that sodium nitrite ameliorates acute myocardial ischemia/reperfusion injury. OBJECTIVE No evidence exists as to whether increasing NO bioavailability via nitrite therapy attenuates heart failure severity after pressure-overload-induced hypertrophy. METHODS AND RESULTS Serum from patients with heart failure exhibited significantly decreased nitrosothiol and cGMP levels. Transverse aortic constriction was performed in mice at 10 to 12 weeks. Sodium nitrite (50 mg/L) or saline vehicle was administered daily in the drinking water postoperative from day 1 for 9 weeks. Echocardiography was performed at baseline and at 1, 3, 6, and 9 weeks after transverse aortic constriction to assess left ventricular dimensions and ejection fraction. We observed increased cardiac nitrite, nitrosothiol, and cGMP levels in mice treated with nitrite. Sodium nitrite preserved left ventricular ejection fraction and improved left ventricular dimensions at 9 weeks (P<0.001 versus vehicle). In addition, circulating and cardiac brain natriuretic peptide levels were attenuated in mice receiving nitrite (P<0.05 versus vehicle). Western blot analyses revealed upregulation of Akt-endothelial nitric oxide-nitric oxide-cGMP-GS3Kβ signaling early in the progression of hypertrophy and heart failure. CONCLUSIONS These results support the emerging concept that nitrite therapy may be a viable clinical option for increasing NO levels and may have a practical clinical use in the treatment of heart failure.
Collapse
Affiliation(s)
- Shashi Bhushan
- From the LSU Cardiovascular Center of Excellence, LSU Health Sciences Center, New Orleans, LA (S.B., D.J.P., H.O., D.J.L.); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (K.K., T.M.); Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center (C.K.N., J.W.C.) and Division of Cardiology, Department of Medicine (V.V.G., J.B.), Emory University School of Medicine, Atlanta, GA; and Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, AL (Y.-X.T., H.H.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Calvert JW, Lefer DJ. Role of β-adrenergic receptors and nitric oxide signaling in exercise-mediated cardioprotection. Physiology (Bethesda) 2013; 28:216-24. [PMID: 23817796 DOI: 10.1152/physiol.00011.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Exercise promotes cardioprotection in both humans and animals not only by reducing risk factors associated with cardiovascular disease but by reducing myocardial infarction and improving survival following ischemia. This article will define the role that nitric oxide and β-adrenergic receptors play in mediating the cardioprotective effects of exercise in the setting of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- John W Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | |
Collapse
|
28
|
Zhao Y, Bhushan S, Yang C, Otsuka H, Stein JD, Pacheco A, Peng B, Devarie-Baez NO, Aguilar HC, Lefer DJ, Xian M. Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury. ACS Chem Biol 2013; 8:1283-90. [PMID: 23547844 DOI: 10.1021/cb400090d] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S), known as an important cellular signaling molecule, plays critical roles in many physiological and/or pathological processes. Modulation of H2S levels could have tremendous therapeutic value. However, the study on H2S has been hindered due to the lack of controllable H2S releasing agents that could mimic the slow and moderate H2S release in vivo. In this work we report the design, synthesis, and biological evaluation of a new class of controllable H2S donors. Twenty-five donors were prepared and tested. Their structures were based on a perthiol template, which was suggested to be involved in H2S biosynthesis. H2S release mechanism from these donors was studied and proved to be thiol-dependent. We also developed a series of cell-based assays to access their H2S-related activities. H9c2 cardiac myocytes were used in these experiments. We tested lead donors' cytotoxicity and confirmed their H2S production in cells. Finally we demonstrated that selected donors showed potent protective effects in an in vivo murine model of myocardial ischemia-reperfusion injury, through a H2S-related mechanism.
Collapse
Affiliation(s)
| | - Shashi Bhushan
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Carlyle Fraser
Heart Center, Atlanta, Georgia 30308, United States
| | - Chuntao Yang
- Department of Physiology, Guangzhou Medical University, Guangzhou 510182, China
| | - Hiroyuki Otsuka
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Carlyle Fraser
Heart Center, Atlanta, Georgia 30308, United States
| | | | | | | | | | | | - David J. Lefer
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Carlyle Fraser
Heart Center, Atlanta, Georgia 30308, United States
| | | |
Collapse
|
29
|
Affiliation(s)
- Mahir Karakas
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | |
Collapse
|
30
|
Abstract
Heart failure (HF) is a vicious circle in which an original insult leading to mechanical cardiac dysfunction initiates multiple morphological, biochemical and molecular pathological alterations referred to as cardiac remodelling. Remodelling leads to further deterioration of cardiac function and functional reserve. Interrupting or reversing cardiac remodelling is a major therapeutic goal of HF therapies. The role of molecules and molecular pathways in cardiac remodelling and HF has been extensively studied. Multiple approaches are now used or investigated in HF therapy, including pharmacological therapy, device therapy, gene therapy, cell therapy and biological therapy targeting cytokines and growth factors. This review explores the molecular targets and molecular bases of current and prospective therapies in HF.
Collapse
Affiliation(s)
- Elie R Chemaly
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|