1
|
Song C, Li H, Han Y, Luo J, Zhao Y, Zhou C, Zhang A, Wang H. Host restriction factor Rab11a limits porcine epidemic diarrhea virus invasion of cells via fusion peptide-mediated membrane fusion. Int J Biol Macromol 2024; 279:135299. [PMID: 39233171 DOI: 10.1016/j.ijbiomac.2024.135299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes enormous economic losses to the pork industry, and its extensive cell tropism poses a substantial challenge to public health and safety. However, the invasion mechanisms and relevant host factors of PEDV remain poorly understood. In this study, we identified 422 differentially expressed genes related to PEDV infection through transcriptome analysis. Among these, Annexin A2 (ANXA2), Prohibitin-2 (PHB2), and Caveolin-2 (CAV2) were identified through screening and verifying as having a specific interaction with the PEDV S protein, and positive regulation of PEDV internalization was validated by siRNA and overexpression tests. Subsequently, using host membrane protein interaction networks and co-immunoprecipitation analysis, we found that ANXA2 PHB2 or CAV2 directly interact with Rab11a. Next, we constructed a pseudovirus model (LV-PEDV S-GFP) to further confirm that the downregulation of Rab11a could promote PEDV invasion. In detail, ANXA2, PHB2, or CAV2 promoted PEDV invasion via downregulating Rab11a. Furthermore, we showed that the S-protein fusion peptide (FP) was sufficient for S-protein interaction with ANXA2, PHB2, CAV2, and Rab11a, and the addition of exogenous GTP could regulate the efficiency of PEDV invasion. Collectively, ANXA2, PHB2, or CAV2 influenced the membrane fusion of PEDV with host cells through the host restriction factor Rab11a. This study could be targeted for future research to develop strategies for the control of PEDV.
Collapse
Affiliation(s)
- Cailiang Song
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Jinchao Luo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| |
Collapse
|
2
|
Puy C, Moellmer SA, Pang J, Vu HH, Melrose AR, Lorentz CU, Tucker EI, Shatzel JJ, Keshari RS, Lupu F, Gailani D, McCarty OJT. Coagulation factor XI regulates endothelial cell permeability and barrier function in vitro and in vivo. Blood 2024; 144:1821-1833. [PMID: 39158072 DOI: 10.1182/blood.2023022257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/26/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024] Open
Abstract
ABSTRACT Loss of endothelial barrier function contributes to the pathophysiology of many inflammatory diseases. Coagulation factor XI (FXI) plays a regulatory role in inflammation. Although activation of FXI increases vascular permeability in vivo, the mechanism by which FXI or its activated form FXIa disrupts endothelial barrier function is unknown. We investigated the role of FXIa in human umbilical vein endothelial cell (HUVEC) or human aortic endothelial cell (HAEC) permeability. The expression patterns of vascular endothelial (VE)-cadherin and other proteins of interest were examined by western blot or immunofluorescence. Endothelial cell permeability was analyzed by Transwell assay. We demonstrate that FXIa increases endothelial cell permeability by inducing cleavage of the VE-cadherin extracellular domain, releasing a soluble fragment. The activation of a disintegrin and metalloproteinase 10 (ADAM10) mediates the FXIa-dependent cleavage of VE-cadherin, because adding an ADAM10 inhibitor prevented the cleavage of VE-cadherin induced by FXIa. The binding of FXIa with plasminogen activator inhibitor 1 and very low-density lipoprotein receptor on HUVEC or HAEC surfaces activates vascular endothelial growth receptor factor 2 (VEGFR2). The activation of VEGFR2 triggers the mitogen-activated protein kinase (MAPK) signaling pathway and promotes the expression of active ADAM10 on the cell surface. In a pilot experiment using an established baboon model of sepsis, the inhibition of FXI activation significantly decreased the levels of soluble VE-cadherin to preserve barrier function. This study reveals a novel pathway by which FXIa regulates vascular permeability. The effect of FXIa on barrier function may be another way by which FXIa contributes to the development of inflammatory diseases.
Collapse
Affiliation(s)
- Cristina Puy
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
| | - Samantha A Moellmer
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
| | - Helen H Vu
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
| | - Alexander R Melrose
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
| | - Christina U Lorentz
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
- Aronora, Inc, Portland, OR
| | - Erik I Tucker
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
- Aronora, Inc, Portland, OR
| | - Joseph J Shatzel
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR
| | - Ravi S Keshari
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - David Gailani
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR
| |
Collapse
|
3
|
Fan D, Wu R. Mechanisms of the septic heart: From inflammatory response to myocardial edema. J Mol Cell Cardiol 2024; 195:73-82. [PMID: 39142438 DOI: 10.1016/j.yjmcc.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Sepsis-induced myocardial dysfunction (SIMD), also known as sepsis-induced cardiomyopathy (SICM), is linked to significantly increased mortality. Despite its clinical importance, effective therapies for SIMD remain elusive, largely due to an incomplete understanding of its pathogenesis. Over the past five decades, research involving both animal models and human studies has highlighted several pathogenic mechanisms of SICM, yet many aspects remain unexplored. Initially thought to be primarily driven by inflammatory cytokines, current research indicates that these alone are insufficient for the development of cardiac dysfunction. Recent studies have brought attention to additional mechanisms, including excessive nitric oxide production, mitochondrial dysfunction, and disturbances in calcium homeostasis, as contributing factors in SICM. Emerging clinical evidence has highlighted the significant role of myocardial edema in the pathogenesis of SICM, particularly its association with cardiac remodeling in septic shock patients. This review synthesizes our current understanding of SIMD/SICM, focusing on myocardial edema's contribution to cardiac dysfunction and the critical role of the bradykinin receptor B1 (B1R) in altering myocardial microvascular permeability, a potential key player in myocardial edema development during sepsis. Additionally, this review briefly summarizes existing therapeutic strategies and their challenges and explores future research directions. It emphasizes the need for a deeper understanding of SICM to develop more effective treatments.
Collapse
Affiliation(s)
- Dihan Fan
- Psychiatric Genetics Group, McGill University, Canada
| | - Rongxue Wu
- Department of Medicine, Section of Cariology, Biological Sciences Division, The University of Chicago, IL, United States.
| |
Collapse
|
4
|
Antiguas A, Dunnwald M. A novel noncanonical function for IRF6 in the recycling of E-cadherin. Mol Biol Cell 2024; 35:ar102. [PMID: 38809584 PMCID: PMC11244161 DOI: 10.1091/mbc.e23-11-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Interferon Regulatory Factor 6 (IRF6) is a transcription factor essential for keratinocyte cell-cell adhesions. Previously, we found that recycling of E-cadherin was defective in the absence of IRF6, yet total E-cadherin levels were not altered, suggesting a previously unknown, nontranscriptional function for IRF6. IRF6 protein contains a DNA binding domain (DBD) and a protein binding domain (PBD). The transcriptional function of IRF6 depends on its DBD and PBD, however, whether the PBD is necessary for the interaction with cytoplasmic proteins has yet to be demonstrated. Here, we show that an intact PBD is required for recruitment of cell-cell adhesion proteins at the plasma membrane, including the recycling of E-cadherin. Colocalizations and coimmunoprecipitations reveal that IRF6 forms a complex in recycling endosomes with Rab11, Myosin Vb, and E-cadherin, and that the PBD is required for this interaction. These data indicate that IRF6 is a novel effector of the endosomal recycling of E-cadherin and demonstrate a non-transcriptional function for IRF6 in regulating cell-cell adhesions.
Collapse
Affiliation(s)
- Angelo Antiguas
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52245
| | - Martine Dunnwald
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52245
| |
Collapse
|
5
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
6
|
Gong D, Liu X, Wu P, Chen Y, Xu Y, Gao Z, Qian H, Wang G, He B. Rab26 alleviates sepsis-induced immunosuppression as a master regulator of macrophage ferroptosis and polarization shift. Free Radic Biol Med 2024; 212:271-283. [PMID: 38169213 DOI: 10.1016/j.freeradbiomed.2023.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Macrophage dysfunction is a significant contributor to more than 70 % of sepsis-related deaths, specifically secondary bacterial infections, during the immunosuppression stage of sepsis. Nevertheless, the role of Rab26 in this context remains unclear. In this study, we observed a substantial decrease in Rab26 expression in macrophages during the immunosuppressive phase of sepsis, which was also found to be suppressed by high extracellular levels of HMGB1. During the progression of sepsis, Rab26 deficiency promotes a polarization shift from the M1 to the M2-like phenotype in macrophages, rendering them susceptible to ferroptosis. Subsequent experimentation has revealed that Rab26 deficiency facilitates the degradation of GPX4, thereby aggravating macrophage ferroptosis through the upregulation of levels of lipid ROS, MDA, and ferrous iron induced by RSL3, a ferroptosis inducer. Additionally, Rab26-deficient mice in the immunosuppressed phase of sepsis exhibit heightened susceptibility to secondary infections, leading to exacerbated lung tissue damage and increased mortality rate. Overall, these findings indicate that Rab26 plays a crucial role in sepsis-induced macrophage immunosuppression by regulating macrophage ferroptosis and polarization. Hence, it represents a potential novel target for sepsis therapy.
