1
|
Collardeau-Frachon S. [Adult and pediatric thesaurismosis: Lysosomal, lipid and glycogen storage diseases]. Ann Pathol 2024; 44:432-452. [PMID: 39358197 DOI: 10.1016/j.annpat.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Thesaurismosis or storage diseases are rare genetic disorders due to an abnormal accumulation of an organic compound or its metabolite within cells. These conditions are either secondary to a defect in catabolism caused by enzymatic dysfunction or to a deficiency in transport proteins. They encompass lysosomal storage diseases, lipid storage diseases or dyslipidemias, and glycogen storage disorders or glycogenoses. Diagnosis is typically based on clinical and biological anomalies but may be made or suggested by the pathologist when symptoms are atypical or when biochemical or genetic tests are challenging to interpret. For accurate diagnosis, it is crucial to freeze a portion of the samples. Special staining and electronic microscopy can also aid in the diagnostic process. As the diagnosis is multidisciplinary, collaboration with clinicians, biochemists and geneticists is essential.
Collapse
Affiliation(s)
- Sophie Collardeau-Frachon
- Institut de pathologie des hospices civils de Lyon, groupement hospitalier Est, 59, boulevard Pinel, 69677 Bron cedex, France.
| |
Collapse
|
2
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01072-4. [PMID: 39304748 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Wang N, Ren L, Danser AHJ. Vacuolar H +-ATPase in Diabetes, Hypertension, and Atherosclerosis. Microcirculation 2024; 31:e12855. [PMID: 38683673 DOI: 10.1111/micc.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a multisubunit protein complex which, along with its accessory proteins, resides in almost every eukaryotic cell. It acts as a proton pump and as such is responsible for regulating pH in lysosomes, endosomes, and the extracellular space. Moreover, V-ATPase has been implicated in receptor-mediated signaling. Although numerous studies have explored the role of V-ATPase in cancer, osteoporosis, and neurodegenerative diseases, research on its involvement in vascular disease remains limited. Vascular diseases pose significant challenges to human health. This review aimed to shed light on the role of V-ATPase in hypertension and atherosclerosis. Furthermore, given that vascular complications are major complications of diabetes, this review also discusses the pathways through which V-ATPase may contribute to such complications. Beginning with an overview of the structure and function of V-ATPase in hypertension, atherosclerosis, and diabetes, this review ends by exploring the pharmacological potential of targeting V-ATPase.
Collapse
Affiliation(s)
- Na Wang
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liwei Ren
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Miao Y, Bai Y, Miao J, Murray AA, Lin J, Dong J, Qu Z, Zhang RY, Nguyen QD, Wang S, Yu J, Nguele Meke F, Zhang ZY. Off-target autophagy inhibition by SHP2 allosteric inhibitors contributes to their antitumor activity in RAS-driven cancers. J Clin Invest 2024; 134:e177142. [PMID: 38842946 PMCID: PMC11291269 DOI: 10.1172/jci177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
Aberrant activation of RAS/MAPK signaling is common in cancer, and efforts to inhibit pathway components have yielded drugs with promising clinical activities. Unfortunately, treatment-provoked adaptive resistance mechanisms inevitably develop, limiting their therapeutic potential. As a central node essential for receptor tyrosine kinase-mediated RAS activation, SHP2 has emerged as an attractive cancer target. Consequently, many SHP2 allosteric inhibitors are now in clinical testing. Here we discovered a previously unrecognized off-target effect associated with SHP2 allosteric inhibitors. We found that these inhibitors accumulate in the lysosome and block autophagic flux in an SHP2-independent manner. We showed that off-target autophagy inhibition by SHP2 allosteric inhibitors contributes to their antitumor activity. We also demonstrated that SHP2 allosteric inhibitors harboring this off-target activity not only suppress oncogenic RAS signaling but also overcome drug resistance such as MAPK rebound and protective autophagy in response to RAS/MAPK pathway blockage. Finally, we exemplified a therapeutic framework that harnesses both the on- and off-target activities of SHP2 allosteric inhibitors for improved treatment of mutant RAS-driven and drug-resistant malignancies such as pancreatic and colorectal cancers.
Collapse
Affiliation(s)
- Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | | | - Jianping Lin
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | - Quyen D. Nguyen
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jingmei Yu
- Department of Medicinal Chemistry and Molecular Pharmacology and
| | | | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology and
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Institute for Cancer Research and
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Zhan Y, Zhang Y. Butylated hydroxyanisole induces vascular endothelial injury via TFEB-mediated degradation of GPX4 and FTH1. Food Chem Toxicol 2024; 188:114682. [PMID: 38657941 DOI: 10.1016/j.fct.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Butylated hydroxyanisole (BHA) is one of the most commonly used antioxidants and is widely used in food, but whether it causes vascular damage has not been clearly studied. The present study demonstrated for the first time that BHA reduced the viability of human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (BEND3) in a dose- and time-dependent manner. Moreover, BHA inhibited the migration and proliferation of vascular endothelial cells (ECs). Further analysis revealed that in ECs, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed the BHA-induced increase in Fe2+ and malonaldehyde (MDA) levels. Acridine orange staining demonstrated that BHA increased lysosomal permeability. At the protein level, BHA increased the expression of transcription factor EB (TFEB) and decreased the expression of glutathione peroxidase (GPX4), solute carrier family 7 member 11 (SLC7A11, xCT), and ferritin heavy chain 1 (FTH1). Moreover, these effects of BHA could be reversed by knocking down TFEB. In vivo experiments confirmed that BHA caused elevated pulse wave velocity (PWV) and reduced acetylcholine-dependent vascular endothelial diastole. In conclusion, BHA degrades GPX4, xCT, and FTH1 through activation of the TFEB-mediated lysosomal pathway and promotes ferroptosis, ultimately leading to vascular endothelial cell injury.
Collapse
Affiliation(s)
- Yufei Zhan
- Department of Cardiology of the First Affiliated Hospital of Jinzhou Medical University, Renmin Street, Jinzhou, 121000, Liaoning Province, China
| | - Yazhuo Zhang
- Department of Cardiology of the First Affiliated Hospital of Jinzhou Medical University, Renmin Street, Jinzhou, 121000, Liaoning Province, China.
| |
Collapse
|
6
|
Zhu L, Guo L, Xu J, Xiang Q, Tan Y, Tian F, Du X, Zhang S, Wen T, Liu L. Postprandial Triglyceride-Rich Lipoproteins-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Inflammation in White Adipocytes. J Nutr 2024; 154:1619-1630. [PMID: 38008361 DOI: 10.1016/j.tjnut.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Obesity and postprandial hypertriglyceridemia, characterized by an increase in triglyceride-rich lipoproteins (TRLs), cause chronic low-grade inflammation. It is unclear how postprandial TRLs affect inflammation in white adipocytes. OBJECTIVES The objectives of the study were to explore the inflammatory response of postprandial TRLs in white adipocytes and investigate the possible mechanism. METHODS We measured postprandial triglyceride (TG) and high-sensitivity C-reactive protein (hsCRP) concentrations in 204 recruited subjects and treated white adipocytes from mice with postprandial TRLs from above patients with hypertriglyceridemia. RESULTS Serum hsCRP concentrations and BMI were positively related to TG concentrations in the postprandial state. Postprandial TRLs increased mRNA and protein expression of inflammatory factors, including interleukin-1β, via the NOD-like receptor protein 3 (NLRP3)/Caspase-1 pathway, and impaired autophagy flux in white adipocytes of mice. TRLs also induced lysosomal damage as evidenced by the reduced protein expression of lysosome-associated membrane proteins-1 and Cathepsin L. Inhibition of Cathepsin B, NLRP3, and mTOR signaling improved autophagy/lysosome dysfunction and inhibited the activation of the NLRP3/Caspase-1 pathway and inflammatory factors induced by TRLs in white adipocytes. CONCLUSIONS Our results suggest that postprandial hypertriglyceridemia causes chronic inflammation in adipocytes through TRL-induced lysosomal dysfunction and impaired autophagic flux in an mTOR-dependent manner.
Collapse
Affiliation(s)
- Liyuan Zhu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Liling Guo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Qunyan Xiang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Yangrong Tan
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Feng Tian
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Shilan Zhang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China; Department of Cardiovascular Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai, PR China
| | - Tie Wen
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China.
| |
Collapse
|
7
|
Xi L, Du J, Xue W, Shao K, Jiang X, Peng W, Li W, Huang S. Cathelicidin LL-37 promotes wound healing in diabetic mice by regulating TFEB-dependent autophagy. Peptides 2024; 175:171183. [PMID: 38423213 DOI: 10.1016/j.peptides.2024.171183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Diabetic patients often experience impaired wound healing. Human cathelicidin LL-37 possesses various biological functions, such as anti-microbial, anti-inflammatory, and pro-wound healing activities. Autophagy has important effects on skin wound healing. However, little is known about whether LL-37 accelerates diabetic wound healing by regulating autophagy. In the study, we aimed to investigate the role of autophagy in LL-37-induced wound healing and uncover the underlying mechanisms involved. A full-thickness wound closure model was established in diabetic mice to evaluate the effects of LL-37 and an autophagy inhibitor (3-MA) on wound healing. The roles of LL-37 and 3-MA in regulating keratinocyte migration were assessed using transwell migration and wound healing assays. The activation of transcription factor EB (TFEB) was measured using western blotting and immunofluorescence (IF) assays of its nuclear translocation. The results showed that LL-37 treatment improved wound healing in diabetic mice, whereas these effects were reversed by 3-MA. In vitro, 3-MA decreased the effects of LL-37 on promoting HaCat keratinocyte migration in the presence of high glucose (HG). Mechanistically, LL-37 promoted TFEB activation and resulted in subsequent activation of autophagy, as evidenced by increased nuclear translocation of TFEB and increased expression of ATG5, ATG7, and beclin 1 (BECN1), whereas these changes were blocked by TFEB knockdown. As expected, TFEB knockdown damaged the effects of LL-37 on promoting keratinocyte migration. Collectively, these results suggest that LL-37 accelerates wound healing in diabetic mice by activating TFEB-dependent autophagy, providing new insights into the mechanism by which LL-37 promotes diabetic wound healing.
