1
|
HDL, cholesterol efflux, and ABCA1: Free from good and evil dualism. J Pharmacol Sci 2022; 150:81-89. [DOI: 10.1016/j.jphs.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
|
2
|
Esobi I, Olanrewaju O, Echesabal-Chen J, Stamatikos A. Utilizing the LoxP-Stop-LoxP System to Control Transgenic ABC-Transporter Expression In Vitro. Biomolecules 2022; 12:679. [PMID: 35625607 PMCID: PMC9138957 DOI: 10.3390/biom12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
ABCA1 and ABCG1 are two ABC-transporters well-recognized to promote the efflux of cholesterol to apoAI and HDL, respectively. As these two ABC-transporters are critical to cholesterol metabolism, several studies have assessed the impact of ABCA1 and ABCG1 expression on cellular cholesterol homeostasis through ABC-transporter ablation or overexpressing ABCA1/ABCG1. However, for the latter, there are currently no well-established in vitro models to effectively induce long-term ABC-transporter expression in a variety of cultured cells. Therefore, we performed proof-of-principle in vitro studies to determine whether a LoxP-Stop-LoxP (LSL) system would provide Cre-inducible ABC-transporter expression. In our studies, we transfected HEK293 cells and the HEK293-derived cell line 293-Cre cells with ABCA1-LSL and ABCG1-LSL-based plasmids. Our results showed that while the ABCA1/ABCG1 protein expression was absent in the transfected HEK293 cells, the ABCA1 and ABCG1 protein expression was detected in the 293-Cre cells transfected with ABCA1-LSL and ABCG1-LSL, respectively. When we measured cholesterol efflux in transfected 293-Cre cells, we observed an enhanced apoAI-mediated cholesterol efflux in 293-Cre cells overexpressing ABCA1, and an HDL2-mediated cholesterol efflux in 293-Cre cells constitutively expressing ABCG1. We also observed an appreciable increase in HDL3-mediated cholesterol efflux in ABCA1-overexpressing 293-Cre cells, which suggests that ABCA1 is capable of effluxing cholesterol to small HDL particles. Our proof-of-concept experiments demonstrate that the LSL-system can be used to effectively regulate ABC-transporter expression in vitro, which, in turn, allows ABCA1/ABCG1-overexpression to be extensively studied at the cellular level.
Collapse
Affiliation(s)
| | | | | | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (I.E.); (O.O.); (J.E.-C.)
| |
Collapse
|
3
|
Kirk LM, Waits CMK, Bashore AC, Dosso B, Meyers AK, Renaldo AC, DePalma TJ, Simms KN, Hauser N, Chuang Key CC, McCall CE, Parks JS, Sergeant S, Langefeld CD, Skardal A, Rahbar E. Exploiting three-dimensional human hepatic constructs to investigate the impact of rs174537 on fatty acid metabolism. PLoS One 2022; 17:e0262173. [PMID: 35051193 PMCID: PMC8775235 DOI: 10.1371/journal.pone.0262173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
The Modern Western Diet has been associated with the rise in metabolic and inflammatory diseases, including obesity, diabetes, and cardiovascular disease. This has been attributed, in part, to the increase in dietary omega-6 polyunsaturated fatty acid (PUFA) consumption, specifically linoleic acid (LA), arachidonic acid (ARA), and their subsequent metabolism to pro-inflammatory metabolites which may be driving human disease. Conversion of dietary LA to ARA is regulated by genetic variants near and within the fatty acid desaturase (FADS) haplotype block, most notably single nucleotide polymorphism rs174537 is strongly associated with FADS1 activity and expression. This variant and others within high linkage disequilibrium may potentially explain the diversity in both diet and inflammatory mediators that drive chronic inflammatory disease in human populations. Mechanistic exploration into this phenomenon using human hepatocytes is limited by current two-dimensional culture models that poorly replicate in vivo functionality. Therefore, we aimed to develop and characterize a three-dimensional hepatic construct for the study of human PUFA metabolism. Primary human hepatocytes cultured in 3D hydrogels were characterized for their capacity to represent basic lipid processing functions, including lipid esterification, de novo lipogenesis, and cholesterol efflux. They were then exposed to control and LA-enriched media and reproducibly displayed allele-specific metabolic activity of FADS1, based on genotype at rs174537. Hepatocytes derived from individuals homozygous with the minor allele at rs174537 (i.e., TT) displayed the slowest metabolic conversion of LA to ARA and significantly reduced FADS1 and FADS2 expression. These results support the feasibility of using 3D human hepatic cultures for the study of human PUFA and lipid metabolism and relevant gene-diet interactions, thereby enabling future nutrition targets in humans.
Collapse
Affiliation(s)
- L. Madison Kirk
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Charlotte Mae K. Waits
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Alexander C. Bashore
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Beverly Dosso
- Department of Integrative Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Allison K. Meyers
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Antonio C. Renaldo
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Thomas J. DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Kelli N. Simms
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Nathaniel Hauser
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Chia-Chi Chuang Key
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Charles E. McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - John S. Parks
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
4
|
Zanotti I, Potì F, Cuchel M. HDL and reverse cholesterol transport in humans and animals: Lessons from pre-clinical models and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159065. [PMID: 34637925 DOI: 10.1016/j.bbalip.2021.159065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The ability to accept cholesterol from cells and to promote reverse cholesterol transport (RCT) represents the best characterized antiatherogenic function of HDL. Studies carried out in animal models have unraveled the multiple mechanisms by which these lipoproteins drive cholesterol efflux from macrophages and cholesterol uptake to the liver. Moreover, the influence of HDL composition and the role of lipid transporters have been clarified by using suitable transgenic models or through experimental design employing pharmacological or nutritional interventions. Cholesterol efflux capacity (CEC), an in vitro assay developed to offer a measure of the first step of RCT, has been shown to associate with cardiovascular risk in several human cohorts, supporting the atheroprotective role of RCT in humans as well. However, negative data in other cohorts have raised concerns on the validity of this biomarker. In this review we will present the most relevant data documenting the role of HDL in RCT, as assessed in classical or innovative methodological approaches.
Collapse
Affiliation(s)
- Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesco Potì
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Carvedilol Ameliorates Experimental Atherosclerosis by Regulating Cholesterol Efflux and Exosome Functions. Int J Mol Sci 2019; 20:ijms20205202. [PMID: 31635197 PMCID: PMC6834197 DOI: 10.3390/ijms20205202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Carvedilol (Cav), a nonselective β-blocker with α1 adrenoceptor blocking effect, has been used as a standard therapy for coronary artery disease. This study investigated the effects of Cav on exosome expression and function, ATP-binding cassette transporter A1 (ABCA1) expression, and cholesterol efflux that are relevant to the process of atherosclerosis. Human monocytic (THP-1) cell line and human hepatic (Huh-7) cells were treated with Cav, and cholesterol efflux was measured. Exosomes from cell culture medium or mice serum were isolated using glycan-coated recognition beads. Low-density lipoprotein receptor knockout (ldlr−/−) mice were fed with high-fat diet and treated with Cav. Cav accentuated cholesterol efflux and enhanced the expressions of ABCA1 protein and mRNA in both THP-1 and Huh-7 cells. In addition, Cav increased expression and function of exosomal ABCA1 in THP-1 macrophage exosomes. The mechanisms were associated with inhibition of nuclear factor-κB (NF-κB) and protein kinase B (Akt). In hypercholesterolemic ldlr−/− mice, Cav enhanced serum exosomal ABCA1 expression and suppressed atherosclerosis by inhibiting lipid deposition and macrophage accumulation. Cav halts atherosclerosis by enhancing cholesterol efflux and increasing ABCA1 expression in macrophages and in exosomes, possibly through NF-κB and Akt signaling, which provides mechanistic insights regarding the beneficial effects of Cav on atherosclerotic cardiovascular disease.