Collapse
Affiliation(s)
- Daohui Gong
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xueping Liu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Pengfei Wu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yue Chen
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yuhang Xu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Zhan Gao
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| | - Binfeng He
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| |
Collapse
|
7
|
Guo RJ, Cao YF, Li EM, Xu LY. Multiple functions and dual characteristics of RAB11A in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188966. [PMID: 37657681 DOI: 10.1016/j.bbcan.2023.188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.
Collapse
Affiliation(s)
- Rui-Jian Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
8
|
Lee SH, Cho S, Lee JY, Hong JY, Kim S, Jeong MH, Kim WH. Identification of Potential Drug Targets for Antiplatelet Therapy Specifically Targeting Platelets of Old Individuals through Proteomic Analysis. Biomedicines 2023; 11:2944. [PMID: 38001945 PMCID: PMC10669211 DOI: 10.3390/biomedicines11112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a growing problem worldwide, and the prevalence and mortality of arterial and venous thromboembolism (VTE) are higher in the elderly than in the young population. To address this issue, various anticoagulants have been used. However, no evidence can confirm that antithrombotic agents are suitable for the elderly. Therefore, this study aims to investigate the platelet proteome of aged mice and identify antithrombotic drug targets specific to the elderly. Based on the proteome analysis of platelets from aged mice, 308 increased or decreased proteins were identified. Among these proteins, three targets were selected as potential antithrombotic drug targets. These targets are membrane proteins or related to platelet function and include beta-2-glycoprotein 1 (β2GP1, ApolipoproteinH (ApoH)), alpha-1-acid glycoprotein2 (AGP2, Orosomucoid-2 (Orm2)), and Ras-related protein (Rab11a).
Collapse
Affiliation(s)
- Seung Hee Lee
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea; (S.C.)
| | | | | | | | | | | | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea; (S.C.)
| |
Collapse
|
9
|
Liu M, Li X, Wang J, Ji Y, Gu J, Wei Y, Peng L, Tian C, Lv P, Wang P, Liu X, Li W. Identification and validation of Rab11a in Rat orofacial inflammatory pain model induced by CFA. Neurochem Int 2023:105550. [PMID: 37268020 DOI: 10.1016/j.neuint.2023.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023]
Abstract
Orofacial pain (OFP) is a clinically very common and the most troubling condition; however, there is few effective way to relieve OFP. Rab11a, a small molecule guanosine triphosphate enzyme, is one of the Rab member family playing a vital role in intracellular endocytosis and the pain process. Therefore, we investigated the hub genes of rat OFP model induced by Complete Freund's Adjuvant (CFA) via re-analyzing microarray data (GSE111160). We found that Rab11a acted as a key hub gene in the process of OFP. During the validation of Rab11a, the OFP model was established by peripheral injection of CFA, which decreased the head withdrawal threshold (HWT) and head withdrawal lantency (HWL). Rab11a was observed in NeuN of Sp5C instead of GFAP/IBA-1, and double-IF of Rab11a and Fos positive cells were increased on the 7th day after CFA modeling statistically. Rab11a protein expression in TG and Sp5C of CFA group was also significantly increased. Interestingly, injection of Rab11a-targeted short hairpin RNA (Rab11a-shRNA) into Sp5C could reverse the decrease in HWT and HWL and reduce the expression level of Rab11a. Electrophysiological recording further demonstrated that the activity of Sp5C neuron was improved in CFA group, while Rab11a-shRNA considerably decreased the enhancement of Sp5C neuronal activity. Finally, we detected the expression level of p-PI3K, p-AKT, and p-mTOR in Sp5C of rats after injecting the Rab11a-shRNA virus. To our surprise, CFA upregulated the phosphorylation of PI3K, AKT and mTOR in Sp5C, and Rab11a-shRNA downregulated these molecules' expression. Our data suggest that CFA activates the PI3K/AKT signaling pathway through up-regulating Rab11a expression, which can induce OFP hyperalgesia development furtherly. Targeting Rab11a may be a novel treatment strategy for OFP.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Li
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, Shandong, China
| | - Jian Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanyuan Ji
- Department of Anatomy, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Junxiang Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Wei
- Department of Anatomy, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Liwei Peng
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chao Tian
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peiyuan Lv
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peng Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Liu
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, Shandong, China.
| | - Weixin Li
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Barlow HR, Ahuja N, Bierschenk T, Htike Y, Fassetta L, Azizoglu DB, Flores J, Gao N, de la O S, Sneddon JB, Marciano DK, Cleaver O. Rab11 is essential to pancreas morphogenesis, lumen formation and endocrine mass. Dev Biol 2023; 499:59-74. [PMID: 37172642 DOI: 10.1016/j.ydbio.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The molecular links between tissue-level morphogenesis and the differentiation of cell lineages in the pancreas remain elusive despite a decade of studies. We previously showed that in pancreas both processes depend on proper lumenogenesis. The Rab GTPase Rab11 is essential for epithelial lumen formation in vitro, however few studies have addressed its functions in vivo and none have tested its requirement in pancreas. Here, we show that Rab11 is critical for proper pancreas development. Co-deletion of the Rab11 isoforms Rab11A and Rab11B in the developing pancreatic epithelium (Rab11pancDKO) results in ∼50% neonatal lethality and surviving adult Rab11pancDKO mice exhibit defective endocrine function. Loss of both Rab11A and Rab11B in the embryonic pancreas results in morphogenetic defects of the epithelium, including defective lumen formation and lumen interconnection. In contrast to wildtype cells, Rab11pancDKO cells initiate the formation of multiple ectopic lumens, resulting in a failure to coordinate a single apical membrane initiation site (AMIS) between groups of cells. This results in a failure to form ducts with continuous lumens. Here, we show that these defects are due to failures in vesicle trafficking, as apical and junctional components remain trapped within Rab11pancDKO cells. Together, these observations suggest that Rab11 directly regulates epithelial lumen formation and morphogenesis. Our report links intracellular trafficking to organ morphogenesis in vivo and presents a novel framework for decoding pancreatic development.
Collapse
Affiliation(s)
- Haley R Barlow
- Department of Molecular Biology, Center for Regenerative Science and Medicine, USA.
| | - Neha Ahuja
- Department of Molecular Biology, Center for Regenerative Science and Medicine, USA
| | - Tyler Bierschenk
- Department of Molecular Biology, Center for Regenerative Science and Medicine, USA
| | - Yadanar Htike
- Department of Molecular Biology, Center for Regenerative Science and Medicine, USA
| | - Luke Fassetta
- Department of Molecular Biology, Center for Regenerative Science and Medicine, USA
| | - D Berfin Azizoglu
- Department of Developmental Biology, Beckman Center, 279 W. Campus Drive, B300, Stanford, CA, 94305, USA
| | - Juan Flores
- Rutgers University Microbiome Program, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Nan Gao
- Rutgers University Microbiome Program, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Sean de la O
- Department of Cell and Tissue Biology, Department of Anatomy, Diabetes Center, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Julie B Sneddon
- Department of Cell and Tissue Biology, Department of Anatomy, Diabetes Center, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Denise K Marciano
- Internal Medicine and Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, USA.
| |
Collapse
|
11
|
Hernandez-Perez I, Rubio J, Baumann A, Girao H, Ferrando M, Rebollo E, Aragay AM, Geli MI. Kazrin promotes dynein/dynactin-dependent traffic from early to recycling endosomes. eLife 2023; 12:e83793. [PMID: 37096882 PMCID: PMC10181827 DOI: 10.7554/elife.83793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed. We now generated kazrin knock-out mouse embryonic fibroblasts to investigate its endocytic function. We found that kazrin depletion delays juxtanuclear enrichment of internalized material, indicating a role in endocytic traffic from early to recycling endosomes. Consistently, we found that the C-terminal domain of kazrin C, predicted to be an intrinsically disordered region, directly interacts with several early endosome (EE) components, and that kazrin depletion impairs retrograde motility of these organelles. Further, we noticed that the N-terminus of kazrin C shares homology with dynein/dynactin adaptors and that it directly interacts with the dynactin complex and the dynein light intermediate chain 1. Altogether, the data indicate that one of the primary kazrin functions is to facilitate endocytic recycling by promoting dynein/dynactin-dependent transport of EEs or EE-derived transport intermediates to the recycling endosomes.