Collapse
Affiliation(s)
- Liuqing Xi
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Du
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Xue
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Kan Shao
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Jiang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfang Peng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyi Li
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Luo J, Zhang X, Li W, Wang T, Cui S, Li T, Wang Y, Xu W, Ma Y, Yang B, Luo Y, Yang G, Xu R, Jiao L. eIF2α-mediated integrated stress response links multiple intracellular signaling pathways to reprogram vascular smooth muscle cell fate in carotid artery plaque. Heliyon 2024; 10:e26904. [PMID: 38434290 PMCID: PMC10907769 DOI: 10.1016/j.heliyon.2024.e26904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background Carotid arterial atherosclerotic stenosis is a well-recognized pathological basis of ischemic stroke; however, its underlying molecular mechanisms remain unknown. Vascular smooth muscle cells (VSMCs) play fundamental roles in the initiation and progression of atherosclerosis. Organelle dynamics have been reported to affect atherosclerosis development. However, the association between organelle dynamics and various cellular stresses in atherosclerotic progression remain ambiguous. Methods In this study, we conducted transcriptomics and bioinformatics analyses of stable and vulnerable carotid plaques. Primary VSMCs were isolated from carotid plaques and subjected to histopathological staining to determine their expression profiles. Endoplasmic reticulum (ER), mitochondria, and lysosome dynamics were observed in primary VSMCs and VSMC cell lines using live-cell imaging. Moreover, the mechanisms underlying disordered organelle dynamics were investigated using comprehensive biological approaches. Results ER whorls, a representative structural change under ER stress, are prominent dynamic reconstructions of VSMCs between vulnerable and stable plaques, followed by fragmented mitochondria and enlarged lysosomes, suggesting mitochondrial stress and lysosomal defects, respectively. Induction of mitochondrial stress alleviated ER stress and autophagy in an eukaryotic translation initiation factor (eIF)-2α-dependent manner. Furthermore, the effects of eIF2α on ER stress, mitochondrial stress, and lysosomal defects were validated using clinical samples. Conclusion Our results indicate that morphological and functional changes in VSMC organelles, especially in ER whorls, can be used as reliable biomarkers for atherosclerotic progression. Moreover, eIF2α plays an important role in integrating multiple stress-signaling pathways to determine the behavior and fate of VSMCs.
Collapse
Affiliation(s)
- Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Shengyan Cui
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Tianhua Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Della Torre L, Beato A, Capone V, Carannante D, Verrilli G, Favale G, Del Gaudio N, Megchelenbrink WL, Benedetti R, Altucci L, Carafa V. Involvement of regulated cell deaths in aging and age-related pathologies. Ageing Res Rev 2024; 95:102251. [PMID: 38428821 DOI: 10.1016/j.arr.2024.102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Aging is a pathophysiological process that causes a gradual and permanent reduction in all biological system functions. The phenomenon is caused by the accumulation of endogenous and exogenous damage as a result of several stressors, resulting in significantly increased risks of various age-related diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. In addition, aging appears to be connected with mis-regulation of programmed cell death (PCD), which is required for regular cell turnover in many tissues sustained by cell division. According to the recent nomenclature, PCDs are physiological forms of regulated cell death (RCD) useful for normal tissue development and turnover. To some extent, some cell types are connected with a decrease in RCD throughout aging, whereas others are related with an increase in RCD. Perhaps the widespread decline in RCD markers with age is due to a slowdown of the normal rate of homeostatic cell turnover in various adult tissues. As a result, proper RCD regulation requires a careful balance of many pro-RCD and anti-RCD components, which may render cell death signaling pathways more sensitive to maladaptive signals during aging. Current research, on the other hand, tries to further dive into the pathophysiology of aging in order to develop therapies that improve health and longevity. In this scenario, RCD handling might be a helpful strategy for human health since it could reduce the occurrence and development of age-related disorders, promoting healthy aging and lifespan. In this review we propose a general overview of the most recent RCD mechanisms and their connection with the pathophysiology of aging in order to promote targeted therapeutic strategies.
Collapse
Affiliation(s)
- Laura Della Torre
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Antonio Beato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Vincenza Capone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Daniela Carannante
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Giulia Verrilli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Gregorio Favale
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Nunzio Del Gaudio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Wouter Leonard Megchelenbrink
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy; Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino 83031, Italy; IEOS CNR, Napoli 80138, Italy; Programma di Epigenetica Medica, A.O.U. "Luigi Vanvitelli", Piazza Luigi Miraglia 2, Napoli 80138, Italy
| | - Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy; Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino 83031, Italy.
| |
Collapse
|
10
|
Robichaud S, Rochon V, Emerton C, Laval T, Ouimet M. Trehalose promotes atherosclerosis regression in female mice. Front Cardiovasc Med 2024; 11:1298014. [PMID: 38433753 PMCID: PMC10906268 DOI: 10.3389/fcvm.2024.1298014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Atherosclerosis is a chronic inflammatory disease caused by the deposition of lipids within the artery wall. During atherogenesis, efficient autophagy is needed to facilitate efferocytosis and cholesterol efflux, limit inflammation and lipid droplet buildup, and eliminate defective mitochondria and protein aggregates. Central to the regulation of autophagy is the transcription factor EB (TFEB), which coordinates the expression of lysosomal biogenesis and autophagy genes. In recent years, trehalose has been shown to promote TFEB activation and protect against atherogenesis. Here, we sought to investigate the role of autophagy activation during atherosclerosis regression. Methods and results Atherosclerosis was established in C57BL/6N mice by injecting AAV-PCSK9 and 16 weeks of Western diet feeding, followed by switching to a chow diet to induce atherosclerosis regression. During the regression period, mice were either injected with trehalose concomitant with trehalose supplementation in their drinking water or injected with saline for 6 weeks. Female mice receiving trehalose had reduced atherosclerosis burden, as evidenced by reduced plaque lipid content, macrophage numbers and IL-1β content in parallel with increased plaque collagen deposition, which was not observed in their male counterparts. In addition, trehalose-treated female mice had lower levels of circulating leukocytes, including inflammatory monocytes and CD4+ T cells. Lastly, we found that autophagy flux in male mice was basally higher than in female mice during atherosclerosis progression. Conclusions Our data demonstrate a sex-specific effect of trehalose in atherosclerosis regression, whereby trehalose reduced lipid content, inflammation, and increased collagen content in female mice but not in male mice. Furthermore, we discovered inherent differences in the autophagy flux capacities between the sexes: female mice exhibited lower plaque autophagy than males, which rendered the female mice more responsive to atherosclerosis regression. Our work highlights the importance of understanding sex differences in atherosclerosis to personalize the development of future therapies to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Sabrina Robichaud
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cardiovascular Metabolism and Cell Biology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Valérie Rochon
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cardiovascular Metabolism and Cell Biology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Christina Emerton
- Cardiovascular Metabolism and Cell Biology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Thomas Laval
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cardiovascular Metabolism and Cell Biology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Mireille Ouimet
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cardiovascular Metabolism and Cell Biology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
11
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Skeyni A, Pradignac A, Matz RL, Terrand J, Boucher P. Cholesterol trafficking, lysosomal function, and atherosclerosis. Am J Physiol Cell Physiol 2024; 326:C473-C486. [PMID: 38145298 DOI: 10.1152/ajpcell.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Despite years of study and major research advances over the past 50 years, atherosclerotic diseases continue to rank as the leading global cause of death. Accumulation of cholesterol within the vascular wall remains the main problem and represents one of the early steps in the development of atherosclerotic lesions. There is a complex relationship between vesicular cholesterol transport and atherosclerosis, and abnormalities in cholesterol trafficking can contribute to the development and progression of the lesions. The dysregulation of vesicular cholesterol transport and lysosomal function fosters the buildup of cholesterol within various intracytoplasmic compartments, including lysosomes and lipid droplets. This, in turn, promotes the hallmark formation of foam cells, a defining feature of early atherosclerosis. Multiple cellular processes, encompassing endocytosis, exocytosis, intracellular trafficking, and autophagy, play crucial roles in influencing foam cell formation and atherosclerotic plaque stability. In this review, we highlight recent advances in the understanding of the intricate mechanisms of vesicular cholesterol transport and its relationship with atherosclerosis and discuss the importance of understanding these mechanisms in developing strategies to prevent or treat this prevalent cardiovascular disease.
Collapse
Affiliation(s)
- Alaa Skeyni
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Alain Pradignac
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Rachel L Matz
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Jérôme Terrand
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
13
|
Maruf A, Milewska M, Varga M, Wandzik I. Trehalose-Bearing Carriers to Target Impaired Autophagy and Protein Aggregation Diseases. J Med Chem 2023; 66:15613-15628. [PMID: 38031413 PMCID: PMC10726369 DOI: 10.1021/acs.jmedchem.3c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
In recent years, trehalose, a natural disaccharide, has attracted growing attention because of the discovery of its potential to induce autophagy. Trehalose has also been demonstrated to preserve the protein's structural integrity and to limit the aggregation of pathologically misfolded proteins. Both of these properties have made trehalose a promising therapeutic candidate to target autophagy-related disorders and protein aggregation diseases. Unfortunately, trehalose has poor bioavailability due to its hydrophilic nature and susceptibility to enzymatic degradation. Recently, trehalose-bearing carriers, in which trehalose is incorporated either by chemical conjugation or physical entrapment, have emerged as an alternative option to free trehalose to improve its efficacy, particularly for the treatment of neurodegenerative diseases, atherosclerosis, nonalcoholic fatty liver disease (NAFLD), and cancers. In the current Perspective, we discuss all existing literature in this emerging field and try to identify key challenges for researchers intending to develop trehalose-bearing carriers to stimulate autophagy or inhibit protein aggregation.
Collapse
Affiliation(s)
- Ali Maruf
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
- Drug
Research Progam, Faculty of Pharmacy, University
of Helsinki, Viikinkaari
5E, 00014 Helsinki, Finland
| | - Małgorzata Milewska
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Máté Varga
- Department
of Genetics, ELTE Eötvös Loránd
University, Pázmány
P. stny. 1/C, Budapest H-1117, Hungary
| | - Ilona Wandzik
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
14
|
Zhong Y, Maruf A, Qu K, Milewska M, Wandzik I, Mou N, Cao Y, Wu W. Nanogels with covalently bound and releasable trehalose for autophagy stimulation in atherosclerosis. J Nanobiotechnology 2023; 21:472. [PMID: 38066538 PMCID: PMC10704736 DOI: 10.1186/s12951-023-02248-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Atherosclerosis, cholesterol-driven plaque formation in arteries, is a complex multicellular disease which is a leading cause of vascular diseases. During the progression of atherosclerosis, the autophagic function is impaired, resulting in lipid accumulation-mediated foam cell formation. The stimulation of autophagy is crucial for the recovery of cellular recycling process. One of the potential autophagy inducers is trehalose, a naturally occurring non-reducing disaccharide. However, trehalose has poor bioavailability due to its hydrophilic nature which results in poor penetration through cell membranes. To enhance its bioavailability, we developed trehalose-releasing nanogels (TNG) for the treatment of atherosclerosis. The nanogels were fabricated through copolymerization of 6-O-acryloyl-trehalose with the selected acrylamide-type monomers affording a high trehalose conjugation (~ 58%, w/w). TNG showed a relatively small hydrodynamic diameter (dH, 67 nm) and a uniform spherical shape and were characterized by negative ζ potential (-18 mV). Thanks to the trehalose-rich content, TNG demonstrated excellent colloidal stability in biological media containing serum and were non-hemolytic to red blood cells. In vitro study confirmed that TNG could stimulate autophagy in foam cells and enhance lipid efflux and in vivo study in ApoE-/- mice indicated a significant reduction in atherosclerotic plaques, while increasing autophagic markers. In conclusion, TNG hold great promise as a trehalose delivery system to restore impaired autophagy-mediated lipid efflux in atherosclerosis and subsequently reduce atherosclerotic plaques.