Collapse
|
7
|
Sasaki M, Komatsu T, Ikewaki K. Impact of Hepatic ABCA1 (ATP-Binding Cassette Transporter A1) Deletion on Reverse Cholesterol Transport A New Clue in Solving Complex HDL (High-Density Lipoprotein) Metabolism. Arterioscler Thromb Vasc Biol 2019; 39:1699-1701. [PMID: 31433697 DOI: 10.1161/atvbaha.119.313016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Makoto Sasaki
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (M.S., T.K., K.I.)
| | - Tomohiro Komatsu
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (M.S., T.K., K.I.).,Research Institute for Physical Activity, Fukuoka University, Japan (T.K.)
| | - Katsunori Ikewaki
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (M.S., T.K., K.I.)
| |
Collapse
|
8
|
Bashore AC, Liu M, Key CCC, Boudyguina E, Wang X, Carroll CM, Sawyer JK, Mullick AE, Lee RG, Macauley SL, Parks JS. Targeted Deletion of Hepatocyte Abca1 Increases Plasma HDL (High-Density Lipoprotein) Reverse Cholesterol Transport via the LDL (Low-Density Lipoprotein) Receptor. Arterioscler Thromb Vasc Biol 2019; 39:1747-1761. [PMID: 31167565 DOI: 10.1161/atvbaha.119.312382] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The role of hepatocyte Abca1 (ATP binding cassette transporter A1) in trafficking hepatic free cholesterol (FC) into plasma versus bile for reverse cholesterol transport (RCT) is poorly understood. We hypothesized that hepatocyte Abca1 recycles plasma HDL-C (high-density lipoprotein cholesterol) taken up by the liver back into plasma, maintaining the plasma HDL-C pool, and decreasing HDL-mediated RCT into feces. Approach and Results: Chow-fed hepatocyte-specific Abca1 knockout (HSKO) and control mice were injected with human HDL radiolabeled with 125I-tyramine cellobiose (125I-TC; protein) and 3H-cholesteryl oleate (3H-CO). 125I-TC and 3H-CO plasma decay, plasma HDL 3H-CO selective clearance (ie, 3H-125I fractional catabolic rate), liver radiolabel uptake, and fecal 3H-sterol were significantly greater in HSKO versus control mice, supporting increased plasma HDL RCT. Twenty-four hours after 3H-CO-HDL injection, HSKO mice had reduced total hepatic 3H-FC (ie, 3H-CO hydrolyzed to 3H-FC in liver) resecretion into plasma, demonstrating Abca1 recycled HDL-derived hepatic 3H-FC back into plasma. Despite similar liver LDLr (low-density lipoprotein receptor) expression between genotypes, HSKO mice treated with LDLr-targeting versus control antisense oligonucleotide had slower plasma 3H-CO-HDL decay, reduced selective 3H-CO clearance, and decreased fecal 3H-sterol excretion that was indistinguishable from control mice. Increased RCT in HSKO mice was selective for 3H-CO-HDL, since macrophage RCT was similar between genotypes. CONCLUSIONS Hepatocyte Abca1 deletion unmasks a novel and selective FC trafficking pathway that requires LDLr expression, accelerating plasma HDL-selective CE uptake by the liver and promoting HDL RCT into feces, consequently reducing HDL-derived hepatic FC recycling into plasma.
Collapse
Affiliation(s)
- Alexander C Bashore
- From the Department of Internal Medicine, Section of Molecular Medicine (A.C.B., M.L., C-C.C.K., E.B., X.W., J.K.S., J.S.P.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Mingxia Liu
- From the Department of Internal Medicine, Section of Molecular Medicine (A.C.B., M.L., C-C.C.K., E.B., X.W., J.K.S., J.S.P.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Chia-Chi C Key
- From the Department of Internal Medicine, Section of Molecular Medicine (A.C.B., M.L., C-C.C.K., E.B., X.W., J.K.S., J.S.P.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Elena Boudyguina
- From the Department of Internal Medicine, Section of Molecular Medicine (A.C.B., M.L., C-C.C.K., E.B., X.W., J.K.S., J.S.P.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Xianfeng Wang
- From the Department of Internal Medicine, Section of Molecular Medicine (A.C.B., M.L., C-C.C.K., E.B., X.W., J.K.S., J.S.P.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Caitlin M Carroll
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine (C.M.C., S.L.M.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Janet K Sawyer
- From the Department of Internal Medicine, Section of Molecular Medicine (A.C.B., M.L., C-C.C.K., E.B., X.W., J.K.S., J.S.P.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Adam E Mullick
- Cardiovascular, Renal and Metabolic Group, Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M., R.G.L.)
| | - Richard G Lee
- Cardiovascular, Renal and Metabolic Group, Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M., R.G.L.)