Collapse
Affiliation(s)
- Ines Hernandez-Perez
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Javier Rubio
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Adrian Baumann
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Henrique Girao
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Miriam Ferrando
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Anna M Aragay
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - María Isabel Geli
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| |
Collapse
|
12
|
Zhao W, Wang L, Yang J, Chen X, Guo X, Xu K, Wang N, Zhao W, Xia C, Lian H, Rosas I, Yu G. Endothelial cell-derived MMP19 promotes pulmonary fibrosis by inducing E(nd)MT and monocyte infiltration. Cell Commun Signal 2023; 21:56. [PMID: 36915092 PMCID: PMC10009991 DOI: 10.1186/s12964-023-01040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play important roles in remodeling the extracellular matrix and in the pathogenesis of idiopathic pulmonary fibrosis (IPF). MMP19, which is an MMP, was significantly upregulated in hyperplastic alveolar epithelial cells in IPF lung tissues and promoted epithelial-mesenchymal transition (EMT). Recent studies have demonstrated that endothelial-to-mesenchymal transition (E(nd)MT) contributes to pulmonary fibrosis. However, the role of MMP19 in pulmonary vascular injury and repair and E(nd)MT remains unclear. METHODS To determine the role of MMP19 in E(nd)MT and pulmonary fibrosis. MMP19 expressions were determined in the lung endothelial cells of IPF patients and bleomycin (BLM)-induced mice. The roles of MMP19 in E(nd)MT and endothelial barrier permeability were studied in the MMP19 cDNA-transfected primary human pulmonary microvascular endothelial cells (HPMECs) and MMP19 adenoassociated virus (MMP19-AAV)-infected mice. The regulatory mechanism of MMP19 in pulmonary fibrosis was elucidated by blocking its interacting proteins SDF1 and ET1 with AMD3100 and Bosentan, respectively. RESULTS In this study, we found that MMP19 expression was significantly increased in the lung endothelial cells of IPF patients and BLM-induced mice compared to the control groups. MMP19 promoted E(nd)MT and the migration and permeability of HPMECs in vitro, stimulated monocyte infiltration into the alveolus, and aggravated BLM-induced pulmonary fibrosis in vivo. SDF1 and Endothelin-1 (ET1) were physically associated with MMP19 in HPMECs and colocalized with MMP19 in endothelial cells in IPF patient lung tissues. AMD3100 and bosentan alleviated the fibrosis induced by MMP19 in the BLM mouse model. CONCLUSION MMP19 promoted E(nd)MT by interacting with ET1 and stimulated monocyte infiltration into lung tissues via the SDF1/CXCR4 axis, thus aggravating BLM-induced pulmonary fibrosis. Vascular integrity regulated by MMP19 could be a promising therapeutic target for suppressing pulmonary fibrosis. Video abstract.
Collapse
Affiliation(s)
- Weiming Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Juntang Yang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xinyu Chen
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xiaoshu Guo
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Ningdan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Wenyu Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Cong Xia
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Hui Lian
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Ivan Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
13
|
Exploring RAB11A Pathway to Hinder Chronic Myeloid Leukemia-Induced Angiogenesis In Vivo. Pharmaceutics 2023; 15:pharmaceutics15030742. [PMID: 36986603 PMCID: PMC10056245 DOI: 10.3390/pharmaceutics15030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Neoangiogenesis is generally correlated with poor prognosis, due to the promotion of cancer cell growth, invasion and metastasis. The progression of chronic myeloid leukemia (CML) is frequently associated with an increased vascular density in bone marrow. From a molecular point of view, the small GTP-binding protein Rab11a, involved in the endosomal slow recycling pathway, has been shown to play a crucial role for the neoangiogenic process at the bone marrow of CML patients, by controlling the secretion of exosomes by CML cells, and by regulating the recycling of vascular endothelial factor receptors. The angiogenic potential of exosomes secreted by the CML cell line K562 has been previously observed using the chorioallantoic membrane (CAM) model. Herein, gold nanoparticles (AuNPs) were functionalized with an anti-RAB11A oligonucleotide (AuNP@RAB11A) to downregulate RAB11A mRNA in K562 cell line which showed a 40% silencing of the mRNA after 6 h and 14% silencing of the protein after 12 h. Then, using the in vivo CAM model, these exosomes secreted by AuNP@RAB11A incubated K562 did not present the angiogenic potential of those secreted from untreated K562 cells. These results demonstrate the relevance of Rab11 for the neoangiogenesis mediated by tumor exosomes, whose deleterious effect may be counteracted via targeted silencing of these crucial genes; thus, decreasing the number of pro-tumoral exosomes at the tumor microenvironment.
Collapse
|
14
|
Li Y, Cui S, Wu B, Gao J, Li M, Zhang F, Xia H. FGF5 alleviated acute lung injury via AKT signal pathway in endothelial cells. Biochem Biophys Res Commun 2022; 634:152-158. [PMID: 36244113 PMCID: PMC9527228 DOI: 10.1016/j.bbrc.2022.09.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
Acute lung injury (ALI), with high morbidity and mortality, is mainly resulted by infectious or non-infectious inflammatory stimulators, and it will further evolve into acute respiratory distress syndrome if not controlled. Fibroblast growth factors (FGFs) consist of more than 23 kinds of members, which are involved in various pathophysiological processes of body. However, the effect of FGF5, one member of FGFs, is still not certain in lipopolysaccharide (LPS)-induced ALI. In this study, we explored the possible impacts of FGF5 in LPS-induced ALI and primarily focused on endothelial cell, which was one of the most vulnerable cells in septic ALI. In the mouse group of FGF5 overexpression, LPS-induced lung injuries were mitigated, as well as the pyroptosis levels of pulmonary vascular endothelial cells. Additionally, in vitro human umbilical vein endothelial cells (HUVECs), our results showed that the level of cell pyroptosis was ameliorated with FGF5 overexpression, and AKT signal was activated with the overexpression of FGF5, whereas after administration of MK2206, an inhibitor of AKT signal, the protection of FGF5 was inhibited. Therefore, these results suggested that FGF5 exerted protective effects in endothelial cells exposed to LPS, and this protection of FGF5 could be attributed to activated AKT signal.
Collapse
Affiliation(s)
- Yuhua Li
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jixian Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Furong Zhang
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
15
|
Transcriptomics of angiotensin II-induced long noncoding and coding RNAs in endothelial cells. J Hypertens 2022; 40:1303-1313. [PMID: 35762471 DOI: 10.1097/hjh.0000000000003140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II)-induced endothelial dysfunction plays an important role in the pathogenesis of cardiovascular diseases such as systemic hypertension, cardiac hypertrophy and atherosclerosis. Recently, long noncoding RNAs (lncRNAs) have been shown to play an essential role in the pathobiology of cardiovascular diseases; however, the effect of Ang II on lncRNAs and coding RNAs expression in endothelial cells has not been evaluated. Accordingly, we sought to evaluate the expression profiles of lncRNAs and coding RNAs in endothelial cells following treatment with Ang II. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and treated with Ang II (10-6 mol/l) for 24 h. The cells were then profiled for the expression of lncRNAs and mRNAs using the Arraystar Human lncRNA Expression Microarray V3.0. RESULTS In HUVECs following Ang II treatment, from a total of 30 584 lncRNA targets screened, 25 targets were significantly upregulated, while 69 were downregulated. In the same HUVECs samples, from 26 106 mRNA targets screened, 28 targets were significantly upregulated and 67 were downregulated. Of the differentially expressed lncRNAs, RP11-354P11.2 and RP11-360F5.1 were the most upregulated (11-fold) and downregulated (three-fold) lncRNAs, respectively. Assigning the differentially regulated genes into functional groups using bioinformatics reveals numerous genes involved in the nucleotide excision repair and ECM-receptor interaction. CONCLUSION This is the first study to profile the Ang II-induced differentially expressed lncRNAs and mRNAs in human endothelial cells. Our results reveal novel targets and substantially extend the list of potential candidate genes involved in Ang II-induced endothelial dysfunction and cardiovascular diseases.