Collapse
Affiliation(s)
- Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China
| | - Ali Maruf
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China
| | - Małgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100, Poland.
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland.
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
15
|
Itoh M, Tamura A, Kanai S, Tanaka M, Kanamori Y, Shirakawa I, Ito A, Oka Y, Hidaka I, Takami T, Honda Y, Maeda M, Saito Y, Murata Y, Matozaki T, Nakajima A, Kataoka Y, Ogi T, Ogawa Y, Suganami T. Lysosomal cholesterol overload in macrophages promotes liver fibrosis in a mouse model of NASH. J Exp Med 2023; 220:e20220681. [PMID: 37725372 PMCID: PMC10506914 DOI: 10.1084/jem.20220681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/27/2023] [Accepted: 07/20/2023] [Indexed: 09/21/2023] Open
Abstract
Accumulation of lipotoxic lipids, such as free cholesterol, induces hepatocyte death and subsequent inflammation and fibrosis in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms remain unclear. We have previously reported that hepatocyte death locally induces phenotypic changes in the macrophages surrounding the corpse and remnant lipids, thereby promoting liver fibrosis in a murine model of NASH. Here, we demonstrated that lysosomal cholesterol overload triggers lysosomal dysfunction and profibrotic activation of macrophages during the development of NASH. β-cyclodextrin polyrotaxane (βCD-PRX), a unique supramolecule, is designed to elicit free cholesterol from lysosomes. Treatment with βCD-PRX ameliorated cholesterol accumulation and profibrotic activation of macrophages surrounding dead hepatocytes with cholesterol crystals, thereby suppressing liver fibrosis in a NASH model, without affecting the hepatic cholesterol levels. In vitro experiments revealed that cholesterol-induced lysosomal stress triggered profibrotic activation in macrophages predisposed to the steatotic microenvironment. This study provides evidence that dysregulated cholesterol metabolism in macrophages would be a novel mechanism of NASH.
Collapse
Affiliation(s)
- Michiko Itoh
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Bioelectronics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Kanai
- Department of Bioelectronics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Yohei Kanamori
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ibuki Shirakawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Isao Hidaka
- Department of Gastroenterology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Taro Takami
- Department of Gastroenterology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| |
Collapse
|
16
|
Onodera A, Shimomura T, Ochi H, Sunada R, Fukutomi E, Hidaka K, Kawai Y. The Cellular Accumulation of Vehicle Exhaust Particulates Changes the Acidic pH Environment of Lysosomes in BEAS-2B Airway Epithelial Cells. J Xenobiot 2023; 13:653-661. [PMID: 37987443 PMCID: PMC10660702 DOI: 10.3390/jox13040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Many people are exposed every day to vehicle exhaust particulates (VEPs), which are thought to be taken up by epithelial cells that are the first barrier in our biological defense. The study aim was to investigate how VEPs are processed in the lysosomal degradation system. BEAS-2B airway epithelial cells easily ingest VEPs and have been shown to accumulate in cells for several days, but no elevated cytotoxicity was observed over that time period. An analysis of 3D images confirmed the presence of VEPs in or near lysosomes, and an accumulation of VEPs resulted in an increase in the normal acidic pH in lysosomes and the extracellular release of the lysosomal enzyme β-hexosaminidase. Epithelial cells were thought to activate the lysosome-mediated secretion of extracellular vesicles to avoid damage caused by non-degradable foreign substances, such as VEPs, and as a side reaction, the acidic pH environment of the lysosomes could not be maintained.
Collapse
Affiliation(s)
- Akira Onodera
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| | - Takuya Shimomura
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| | - Hirohisa Ochi
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| | - Ryuto Sunada
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| | - Eiko Fukutomi
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| | - Koushi Hidaka
- Research Facility Center for Science and Technology, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
| | - Yuichi Kawai
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| |
Collapse
|
17
|
Xue S, Su Z, Liu D. Immunometabolism and immune response regulate macrophage function in atherosclerosis. Ageing Res Rev 2023; 90:101993. [PMID: 37379970 DOI: 10.1016/j.arr.2023.101993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Macrophages are crucial in the progression of atherosclerotic cardiovascular disease (ASCVD). In the atherosclerotic lesions, macrophages play a central role in maintaining inflammatory response, promoting plaque development, and facilitating thrombosis. Increasing studies indicate that metabolic reprogramming and immune response mediate macrophage functional changes in all stages of atherosclerosis. In this review article, we explain how metabolic changes in glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, fatty acid synthesis, fatty acid oxidation, and cholesterol metabolism regulate macrophage function in atherosclerosis. We discuss how immune response to oxidized lipids regulate macrophage function in atherosclerosis. Additionally, we explore how abnormal metabolism leads to macrophage mitochondrial dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Sheng Xue
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China.
| | - Zhe Su
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| | - Dacheng Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| |
Collapse
|
18
|
Domingues N, Gaifem J, Matthiesen R, Saraiva DP, Bento L, Marques ARA, Soares MIL, Sampaio J, Klose C, Surma MA, Almeida MS, Rodrigues G, Gonçalves PA, Ferreira J, E Melo RG, Pedro LM, Simons K, Pinho E Melo TMVD, Cabral MG, Jacinto A, Silvestre R, Vaz W, Vieira OV. Cholesteryl hemiazelate identified in CVD patients causes in vitro and in vivo inflammation. J Lipid Res 2023; 64:100419. [PMID: 37482218 PMCID: PMC10450993 DOI: 10.1016/j.jlr.2023.100419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
Oxidation of PUFAs in LDLs trapped in the arterial intima plays a critical role in atherosclerosis. Though there have been many studies on the atherogenicity of oxidized derivatives of PUFA-esters of cholesterol, the effects of cholesteryl hemiesters (ChEs), the oxidation end products of these esters, have not been studied. Through lipidomics analyses, we identified and quantified two ChE types in the plasma of CVD patients and identified four ChE types in human endarterectomy specimens. Cholesteryl hemiazelate (ChA), the ChE of azelaic acid (n-nonane-1,9-dioic acid), was the most prevalent ChE identified in both cases. Importantly, human monocytes, monocyte-derived macrophages, and neutrophils exhibit inflammatory features when exposed to subtoxic concentrations of ChA in vitro. ChA increases the secretion of proinflammatory cytokines such as interleukin-1β and interleukin-6 and modulates the surface-marker profile of monocytes and monocyte-derived macrophage. In vivo, when zebrafish larvae were fed with a ChA-enriched diet, they exhibited neutrophil and macrophage accumulation in the vasculature in a caspase 1- and cathepsin B-dependent manner. ChA also triggered lipid accumulation at the bifurcation sites of the vasculature of the zebrafish larvae and negatively impacted their life expectancy. We conclude that ChA behaves as an endogenous damage-associated molecular pattern with inflammatory and proatherogenic properties.
Collapse
Affiliation(s)
- Neuza Domingues
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Joana Gaifem
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Diana P Saraiva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Luís Bento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - André R A Marques
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Maria I L Soares
- Department of Chemistry, Coimbra Chemistry Centre, Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | | | | | | | - Manuel S Almeida
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Carnaxide, Portugal
| | - Gustavo Rodrigues
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Carnaxide, Portugal
| | | | - Jorge Ferreira
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Carnaxide, Portugal
| | - Ryan Gouveia E Melo
- Department of Vascular Surgery, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte (CHULN), Lisboa, Portugal
| | - Luís Mendes Pedro
- Department of Vascular Surgery, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte (CHULN), Lisboa, Portugal
| | | | - Teresa M V D Pinho E Melo
- Department of Chemistry, Coimbra Chemistry Centre, Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | - M Guadalupe Cabral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Antonio Jacinto
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Winchil Vaz
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Otília V Vieira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
19
|
Ye H, Wang G, Wang X, Wang L, Ni W, Chen L, Zhu Y, Zhao L, Xiong Z, Wang Y, Dai C, Liu B. San-wei-tan-xiang capsule attenuates atherosclerosis by increasing lysosomal activity in adipose tissue macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116444. [PMID: 37061068 DOI: 10.1016/j.jep.2023.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dyslipidemia is the leading risk factor of atherosclerosis (AS). Adipose tissue macrophages (ATMs) can regulate postprandial cholesterol levels via uptake and hydrolyzation of lipids and regulation of macrophage cholesterol efflux (MCE). San-wei-tan-xiang (SWTX) capsule, a Traditional Chinese medicine, exerts clinical benefits in patients with atherosclerotic cardiovascular diseases. AIM OF THE STUDY This work is aimed to evaluate the chemical ingredients and mechanisms of SWTX in anti-AS. MATERIALS AND METHODS The chemical ingredients of SWTX identified by liquid chromatography coupled with tandem mass spectrometry were used for network pharmacological analysis. The atheroprotective function of SWTX was evaluated in ApoE-/- mice fed a cholesterol-enriched diet. RESULTS The chemical ingredients identified in SWTX were predicated to be important for lipid metabolism and AS. Animals studies suggested that SWTX effectively attenuated the atherosclerotic plaque growth, elevated postprandial HDL cholesterol levels, elevated the proportion of Tim4 and CD36-expressed ATMs, and upregulated the uptake of lipid and lysosomal activity in ATMs. SWTX-induced elevation of postprandial HDL cholesterol levels was dependent on increased lysosomal activity, since chloroquine, an inhibitor of lysosomal function, blocked the effect of SWTX. Lastly, some predicated bioactive compounds in SWTX can elevate lysosomal activity in vitro. CONCLUSION SWTX could attenuate atherosclerotic plaque formation by elevating lysosomal activity and enhancing MCE in ATMs.
Collapse
Affiliation(s)
- Heng Ye
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yifan Zhu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China.
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China.