| | - Shannon L Macauley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine (C.M.C., S.L.M.), Wake Forest School of Medicine, Winston-Salem, NC
| | - John S Parks
- From the Department of Internal Medicine, Section of Molecular Medicine (A.C.B., M.L., C-C.C.K., E.B., X.W., J.K.S., J.S.P.), Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
9
|
Zhao L, Huang J, Zhu Y, Han S, Qing K, Wang J, Feng Y. miR-33-5p knockdown attenuates abdominal aortic aneurysm progression via promoting target adenosine triphosphate-binding cassette transporter A1 expression and activating the PI3K/Akt signaling pathway. Perfusion 2019; 35:57-65. [PMID: 31170866 DOI: 10.1177/0267659119850685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study was to investigate the role of miR-33-5p in abdominal aortic aneurysm progression, which regulated adenosine triphosphate-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux and lipid accumulation in THP-1 macrophage-derived foam cells through the PI3K/Akt pathway. METHODS Quantitative reverse transcription polymerase chain reaction was used to evaluate the expression level of miR-33-5p and ABCA1 mRNA in abdominal aortic aneurysm patient and normal person tissues. The relationship between miR-33-5p and ABCA1 was examined by dual luciferase report assay. High-performance liquid chromatography was used to evaluate the levels of cholesterol contents. Cholesterol efflux detection was performed by liquid scintillator. The expression of inflammatory cytokines was detected by quantitative reverse transcription polymerase chain reaction. Western blot was applied to determine the expression levels of ABCA1, PI3K (p-PI3K), and Akt (p-Akt). RESULTS The quantitative reverse transcription polymerase chain reaction analysis results revealed miR-33-5p overexpression in abdominal aortic aneurysm tissues, but the expression level of ABCA1 was lower in abdominal aortic aneurysm tissues than non-abdominal aortic aneurysm tissues. Subsequently, the dual luciferase report gene assay confirmed that ABCA1 was a target of miR-33-5p, and miR-33-5p-negative regulated ABCA1 expression. Moreover, the expression levels of p-PI3K, p-Akt, and ABCA1 were decreased in THP-1 cell transferred with ABCA1 siRNA, but knockdown of miR-33-5p had an opposite effect. Furthermore, knockdown of miR-33-5p decreased the expression of MMP-2, MMP-9, TNF-α, total cellular cholesterol, and promoted cholesterol efflux in THP-1-derived foam cells. Importantly, LY294002 (PI3K inhibitor) or si-ABCA1 completely inhibited the stimulatory effects of miR-33-5p inhibitor. CONCLUSION This study has found that knockdown of miR-33-5p induced ABCA1 expression and promoted inflammatory cytokines and cholesterol efflux likely via activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Lingfeng Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Jian Huang
- Cancer Center, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Yancui Zhu
- Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Shengbin Han
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Kaixiong Qing
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Jin Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Yaoyu Feng
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| |
Collapse
|
10
|
Stamatikos A, Dronadula N, Ng P, Palmer D, Knight E, Wacker BK, Tang C, Kim F, Dichek DA. ABCA1 Overexpression in Endothelial Cells In Vitro Enhances ApoAI-Mediated Cholesterol Efflux and Decreases Inflammation. Hum Gene Ther 2018; 30:236-248. [PMID: 30079772 DOI: 10.1089/hum.2018.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, a disease of blood vessels, is driven by cholesterol accumulation and inflammation. Gene therapy that removes cholesterol from blood vessels and decreases inflammation is a promising approach for prevention and treatment of atherosclerosis. In previous work, we reported that helper-dependent adenoviral (HDAd) overexpression of apolipoprotein A-I (apoAI) in endothelial cells (ECs) increases cholesterol efflux in vitro and reduces atherosclerosis in vivo. However, the effect of HDAdApoAI on atherosclerosis is partial. To improve this therapy, we considered concurrent overexpression of ATP-binding cassette subfamily A, member 1 (ABCA1), a protein that is required for apoAI-mediated cholesterol efflux. Before attempting combined apoAI/ABCA1 gene therapy, we tested whether an HDAd that expresses ABCA1 (HDAdABCA1) increases EC cholesterol efflux, whether increased cholesterol efflux alters normal EC physiology, and whether ABCA1 overexpression in ECs has anti-inflammatory effects. HDAdABCA1 increased EC ABCA1 protein (∼3-fold; p < 0.001) and apoAI-mediated cholesterol efflux (2.3-fold; p = 0.007). Under basal culture conditions, ABCA1 overexpression did not alter EC proliferation, metabolism, migration, apoptosis, nitric oxide production, or inflammatory gene expression. However, in serum-starved, apoAI-treated EC, ABCA1 overexpression had anti-inflammatory effects: decreased inflammatory gene expression (∼50%; p ≤ 0.02 for interleukin [IL]-6, tumor necrosis factor [TNF]-α, and vascular cell adhesion protein-1); reduced lipid-raft Toll-like receptor 4 (80%; p = 0.001); and a trend towards increased nitric oxide production (∼55%; p = 0.1). In ECs stimulated with lipopolysaccharide, ABCA1 overexpression markedly decreased inflammatory gene expression (∼90% for IL-6 and TNF-α; p < 0.001). Therefore, EC ABCA1 overexpression has no toxic effects and counteracts the two key drivers of atherosclerosis: cholesterol accumulation and inflammation. In vivo testing of HDAdABCA1 is warranted.
Collapse
Affiliation(s)
- Alexis Stamatikos
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Nagadhara Dronadula
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Philip Ng
- 2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna Palmer
- 2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ethan Knight
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Bradley K Wacker
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Chongren Tang
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Francis Kim
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - David A Dichek
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Duong M, Uno K, Nankivell V, Bursill C, Nicholls SJ. Induction of obesity impairs reverse cholesterol transport in ob/ob mice. PLoS One 2018; 13:e0202102. [PMID: 30216355 PMCID: PMC6138368 DOI: 10.1371/journal.pone.0202102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/27/2018] [Indexed: 11/25/2022] Open
Abstract
Objectives Obesity is an independent risk factor for cardiovascular disease. Reverse cholesterol transport (RCT) is an important cardioprotective mechanism. This study aimed to investigate RCT changes in a murine model of obesity. Methods Ob/ob and control mice were injected with [3H]-cholesterol-labelled macrophages and cholesterol accumulation quantified after 48 h. Ex vivo, cholesterol efflux and uptake were determined in hepatic and adipose tissues. Results Ob/ob mice had more labelled cholesterol in their plasma (86%, p<0.001), suggesting impaired RCT. SR-BI-mediated cholesterol efflux was elevated from ob/ob mice (serum, 33%; apoB-depleted plasma, 14%, p<0.01) and HDL-c were also higher (60%, p<0.01). Ex vivo it was found that cholesterol uptake was significantly lower into the livers and adipose tissue of ob/ob mice, compared to non-obese wildtype controls. Furthermore, ex vivo cholesterol efflux was reduced in ob/ob liver and adipose tissue towards apoA-I and HDL. Consistent with this, protein levels of SR-BI and ABCG1 were significantly lower in ob/ob hepatic and adipose tissue than in wildtype mice. Finally, labelled cholesterol concentrations were lower in ob/ob bile (67%, p<0.01) and faeces (76%, p<0.0001). Conclusion Obesity causes impairment in RCT due to reduced plasma cholesterol uptake and efflux by hepatocytes and adipocytes. A reduction in the capacity for plasma cholesterol clearance may partly account for increased CVD risk with obesity.
Collapse
Affiliation(s)
- MyNgan Duong
- Heart Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Cell Biology and Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- * E-mail:
| | - Kiyoko Uno
- Department of Cell Biology and Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Victoria Nankivell
- Heart Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Christina Bursill
- Heart Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stephen J. Nicholls
- Heart Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Cell Biology and Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
12
|
Key CCC, Liu M, Kurtz CL, Chung S, Boudyguina E, Dinh TA, Bashore A, Phelan PE, Freedman BI, Osborne TF, Zhu X, Ma L, Sethupathy P, Biddinger SB, Parks JS. Hepatocyte ABCA1 Deletion Impairs Liver Insulin Signaling and Lipogenesis. Cell Rep 2018; 19:2116-2129. [PMID: 28591582 DOI: 10.1016/j.celrep.2017.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022] Open
Abstract
Plasma membrane (PM) free cholesterol (FC) is emerging as an important modulator of signal transduction. Here, we show that hepatocyte-specific knockout (HSKO) of the cellular FC exporter, ATP-binding cassette transporter A1 (ABCA1), leads to decreased PM FC content and defective trafficking of lysosomal FC to the PM. Compared with controls, chow-fed HSKO mice had reduced hepatic (1) insulin-stimulated Akt phosphorylation, (2) activation of the lipogenic transcription factor Sterol Regulatory Element Binding Protein (SREBP)-1c, and (3) lipogenic gene expression. Consequently, Western-type diet-fed HSKO mice were protected from steatosis. Surprisingly, HSKO mice had intact glucose metabolism; they showed normal gluconeogenic gene suppression in response to re-feeding and normal glucose and insulin tolerance. We conclude that: (1) ABCA1 maintains optimal hepatocyte PM FC, through intracellular FC trafficking, for efficient insulin signaling; and (2) hepatocyte ABCA1 deletion produces a form of selective insulin resistance so that lipogenesis is suppressed but glucose metabolism remains normal.