Collapse
|
16
|
Li Y, Ji M, Yang J. Current Understanding of Long-Term Cognitive Impairment After Sepsis. Front Immunol 2022; 13:855006. [PMID: 35603184 PMCID: PMC9120941 DOI: 10.3389/fimmu.2022.855006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is recognized as a life-threatening multi-organ dysfunction resulting from a dysregulated host response to infection. Although the incidence and mortality of sepsis decrease significantly due to timely implementation of anti-infective and support therapies, accumulating evidence suggests that a great proportion of survivors suffer from long-term cognitive impairment after hospital discharge, leading to decreased life quality and substantial caregiving burdens for family members. Several mechanisms have been proposed for long-term cognitive impairment after sepsis, which are not mutually exclusive, including blood-brain barrier disruption, neuroinflammation, neurotransmitter dysfunction, and neuronal loss. Targeting these critical processes might be effective in preventing and treating long-term cognitive impairment. However, future in-depth studies are required to facilitate preventive and/or treatment strategies for long-term cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Ying Li
- Department of Anesthesiology, Jiangyin Hospital, Affiliated to Southeast University Medical School, Jiangyin, China
| | - Muhuo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Francis CR, Kushner EJ. Trafficking in blood vessel development. Angiogenesis 2022; 25:291-305. [PMID: 35449244 PMCID: PMC9249721 DOI: 10.1007/s10456-022-09838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/03/2022] [Indexed: 02/17/2023]
Abstract
Blood vessels demonstrate a multitude of complex signaling programs that work in concert to produce functional vasculature networks during development. A known, but less widely studied, area of endothelial cell regulation is vesicular trafficking, also termed sorting. After moving through the Golgi apparatus, proteins are shuttled to organelles, plugged into membranes, recycled, or degraded depending on the internal and extrinsic cues. A snapshot of these protein-sorting systems can be viewed as a trafficking signature that is not only unique to endothelial tissue, but critically important for blood vessel form and function. In this review, we will cover how vesicular trafficking impacts various aspects of angiogenesis, such as sprouting, lumen formation, vessel stabilization, and secretion, emphasizing the role of Rab GTPase family members and their various effectors.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
18
|
Cervero P, Vrenken K, Klose M, Rehm K, Linder S. Nectin stabilization at adherens junctions is counteracted by Rab5a-dependent endocytosis. Eur J Cell Biol 2021; 100:151184. [PMID: 34826799 DOI: 10.1016/j.ejcb.2021.151184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Cell-cell junctions undergo constant remodeling, which is crucial for the control of vascular integrity. Indeed, transport of junctional components such as cadherins is understood in increasing depth. However, little is known about the respective pathways regulating localization of nectin at cell-cell junctions. Here, we performed an siRNA-based screen of vesicle regulators of the RabGTPase family, leading to the identification of a novel role for Rab5a in the endocytosis nectin-2 at adherens junctions of primary human endothelial cells (HUVEC). Confocal microscopy experiments revealed disordered nectin-2 localization at adherens junctions upon Rab5a depletion. In addition, internalized nectin-2 was shown to prominently localize to Rab5a-positive vesicles in both fixed and living cells. As shown previously, nectin-2 stabilization at junctions is achieved via drebrin-dependent coupling to the subcortical actin cytoskeleton. Consistently, depletion of drebrin in this study leads to enhanced internalization of nectin-2 from junctions. Strikingly, simultaneous silencing of Rab5a and drebrin restored the junctional localization of nectin-2, pointing to Rab5a as counteracting the drebrin-dependent stabilization of nectin-2 at adherens junctions. This mechanism could be further validated by transendothelial resistance measurements. Collectively, our results identify Rab5a as a key player in the endocytosis of nectin-2 and thus in the regulation of adherens junction integrity in primary human endothelial cells.
Collapse
Affiliation(s)
- Pasquale Cervero
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kirsten Vrenken
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, P.O.Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Matthias Klose
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kerstin Rehm
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
19
|
Xu BW, Cheng ZQ, Zhi XT, Yang XM, Yan ZB. Effect of p18 on endothelial barrier function by mediating vascular endothelial Rab11a-VE-cadherin recycling. Biosci Biotechnol Biochem 2021; 85:2392-2403. [PMID: 34747973 DOI: 10.1093/bbb/zbab172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 11/14/2022]
Abstract
Endothelial barrier integrity requires recycling of VE-cadherin to adherens junctions. Both p18 and Rab11a play significant roles in VE-cadherin recycling. However, the underlying mechanism and the role of p18 in activating Rab11a have yet to be elucidated. Performing in vitro and in vivo experiments, we showed that p18 protein bound to VE-cadherin before Rab11a through its VE-cadherin-binding domain (aa 1-39). Transendothelial resistance showed that overexpression of p18 promoted the circulation of VE-cadherin to adherens junctions and the recovery of the endothelial barrier. Silencing of p18 caused endothelial barrier dysfunction and prevented Rab11a-positive recycling endosome accumulation in the perinuclear recycling compartments. Furthermore, p18 knockdown in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide and cecal ligation puncture. This study showed that p18 regulated the pulmonary endothelial barrier function in vitro and in vivo by regulating the binding of Rab11a to VE-cadherin and the activation of Rab11a.
Collapse
Affiliation(s)
- Bo-Wen Xu
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhi-Qiang Cheng
- Department of Colorectal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xu-Ting Zhi
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiao-Mei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhi-Bo Yan
- Department of Colorectal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Stevens RP, Paudel SS, Johnson SC, Stevens T, Lee JY. Endothelial metabolism in pulmonary vascular homeostasis and acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2021; 321:L358-L376. [PMID: 34159794 PMCID: PMC8384476 DOI: 10.1152/ajplung.00131.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Capillary endothelial cells possess a specialized metabolism necessary to adapt to the unique alveolar-capillary environment. Here, we highlight how endothelial metabolism preserves the integrity of the pulmonary circulation by controlling vascular permeability, defending against oxidative stress, facilitating rapid migration and angiogenesis in response to injury, and regulating the epigenetic landscape of endothelial cells. Recent reports on single-cell RNA-sequencing reveal subpopulations of pulmonary capillary endothelial cells with distinctive reparative capacities, which potentially offer new insight into their metabolic signature. Lastly, we discuss broad implications of pulmonary vascular metabolism on acute respiratory distress syndrome, touching on emerging findings of endotheliitis in coronavirus disease 2019 (COVID-19) lungs.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Santina C Johnson
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Biomolecular Engineering, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ji Young Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
21
|
Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, Eslami Abriz A, Zarebkohan A, Rahbarghazi R, Sokullu E. Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell Biosci 2021; 11:142. [PMID: 34294165 PMCID: PMC8296716 DOI: 10.1186/s13578-021-00650-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, a large population around the world, especially the elderly, suffers from neurological inflammatory and degenerative disorders/diseases. Current drug delivery strategies are facing different challenges because of the presence of the BBB, which limits the transport of various substances and cells to brain parenchyma. Additionally, the low rate of successful cell transplantation to the brain injury sites leads to efforts to find alternative therapies. Stem cell byproducts such as exosomes are touted as natural nano-drug carriers with 50-100 nm in diameter. These nano-sized particles could harbor and transfer a plethora of therapeutic agents and biological cargos to the brain. These nanoparticles would offer a solution to maintain paracrine cell-to-cell communications under healthy and inflammatory conditions. The main question is that the existence of the intact BBB could limit exosomal trafficking. Does BBB possess some molecular mechanisms that facilitate the exosomal delivery compared to the circulating cell? Although preliminary studies have shown that exosomes could cross the BBB, the exact molecular mechanism(s) beyond this phenomenon remains unclear. In this review, we tried to compile some facts about exosome delivery through the BBB and propose some mechanisms that regulate exosomal cross in pathological and physiological conditions.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.,Neurology Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Mehmet Kaya
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.,Physiology Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Aysan Eslami Abriz
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey. .,Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.
| |
Collapse
|
22
|
Rho-Proteins and Downstream Pathways as Potential Targets in Sepsis and Septic Shock: What Have We Learned from Basic Research. Cells 2021; 10:cells10081844. [PMID: 34440613 PMCID: PMC8391638 DOI: 10.3390/cells10081844] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023] Open
Abstract
Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.
Collapse
|
23
|
Goswami S, Balasubramanian I, D'Agostino L, Bandyopadhyay S, Patel R, Avasthi S, Yu S, Goldenring JR, Bonder EM, Gao N. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem 2021; 297:100848. [PMID: 34058200 PMCID: PMC8254046 DOI: 10.1016/j.jbc.2021.100848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Within the intestinal epithelium, regulation of intracellular protein and vesicular trafficking is of utmost importance for barrier maintenance, immune responses, and tissue polarity. RAB11A is a small GTPase that mediates the anterograde transport of protein cargos to the plasma membrane. Loss of RAB11A-dependent trafficking in mature intestinal epithelial cells results in increased epithelial proliferation and nuclear accumulation of Yes-associated protein (YAP), a key Hippo-signaling transducer that senses cell–cell contacts and regulates tissue growth. However, it is unclear how RAB11A regulates YAP intracellular localizations. In this report, we examined the relationship of RAB11A to epithelial junctional complexes, YAP, and the associated consequences on colonic epithelial tissue repair. We found that RAB11A controls the biochemical associations of YAP with multiple components of adherens and tight junctions, including α-catenin, β-catenin, and Merlin, a tumor suppressor. In the absence of RAB11A and Merlin, we observed enhanced YAP–β-catenin complex formation and nuclear translocation. Upon chemical injury to the intestine, mice deficient in RAB11A were found to have reduced epithelial integrity, decreased YAP localization to adherens and tight junctions, and increased nuclear YAP accumulation in the colon epithelium. Thus, RAB11A-regulated trafficking regulates the Hippo–YAP signaling pathway for rapid reparative response after tissue injury.
Collapse
Affiliation(s)
- Sayantani Goswami
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Luca D'Agostino
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Radha Patel
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Shail Avasthi
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - James R Goldenring
- Department of Surgery, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
24
|
Erasmus JC, Smolarczyk K, Brezovjakova H, Mohd-Naim NF, Lozano E, Matter K, Braga VMM. Rac1-PAK1 regulation of Rab11 cycling promotes junction destabilization. J Cell Biol 2021; 220:212034. [PMID: 33914026 PMCID: PMC8091128 DOI: 10.1083/jcb.202002114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1–dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIβ, but not RabGDIα. Phosphorylated RabGDIβ preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.