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China.
| |
Collapse
|
20
|
Domingues N, Marques ARA, Calado RDA, Ferreira IS, Ramos C, Ramalho J, Soares MIL, Pereira T, Oliveira L, Vicente JR, Wong LH, Simões ICM, Pinho E Melo TMVD, Peden A, Almeida CG, Futter CE, Puertollano R, Vaz WLC, Vieira OV. Oxidized cholesteryl ester induces exocytosis of dysfunctional lysosomes in lipidotic macrophages. Traffic 2023; 24:284-307. [PMID: 37129279 DOI: 10.1111/tra.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Neuza Domingues
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - André R A Marques
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Rita Diogo Almeida Calado
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Inês S Ferreira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cristiano Ramos
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria I L Soares
- CQC and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Telmo Pereira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Luís Oliveira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José R Vicente
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Louise H Wong
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Inês C M Simões
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Andrew Peden
- Department of Biomedical Science & Center for Membrane Interactions and Dynamics, University of Sheffield, UK
| | - Cláudia Guimas Almeida
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Clare E Futter
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Winchil L C Vaz
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Otília V Vieira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Alalawi S, Albalawi F, Ramji DP. The Role of Punicalagin and Its Metabolites in Atherosclerosis and Risk Factors Associated with the Disease. Int J Mol Sci 2023; 24:ijms24108476. [PMID: 37239823 DOI: 10.3390/ijms24108476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ACVD) is the leading cause of death worldwide. Although current therapies, such as statins, have led to a marked reduction in morbidity and mortality from ACVD, they are associated with considerable residual risk for the disease together with various adverse side effects. Natural compounds are generally well-tolerated; a major recent goal has been to harness their full potential in the prevention and treatment of ACVD, either alone or together with existing pharmacotherapies. Punicalagin (PC) is the main polyphenol present in pomegranates and pomegranate juice and demonstrates many beneficial actions, including anti-inflammatory, antioxidant, and anti-atherogenic properties. The objective of this review is to inform on our current understanding of the pathogenesis of ACVD and the potential mechanisms underlying the beneficial actions of PC and its metabolites in the disease, including the attenuation of dyslipidemia, oxidative stress, endothelial cell dysfunction, foam cell formation, and inflammation mediated by cytokines and immune cells together with the regulation of proliferation and migration of vascular smooth muscle cells. Some of the anti-inflammatory and antioxidant properties of PC and its metabolites are due to their strong radical-scavenging activities. PC and its metabolites also inhibit the risk factors of atherosclerosis, including hyperlipidemia, diabetes mellitus, inflammation, hypertension, obesity, and non-alcoholic fatty liver disease. Despite the promising findings that have emerged from numerous in vitro, in vivo, and clinical studies, deeper mechanistic insights and large clinical trials are required to harness the full potential of PC and its metabolites in the prevention and treatment of ACVD.
Collapse
Affiliation(s)
- Sulaiman Alalawi
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Faizah Albalawi
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
22
|
An J, Ouyang L, Yu C, Carr SM, Ramprasath T, Liu Z, Song P, Zou MH, Ding Y. Nicotine exacerbates atherosclerosis and plaque instability via NLRP3 inflammasome activation in vascular smooth muscle cells. Theranostics 2023; 13:2825-2842. [PMID: 37284455 PMCID: PMC10240824 DOI: 10.7150/thno.81388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Rationale: Nicotine has been reported to be a strong risk factor for atherosclerosis. However, the underlying mechanism by which nicotine controls atherosclerotic plaque stability remain largely unknown. Objective: The aim of this study was to evaluate the impact of lysosomal dysfunction mediated NLRP3 inflammasome activation in vascular smooth muscle cell (VSMC) on atherosclerotic plaque formation and stability in advanced atherosclerosis at the brachiocephalic arteries (BA). Methods and Results: Features of atherosclerotic plaque stability and the markers for NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome were monitored in the BA from nicotine or vehicle-treated apolipoprotein E deficient (Apoe-/-) mice fed with Western-type diet (WD). Nicotine treatment for 6 weeks accelerated atherosclerotic plaque formation and enhanced the hallmarks of plaque instability in BA of Apoe-/- mice. Moreover, nicotine elevated interleukin 1 beta (IL-1β) in serum and aorta and was preferred to activate NLRP3 inflammasome in aortic vascular smooth muscle cells (VSMC). Importantly, pharmacological inhibition of Caspase1, a key downstream target of NLRP3 inflammasome complex, and genetic inactivation of NLRP3 significantly restrained nicotine-elevated IL-1β in serum and aorta, as well as nicotine-stimulated atherosclerotic plaque formation and plaque destabilization in BA. We further confirmed the role of VSMC-derived NLRP3 inflammasome in nicotine-induced plaque instability by using VSMC specific TXNIP (upstream regulator of NLRP3 inflammasome) deletion mice. Mechanistic study further showed that nicotine induced lysosomal dysfunction resulted in cathepsin B cytoplasmic release. Inhibition or knockdown of cathepsin B blocked nicotine-dependent inflammasome activation. Conclusions: Nicotine promotes atherosclerotic plaque instability by lysosomal dysfunction-mediated NLRP3 inflammasome activation in vascular smooth muscle cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| |
Collapse
|
23
|
Jeong SJ, Oh GT. Unbalanced Redox With Autophagy in Cardiovascular Disease. J Lipid Atheroscler 2023; 12:132-151. [PMID: 37265853 PMCID: PMC10232220 DOI: 10.12997/jla.2023.12.2.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
Precise redox balance is essential for the optimum health and physiological function of the human body. Furthermore, an unbalanced redox state is widely believed to be part of numerous diseases, ultimately resulting in death. In this review, we discuss the relationship between redox balance and cardiovascular disease (CVD). In various animal models, excessive oxidative stress has been associated with increased atherosclerotic plaque formation, which is linked to the inflammation status of several cell types. However, various antioxidants can defend against reactive oxidative stress, which is associated with an increased risk of CVD and mortality. The different cardiovascular effects of these antioxidants are presumably due to alterations in the multiple pathways that have been mechanistically linked to accelerated atherosclerotic plaque formation, macrophage activation, and endothelial dysfunction in animal models of CVD, as well as in in vitro cell culture systems. Autophagy is a regulated cell survival mechanism that removes dysfunctional or damaged cellular organelles and recycles the nutrients for the generation of energy. Furthermore, in response to atherogenic stress, such as the generation of reactive oxygen species, oxidized lipids, and inflammatory signaling between cells, autophagy protects against plaque formation. In this review, we characterize the broad spectrum of oxidative stress that influences CVD, summarize the role of autophagy in the content of redox balance-associated pathways in atherosclerosis, and discuss potential therapeutic approaches to target CVD by stimulating autophagy.
Collapse
Affiliation(s)
- Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
24
|
Korbelius M, Kuentzel KB, Bradić I, Vujić N, Kratky D. Recent insights into lysosomal acid lipase deficiency. Trends Mol Med 2023; 29:425-438. [PMID: 37028992 DOI: 10.1016/j.molmed.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Lysosomal acid lipase (LAL) is the sole enzyme known to degrade neutral lipids in the lysosome. Mutations in the LAL-encoding LIPA gene lead to rare lysosomal lipid storage disorders with complete or partial absence of LAL activity. This review discusses the consequences of defective LAL-mediated lipid hydrolysis on cellular lipid homeostasis, epidemiology, and clinical presentation. Early detection of LAL deficiency (LAL-D) is essential for disease management and survival. LAL-D must be considered in patients with dyslipidemia and elevated aminotransferase concentrations of unknown etiology. Enzyme replacement therapy, sometimes in combination with hematopoietic stem cell transplantation (HSCT), is currently the only therapy for LAL-D. New technologies based on mRNA and viral vector gene transfer are recent efforts to provide other effective therapeutic strategies.