Collapse
Affiliation(s)
- Chia-Chi C Key
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mingxia Liu
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - C Lisa Kurtz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Elena Boudyguina
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy A Dinh
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander Bashore
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Peter E Phelan
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy F Osborne
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Xuewei Zhu
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Lijun Ma
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Praveen Sethupathy
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02062, USA
| | - John S Parks
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
13
|
李 玥, 蓝 茜, 武 丽, 杜 小, Ezra KO, 李 冬, 吕 社. [Bidirectional regulation of Pam3CSK4?induced inflammatory response by ATP?binding cassette transporter A1 knockdown in mouse mononuclear macrophages in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1563-1569. [PMID: 29292246 PMCID: PMC6744013 DOI: 10.3969/j.issn.1673-4254.2017.12.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the regulatory effect of ATP?binding cassette transporter A1 (ABCA1) knockdown on inflammatory response induced by Pam3CSK4 in mouse mononuclear macrophage RAW264.7 cell line. METHODS A mouse mononuclear macrophage RAW264.7 cell line with stable ABCA1 knockdown was constructed and stimulated with Toll?like receptor 2 (TLR2) ligand Pam3CSK4, and the changes in the transcriptional levels of the proinflammatory and anti-inflammatory cytokines were analyzed in this cell model. RESULTS In RAW264.7 cells, ABCA1 knockdown significantly up-regulated Pam3CSK4 stimulation?induced expressions of IL?1β, TNF?α and IL?6 and also enhanced the expression of transcription factor cAMP?dependent transcription factor 3 (ATF3) without obviously affecting the expressions of the transcription factors ATF1, ATF2, ATF4 or ATF5. CONCLUSION ABCA1 knockdown in macrophages may have both proinflammatory and anti?inflammatory effects. ABCA1 knockdown up?regulates the transcription of ATF3 possibly through a mechanism that is different from that for the other members of the ATF protein family.
Collapse
Affiliation(s)
- 玥 李
- 西安交通大学医学部 基础医学院生物化学与分子生物学系,陕西 西安 710061Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
- 西安交通大学医学部 环境与疾病相关基因教育部重点实验室,陕西 西安 710061Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
| | - 茜 蓝
- 西安交通大学医学部 基础医学院生物化学与分子生物学系,陕西 西安 710061Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
- 西安交通大学医学部 环境与疾病相关基因教育部重点实验室,陕西 西安 710061Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
| | - 丽涛 武
- 西安交通大学医学部 基础医学院生物化学与分子生物学系,陕西 西安 710061Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
- 西安交通大学医学部 环境与疾病相关基因教育部重点实验室,陕西 西安 710061Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
| | - 小娟 杜
- 西安交通大学医学部 基础医学院生物化学与分子生物学系,陕西 西安 710061Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
- 西安交通大学医学部 环境与疾病相关基因教育部重点实验室,陕西 西安 710061Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
| | - Kombo Osoro Ezra
- 西安交通大学医学部 基础医学院生物化学与分子生物学系,陕西 西安 710061Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
- 西安交通大学医学部 环境与疾病相关基因教育部重点实验室,陕西 西安 710061Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
| | - 冬民 李
- 西安交通大学医学部 基础医学院生物化学与分子生物学系,陕西 西安 710061Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
- 西安交通大学医学部 环境与疾病相关基因教育部重点实验室,陕西 西安 710061Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
| | - 社民 吕
- 西安交通大学医学部 基础医学院生物化学与分子生物学系,陕西 西安 710061Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
- 西安交通大学医学部 环境与疾病相关基因教育部重点实验室,陕西 西安 710061Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an710061, China
| |
Collapse
|
14
|
Trigueros-Motos L, van Capelleveen JC, Torta F, Castaño D, Zhang LH, Chai EC, Kang M, Dimova LG, Schimmel AW, Tietjen I, Radomski C, Tan LJ, Thiam CH, Narayanaswamy P, Wu DH, Dorninger F, Yakala GK, Barhdadi A, Angeli V, Dubé MP, Berger J, Dallinga-Thie GM, Tietge UJ, Wenk MR, Hayden MR, Hovingh GK, Singaraja RR. ABCA8 Regulates Cholesterol Efflux and High-Density Lipoprotein Cholesterol Levels. Arterioscler Thromb Vasc Biol 2017; 37:2147-2155. [DOI: 10.1161/atvbaha.117.309574] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Objective—
High-density lipoproteins (HDL) are considered to protect against atherosclerosis in part by facilitating the removal of cholesterol from peripheral tissues. However, factors regulating lipid efflux are incompletely understood. We previously identified a variant in adenosine triphosphate–binding cassette transporter A8 (
ABCA8
) in an individual with low HDL cholesterol (HDLc). Here, we investigate the role of ABCA8 in cholesterol efflux and in regulating HDLc levels.
Approach and Results—
We sequenced
ABCA8
in individuals with low and high HDLc and identified, exclusively in low HDLc probands, 3 predicted deleterious heterozygous
ABCA8
mutations (p.Pro609Arg [P609R], IVS17-2 A>G and p.Thr741Stop [T741X]). HDLc levels were lower in heterozygous mutation carriers compared with first-degree family controls (0.86±0.34 versus 1.17±0.26 mmol/L;
P
=0.005). HDLc levels were significantly decreased by 29% (
P
=0.01) in
Abca8b
−/−
mice on a high-cholesterol diet compared with wild-type mice, whereas hepatic overexpression of human
ABCA8
in mice resulted in significant increases in plasma HDLc and the first steps of macrophage-to-feces reverse cholesterol transport. Overexpression of wild-type but not mutant ABCA8 resulted in a significant increase (1.8-fold;
P
=0.01) of cholesterol efflux to apolipoprotein AI in vitro. ABCA8 colocalizes and interacts with adenosine triphosphate–binding cassette transporter A1 and further potentiates adenosine triphosphate–binding cassette transporter A1–mediated cholesterol efflux.
Conclusions—
ABCA8 facilitates cholesterol efflux and modulates HDLc levels in humans and mice.