Collapse
Affiliation(s)
- Jennifer C Erasmus
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Kasia Smolarczyk
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Helena Brezovjakova
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Noor F Mohd-Naim
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Encarnación Lozano
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, UK
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
25
|
Anquetil T, Solinhac R, Jaffre A, Chicanne G, Viaud J, Darcourt J, Orset C, Geuss E, Kleinschnitz C, Vanhaesebroeck B, Vivien D, Hnia K, Larrue V, Payrastre B, Gratacap MP. PI3KC2β inactivation stabilizes VE-cadherin junctions and preserves vascular integrity. EMBO Rep 2021; 22:e51299. [PMID: 33880878 DOI: 10.15252/embr.202051299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelium protection is critical, because of the impact of vascular leakage and edema on pathological conditions such as brain ischemia. Whereas deficiency of class II phosphoinositide 3-kinase alpha (PI3KC2α) results in an increase in vascular permeability, we uncover a crucial role of the beta isoform (PI3KC2β) in the loss of endothelial barrier integrity following injury. Here, we studied the role of PI3KC2β in endothelial permeability and endosomal trafficking in vitro and in vivo in ischemic stroke. Mice with inactive PI3KC2β showed protection against vascular permeability, edema, cerebral infarction, and deleterious inflammatory response. Loss of PI3KC2β in human cerebral microvascular endothelial cells stabilized homotypic cell-cell junctions by increasing Rab11-dependent VE-cadherin recycling. These results identify PI3KC2β as a potential new therapeutic target to prevent aggravating lesions following ischemic stroke.
Collapse
Affiliation(s)
- Typhaine Anquetil
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Romain Solinhac
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Aude Jaffre
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Gaëtan Chicanne
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Julien Viaud
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Jean Darcourt
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Cyrille Orset
- INSERM, UMR-S U1237 and Caen-Normandie University, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France
| | - Eva Geuss
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | | | - Denis Vivien
- INSERM, UMR-S U1237 and Caen-Normandie University, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France.,CHU Caen, Department of Clinical Research, Caen University Hospital, Caen, France
| | - Karim Hnia
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Vincent Larrue
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France.,Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Bernard Payrastre
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France.,Laboratoire d'Hématologie, CHU de Toulouse, Toulouse Cedex, France
| | - Marie-Pierre Gratacap
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| |
Collapse
|
26
|
McCormack M, Dillon E, O’Connor I, MacCarthy E. Investigation of the Initial Host Response of Naïve Atlantic Salmon ( Salmo salar) Inoculated with Paramoeba perurans. Microorganisms 2021; 9:microorganisms9040746. [PMID: 33918228 PMCID: PMC8066739 DOI: 10.3390/microorganisms9040746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/15/2023] Open
Abstract
Amoebic Gill Disease (AGD), caused by the ectoparasite Paramoeba perurans is characterised by hyperplasia of the gill epithelium and lamellar fusion. In this study, the initial host response of naïve Atlantic salmon (Salmo salar) inoculated with P. perurans was investigated. Using gel-free proteomic techniques and mass spectrometry gill and serum samples were analysed at 7 timepoints (2, 3, 4, 7, 9, 11 and 14 days) post-inoculation with P. perurans. Differential expression of immune related proteins was assessed by comparison of protein expression from each time point against naïve controls. Few host immune molecules associated with innate immunity showed increased expression in response to gill colonisation by amoebae. Furthermore, many proteins with roles in immune signalling, phagocytosis and T-cell proliferation were found to be inhibited upon disease progression. Initially, various immune factors demonstrated the anticipated increase in expression in response to infection in the serum while some immune inhibition became apparent at the later stages of disease progression. Taken together, the pro-immune trend observed in serum, the lack of a robust early immune response in the gill and the diversity of those proteins in the gill whose altered expression negatively impact the immune response, support the concept of a pathogen-derived suppression of the host response.
Collapse
Affiliation(s)
- Michelle McCormack
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
- Correspondence:
| | - Eugene Dillon
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ian O’Connor
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
| |
Collapse
|
27
|
Yu Z, Zeng J, Wang J, Cui Y, Song X, Zhang Y, Cheng X, Hou N, Teng Y, Lan Y, Chen Y, Yang X. Hepatocyte growth factor-regulated tyrosine kinase substrate is essential for endothelial cell polarity and cerebrovascular stability. Cardiovasc Res 2021; 117:533-546. [PMID: 32044971 PMCID: PMC7820882 DOI: 10.1093/cvr/cvaa016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS Hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs), a key component of the endosomal sorting complex required for transport (ESCRT), has been implicated in many essential biological processes. However, the physiological role of endogenous Hgs in the vascular system has not previously been explored. Here, we have generated brain endothelial cell (EC) specific Hgs knockout mice to uncover the function of Hgs in EC polarity and cerebrovascular stability. METHODS AND RESULTS Knockout of Hgs in brain ECs led to impaired endothelial apicobasal polarity and brain vessel collapse in mice. We determined that Hgs is essential for recycling of vascular endothelial (VE)-cadherin to the plasma membrane, since loss of Hgs blocked trafficking of endocytosed VE-cadherin from early endosomes to recycling endosomes, and impaired the motility of recycling endosomes. Supportively, overexpression of the motor kinesin family member 13A (KIF13A) restored endosomal recycling and rescued abrogated polarized trafficking and distribution of VE-cadherin in Hgs knockdown ECs. CONCLUSION These data uncover a novel physiological function of Hgs and support an essential role for the ESCRT machinery in the maintenance of EC polarity and cerebrovascular stability.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Zeng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yaxiong Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaopeng Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yizhe Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yu Lan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yeguang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
28
|
Kakar-Bhanot R, Brahmbhatt K, Chauhan B, Katkam RR, Bashir T, Gawde H, Mayadeo N, Chaudhari UK, Sachdeva G. Rab11a drives adhesion molecules to the surface of endometrial epithelial cells. Hum Reprod 2020; 34:519-529. [PMID: 30597006 DOI: 10.1093/humrep/dey365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/11/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION Is Rab11a GTPase, a regulator of intracellular trafficking, of significance in endometrial functions? SUMMARY ANSWER Rab11a is an important component of the cascades involved in equipping the endometrial epithelium (EE) with 'adhesiveness' and 'cohesiveness'. WHAT IS KNOWN ALREADY Cell adhesion molecules (CAMs) have been investigated extensively for modulation in their endometrial expression during the peri-implantation phase. However, the mechanisms by which CAMs are transported to the EE surface have not received the same attention. Rab11a facilitates transport of specific proteins to the plasma membrane in endothelial cells, fibroblasts, embryonic ectodermal cells, etc. However, its role in the transport of CAMs in EE remains unexplored. STUDY DESIGN, SIZE, DURATION In-vitro investigations were directed towards deciphering the role of Rab11a in trafficking of CAMs (integrins and E-cadherin) to the cell surface of Ishikawa, an EE cell line. Towards this, Rab11a stable knockdown (Rab-kd) and control clones of Ishikawa were generated. JAr (human trophoblastic cell line) cells were used to form multicellular spheroids. Pre-receptive (n = 6) and receptive (n = 6) phase endometrial tissues from women with proven fertility and receptive phase (n = 6) endometrial tissues from women with unexplained infertility were used. PARTICIPANTS/MATERIALS, SETTING, METHODS Rab-kd and control clones were used for in-vitro assays. Live cells were used for biotinylation, JAr spheroid assays, flow cytometry, trans-epithelial electrical resistance assays and wound-healing assays. Lysosome and Golgi membranes were isolated by ultracentrifugation. Confocal microscopy, immunoblotting, qRT-PCR and immunohistochemistry were employed for assessing the expression of Rab11a, integrins and E-cadherin. MAIN RESULTS AND THE ROLE OF CHANCE shRNA-mediated attenuation of Rab11a expression led to a significant (P < 0.01) decline in the surface localization of αVβ3 integrin. Cell surface protein extracts of Rab-kd clones showed a significant (P < 0.05) reduction in the levels of αV integrin. Further, a significant (P < 0.01) decrease was observed in the percent JAr spheroids attached to Rab-kd clones, compared to control clones. Rab-kd clones also showed a significant (P < 0.001) decline in the total levels of E-cadherin. This was caused neither by reduced transcription nor by increased lysosomal degradation. The role of Rab11a in maintaining the epithelial nature of the cells was evident by a significant increase in the migratory potential, presence of stress-fibres and a decrease in the trans-epithelial resistance in Rab-kd monolayers. Further, the levels of endometrial Rab11a and E-cadherin in the receptive phase were found to be significantly (P < 0.05) lower in women with unexplained infertility compared to that in fertile women. Taken together, these observations hint at a key role of Rab11a in the trafficking of αVβ3 integrin and maintenance of E-cadherin levels at the surface of EE cells. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The in-vitro setting of the study is a limitation. Further immunohistochemical localizations of Rab11a and CAMs were conducted on a limited number of human endometrial samples. WIDER IMPLICATIONS OF THE FINDINGS Rab11a-mediated trafficking of endometrial CAMs in EE cells can be explored further for its potential as a target for fertility regulation or infertility management. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Indian Council of Medical Research (ICMR), the Department of Science and Technology (DST), the Council of Scientific and Industrial Research (CSIR), Government of India. No competing interests are declared.