Collapse
Affiliation(s)
- Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
25
|
Zhao X, Amevor FK, Cui Z, Wan Y, Xue X, Peng C, Li Y. Steatosis in metabolic diseases: A focus on lipolysis and lipophagy. Biomed Pharmacother 2023; 160:114311. [PMID: 36764133 DOI: 10.1016/j.biopha.2023.114311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Fatty acids (FAs), as part of lipids, are involved in cell membrane composition, cellular energy storage, and cell signaling. FAs can also be toxic when their concentrations inside and/or outside the cell exceed physiological levels, which is called "lipotoxicity", and steatosis is a form of lipotoxity. To facilitate the storage of large quantities of FAs in cells, they undergo a process called lipolysis or lipophagy. This review focuses on the effects of lipolytic enzymes including cytoplasmic "neutral" lipolysis, lysosomal "acid" lipolysis, and lipophagy. Moreover, the impact of related lipolytic enzymes on lipid metabolism homeostasis and energy conservation, as well as their role in lipid-related metabolic diseases. In addition, we describe how they affect lipid metabolism homeostasis and energy conservation in lipid-related metabolic diseases with a focus on hepatic steatosis and cancer and the pathogenesis and therapeutic targets of AMPK/SIRTs/FOXOs, PI3K/Akt, PPARs/PGC-1α, MAPK/ERK1/2, TLR4/NF-κB, AMPK/mTOR/TFEB, Wnt/β-catenin through immune inflammation, oxidative stress and autophagy-related pathways. As well as the current application of lipolytic enzyme inhibitors (especially Monoacylglycerol lipase (MGL) inhibitors) to provide new strategies for future exploration of metabolic programming in metabolic diseases.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
26
|
Hu Z, Xu W, Zhang J, Tang Y, Xing H, Xu P, Ma Y, Niu Q. TFE3-mediated impairment of lysosomal biogenesis and defective autophagy contribute to fluoride-induced hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114674. [PMID: 36827899 DOI: 10.1016/j.ecoenv.2023.114674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Excessive fluoride exposure can cause liver injury, but the specific mechanisms need further investigation. We aimed to explore the role of impaired lysosomal biogenesis and defective autophagy in fluoride-induced hepatotoxicity and its potential mechanisms, focusing on the role of transcription factor E3 (TFE3) in regulating hepatocyte lysosomal biogenesis. To this end, we established a Sprague-Dawley (SD) rat model exposed to sodium fluoride (NaF) and a rat liver cell line (BRL3A) model exposed to NaF. The results showed that NaF exposure diminished liver function and led to apoptosis as well as autophagosome accumulation and impaired autophagic degradation. In addition, NaF exposure caused compromised lysosome biogenesis and decreased lysosomal degradation, and inhibited TFE3 nuclear translocation. Notably, the mTOR inhibitors rapamycin (RAPA) and Ad-TFE3 promoted lysosomal biogenesis and enhanced lysosomal degradation function. Furthermore, RAPA and Ad-TFE3 reduced NaF-induced apoptosis by alleviating impaired autophagic degradation. In conclusion, NaF impairs lysosomal biogenesis by inhibiting TFE3 nuclear translocation, decreasing lysosomal degradation function, resulting in impaired autophagic degradation, and ultimately inducing apoptosis. Therefore, TFE3 may be a promising therapeutic target for fluoride-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
27
|
Zhang X, Misra SK, Moitra P, Zhang X, Jeong SJ, Stitham J, Rodriguez-Velez A, Park A, Yeh YS, Gillanders WE, Fan D, Diwan A, Cho J, Epelman S, Lodhi IJ, Pan D, Razani B. Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis. Autophagy 2023; 19:886-903. [PMID: 35982578 PMCID: PMC9980706 DOI: 10.1080/15548627.2022.2108252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Dysfunction in the macrophage lysosomal system including reduced acidity and diminished degradative capacity is a hallmark of atherosclerosis, leading to blunted clearance of excess cellular debris and lipids in plaques and contributing to lesion progression. Devising strategies to rescue this macrophage lysosomal dysfunction is a novel therapeutic measure. Nanoparticles have emerged as an effective platform to both target specific tissues and serve as drug delivery vehicles. In most cases, administered nanoparticles are taken up non-selectively by the mononuclear phagocyte system including monocytes/macrophages leading to the undesirable degradation of cargo in lysosomes. We took advantage of this default route to target macrophage lysosomes to rectify their acidity in disease states such as atherosclerosis. Herein, we develop and test two commonly used acidic nanoparticles, poly-lactide-co-glycolic acid (PLGA) and polylactic acid (PLA), both in vitro and in vivo. Our results in cultured macrophages indicate that the PLGA-based nanoparticles are the most effective at trafficking to and enhancing acidification of lysosomes. PLGA nanoparticles also provide functional benefits including enhanced lysosomal degradation, promotion of macroautophagy/autophagy and protein aggregate removal, and reduced apoptosis and inflammasome activation. We demonstrate the utility of this system in vivo, showing nanoparticle accumulation in, and lysosomal acidification of, macrophages in atherosclerotic plaques. Long-term administration of PLGA nanoparticles results in significant reductions in surrogates of plaque complexity with reduced apoptosis, necrotic core formation, and cytotoxic protein aggregates and increased fibrous cap formation. Taken together, our data support the use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in the treatment of atherosclerosis.Abbreviations: BCA: brachiocephalic arteries; FACS: fluorescence activated cell sorting; FITC: fluorescein-5-isothiocyanatel; IL1B: interleukin 1 beta; LAMP: lysosomal associated membrane protein; LIPA/LAL: lipase A, lysosomal acid type; LSDs: lysosomal storage disorders; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: mean fluorescence intensity; MPS: mononuclear phagocyte system; PEGHDE: polyethylene glycol hexadecyl ether; PLA: polylactic acid; PLGA: poly-lactide-co-glycolic acid; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | - Santosh Kumar Misra
- Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
| | - Parikshit Moitra
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Baltimore, Maryland, USA
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, USA
| | - Xiuli Zhang
- Department of Surgery, Washington University, St. Louis, MO, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | - Jeremiah Stitham
- Cardiovascular Division, Washington University, St. Louis, MO, USA
- Division of Endocrinology, Metabolism, and Lipid Research, St. Louis, MO, USA
| | | | - Arick Park
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | - Yu-Sheng Yeh
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | | | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Abhinav Diwan
- Cardiovascular Division, Washington University, St. Louis, MO, USA
- John Cochran Division, VA Medical Center, St. Louis, MO, USA
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Slava Epelman
- Peter Munk Cardiac Center, Toronto General Hospital Research Institute, University Health Network, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism, and Lipid Research, St. Louis, MO, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Baltimore, Maryland, USA
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, USA
| | - Babak Razani
- Cardiovascular Division, Washington University, St. Louis, MO, USA
- John Cochran Division, VA Medical Center, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
28
|
Li Q, Zhao Q, Guo J, Li X, Song J. Transcriptomic Analysis of Diethylstilbestrol in Daphnia Magna: Energy Metabolism and Growth Inhibition. TOXICS 2023; 11:197. [PMID: 36851071 PMCID: PMC9962875 DOI: 10.3390/toxics11020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
With the widespread use of diethylstilbestrol (DES), it has become a common contaminant in the aquatic environment. It is toxic to a wide range of aquatic organisms, disrupting the water flea growth and further interfering with several ecosystem services. Nevertheless, the molecular mechanism of DES in water fleas is still unexplicit. In this study, the 21-day chronic test showed that a negative effect of growth and reproduction can be observed with DES exposure. Subsequently applied transcriptomic analysis illustrated the molecular mechanism in mode freshwater invertebrate Daphnia magna (D. magna) exposed to 2, 200, and 1000 μg·L-1 of DES for 9 days. Meanwhile, exposure to DES at 200 and 1000 μg·L-1 significantly restrains the growth (body length) and reproduction (first spawning time) of D. magna. Identified differentially expressed genes (DEGs) are majorly enriched relative to energy metabolism, lipid metabolism, the digestive system, transport and catabolism pathways which were remarkably changed. These repressed and up-regulated pathways, in relation to energy synthesis and metabolism, may be the reasons for the reduced body length and delayed first spawning time. Taken together, this study revealed that DES is a threat to D. magna in the aquatic environment and clarifies the molecular mechanism of the toxicity.
Collapse
Affiliation(s)
- Qi Li
- Correspondence: ; Tel.: +86-135-7200-0931
| | | | | | | | | |
Collapse
|
29
|
Li X, Zhu X, Wei Y. Autophagy in Atherosclerotic Plaque Cells: Targeting NLRP3 Inflammasome for Self-Rescue. Biomolecules 2022; 13:15. [PMID: 36671400 PMCID: PMC9855815 DOI: 10.3390/biom13010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis (AS) is a lipid-driven disorder of the artery intima characterized by the equilibrium between inflammatory and regressive processes. A protein complex called NLRP3 inflammasome is involved in the release of mature interleukin-1β (IL-1β), which is connected to the initiation and progression of atherosclerosis. Autophagy, which includes macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy, is generally recognized as the process by which cells transfer their constituents to lysosomes for digestion. Recent studies have suggested a connection between vascular inflammation and autophagy. This review summarizes the most recent studies and the underlying mechanisms associated with different autophagic pathways and NLRP3 inflammasomes in vascular inflammation, aiming to provide additional evidence for atherosclerosis research.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianjie Zhu
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
30
|
Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater 2022; 10:rbac103. [PMID: 36683743 PMCID: PMC9845526 DOI: 10.1093/rb/rbac103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and a leading cause of death worldwide. Macrophages play an important role in inflammatory responses, cell-cell communications, plaque growth and plaque rupture in atherosclerotic lesions. Here, we review the sources, functions and complex phenotypes of macrophages in the progression of atherosclerosis, and discuss the recent approaches in modulating macrophage phenotype and autophagy for atherosclerosis treatment. We then focus on the drug delivery strategies that target macrophages or use macrophage membrane-coated particles to deliver therapeutics to the lesion sites. These biomaterial-based approaches that target, modulate or engineer macrophages have broad applications for disease therapies and tissue regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Crystal Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chunli Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
31
|
Xu W, Hu Z, Tang Y, Zhang J, Xu S, Niu Q. Excessive Lysosomal Stress Response and Consequently Impaired Autophagy Contribute to Fluoride-Induced Developmental Neurotoxicity. Biol Trace Elem Res 2022:10.1007/s12011-022-03511-0. [PMID: 36464725 DOI: 10.1007/s12011-022-03511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022]
Abstract
Fluoride can cause developmental neurotoxicity; however, the precise mechanism has yet to be determined. We aimed to explore the possible role and mechanism of fluoride-induced developmental neurotoxicity, specifically the significance of the lysosomal stress response. As an in vivo model, Sprague Dawley rats were exposed to sodium fluoride (NaF) from embryo to 2 months of age. We found that NaF caused autophagic flux blockage and apoptosis in the rat hippocampus. These results were validated in human neuroblastoma (SH-SY5Y) cells in vitro. In addition, in SH-SY5Y cells, NaF hindered autophagosome-lysosome fusion, decreased lysosomal degradation, and elevated lysosomal pH, which is the most prominent hallmark of a lysosomal stress response. Interestingly, rapamycin promoted autophagosome-lysosome fusion, effectively restoring autophagic flux and reducing apoptosis. Notably, bafilomycin A1, a lysosomal lumen alkalizer, unsurprisingly exacerbated the NaF-induced increase in lysosomal pH and decreased lysosomal degradability, as well as enhanced apoptosis of SH-SY5Y cells. In conclusion, our results suggest that NaF exposure initiates excessive lysosomal stress response, resulting in elevated lysosomal pH, decreased lysosomal degradation, and blocked autophagic flux, which leads to neuronal apoptosis. Thus, the lysosomal stress response may be a promising target for the prevention and treatment of fluoride-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China
| | - Shangzhi Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China.
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China.
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, China.
| |
Collapse
|
32
|
Ojo OO, Leake DS. Effects of lysosomal low density lipoprotein oxidation by ferritin on macrophage function. Free Radic Res 2022; 56:436-446. [PMID: 36217887 DOI: 10.1080/10715762.2022.2133703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We have previously demonstrated that low density lipoprotein (LDL) can be oxidised by iron in the lysosomes of macrophages. Some of the iron content of lysosomes might be delivered through autophagy of ferritin (the main iron-storage protein in the body). We have now investigated the effects of ferritin-mediated LDL oxidation on macrophage function. The addition of ferritin to human THP-1 cells and human monocyte-derived macrophages increased lysosomal lipid peroxidation, as shown by LPO-Foam, a fluorescent probe targetted to lysosomes. Incubating THP-1 cells with ferritin and native LDL or LDL aggregated by sphingomyelinase, to allow their endocytosis and delivery to lysosomes, led to the formation of lysosomal ceroid (an advanced lipid oxidation product), indicative of lysosomal LDL oxidation. Incubating THP-1 cells with ferritin and LDL caused metabolic activation of the cells, as shown by increased extracellular acidification and oxygen consumption measured by a Seahorse analyser. LDL oxidised by ferritin in lysosomes might be released from macrophages when the cells die and lyse and affect neighbouring cells in atherosclerotic lesions. Adding LDL oxidised by ferritin at lysosomal pH (pH 4.5) to macrophages increased their intracellular reactive oxygen species formation, shown using dihydroethidium, and increased apoptosis. Ferritin might therefore contribute to LDL oxidation in the lysosomes of macrophages and have atherogenic effects.