Collapse
Affiliation(s)
- Laia Trigueros-Motos
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Julian C. van Capelleveen
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Federico Torta
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - David Castaño
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Lin-Hua Zhang
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Ee Chu Chai
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Martin Kang
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Lidiya G. Dimova
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Alinda W.M. Schimmel
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Ian Tietjen
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Chris Radomski
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Liang Juin Tan
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Chung Hwee Thiam
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Pradeep Narayanaswamy
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Daniel Heqing Wu
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Fabian Dorninger
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Gopala Krishna Yakala
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Amina Barhdadi
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Veronique Angeli
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Marie-Pierre Dubé
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Johannes Berger
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Geesje M. Dallinga-Thie
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Uwe J.F. Tietge
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Markus R. Wenk
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Michael R. Hayden
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - G. Kees Hovingh
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| | - Roshni R. Singaraja
- From the Translational Laboratory in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (L.T.-M., D.C., E.C.C., L.J.T., D.H.W., G.K.Y., M.R.H., R.R.S.); Departments of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands (J.C.v.C., A.W.M.S., G.M.D.-T., G.K.H.); Faculty of Health Sciences, Simon Fraser University, Canada (I.T.); Department of Biochemistry, Yong Loo Lin School of
| |
Collapse
|
15
|
Bi X, Pashos EE, Cuchel M, Lyssenko NN, Hernandez M, Picataggi A, McParland J, Yang W, Liu Y, Yan R, Yu C, DerOhannessian SL, Phillips MC, Morrisey EE, Duncan SA, Rader DJ. ATP-Binding Cassette Transporter A1 Deficiency in Human Induced Pluripotent Stem Cell-Derived Hepatocytes Abrogates HDL Biogenesis and Enhances Triglyceride Secretion. EBioMedicine 2017; 18:139-145. [PMID: 28330813 PMCID: PMC5405159 DOI: 10.1016/j.ebiom.2017.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/05/2022] Open
Abstract
Despite the recognized role of the ATP-binding Cassette Transporter A1 (ABCA1) in high-density lipoprotein (HDL) metabolism, our understanding of ABCA1 deficiency in human hepatocytes is limited. To define the functional effects of human hepatocyte ABCA1 deficiency, we generated induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) from Tangier disease (TD) and matched control subjects. Control HLCs exhibited robust cholesterol efflux to apolipoprotein A-I (apoA-I) and formed nascent HDL particles. ABCA1-deficient HLCs failed to mediate lipid efflux or nascent HDL formation, but had elevated triglyceride (TG) secretion. Global transcriptome analysis revealed significantly increased ANGPTL3 expression in ABCA1-deficient HLCs. Angiopoietin-related protein 3 (ANGPTL3) was enriched in plasma of TD relative to control subjects. These results highlight the required role of ABCA1 in cholesterol efflux and nascent HDL formation by hepatocytes. Furthermore, our results suggest that hepatic ABCA1 deficiency results in increased hepatic TG and ANGPTL3 secretion, potentially underlying the elevated plasma TG levels in TD patients. ABCA1 deficiency in human hepatocytes abolishes nascent HDL formation, but elevates triglyceride secretion ABCA1 deficiency increases hepatic ANGPTL3 expression and secretion Tangier disease patients display higher plasma ANGPTL3 levels relative to normal HDL control subjects
ATP-Binding Cassette Transporter A1 (ABCA1) is a key regulator of high-density lipoprotein metabolism, but the intrinsic functional impact of human hepatocyte ABCA1 deficiency is yet to be defined. We generated hepatocyte-like cells (HLCs) from induced pluripotent stem cell (iPSC) of patients with Tangier disease (TD), a rare genetic disorder caused by mutations in ABCA1. ABCA1 deficiency in HLCs abrogates lipid efflux and nascent HDL formation but increases triglyceride secretion. ANGPTL3 has also been uncovered as a potential mediator of hypertriglyceridemia in TD. This study thus highlights the utility of iPSC-derived cells in disease modeling.
Collapse
Affiliation(s)
- Xin Bi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evanthia E Pashos
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marina Cuchel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas N Lyssenko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mayda Hernandez
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonino Picataggi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James McParland
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenli Yang
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruilan Yan
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Yu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie L DerOhannessian
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Phillips
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, SC 29425, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Kuwano T, Bi X, Cipollari E, Yasuda T, Lagor WR, Szapary HJ, Tohyama J, Millar JS, Billheimer JT, Lyssenko NN, Rader DJ. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport. J Lipid Res 2017; 58:731-741. [PMID: 28137768 DOI: 10.1194/jlr.m074625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT.
Collapse
Affiliation(s)
- Takashi Kuwano
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Xin Bi
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Eleonora Cipollari
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Tomoyuki Yasuda
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - William R Lagor
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Hannah J Szapary
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Junichiro Tohyama
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - John S Millar
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Jeffrey T Billheimer
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Nicholas N Lyssenko
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; Department of Medicine and Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
17
|
Norheim F, Hui ST, Kulahcioglu E, Mehrabian M, Cantor RM, Pan C, Parks BW, Lusis AJ. Genetic and hormonal control of hepatic steatosis in female and male mice. J Lipid Res 2016; 58:178-187. [PMID: 27811231 DOI: 10.1194/jlr.m071522] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
The etiology of nonalcoholic fatty liver disease is complex and influenced by factors such as obesity, insulin resistance, hyperlipidemia, and sex. We now report a study on sex difference in hepatic steatosis in the context of genetic variation using a population of inbred strains of mice. While male mice generally exhibited higher concentration of hepatic TG levels on a high-fat high-sucrose diet, sex differences showed extensive interaction with genetic variation. Differences in percentage body fat were the best predictor of hepatic steatosis among the strains and explained about 30% of the variation in both sexes. The difference in percent gonadal fat and HDL explained 9.6% and 6.7% of the difference in hepatic TGs between the sexes, respectively. Genome-wide association mapping of hepatic TG revealed some striking differences in genetic control of hepatic steatosis between females and males. Gonadectomy increased the hepatic TG to body fat percentage ratio among male, but not female, mice. Our data suggest that the difference between the sexes in hepatic TG can be partly explained by differences in body fat distribution, plasma HDL, and genetic regulation. Future studies are required to understand the molecular interactions between sex, genetics, and the environment.
Collapse
Affiliation(s)
- Frode Norheim
- Department of Medicine, Division of Cardiology, University of California at Los Angeles, Los Angeles, CA
| | - Simon T Hui
- Department of Medicine, Division of Cardiology, University of California at Los Angeles, Los Angeles, CA
| | - Emre Kulahcioglu
- Department of Medicine, Division of Cardiology, University of California at Los Angeles, Los Angeles, CA
| | - Margarete Mehrabian
- Department of Medicine, Division of Cardiology, University of California at Los Angeles, Los Angeles, CA
| | - Rita M Cantor
- Department of Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California at Los Angeles, Los Angeles, CA
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
18
|
Yang Y, Rosales C, Gillard BK, Gotto AM, Pownall HJ. Acylation of lysine residues in human plasma high density lipoprotein increases stability and plasma clearance in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1787-1795. [PMID: 27594697 DOI: 10.1016/j.bbalip.2016.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Although human plasma high density lipoproteins (HDL) concentrations negatively correlate with atherosclerotic cardiovascular disease, underlying mechanisms are unknown. Thus, there is continued interest in HDL structure and functionality. Numerous plasma factors disrupt HDL structure while inducing the release of lipid free apolipoprotein (apo) AI. Given that HDL is an unstable particle residing in a kinetic trap, we tested whether HDL could be stabilized by acylation with acetyl and hexanoyl anhydrides, giving AcHDL and HexHDL respectively. Lysine analysis with fluorescamine showed that AcHDL and HexHDL respectively contained 11 acetyl and 19 hexanoyl groups. Tests with biological and physicochemical perturbants showed that HexHDL was more stable than HDL to perturbant-induced lipid free apo AI formation. Like the reaction of streptococcal serum opacity factor against HDL, the interaction of HDL with its receptor, scavenger receptor class B member 1 (SR-B1), removes CE from HDL. Thus, we tested and validated the hypothesis that selective uptake of HexHDL-[3H]CE by Chinese Hamster Ovary cells expressing SR-B1 is less than that of HDL-[3H]CE; thus, selective SR-B1 uptake of HDL-CE depends on HDL instability. However, in mice, plasma clearance, hepatic uptake and sterol secretion into bile were faster from HexHDL-[3H]CE than from HDL-[3H]CE. Collectively, our data show that acylation increases HDL stability and that the reaction of plasma factors with HDL and SR-B1-mediated uptake are reduced by increased HDL stability. In vivo data suggest that HexHDL promotes charge-dependent reverse cholesterol transport, by a mechanism that increases hepatic sterol uptake via non SR-B1 receptors, thereby increasing bile acid output.