Collapse
Affiliation(s)
- Ruchi Kakar-Bhanot
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Krupanshi Brahmbhatt
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Bhagyashree Chauhan
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - R R Katkam
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - T Bashir
- Molecular Immunology and Microbiology Laboratory, ICMR-NIRRH, Mumbai, India
| | - H Gawde
- Genetic Research Centre, ICMR-NIRRH, Mumbai, India
| | - N Mayadeo
- Department of Gynecology and Obstetrics, Seth G.S. Medical College and King Edward Memorial Hospital, Parel, Mumbai, India
| | - U K Chaudhari
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Geetanjali Sachdeva
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| |
Collapse
|
29
|
Zhang ZY, Lu M, Liu ZK, Li H, Yong YL, Zhang RY, Chen ZN, Bian H. Rab11a regulates MMP2 expression by activating the PI3K/AKT pathway in human hepatocellular carcinoma cells. Pathol Res Pract 2020; 216:153046. [PMID: 32825931 DOI: 10.1016/j.prp.2020.153046] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/17/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
As a member of the Rab GTPase family, Rab11a plays an important role in vesicle transport and tumor progression. However, it is not clear whether it can also be used as an oncoprotein in hepatocellular carcinoma (HCC). In this study, database and immunohistochemical analyses showed that Rab11a was highly expressed in HCC tissues, and associated with poor clinical prognosis. Rab11a overexpression promoted the proliferation, migration, invasion, and anti-apoptosis of human HCC cell lines, MHCC-97H and HCC-LM3, whereas the downregulation of Rab11a inhibited these biological tumor activities. Nude mice xenograft demonstrated that Rab11a had a positive effect on the growth of hepatocellular carcinoma cells in vivo. Further studies found that the PI3K/AKT pathway and matrix metalloproteinase 2 (MMP2) upregulation can be activated by over-expression of Rab11a. However, MMP2 upregulation induced by Rab11a can be inhibited by the PI3K/AKT pathway inhibitor, LY294002. Altogether, our study established for the first time that Rab11a can play a pro-cancer role in HCC, as a novel oncoprotein, by activating the PI3K/AKT pathway to regulate MMP2 expression.
Collapse
Affiliation(s)
- Zhi-Yun Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Meng Lu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ze-Kun Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Le Yong
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ren-Yu Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
30
|
Colás-Algora N, García-Weber D, Cacho-Navas C, Barroso S, Caballero A, Ribas C, Correas I, Millán J. Compensatory increase of VE-cadherin expression through ETS1 regulates endothelial barrier function in response to TNFα. Cell Mol Life Sci 2020; 77:2125-2140. [PMID: 31396656 PMCID: PMC11105044 DOI: 10.1007/s00018-019-03260-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
VE-cadherin plays a central role in controlling endothelial barrier function, which is transiently disrupted by proinflammatory cytokines such as tumor necrosis factor (TNFα). Here we show that human endothelial cells compensate VE-cadherin degradation in response to TNFα by inducing VE-cadherin de novo synthesis. This compensation increases adherens junction turnover but maintains surface VE-cadherin levels constant. NF-κB inhibition strongly reduced VE-cadherin expression and provoked endothelial barrier collapse. Bacterial lipopolysaccharide and TNFα upregulated the transcription factor ETS1, in vivo and in vitro, in an NF-κB dependent manner. ETS1 gene silencing specifically reduced VE-cadherin protein expression in response to TNFα and exacerbated TNFα-induced barrier disruption. We propose that TNFα induces not only the expression of genes involved in increasing permeability to small molecules and immune cells, but also a homeostatic transcriptional program in which NF-κB- and ETS1-regulated VE-cadherin expression prevents the irreversible damage of endothelial barriers.
Collapse
Affiliation(s)
| | - Diego García-Weber
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
- INSERM, U1016, Institut Cochin, Paris, France.
| | | | - Susana Barroso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | - Alvaro Caballero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
| | - Catalina Ribas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| |
Collapse
|
31
|
Ruiz S, Vardon-Bounes F, Buléon M, Guilbeau-Frugier C, Séguelas MH, Conil JM, Girolami JP, Tack I, Minville V. Kinin B1 receptor: a potential therapeutic target in sepsis-induced vascular hyperpermeability. J Transl Med 2020; 18:174. [PMID: 32306971 PMCID: PMC7168845 DOI: 10.1186/s12967-020-02342-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background In sepsis, the endothelial barrier becomes incompetent, with the leaking of plasma into interstitial tissues. VE-cadherin, an adherens junction protein, is the gatekeeper of endothelial cohesion. Kinins, released during sepsis, induce vascular leakage and vasodilation. They act via two G-protein coupled receptors: B1 (B1R) and B2 (B2R). B1R is inducible in the presence of pro-inflammatory cytokines, endotoxins or after tissue injury. It acts at a later stage of sepsis and elicits a sustained inflammatory response. The aim of our study was to investigate the relationships between B1R and VE-cadherin destabilization in vivo in a later phase of sepsis. Methods Experimental, prospective study in a university research laboratory. We used a polymicrobial model of septic shock by cecal ligation and puncture in C57BL6 male mice or C57BL6 male mice that received a specific B1R antagonist (R-954). We studied the influence of B1R on sepsis-induced vascular permeability 30 h after surgery for several organs, and VE-cadherin expression in the lung and kidneys by injecting R-954 just before surgery. The 96-h survival was determined in mice without treatment or in animals receiving R-954 as a “prophylactic” regimen (a subcutaneous injection of 200 µg/kg, prior to CLP and 24 h after CLP), or as a “curative” regimen (injection of 100 µg/kg at H6, H24 and H48 post-surgery). Results B1R inactivation helps to maintain MAP above 65 mmHg but induces different permeability profiles depending on whether or not organ perfusion is autoregulated. In our model, VE-cadherin was destabilized in vivo during septic shock. At a late stage of sepsis, the B1R blockade reduced the VE-cadherin disruption by limiting eNOS activation. The survival rate for mice that received R-954 after sepsis induction was higher than in animals that received an antagonist as a prophylactic treatment. Conclusions B1R antagonizing reduced mortality in our model of murine septic shock by limiting the vascular permeability induced by VE-cadherin destabilization through maintenance of the macrohemodynamics, consequently limiting organ dysfunctions.
Collapse
Affiliation(s)
- Stéphanie Ruiz
- Department of Anesthesiology and Intensive Care, Rangueil Hospital-University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse Cedex 9, France. .,Institute of Metabolic and Cardiovascular Diseases, INSERM/UPS UMR, 1048-I2MC, Equipe 3, Paul Sabatier University, Toulouse, France.
| | - Fanny Vardon-Bounes
- Department of Anesthesiology and Intensive Care, Rangueil Hospital-University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse Cedex 9, France.,Institute of Metabolic and Cardiovascular Diseases, INSERM/UPS UMR, 1048-I2MC, Equipe 3, Paul Sabatier University, Toulouse, France
| | - Marie Buléon
- Institute of Metabolic and Cardiovascular Diseases, INSERM/UPS UMR, 1048-I2MC, Equipe 3, Paul Sabatier University, Toulouse, France
| | - Céline Guilbeau-Frugier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/UPS UMR, 1048-I2MC, Equipe 3, Paul Sabatier University, Toulouse, France.,Department of Forensic Medicine, Rangueil Hospital-University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse Cedex 9, France.,Biological Electron Microscopy Center, Rangueil Faculty of Medicine, Toulouse University, Toulouse, France
| | - Marie-Hélène Séguelas
- Institute of Metabolic and Cardiovascular Diseases, INSERM/UPS UMR, 1048-I2MC, Equipe 3, Paul Sabatier University, Toulouse, France
| | - Jean-Marie Conil
- Department of Anesthesiology and Intensive Care, Rangueil Hospital-University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse Cedex 9, France
| | - Jean-Pierre Girolami
- Institute of Metabolic and Cardiovascular Diseases, INSERM/UPS UMR, 1048-I2MC, Equipe 3, Paul Sabatier University, Toulouse, France
| | - Ivan Tack
- Institute of Metabolic and Cardiovascular Diseases, INSERM/UPS UMR, 1048-I2MC, Equipe 3, Paul Sabatier University, Toulouse, France.,Department of Physiology, Rangueil Hospital-University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse Cedex 9, France
| | - Vincent Minville
- Department of Anesthesiology and Intensive Care, Rangueil Hospital-University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse Cedex 9, France.,Institute of Metabolic and Cardiovascular Diseases, INSERM/UPS UMR, 1048-I2MC, Equipe 3, Paul Sabatier University, Toulouse, France
| |
Collapse
|
32
|
Chichger H, Rounds S, Harrington EO. Endosomes and Autophagy: Regulators of Pulmonary Endothelial Cell Homeostasis in Health and Disease. Antioxid Redox Signal 2019; 31:994-1008. [PMID: 31190562 PMCID: PMC6765061 DOI: 10.1089/ars.2019.7817] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Significance: Alterations in oxidant/antioxidant balance injure pulmonary endothelial cells and are important in the pathogenesis of lung diseases, such as Acute Respiratory Distress Syndrome (ARDS), ischemia/reperfusion injury, pulmonary arterial hypertension (PAH), and emphysema. Recent Advances: The endosomal and autophagic pathways regulate cell homeostasis. Both pathways support recycling or degradation of macromolecules or organelles, targeted to endosomes or lysosomes, respectively. Thus, both processes promote cell survival. However, with environmental stress or injury, imbalance in endosomal and autophagic pathways may enhance macromolecular or organelle degradation, diminish biosynthetic processes, and cause cell death. Critical Issues: While the role of autophagy in cellular homeostasis in pulmonary disease has been investigated, the role of the endosome in the lung vasculature is less known. Furthermore, autophagy can either decrease or exacerbate endothelial injury, depending upon inciting insult and disease process. Future Directions: Diseases affecting the pulmonary endothelium, such as emphysema, ARDS, and PAH, are linked to altered endosomal or autophagic processing, leading to enhanced degradation of macromolecules and potential cell death. Efforts to target this imbalance have yielded limited success as treatments for lung injuries, which may be due to the complexity of both processes. It is possible that endosomal trafficking proteins, such as Rab GTPases and late endosomal/lysosomal adaptor, MAPK and MTOR activator 1, may be novel therapeutic targets. While endocytosis or autophagy have been linked to improved function of the pulmonary endothelium in vitro and in vivo, further studies are needed to identify targets for modulating cellular homeostasis in the lung.