Collapse
Affiliation(s)
- Oluwatosin O Ojo
- School of Biological Sciences and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, Berkshire, UK
| | - David S Leake
- School of Biological Sciences and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
33
|
Pu J. Targeting the lysosome: Mechanisms and treatments for nonalcoholic fatty liver disease. J Cell Biochem 2022; 123:1624-1633. [PMID: 35605052 PMCID: PMC9617749 DOI: 10.1002/jcb.30274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022]
Abstract
The multiple functions of the lysosome, including degradation, nutrient sensing, signaling, and gene regulation, enable the lysosome to regulate lipid metabolism at different levels. In this review, I summarize the recent studies on lysosomal regulation of lipid metabolism and the alterations of the lysosome functions in the livers affected by nonalcoholic fatty liver disease (NAFLD). NAFLD is a highly prevalent lipid metabolic disorder. The progression of NAFLD leads to nonalcoholic steatohepatitis (NASH) and other severe liver diseases, and thus the prevention and treatments of NAFLD progression are critically needed. Targeting the lysosome is a promising strategy. I also discuss the current manipulations of the lysosome functions in the preclinical studies of NAFLD and propose my perspectives on potential future directions.
Collapse
Affiliation(s)
- Jing Pu
- Department of Molecular Genetics and Microbiology, Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
34
|
Besler KJ, Blanchard V, Francis GA. Lysosomal acid lipase deficiency: A rare inherited dyslipidemia but potential ubiquitous factor in the development of atherosclerosis and fatty liver disease. Front Genet 2022; 13:1013266. [PMID: 36204319 PMCID: PMC9530988 DOI: 10.3389/fgene.2022.1013266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Lysosomal acid lipase (LAL), encoded by the gene LIPA, is the sole neutral lipid hydrolase in lysosomes, responsible for cleavage of cholesteryl esters and triglycerides into their component parts. Inherited forms of complete (Wolman Disease, WD) or partial LAL deficiency (cholesteryl ester storage disease, CESD) are fortunately rare. Recently, LAL has been identified as a cardiovascular risk gene in genome-wide association studies, though the directionality of risk conferred remains controversial. It has also been proposed that the low expression and activity of LAL in arterial smooth muscle cells (SMCs) that occurs inherently in nature is a likely determinant of the propensity of SMCs to form the majority of foam cells in atherosclerotic plaque. LAL also likely plays a potential role in fatty liver disease. This review highlights the nature of LAL gene mutations in WD and CESD, the association of LAL with prediction of cardiovascular risk from genome-wide association studies, the importance of relative LAL deficiency in SMC foam cells, and the need to further interrogate the pathophysiological impact and cell type-specific role of enhancing LAL activity as a novel treatment strategy to reduce the development and induce the regression of ischemic cardiovascular disease and fatty liver.
Collapse
|
35
|
Zheng Y, Xu L, Dong N, Li F. NLRP3 inflammasome: The rising star in cardiovascular diseases. Front Cardiovasc Med 2022; 9:927061. [PMID: 36204568 PMCID: PMC9530053 DOI: 10.3389/fcvm.2022.927061] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the prevalent cause of mortality around the world. Activation of inflammasome contributes to the pathological progression of cardiovascular diseases, including atherosclerosis, abdominal aortic aneurysm, myocardial infarction, dilated cardiomyopathy, diabetic cardiomyopathy, heart failure, and calcific aortic valve disease. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a critical role in the innate immune response, requiring priming and activation signals to provoke the inflammation. Evidence shows that NLRP3 inflammasome not only boosts the cleavage and release of IL-1 family cytokines, but also leads to a distinct cell programmed death: pyroptosis. The significance of NLRP3 inflammasome in the CVDs-related inflammation has been extensively explored. In this review, we summarized current understandings of the function of NLRP3 inflammasome in CVDs and discussed possible therapeutic options targeting the NLRP3 inflammasome.
Collapse
|
36
|
Macrophage Polarization Mediated by Mitochondrial Dysfunction Induces Adipose Tissue Inflammation in Obesity. Int J Mol Sci 2022; 23:ijms23169252. [PMID: 36012516 PMCID: PMC9409464 DOI: 10.3390/ijms23169252] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/06/2022] Open
Abstract
Obesity is one of the prominent global health issues, contributing to the growing prevalence of insulin resistance and type 2 diabetes. Chronic inflammation in adipose tissue is considered as a key risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. Macrophages are the most abundant immune cells in adipose tissue and play an important role in adipose tissue inflammation. Mitochondria are critical for regulating macrophage polarization, differentiation, and survival. Changes to mitochondrial metabolism and physiology induced by extracellular signals may underlie the corresponding state of macrophage activation. Macrophage mitochondrial dysfunction is a key mediator of obesity-induced macrophage inflammatory response and subsequent systemic insulin resistance. Mitochondrial dysfunction drives the activation of the NLRP3 inflammasome, which induces the release of IL-1β. IL-1β leads to decreased insulin sensitivity of insulin target cells via paracrine signaling or infiltration into the systemic circulation. In this review, we discuss the new findings on how obesity induces macrophage mitochondrial dysfunction and how mitochondrial dysfunction induces NLRP3 inflammasome activation. We also summarize therapeutic approaches targeting mitochondria for the treatment of diabetes.
Collapse
|
37
|
Yu Y, Sun Q, Li T, Ren X, Lin L, Sun M, Duan J, Sun Z. Adverse outcome pathway of fine particulate matter leading to increased cardiovascular morbidity and mortality: An integrated perspective from toxicology and epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128368. [PMID: 35149491 DOI: 10.1016/j.jhazmat.2022.128368] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) exposure is a major threat to public health, and is listed as one of the leading factors associated with global premature mortality. Among the adverse health effects on multiple organs or tissues, the influence of PM2.5 exposure on cardiovascular system has drawn more and more attention. Although numerous studies have investigated the mechanisms responsible for the cardiovascular toxicity of PM2.5, the various mechanisms have not been integrated due to the variety of the study models, different levels of toxicity assessment endpoints, etc. Adverse Outcome Pathway (AOP) framework is a useful tool to achieve this goal so as to facilitate comprehensive understanding of toxicity assessment of PM2.5 on cardiovascular system. This review aims to illustrate the causal mechanistic relationships of PM2.5-triggered cardiovascular toxicity from different levels (from molecular/cellular/organ to individual/population) by using AOP framework. Based on the AOP Wiki and published literature, we propose an AOP framework focusing on the cardiovascular toxicity induced by PM2.5 exposure. The molecular initiating event (MIE) is identified as reactive oxygen species generation, followed by the key events (KEs) of oxidative damage and mitochondria dysfunction, which induces vascular endothelial dysfunction via vascular endothelial cell autophagy dysfunction, vascular fibrosis via vascular smooth muscle cell activation, cardiac dysregulation via myocardial apoptosis, and cardiac fibrosis via fibroblast proliferation and myofibroblast differentiation, respectively; all of the above cardiovascular injuries ultimately elevate cardiovascular morbidity and mortality in the general population. As far as we know, this is the first work on PM2.5-related cardiovascular AOP construction. In the future, more work needs to be done to explore new markers in the safety assessment of cardiovascular toxicity induced by PM2.5.
Collapse
Affiliation(s)
- Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
38
|
Ariano C, Riganti C, Corà D, Valdembri D, Mana G, Astanina E, Serini G, Bussolino F, Doronzo G. TFEB controls integrin-mediated endothelial cell adhesion by the regulation of cholesterol metabolism. Angiogenesis 2022; 25:471-492. [PMID: 35545719 PMCID: PMC9519734 DOI: 10.1007/s10456-022-09840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
The dynamic integrin-mediated adhesion of endothelial cells (ECs) to the surrounding ECM is fundamental for angiogenesis both in physiological and pathological conditions, such as embryonic development and cancer progression. The dynamics of EC-to-ECM adhesions relies on the regulation of the conformational activation and trafficking of integrins. Here, we reveal that oncogenic transcription factor EB (TFEB), a known regulator of lysosomal biogenesis and metabolism, also controls a transcriptional program that influences the turnover of ECM adhesions in ECs by regulating cholesterol metabolism. We show that TFEB favors ECM adhesion turnover by promoting the transcription of genes that drive the synthesis of cholesterol, which promotes the aggregation of caveolin-1, and the caveolin-dependent endocytosis of integrin β1. These findings suggest that TFEB might represent a novel target for the pharmacological control of pathological angiogenesis and bring new insights in the mechanism sustaining TFEB control of endocytosis.
Collapse
Affiliation(s)
- Camilla Ariano
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Novara, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy
| | - Giulia Mana
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy
| | - Elena Astanina
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy
| | - Guido Serini
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy. .,Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, Candiolo, Italy. .,Candiolo Cancer Institute- FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
39
|
The effect of trehalose administration on vascular inflammation in patients with coronary artery disease. Biomed Pharmacother 2022; 147:112632. [DOI: 10.1016/j.biopha.2022.112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
|
40
|
Sottero B, Testa G, Gamba P, Staurenghi E, Giannelli S, Leonarduzzi G. Macrophage polarization by potential nutraceutical compounds: A strategic approach to counteract inflammation in atherosclerosis. Free Radic Biol Med 2022; 181:251-269. [PMID: 35158030 DOI: 10.1016/j.freeradbiomed.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a main event in the onset and progression of atherosclerosis and is closely associated with oxidative stress in a sort of vicious circle that amplifies and sustains all stages of the disease. Key players of atherosclerosis are monocytes/macrophages. According to their pro- or anti-inflammatory phenotype and biological functions, lesional macrophages can release various mediators and enzymes, which in turn contribute to plaque progression and destabilization or, alternatively, lead to its resolution. Among the factors connected to atherosclerotic disease, lipid species carried by low density lipoproteins and pro-oxidant stimuli strongly promote inflammatory events in the vasculature, also by modulating the macrophage phenotyping. Therapies specifically aimed to balance macrophage inflammatory state are increasingly considered as powerful tools to counteract plaque formation and destabilization. In this connection, several molecules of natural origin have been recognized to be active mediators of diverse metabolic and signaling pathways regulating lipid homeostasis, redox state, and inflammation; they are, thus, considered as promising candidates to modulate macrophage responsiveness to pro-atherogenic stimuli. The current knowledge of the capability of nutraceuticals to target macrophage polarization and to counteract atherosclerotic lesion progression, based mainly on in vitro investigation, is summarized in the present review.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy.