Collapse
Affiliation(s)
- Yaliu Yang
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| | - Corina Rosales
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Baiba K Gillard
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Antonio M Gotto
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Henry J Pownall
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
19
|
Affiliation(s)
- Hong Lu
- From the Saha Cardiovascular Research Center, University of Kentucky, Lexington.
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center, University of Kentucky, Lexington
| |
Collapse
|
20
|
Yakushiji E, Ayaori M, Nishida T, Shiotani K, Takiguchi S, Nakaya K, Uto-Kondo H, Ogura M, Sasaki M, Yogo M, Komatsu T, Lu R, Yokoyama S, Ikewaki K. Probucol-Oxidized Products, Spiroquinone and Diphenoquinone, Promote Reverse Cholesterol Transport in Mice. Arterioscler Thromb Vasc Biol 2016; 36:591-7. [PMID: 26848156 DOI: 10.1161/atvbaha.115.306376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/21/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Oxidized products of probucol, spiroquinone and diphenoquinone, were shown to increase cell cholesterol release and plasma high-density lipoprotein (HDL) by inhibiting degradation of ATP-binding cassette transporter A1. We investigated whether these compounds enhance reverse cholesterol transport in mice. APPROACH AND RESULTS Spiroquinone and diphenoquinone increased ATP-binding cassette transporter A1 protein (2.8- and 2.6-fold, respectively, P<0.01) and apolipoprotein A-I-mediated cholesterol release (1.4- and 1.4-fold, P<0.01 and P<0.05, respectively) in RAW264.7 cells. However, diphenoquinone, but not spiroquinone, enhanced cholesterol efflux to HDL (+12%, P<0.05), whereas both increased ATP-binding cassette transporter G1 protein, by 1.8- and 1.6-fold, respectively. When given orally to mice, both compounds significantly increased plasma HDL-cholesterol, by 19% and 20%, respectively (P<0.05), accompanied by an increase in hepatic and macrophage ATP-binding cassette transporter A1 but not ATP-binding cassette transporter G1. We next evaluated in vivo reverse cholesterol transport by injecting RAW264.7 cells labeled with (3)H-cholesterol intraperitoneally into mice. Both spiroquinone and diphenoquinone increased fecal excretion of the macrophage-derived (3)H-tracer, by 25% and 28% (P<0.01 and P<0.05), respectively. spiroquinone/diphenoquinone did not affect fecal excretion of HDL-derived (3)H-cholesterol, implying that macrophage-to-plasma was the most important step in spiroquinone/diphenoquinone-mediated promotion of in vivo reverse cholesterol transport. Finally, spiroquinone significantly reduced aortic atherosclerosis in apolipoprotein E null mice when compared with the vehicle. CONCLUSIONS Spiroquinone and diphenoquinone increase functional ATP-binding cassette transporter A1 in both the macrophages and the liver, elevate plasma HDL-cholesterol, and promote overall reverse cholesterol transport in vivo. These compounds are promising as therapeutic reagents against atherosclerosis.
Collapse
Affiliation(s)
- Emi Yakushiji
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Makoto Ayaori
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.).
| | - Takafumi Nishida
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Kazusa Shiotani
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Shunichi Takiguchi
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Kazuhiro Nakaya
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Harumi Uto-Kondo
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Masatsune Ogura
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Makoto Sasaki
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Makiko Yogo
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Tomohiro Komatsu
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Rui Lu
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Shinji Yokoyama
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| | - Katsunori Ikewaki
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.)
| |
Collapse
|
21
|
Gillard BK, Rodriguez PJ, Fields DW, Raya JL, Lagor WR, Rosales C, Courtney HS, Gotto AM, Pownall HJ. Streptococcal serum opacity factor promotes cholesterol ester metabolism and bile acid secretion in vitro and in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:196-204. [PMID: 26709142 DOI: 10.1016/j.bbalip.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/16/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
Abstract
Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids.
Collapse
Affiliation(s)
- Baiba K Gillard
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Perla J Rodriguez
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - David W Fields
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Joe L Raya
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Corina Rosales
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Harry S Courtney
- University of Tennessee Health Science Center, 956 Court Avenue Room H300A, Memphis, TN 38163 USA.
| | - Antonio M Gotto
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, 1305 York Ave., New York, NY 10021, USA.
| | - Henry J Pownall
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, 1305 York Ave., New York, NY 10021, USA.
| |
Collapse
|
22
|
Luthi AJ, Lyssenko NN, Quach D, McMahon KM, Millar JS, Vickers KC, Rader DJ, Phillips MC, Mirkin CA, Thaxton CS. Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high density lipoprotein. J Lipid Res 2015; 56:972-85. [PMID: 25652088 PMCID: PMC4409287 DOI: 10.1194/jlr.m054635] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/04/2015] [Indexed: 01/29/2023] Open
Abstract
The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1.
Collapse
Affiliation(s)
- Andrea J. Luthi
- Department of Chemistry Northwestern University, Evanston, IL 60208
| | - Nicholas N. Lyssenko
- Lipid Research Group, Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Duyen Quach
- Lipid Research Group, Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Kaylin M. McMahon
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
- Walter S. and Lucienne Driskill Graduate Training Program in Life Sciences, Northwestern University, Chicago, IL 60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - John S. Millar
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Michael C. Phillips
- Lipid Research Group, Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Chad A. Mirkin
- Department of Chemistry Northwestern University, Evanston, IL 60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
| | - C. Shad Thaxton
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Simpson Querrey Institute for BioNanotechnology and Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
23
|
Temel RE, Brown JM. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol Sci 2015; 36:440-51. [PMID: 25930707 DOI: 10.1016/j.tips.2015.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention.
Collapse
Affiliation(s)
- Ryan E Temel
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0509, USA.