Collapse
Affiliation(s)
- Havovi Chichger
- Biomedical Research Group, Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O. Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
33
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
34
|
Suh JS, Kim S, Boström KI, Wang CY, Kim RH, Park NH. Periodontitis-induced systemic inflammation exacerbates atherosclerosis partly via endothelial-mesenchymal transition in mice. Int J Oral Sci 2019; 11:21. [PMID: 31257363 PMCID: PMC6802639 DOI: 10.1038/s41368-019-0054-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests close associations between periodontitis and atherosclerosis. To further understand the pathological relationships of these associations, we developed periodontitis with ligature placement around maxillary molars or ligature placement in conjunction with Porphyromonas gingivalis lipopolysaccharide injection at the ligature sites (ligature/P.g. LPS) in Apolipoprotein E knock out mice and studied the atherogenesis process in these animals. The mice were fed with high fat diet for 11 weeks and sacrificed for analyzing periodontitis, systemic inflammation, and atherosclerosis. Controls did not develop periodontitis or systemic inflammation and had minimal lipid deposition in the aortas, but mice receiving ligature or ligature/P.g. LPS showed severe periodontitis, systemic inflammation, and aortic plaque formation. The aortic plaque contained abundant macrophages and cells expressing both endothelial and mesenchymal cell markers. The severity of periodontitis was slightly higher in mice receiving ligature/P.g. LPS than ligature alone, and the magnitude of systemic inflammation and aortic plaque formation were also notably greater in the mice with ligature/P.g. LPS. These observations indicate that the development of atherosclerosis is due to systemic inflammation caused by severe periodontitis. In vitro, P.g. LPS enhanced the secretion of pro-inflammatory cytokines from macrophages and increased the adhesion of monocytes to endothelial cells by upregulating the expression of adhesion molecules from endothelial cells. Moreover, secretory proteins, such as TNF-α, from macrophages induced endothelial–mesenchymal transitions of the endothelial cells. Taken together, systemic inflammation induced by severe periodontitis might exacerbate atherosclerosis via, in part, causing aberrant functions of vascular endothelial cells and the activation of macrophages in mice.
Collapse
Affiliation(s)
- Jin Sook Suh
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Sol Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Kristina I Boström
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.,Department of Bioengineering, UCLA Samueli School of Engineering, Los Angeles, CA, USA
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. .,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Zhang Y, Wang L, Lv Y, Jiang C, Wu G, Dull RO, Minshall RD, Malik AB, Hu G. The GTPase Rab1 Is Required for NLRP3 Inflammasome Activation and Inflammatory Lung Injury. THE JOURNAL OF IMMUNOLOGY 2018; 202:194-206. [PMID: 30455398 PMCID: PMC6345506 DOI: 10.4049/jimmunol.1800777] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Uncontrolled inflammatory response during sepsis predominantly contributes to the development of multiorgan failure and lethality. However, the cellular and molecular mechanisms for excessive production and release of proinflammatory cytokines are not clearly defined. In this study, we show the crucial role of the GTPase Ras-related protein in brain (Rab)1a in regulating the nucleotide binding domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and lung inflammatory injury. Expression of dominant negative Rab1 N124I plasmid in bone marrow-derived macrophages prevented the release of IL-1β and IL-18, NLRP3 inflammasome activation, production of pro-IL-1β and pro-IL-18, and attenuated TLR4 surface expression and NF-кB activation induced by bacterial LPS and ATP compared with control cells. In alveolar macrophage-depleted mice challenged with cecal ligation and puncture, pulmonary transplantation of Rab1a-inactivated macrophages by expression of Rab1 N124I plasmid dramatically reduced the release of IL-1β and IL-18, neutrophil count in bronchoalveolar lavage fluid, and inflammatory lung injury. Rab1a activity was elevated in alveolar macrophages from septic patients and positively associated with severity of sepsis and respiratory dysfunction. Thus, inhibition of Rab1a activity in macrophages resulting in the suppression of NLRP3 inflammasome activation may be a promising target for the treatment of patients with sepsis.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612.,Department of Critical Care Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Lijun Wang
- Department of Critical Care Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Yang Lv
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Chunling Jiang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612.,Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612; .,Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and.,Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221008, China
| |
Collapse
|
36
|
CMTM4 regulates angiogenesis by promoting cell surface recycling of VE-cadherin to endothelial adherens junctions. Angiogenesis 2018; 22:75-93. [PMID: 30097810 PMCID: PMC6510885 DOI: 10.1007/s10456-018-9638-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023]
Abstract
Vascular endothelial (VE) cadherin is a key component of endothelial adherens junctions (AJs) and plays an important role in maintaining vascular integrity. Endocytosis of VE-cadherin regulates junctional strength and a decrease of surface VE-cadherin reduces vascular stability. However, disruption of AJs is also a requirement for vascular sprouting. Identifying novel regulators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we evaluated the angiogenic potential of (CKLF-like MARVEL transmembrane domain 4) CMTM4 and assessed in which molecular pathway CMTM4 is involved during angiogenesis. Using a 3D vascular assay composed of GFP-labeled HUVECs and dsRED-labeled pericytes, we demonstrated in vitro that siRNA-mediated CMTM4 silencing impairs vascular sprouting. In vivo, CMTM4 silencing by morpholino injection in zebrafish larvae inhibits intersomitic vessel growth. Intracellular staining revealed that CMTM4 colocalizes with Rab4+ and Rab7+ vesicles, both markers of the endocytic trafficking pathway. CMTM4 colocalizes with both membrane-bound and internalized VE-cadherin. Adenovirus-mediated CMTM4 overexpression enhances the endothelial endocytic pathway, in particular the rapid recycling pathway, shown by an increase in early endosomal antigen-1 positive (EEA1+), Rab4+, Rab11+ , and Rab7+ vesicles. CMTM4 overexpression enhances membrane-bound VE-cadherin internalization, whereas CMTM4 knockdown decreases internalization of VE-cadherin. CMTM4 overexpression promotes endothelial barrier function, shown by an increase in recovery of transendothelial electrical resistance (TEER) after thrombin stimulation. We have identified in this study a novel regulatory function for CMTM4 in angiogenesis. CMTM4 plays an important role in the turnover of membrane-bound VE-cadherin at AJs, mediating endothelial barrier function and controlling vascular sprouting.
Collapse
|
37
|
Dong Q, Fu L, Zhao Y, Du Y, Li Q, Qiu X, Wang E. Rab11a promotes proliferation and invasion through regulation of YAP in non-small cell lung cancer. Oncotarget 2018; 8:27800-27811. [PMID: 28468127 PMCID: PMC5438609 DOI: 10.18632/oncotarget.15359] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022] Open
Abstract
Rab11a, an evolutionarily conserved Rab GTPases, plays important roles in intracellular transport and has been implicated in cancer progression. However, its role in human non-small cell lung cancer (NSCLC) has not been explored yet. In this study, we discovered that Rab11a protein was upregulated in 57/122 NSCLC tissues. Rab11a overexpression associated with advanced TNM stage, positive nodal status and poor patient prognosis. Rab11a overexpression promoted proliferation, colony formation, invasion and migration with upregulation of cyclin D1, cyclin E, and downregulation of p27 in NSCLC cell lines. Nude mice xenograft demonstrated that Rab11a promoted in vivo cancer growth. Importantly, we found that Rab11a induced YAP protein and inhibited Hippo signaling. Depletion of YAP abolished the effects of Rab11a on cell cycle proteins and cell proliferation. Furthermore, immunoprecipitation showed that Rab11a interacted with YAP in lung cancer cells. In conclusion, the present study suggestes that Rab11a serves as an important oncoprotein and a regulator of YAP in NSCLC.