| |
Collapse
|
41
|
Machlovi SI, Neuner SM, Hemmer BM, Khan R, Liu Y, Huang M, Zhu JD, Castellano JM, Cai D, Marcora E, Goate AM. APOE4 confers transcriptomic and functional alterations to primary mouse microglia. Neurobiol Dis 2022; 164:105615. [PMID: 35031484 PMCID: PMC8934202 DOI: 10.1016/j.nbd.2022.105615] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Common genetic variants in more than forty loci modulate risk for Alzheimer's disease (AD). AD risk alleles are enriched within enhancers active in myeloid cells, suggesting that microglia, the brain-resident macrophages, may play a key role in the etiology of AD. A major genetic risk factor for AD is Apolipoprotein E (APOE) genotype, with the ε4/ε4 (E4) genotype increasing risk for AD by approximately 15 fold compared to the most common ε3/ε3 (E3) genotype. However, the impact of APOE genotype on microglial function has not been thoroughly investigated. To address this, we cultured primary microglia from mice in which both alleles of the mouse Apoe gene have been humanized to encode either human APOE ε3 or APOE ε4. Relative to E3 microglia, E4 microglia exhibit altered morphology, increased endolysosomal mass, increased cytokine/chemokine production, and increased lipid and lipid droplet accumulation at baseline. These changes were accompanied by decreased translation and increased phosphorylation of eIF2ɑ and eIF2ɑ-kinases that participate in the integrated stress response, suggesting that E4 genotype leads to elevated levels of cellular stress in microglia relative to E3 genotype. Using live-cell imaging and flow cytometry, we also show that E4 microglia exhibited increased phagocytic uptake of myelin and other substrates compared to E3 microglia. While transcriptomic profiling of myelin-challenged microglia revealed a largely overlapping response profile across genotypes, differential enrichment of genes in interferon signaling, extracellular matrix and translation-related pathways was identified in E4 versus E3 microglia both at baseline and following myelin challenge. Together, our results suggest E4 genotype confers several important functional alterations to microglia even prior to myelin challenge, providing insight into the molecular and cellular mechanisms by which APOE4 may increase risk for AD.
Collapse
Affiliation(s)
- Saima I Machlovi
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah M Neuner
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brittany M Hemmer
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Riana Khan
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiyuan Liu
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min Huang
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA; Department of Neurology, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey D Zhu
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph M Castellano
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Neurology, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongming Cai
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; James J Peters VA Medical Center, Research & Development, Bronx, NY, USA; Department of Neurology, New York, NY, USA; Alzheimer Disease Research Center, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Department of Neurology, New York, NY, USA; Alzheimer Disease Research Center, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Robichaud S, Rasheed A, Pietrangelo A, Doyoung Kim A, Boucher DM, Emerton C, Vijithakumar V, Gharibeh L, Fairman G, Mak E, Nguyen MA, Geoffrion M, Wirka R, Rayner KJ, Ouimet M. Autophagy Is Differentially Regulated in Leukocyte and Nonleukocyte Foam Cells During Atherosclerosis. Circ Res 2022; 130:831-847. [PMID: 35137605 DOI: 10.1161/circresaha.121.320047] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Atherosclerosis is characterized by an accumulation of foam cells within the arterial wall, resulting from excess cholesterol uptake and buildup of cytosolic lipid droplets (LDs). Autophagy promotes LD clearance by freeing stored cholesterol for efflux, a process that has been shown to be atheroprotective. While the role of autophagy in LD catabolism has been studied in macrophage-derived foam cells, this has remained unexplored in vascular smooth muscle cell (VSMC)-derived foam cells that constitute a large fraction of foam cells within atherosclerotic lesions. OBJECTIVE We performed a comparative analysis of autophagy flux in lipid-rich aortic intimal populations to determine whether VSMC-derived foam cells metabolize LDs similarly to their macrophage counterparts. METHODS AND RESULTS Atherosclerosis was induced in GFP-LC3 transgenic mice by PCSK9 (proprotein convertase subtilisin/kexin type 9)-adeno-associated viral injection and Western diet feeding. Using flow cytometry of aortic digests, we observed a significant increase in dysfunctional autophagy of VSMC-derived foam cells during atherogenesis relative to macrophage-derived foam cells. Using cell culture models of lipid-loaded VSMC and macrophage, we show that autophagy-mediated cholesterol efflux from VSMC foam cells was poor relative to macrophage foam cells, and largely occurs when HDL (high-density lipoprotein) is used as a cholesterol acceptor, as opposed to apoA-1 (apolipoproteinA-1). This was associated with the predominant expression of ABCG1 in VSMC foam cells. Using metformin, an autophagy activator, cholesterol efflux to HDL was significantly increased in VSMC, but not in macrophage, foam cells. CONCLUSIONS These data demonstrate that VSMC and macrophage foam cells perform cholesterol efflux by distinct mechanisms, and that autophagy flux is highly impaired in VSMC foam cells, but can be induced by pharmacological means. Further investigation is warranted into targeting autophagy specifically in VSMC foam cells, the predominant foam cell subtype of advanced atherosclerotic plaques, to promote reverse cholesterol transport and resolution of the atherosclerotic plaque.
Collapse
Affiliation(s)
- Sabrina Robichaud
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Adil Rasheed
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Antonietta Pietrangelo
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Anne Doyoung Kim
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Dominique M Boucher
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Christina Emerton
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - Viyashini Vijithakumar
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Lara Gharibeh
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Garrett Fairman
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Esther Mak
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - My-Anh Nguyen
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Michele Geoffrion
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - Robert Wirka
- University of North Carolina School of Medicine, Chapel Hill (R.W.)
| | - Katey J Rayner
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Mireille Ouimet
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| |
Collapse
|
43
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Triggiani V. The Pathogenic Role of Foam Cells in Atherogenesis: Do They Represent Novel Therapeutic Targets? Endocr Metab Immune Disord Drug Targets 2022; 22:765-777. [PMID: 34994321 DOI: 10.2174/1871530322666220107114313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Foam cells, mainly derived from monocytes-macrophages, contain lipid droplets essentially composed of cholesterol in their cytoplasm. They infiltrate the intima of arteries, contributing to the formation of atherosclerotic plaques. PATHOGENESIS Foam cells damage the arterial cell wall via the release of proinflammatory cytokines, free radicals, and matrix metalloproteinases, enhancing the plaque size up to its rupture. THERAPY A correct dietary regimen seems to be the most appropriate therapeutic approach to minimize obesity, which is associated with the formation of foam cells. At the same time, different types of antioxidants have been evaluated to arrest the formation of foam cells, even if the results are still contradictory. In any case, a combination of antioxidants seems to be more efficient in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Science, Neuroscience and Sensory Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
44
|
Lei Q, Ma J, Zhang Z, Sui W, Zhai C, Xu D, Wang Z, Lu H, Zhang M, Zhang C, Chen W, Zhang Y. Deficient Chaperone-Mediated Autophagy Promotes Inflammation and Atherosclerosis. Circ Res 2021; 129:1141-1157. [PMID: 34704457 PMCID: PMC8638823 DOI: 10.1161/circresaha.121.318908] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale: The NLRP3 inflammasome is an important driver of atherosclerosis. Our previous study shows that chaperone-mediated autophagy (CMA), one of the main lysosomal degradative process, has a regulatory role in lipid metabolism of macrophage. However, whether the NLRP3 inflammasome is regulated by CMA and the role of CMA in atherosclerosis remain unclear. Objective: To determine the role of CMA in the regulation of NLRP3 inflammasome and atherosclerosis. Methods and Results: The expression of CMA marker, lysosome associated membrane protein type 2A (LAMP-2A), was first analyzed in ApoE-/- mouse aortas and human coronary atherosclerotic plaques and a significant down-regulation of LAMP-2A in advanced atherosclerosis in both mice and human was observed. To selectively block CMA, we generated macrophage-specific conditional LAMP-2A-knockout mouse strains in C57BL/6 mice and ApoE-/- mice. Deletion of macrophage LAMP-2A accelerated atherosclerotic lesion formation in the aortic root and the whole aorta in ApoE-/- mice. Mechanistically, LAMP-2A deficiency promoted NLRP3 inflammasome activation and subsequent release of mature IL-1β in macrophages and atherosclerotic plaques. Furthermore, gain-of-function studies verified that restoration of LAMP-2A levels in LAMP-2A-deficient macrophages greatly attenuated NLRP3 inflammasome activation. Importantly, we identified the NLRP3 protein as a CMA substrate and demonstrated that LAMP-2A deficiency did not affect the NLRP3 mRNA levels but hindered degradation of the NLRP3 protein through CMA pathway. Conclusions: CMA function becomes impaired during the progression of atherosclerosis, which increases NLRP3 inflammasome activation and secretion of IL-1β, promoting vascular inflammation and atherosclerosis progression. Our study unveils a new mechanism by which NLRP3 inflammasome is regulated in macrophages and atherosclerosis, thus providing a new insight into the role of autophagy-lysosomal pathway in atherosclerosis. Pharmacological activation of CMA may provide a novel therapeutic strategy for atherosclerosis and other NLRP3 inflammasome/IL-1β-driven diseases.
Collapse
Affiliation(s)
- Qiao Lei
- Shadong University, The Key Laboratory of Cardiovascular Remodeling and Function Research, CHINA
| | - Jing Ma
- Shandong University Qilu Hospital, Qilu Hospital of Shandong University, CHINA
| | - Zihao Zhang
- Cardiology, Qilu Hospital of Shandong University, CHINA
| | - Wenhai Sui
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, CHINA
| | | | - Dan Xu
- Cardiology, Qilu Hospital of Shandong University
| | - Zunzhe Wang
- Cardiology, Qilu Hospital of Shandong University, CHINA
| | - Huixia Lu
- Cardiology, Qilu Hospital of Shandong University, CHINA
| | - Meng Zhang
- Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, CHINA
| | - Cheng Zhang
- Cardiology, Qilu Hospital of Shandong University, CHINA
| | - Wenqiang Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, CHINA
| | - Yun Zhang
- Cardiology, Qilu Hospital of Shandong University, CHINA
| |
Collapse
|
45
|
Zaman R, Hamidzada H, Kantores C, Wong A, Dick SA, Wang Y, Momen A, Aronoff L, Lin J, Razani B, Mital S, Billia F, Lavine KJ, Nejat S, Epelman S. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity 2021; 54:2057-2071.e6. [PMID: 34363749 DOI: 10.1016/j.immuni.2021.07.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/20/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
Hypertension affects one-third of the world's population, leading to cardiac dysfunction that is modulated by resident and recruited immune cells. Cardiomyocyte growth and increased cardiac mass are essential to withstand hypertensive stress; however, whether immune cells are involved in this compensatory cardioprotective process is unclear. In normotensive animals, single-cell transcriptomics of fate-mapped self-renewing cardiac resident macrophages (RMs) revealed transcriptionally diverse cell states with a core repertoire of reparative gene programs, including high expression of insulin-like growth factor-1 (Igf1). Hypertension drove selective in situ proliferation and transcriptional activation of some cardiac RM states, directly correlating with increased cardiomyocyte growth. During hypertension, inducible ablation of RMs or selective deletion of RM-derived Igf1 prevented adaptive cardiomyocyte growth, and cardiac mass failed to increase, which led to cardiac dysfunction. Single-cell transcriptomics identified a conserved IGF1-expressing macrophage subpopulation in human cardiomyopathy. Here we defined the absolute requirement of RM-produced IGF-1 in cardiac adaptation to hypertension.