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
24
|
Favari E, Chroni A, Tietge UJF, Zanotti I, Escolà-Gil JC, Bernini F. Cholesterol efflux and reverse cholesterol transport. Handb Exp Pharmacol 2015; 224:181-206. [PMID: 25522988 DOI: 10.1007/978-3-319-09665-0_4] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both alterations of lipid/lipoprotein metabolism and inflammatory events contribute to the formation of the atherosclerotic plaque, characterized by the accumulation of abnormal amounts of cholesterol and macrophages in the artery wall. Reverse cholesterol transport (RCT) may counteract the pathogenic events leading to the formation and development of atheroma, by promoting the high-density lipoprotein (HDL)-mediated removal of cholesterol from the artery wall. Recent in vivo studies established the inverse relationship between RCT efficiency and atherosclerotic cardiovascular diseases (CVD), thus suggesting that the promotion of this process may represent a novel strategy to reduce atherosclerotic plaque burden and subsequent cardiovascular events. HDL plays a primary role in all stages of RCT: (1) cholesterol efflux, where these lipoproteins remove excess cholesterol from cells; (2) lipoprotein remodeling, where HDL undergo structural modifications with possible impact on their function; and (3) hepatic lipid uptake, where HDL releases cholesterol to the liver, for the final excretion into bile and feces. Although the inverse association between HDL plasma levels and CVD risk has been postulated for years, recently this concept has been challenged by studies reporting that HDL antiatherogenic functions may be independent of their plasma levels. Therefore, assessment of HDL function, evaluated as the capacity to promote cell cholesterol efflux may offer a better prediction of CVD than HDL levels alone. Consistent with this idea, it has been recently demonstrated that the evaluation of serum cholesterol efflux capacity (CEC) is a predictor of atherosclerosis extent in humans.
Collapse
Affiliation(s)
- Elda Favari
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Liu M, Allegood J, Zhu X, Seo J, Gebre AK, Boudyguina E, Cheng D, Chuang CC, Shelness GS, Spiegel S, Parks JS. Uncleaved ApoM signal peptide is required for formation of large ApoM/sphingosine 1-phosphate (S1P)-enriched HDL particles. J Biol Chem 2015; 290:7861-70. [PMID: 25627684 DOI: 10.1074/jbc.m114.631101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein M (apoM), a plasma sphingosine 1-phosphate (S1P) carrier, associates with plasma HDL via its uncleaved signal peptide. Hepatocyte-specific apoM overexpression in mice stimulates formation of both larger nascent HDL in hepatocytes and larger mature apoM/S1P-enriched HDL particles in plasma by enhancing hepatic S1P synthesis and secretion. Mutagenesis of apoM glutamine 22 to alanine (apoM(Q22A)) introduces a functional signal peptidase cleavage site. Expression of apoM(Q22A) in ABCA1-expressing HEK293 cells resulted in the formation of smaller nascent HDL particles compared with wild type apoM (apoM(WT)). When apoM(Q22A) was expressed in vivo, using recombinant adenoviruses, smaller plasma HDL particles and decreased plasma S1P and apoM were observed relative to expression of apoM(WT). Hepatocytes isolated from both apoM(WT)- and apoM(Q22A)-expressing mice displayed an equivalent increase in cellular levels of S1P, relative to LacZ controls; however, relative to apoM(WT), apoM(Q22A) hepatocytes displayed more rapid apoM and S1P secretion but minimal apoM(Q22A) bound to nascent lipoproteins. Pharmacologic inhibition of ceramide synthesis increased cellular sphingosine and S1P but not medium S1P in both apoM(WT) and apoM(Q22A) hepatocytes. We conclude that apoM secretion is rate-limiting for hepatocyte S1P secretion and that its uncleaved signal peptide delays apoM trafficking out of the cell, promoting formation of larger nascent apoM- and S1P-enriched HDL particles that are probably precursors of larger apoM/S1P-enriched plasma HDL.
Collapse
Affiliation(s)
- Mingxia Liu
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Jeremy Allegood
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Xuewei Zhu
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Jeongmin Seo
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Abraham K Gebre
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Elena Boudyguina
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Dongmei Cheng
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Chia-Chi Chuang
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Gregory S Shelness
- From the Department of Internal Medicine, Section on Molecular Medicine, and the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Sarah Spiegel
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - John S Parks
- From the Department of Internal Medicine, Section on Molecular Medicine, and the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| |
Collapse
|
26
|
Abstract
High-density lipoprotein (HDL) is considered to be an anti-atherogenic lipoprotein moiety. Generation of genetically modified (total body and tissue-specific knockout) mouse models has significantly contributed to our understanding of HDL function. Here we will review data from knockout mouse studies on the importance of HDL's major alipoprotein apoA-I, the ABC transporters A1 and G1, lecithin:cholesterol acyltransferase, phospholipid transfer protein, and scavenger receptor BI for HDL's metabolism and its protection against atherosclerosis in mice. The initial generation and maturation of HDL particles as well as the selective delivery of its cholesterol to the liver are essential parameters in the life cycle of HDL. Detrimental atherosclerosis effects observed in response to HDL deficiency in mice cannot be solely attributed to the low HDL levels per se, as the low HDL levels are in most models paralleled by changes in non-HDL-cholesterol levels. However, the cholesterol efflux function of HDL is of critical importance to overcome foam cell formation and the development of atherosclerotic lesions in mice. Although HDL is predominantly studied for its atheroprotective action, the mouse data also suggest an essential role for HDL as cholesterol donor for steroidogenic tissues, including the adrenals and ovaries. Furthermore, it appears that a relevant interaction exists between HDL-mediated cellular cholesterol efflux and the susceptibility to inflammation, which (1) provides strong support for the novel concept that inflammation and metabolism are intertwining biological processes and (2) identifies the efflux function of HDL as putative therapeutic target also in other inflammatory diseases than atherosclerosis.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands,
| | | |
Collapse
|
27
|
Zhang H, Temel RE, Martel C. Cholesterol and lipoprotein metabolism: Early Career Committee contribution. Arterioscler Thromb Vasc Biol 2014; 34:1791-4. [PMID: 25142876 DOI: 10.1161/atvbaha.114.304267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hanrui Zhang
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (H.Z.); Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky, Lexington (R.E.T.); and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Ryan E Temel
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (H.Z.); Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky, Lexington (R.E.T.); and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (C.M.)
| | - Catherine Martel
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (H.Z.); Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky, Lexington (R.E.T.); and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (C.M.)