Collapse
Affiliation(s)
- Rysa Zaman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Crystal Kantores
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Anthony Wong
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sarah A Dick
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yiming Wang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Abdul Momen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Laura Aronoff
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Julia Lin
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Babak Razani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Seema Mital
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Division of Cardiology, Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Peter Munk Cardiac Centre, Toronto, ON, Canada
| | - Kory J Lavine
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sara Nejat
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Peter Munk Cardiac Centre, Toronto, ON, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Peter Munk Cardiac Centre, Toronto, ON, Canada.
| |
Collapse
|
46
|
Hu ZQ, Li Q, Hu ZH, Liu HC, Rao CL, Zhang MJ, Xia YP, Deng L, Mao XH, Fang Y. MicroRNA-146a inhibits autophagy to maintain the intracellular survival of Burkholderia pseudomallei by targeting LIPA. Microb Pathog 2021; 158:104969. [PMID: 34044047 DOI: 10.1016/j.micpath.2021.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022]
Abstract
Burkholderia pseudomallei is the etiological agent of melioidosis, which is an emerging infectious disease endemic to many tropical regions. Autophagy is an intrinsic cellular process that degrades cytoplasmic components and plays an important role in protecting the host against pathogens. Like many intracellular pathogens, B. pseudomallei can evade the autophagy-dependent cellular clearance. However, the underlying mechanism remains unclear. In this study, we applied a combination of multiple assays to monitor autophagy processes and found that B. pseudomallei induced an incomplete autophagic flux and eliminate autophagy clearance in macrophages by blocking autophagosome-lysosome fusion. Based on a high-throughput microarray screening, we found that LIPA (lysosomal acid LIPAse A) was downregulated during B. pseudomallei infection. MiR-146a was then identified to be specifically upregulated upon infection with B. pseudomallei and further regulated LIPA expression by interacting with 3'UTR of LIPA. Furthermore, overexpression of miR-146a contributed to the defect of autophagic flux caused by B. pseudomallei and was beneficial for the survival of B. pseudomallei in macrophages. Therefore, our findings suggest that miR-146a inhibits autophagy via posttranscriptional suppression of LIPA expression to maintain B. pseudomallei survival in macrophages.
Collapse
Affiliation(s)
- Zhi-Qiang Hu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Third Military Medical University (Army Medical University), Chongqing, PR China; Shigatse Branch, Xinqiao Hospital, Army 953 Hospital, Army Medical University, Shigatse, 857000, PR China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhen-Hong Hu
- Department of Respiratory, General Hospital of Center Theater of PLA, PLA's Health Service Scientific Research Plan, Wuhan, PR China
| | - Hai-Chao Liu
- Department of Respiratory, General Hospital of Center Theater of PLA, PLA's Health Service Scientific Research Plan, Wuhan, PR China
| | - Cheng-Long Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Mei-Juan Zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yu-Pei Xia
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Ling Deng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xu-Hu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Third Military Medical University (Army Medical University), Chongqing, PR China.
| | - Yao Fang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Third Military Medical University (Army Medical University), Chongqing, PR China; Department of Respiratory, General Hospital of Center Theater of PLA, PLA's Health Service Scientific Research Plan, Wuhan, PR China.
| |
Collapse
|
47
|
Albaghdadi MS, Ikegami R, Kassab MB, Gardecki JA, Kunio M, Chowdhury MM, Khamis R, Libby P, Tearney GJ, Jaffer FA. Near-Infrared Autofluorescence in Atherosclerosis Associates With Ceroid and Is Generated by Oxidized Lipid-Induced Oxidative Stress. Arterioscler Thromb Vasc Biol 2021; 41:e385-e398. [PMID: 34011166 DOI: 10.1161/atvbaha.120.315612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Mazen S Albaghdadi
- Cardiovascular Research Center, Division of Cardiology (M.S.A., R.I., M.B.K., M.M.C., F.A.J.), Harvard Medical School, Massachusetts General Hospital, Boston.,Division of Cardiology, Department of Medicine, University of Toronto, ON, Canada (M.S.A.)
| | - Ryutaro Ikegami
- Cardiovascular Research Center, Division of Cardiology (M.S.A., R.I., M.B.K., M.M.C., F.A.J.), Harvard Medical School, Massachusetts General Hospital, Boston.,Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Japan (R.I.)
| | - Mohamad B Kassab
- Cardiovascular Research Center, Division of Cardiology (M.S.A., R.I., M.B.K., M.M.C., F.A.J.), Harvard Medical School, Massachusetts General Hospital, Boston
| | - Joseph A Gardecki
- Wellman Center for Photomedicine (J.A.G., G.J.T., F.A.J.), Harvard Medical School, Massachusetts General Hospital, Boston
| | - Mie Kunio
- Canon USA, Inc, Cambridge, MA (M.K.)
| | - Mohammed M Chowdhury
- Cardiovascular Research Center, Division of Cardiology (M.S.A., R.I., M.B.K., M.M.C., F.A.J.), Harvard Medical School, Massachusetts General Hospital, Boston.,Division of Vascular Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, United Kingdom (M.M.C.)
| | - Ramzi Khamis
- National Heart Lung Institute, Imperial College London, United Kingdom (R.K.)
| | - Peter Libby
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Guillermo J Tearney
- Wellman Center for Photomedicine (J.A.G., G.J.T., F.A.J.), Harvard Medical School, Massachusetts General Hospital, Boston.,Department of Pathology (G.J.T.), Harvard Medical School, Massachusetts General Hospital, Boston.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (G.J.T.)
| | - Farouc A Jaffer
- Cardiovascular Research Center, Division of Cardiology (M.S.A., R.I., M.B.K., M.M.C., F.A.J.), Harvard Medical School, Massachusetts General Hospital, Boston.,Wellman Center for Photomedicine (J.A.G., G.J.T., F.A.J.), Harvard Medical School, Massachusetts General Hospital, Boston
| |
Collapse
|
48
|
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 2021; 14:79. [PMID: 33990205 PMCID: PMC8120021 DOI: 10.1186/s13045-021-01087-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Pengfei Yue
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
49
|
Quantitative trait locus mapping identifies the Gpnmb gene as a modifier of mouse macrophage lysosome function. Sci Rep 2021; 11:10249. [PMID: 33986446 PMCID: PMC8119501 DOI: 10.1038/s41598-021-89800-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/30/2021] [Indexed: 01/28/2023] Open
Abstract
We have previously shown that the DBA/2J versus AKR/J mouse strain is associated with decreased autophagy-mediated lysosomal hydrolysis of cholesterol esters. Our objective was to determine differences in lysosome function in AKR/J and DBA/2J macrophages, and identify the responsible genes. Using a novel dual-labeled indicator of lysosome function, DBA/2J versus AKR/J bone marrow derived macrophages had significantly decreased lysosome function. We performed quantitative trait loci mapping of lysosome function in bone marrow macrophages from an AKR/J × DBA/2J strain intercross. Four distinct lysosome function loci were identified, which we named macrophage lysosome function modifier (Mlfm) Mlfm1 through Mlfm4. The strongest locus Mlfm1 harbors the Gpnmb gene, which has been shown to recruit autophagy protein light chain 3 to autophagosomes for lysosome fusion. The parental DBA/2J strain has a nonsense variant in Gpnmb. siRNA knockdown of Gpnmb in AKR/J macrophages decreased lysosome function, and Gpnmb deletion through CRISP/Cas9 editing in RAW 264.7 mouse macrophages also demonstrated a similar result. Furthermore, a DBA/2 substrain, called DBA/2J-Gpnmb+/SjJ, contains the wildtype Gpnmb gene, and macrophages from this Gpnmb-preserved DBA/2 substrain exhibited recovered lysosome function. In conclusion, we identified Gpnmb as a causal modifier gene of lysosome function in this strain pair.
Collapse
|
50
|
Tao J, Yang P, Xie L, Pu Y, Guo J, Jiao J, Sun L, Lu D. Gastrodin induces lysosomal biogenesis and autophagy to prevent the formation of foam cells via AMPK-FoxO1-TFEB signalling axis. J Cell Mol Med 2021; 25:5769-5781. [PMID: 33973365 PMCID: PMC8184689 DOI: 10.1111/jcmm.16600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Abnormal accumulation of lipids and massive deposition of foam cells is a primary event in the pathogenesis of atherosclerosis. Recent studies have demonstrated that autophagy and lysosomal function of atherosclerotic macrophages are impaired, which exacerbates the accumulation of lipid in macrophages and formation of foam cells. Gastrodin, a major active component of Gastrodia elata Bl., has exerted a protective effect on nervous system, but the effect of gastrodin on atherosclerotic vascular disease remains unknown. We aimed to evaluate the effect of gastrodin on autophagy and lysosomal function of foam cells and explored the mechanism underlying gastrodin's effect on the formation of foam cells. In an in vitro foam cell model constructed by incubating macrophages with oxygenized low-density lipoproteins (ox-LDL), our results showed that lysosomal function and autophagy of foam cells were compromised. Gastrodin restored lysosomal function and autophagic activity via the induction of lysosomal biogenesis and autophagy. The restoration of lysosomal function and autophagic activity enhanced cholesterol efflux from macrophages, therefore, reducing lipid accumulation and preventing formation of foam cells. AMP-activated protein kinase (AMPK) was activated by gastrodin to promote phosphorylation and nuclear translocation of forkhead box O1 (FoxO1), subsequently resulting in increased transcription factor EB (TFEB) expression. TFEB was activated by gastrodin to promote lysosomal biogenesis and autophagy. Our study revealed that the effect of gastrodin on foam cell formation and that induction of lysosomal biogenesis and autophagy of foam cells through AMPK-FoxO1-TFEB signalling axis may be a novel therapeutic target of atherosclerosis.
Collapse
Affiliation(s)
- Jun Tao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Ping Yang
- Department of Anatomy, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Liqiu Xie
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuwei Pu
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jiazhi Guo
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Jianlin Jiao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| |
Collapse
|