| |
Collapse
|
28
|
Van Eck M. ATP-binding cassette transporter A1: key player in cardiovascular and metabolic disease at local and systemic level. Curr Opin Lipidol 2014; 25:297-303. [PMID: 24992457 DOI: 10.1097/mol.0000000000000088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW ATP-binding cassette transporter A1 (ABCA1) facilitates cellular cholesterol efflux to lipid-poor apolipoprotein AI (apoAI) and plays a key role in the formation and function of HDL. This review summarizes the advances and new insights in the role of ABCA1 in cardiovascular and metabolic diseases from studies in genetically engineered mice. RECENT FINDINGS Recent studies show that low HDL associated with liver-specific deletion of ABCA1 does not affect macrophage reverse cholesterol transport or atherosclerosis susceptibility. In the intestine, ABCA1 contributes to the packaging of dietary cholesterol into HDL. Locally in the arterial wall, ABCA1 influences atherosclerosis by acting not only in bone marrow-derived cells but also in endothelial cells and smooth muscle cells. Furthermore, other than its established role in regulating insulin secretion by β-cells, evidence is provided that adipocyte-specific ABCA1 prevents fat storage and the development of impaired glucose tolerance. Moreover, new insights are provided on the post-transcriptional regulation of ABCA1 expression by microRNAs. SUMMARY Recent studies underscore the importance of ABCA1 in the prevention of cardiovascular and metabolic diseases. Furthermore, the discovery of the extensive regulation of ABCA1 expression by microRNAs has unraveled novel therapeutic targets for ABCA1-based strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Miranda Van Eck
- Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| |
Collapse
|
29
|
Breevoort SR, Angdisen J, Schulman IG. Macrophage-independent regulation of reverse cholesterol transport by liver X receptors. Arterioscler Thromb Vasc Biol 2014; 34:1650-60. [PMID: 24947527 DOI: 10.1161/atvbaha.114.303383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The ability of high-density lipoprotein (HDL) particles to accept cholesterol from peripheral cells, such as lipid-laden macrophages, and to transport cholesterol to the liver for catabolism and excretion in a process termed reverse cholesterol transport (RCT) is thought to underlie the beneficial cardiovascular effects of elevated HDL. The liver X receptors (LXRs; LXRα and LXRβ) regulate RCT by controlling the efflux of cholesterol from macrophages to HDL and the excretion, catabolism, and absorption of cholesterol in the liver and intestine. Importantly, treatment with LXR agonists increases RCT and decreases atherosclerosis in animal models. Nevertheless, LXRs are expressed in multiple tissues involved in RCT, and their tissue-specific contributions to RCT are still not well defined. APPROACH AND RESULTS Using tissue-specific LXR deletions together with in vitro and in vivo assays of cholesterol efflux and fecal cholesterol excretion, we demonstrate that macrophage LXR activity is neither necessary nor sufficient for LXR agonist-stimulated RCT. In contrast, the ability of LXR agonists primarily acting in the intestine to increase HDL mass and HDL function seems to underlie the ability of LXR agonists to stimulate RCT in vivo. CONCLUSIONS We demonstrate that activation of LXR in macrophages makes little or no contribution to LXR agonist-stimulated RCT. Unexpectedly, our studies suggest that the ability of macrophages to efflux cholesterol to HDL in vivo is not regulated by macrophage activity but is primarily determined by the quantity and functional activity of HDL.
Collapse
Affiliation(s)
- Sarah R Breevoort
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Jerry Angdisen
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Ira G Schulman
- From the Department of Pharmacology, University of Virginia, Charlottesville.
| |
Collapse
|
30
|
Canfrán-Duque A, Ramírez CM, Goedeke L, Lin CS, Fernández-Hernando C. microRNAs and HDL life cycle. Cardiovasc Res 2014; 103:414-22. [PMID: 24895349 DOI: 10.1093/cvr/cvu140] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
miRNAs have emerged as important regulators of lipoprotein metabolism. Work over the past few years has demonstrated that miRNAs control the expression of most of the genes associated with high-density lipoprotein (HDL) metabolism, including the ATP transporters, ABCA1 and ABCG1, and the scavenger receptor SRB1. These findings strongly suggest that miRNAs regulate HDL biogenesis, cellular cholesterol efflux, and HDL cholesterol (HDL-C) uptake in the liver, thereby controlling all of the steps of reverse cholesterol transport. Recent work in animal models has demonstrated that manipulating miRNA levels including miR-33 can increase circulating HDL-C. Importantly, antagonizing miR-33 in vivo enhances the regression and reduces the progression of atherosclerosis. These findings support the idea of developing miRNA inhibitors for the treatment of dyslipidaemia and related cardiovascular disorders such as atherosclerosis. This review article focuses on how HDL metabolism is regulated by miRNAs and how antagonizing miRNA expression could be a potential therapy for treating cardiometabolic diseases.
Collapse
Affiliation(s)
- Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chen-Kung Rd., Neihu 114, Taipei, Taiwan
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
31
|
Van Eck M, Van Berkel TJC. ATP-binding cassette transporter A1 in lipoprotein metabolism and atherosclerosis: a new piece of the complex puzzle. Arterioscler Thromb Vasc Biol 2013; 33:2281-3. [PMID: 24025543 DOI: 10.1161/atvbaha.113.301719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Miranda Van Eck
- From the Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
32
|
Kannisto K, Gåfvels M, Jiang ZY, Slätis K, Hu X, Jorns C, Steffensen KR, Eggertsen G. LXR driven induction of HDL-cholesterol is independent of intestinal cholesterol absorption and ABCA1 protein expression. Lipids 2013; 49:71-83. [PMID: 24163219 DOI: 10.1007/s11745-013-3853-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/08/2013] [Indexed: 12/01/2022]
Abstract
We investigated whether: (1) liver X receptor (LXR)-driven induction of high-density lipoprotein cholesterol (HDL-C) and other LXR-mediated effects on cholesterol metabolism depend on intestinal cholesterol absorption; and (2) combined treatment with the LXR agonist GW3965 and the cholesterol absorption inhibitor ezetimibe results in synergistic effects on cholesterol metabolism that could be beneficial for treatment of atherosclerosis. Mice were fed 0.2 % cholesterol and treated with GW3965+ezetimibe, GW3965 or ezetimibe. GW3965+ezetimibe treatment elevated serum HDL-C and Apolipoprotein (Apo) AI, effectively reduced the intestinal cholesterol absorption and increased the excretion of faecal neutral sterols. No changes in intestinal ATP-binding cassette (ABC) A1 or ABCG5 protein expression were observed, despite increased mRNA expression, while hepatic ABCA1 was slightly reduced. The combined treatment caused a pronounced down-regulation of intestinal Niemann-Pick C1-like 1 (NPC1L1) and reduced hepatic and intestinal cholesterol levels. GW3965 did not affect the intestinal cholesterol absorption, but increased serum HDL-C and ApoAI levels. GW3965 also increased Apoa1 mRNA levels in primary mouse hepatocytes and HEPA1-6 cells. Ezetimibe reduced the intestinal cholesterol absorption, ABCA1 and ABCG5, but did not affect the serum HDL-C or ApoAI levels. Thus, the LXR-driven induction of HDL-C and ApoAI was independent of the intestinal cholesterol absorption and increased expression of intestinal or hepatic ABCA1 was not required. Inhibited influx of cholesterol via NPC1L1 and/or low levels of intracellular cholesterol prevented post-transcriptional expression of intestinal ABCA1 and ABCG5, despite increased mRNA levels. Combined LXR activation and blocked intestinal cholesterol absorption induced effective faecal elimination of cholesterol.
Collapse
Affiliation(s)
- Kristina Kannisto
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Diabetic Dyslipidemia: From Evolving Pathophysiological Insight to Emerging Therapeutic Targets. Can J Diabetes 2013; 37:319-26. [DOI: 10.1016/j.jcjd.2013.07.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022]
|