Collapse
Affiliation(s)
- Qianze Dong
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lin Fu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yaming Du
- Department of Cardiovascular Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qingchang Li
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
38
|
Wu D, Yan ZB, Cheng YG, Zhong MW, Liu SZ, Zhang GY, Hu SY. Deactivation of the NLRP3 inflammasome in infiltrating macrophages by duodenal-jejunal bypass surgery mediates improvement of beta cell function in type 2 diabetes. Metabolism 2018; 81:1-12. [PMID: 29129820 DOI: 10.1016/j.metabol.2017.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/12/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Bariatric surgery could improve pancreatic beta cell function, thereby leading to the remission of the type 2 diabetes mellitus (T2DM). However, the specific mechanism underlying this phenomenon is yet to be revealed. The aim of this study is to test the hypothesis that Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in infiltrating macrophages plays an important role in the modulation of beta cell function after duodenal-jejunal bypass (DJB) surgery. METHODS DJB and sham surgery were performed in diabetic Sprague-Dawley (SD) rats induced by high-fat diet (HFD) and streptozotocin (STZ). Body weight, food intake, and glucose tolerance test (GTT) were measured at indicated time points. Apoptosis of the beta cells was measured by Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling (TUNEL) assay. We also assessed the macrophage content and NLRP3 expression in the rat model. Furthermore, macrophage reconstitution was performed after DJB surgery. Beta cell function and NLRP3 inflammasome pathway were re-evaluated in wild-type macrophage reconstitution group and NLRP3-knockdown macrophage reconstitution group. RESULTS DJB surgery group rats displayed rapid and sustained improvement in glucose tolerance. Decreased apoptosis and improved secretion function of the beta cells were observed in DJB surgery group. NLRP3 inflammasome pathway in infiltrating macrophages was also suppressed after DJB surgery. Moreover, diabetic remission acquired by DJB sustained in NLRP3-knockdown macrophage reconstitution group, while extinguished in group reconstituted with wild-type macrophage. CONCLUSIONS NLRP3 inflammasome deactivation in infiltrating macrophages is involved in marked beta cell function improvement after DJB surgery.
Collapse
Affiliation(s)
- Dong Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Zhi-Bo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yu-Gang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ming-Wei Zhong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Shao-Zhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Guang-Yong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - San-Yuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, PR China.
| |
Collapse
|
39
|
Liu J, Miao G, Wang B, Zheng N, Ma L, Chen X, Wang G, Zhao X, Zhang L, Zhang L. Chlamydia pneumoniae infection promotes monocyte transendothelial migration by increasing vascular endothelial cell permeability via the tyrosine phosphorylation of VE-cadherin. Biochem Biophys Res Commun 2018; 497:742-748. [PMID: 29462613 DOI: 10.1016/j.bbrc.2018.02.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/28/2022]
Abstract
Migration of monocytes into the subendothelial layer of the intima is one of the critical events in early atherosclerosis. Chlamydia pneumoniae (C. pneumoniae) infection has been shown to promote monocyte transendothelial migration (TEM). However, the exact mechanisms have not yet been fully clarified. In this study, we tested the hypothesis that C. pneumoniae infection increases vascular endothelial cell (VEC) permeability and subsequent monocyte TEM through stimulating the tyrosine phosphorylation of vascular endothelial-cadherin (VE-cadherin). Here, we demonstrated that C. pneumoniae infection promoted monocyte TEM in a TEM assay possibly by increasing the permeability of a VEC line EA.hy926 cell as assessed by measuring the passage of FITC-BSA across a VEC monolayer. Subsequently, Western blot analysis showed that C. pneumoniae infection induced VE-cadherin internalization. Our further data revealed that Src-mediated VE-cadherin phosphorylation at Tyr658 was involved in C. pneumoniae infection-induced internalization of VE-cadherin, VEC hyperpermeability and monocyte TEM. Taken together, our data indicate that C. pneumoniae infection promotes monocyte TEM by increasing VEC permeability via the tyrosine phosphorylation and internalization of VE-cadherin in VECs.
Collapse
Affiliation(s)
- Jingya Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Guolin Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Beibei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Ningbo Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Lu Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Xiaoyu Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Guangyan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Xi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
40
|
Lei X, Chen M, Huang M, Li X, Shi C, Zhang D, Luo L, Zhang Y, Ma N, Chen H, Liang H, Ye W, Zhang D. Desacetylvinblastine Monohydrazide Disrupts Tumor Vessels by Promoting VE-cadherin Internalization. Am J Cancer Res 2018; 8:384-398. [PMID: 29290815 PMCID: PMC5743555 DOI: 10.7150/thno.22222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/13/2017] [Indexed: 01/18/2023] Open
Abstract
Vinca alkaloids, the well-known tubulin-binding agents, are widely used for the clinical treatment of malignant tumors. However, little attention has been paid to their vascular disrupting effects, and the underlying mechanisms remain largely unknown. This study aims to investigate the vascular disrupting effect and the underlying mechanisms of vinca alkaloids. Methods: The capillary disruption assay and aortic ring assay were performed to evaluate the in vitro vascular disrupting effect of desacetylvinblastine monohydrazide (DAVLBH), a derivate of vinblastine, and the in vivo vascular disrupting effect was assessed on HepG2 xenograft model using magnetic resonance imaging, hematoxylin and eosin staining and immunohistochemistry. Tubulin polymerization, endothelial cell monolayer permeability, western blotting and immunofluorescence assays were performed to explore the underlying mechanisms of DAVLBH-mediated tumor vascular disruption. Results: DAVLBH has potent vascular disrupting activity both in vitro and in vivo. DAVLBH disrupts tumor vessels in a different manner than classical tubulin-targeting VDAs; it inhibits microtubule polymerization, promotes the internalization of vascular endothelial cadherin (VE-cadherin) and inhibits the recycling of internalized VE-cadherin to the cell membrane, thus increasing endothelial cell permeability and ultimately resulting in vascular disruption. DAVLBH-mediated promotion of VE-cadherin internalization and inhibition of internalized VE-cadherin recycling back to the cell membrane are partly dependent on inhibition of microtubule polymerization, and Src activation is involved in DAVLBH-induced VE-cadherin internalization. Conclusions: This study sheds light on the tumor vascular disrupting effect and underlying mechanisms of vinca alkaloids and provides new insight into the molecular mechanism of tubulin-targeting VDAs.
Collapse
|
41
|
Parthasarathi K. The Pulmonary Vascular Barrier: Insights into Structure, Function, and Regulatory Mechanisms. MOLECULAR AND FUNCTIONAL INSIGHTS INTO THE PULMONARY VASCULATURE 2018; 228:41-61. [DOI: 10.1007/978-3-319-68483-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Sukma Dewi I, Celik S, Karlsson A, Hollander Z, Lam K, McManus JW, Tebbutt S, Ng R, Keown P, McMaster R, McManus B, Öhman J, Gidlöf O. Exosomal miR-142-3p is increased during cardiac allograft rejection and augments vascular permeability through down-regulation of endothelial RAB11FIP2 expression. Cardiovasc Res 2017; 113:440-452. [PMID: 28073833 DOI: 10.1093/cvr/cvw244] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/01/2016] [Indexed: 01/24/2023] Open
Abstract
Aims Exosome-mediated microRNA transfer is a recently discovered mode of cell-to-cell communication, in which microRNAs act as paracrine molecules, exerting their regulatory effects in recipient cells. T cells and endothelial cells are two main players in the mechanism of acute cellular cardiac rejection. The aim of this study was to investigate the role of exosomal microRNAs in the crosstalk between T cells and endothelial cells and its implications for the molecular mechanisms that drive acute cellular rejection in heart transplantation. Methods and results Exosomes isolated from serum samples of heart transplant patients with and without acute cardiac allograft rejection were profiled and showed enrichment of miR-142-3p, miR-92a-3p, miR-339-3p and miR-21-5p. Treatment of endothelial cells with the respected serum exosomes resulted the increased of miR-142-3p level in endothelial cells. Using T cells isolated from healthy donors and activated with either anti-CD3/CD28 antibody or IL-2/PHA, we could show that miR-142-3p is released from activated cells, is contained in exosomes and can be transferred to human vascular endothelial cells in vitro. Transcriptome analysis of endothelial cells treated with activated T cell supernatant with or without exosomes was used to identify mRNA targets of transferred miR-142-3-p. Overexpression of miR-142-3p in endothelial cells resulted in a significant down-regulation of RAB11FIP2, and interaction of miR-142-3p with its predicted target site was confirmed with a reporter assay. Moreover, treatment of endothelial cells with serum exosomes from heart transplant patients with acute cellular rejection resulted in down-regulation of RAB11FIP2 expression and increase in vascular endothelial permeability. Conclusion We have identified a novel mechanism whereby miR-142-3p, a microRNA enriched in exosomes during acute cellular rejection, is transferred to endothelial cells and compromises endothelial barrier function via down-regulation of RAB11FIP2. This study sheds new light on the interaction between host immune system and cardiac allograft endothelium during acute cellular rejection.
Collapse
Affiliation(s)
- Ihdina Sukma Dewi
- Department of Cardiology, Clinical Sciences, Skåne University Hospital, Lund University, BMC D12, S?gatan 19, 221 84, Lund, Sweden
| | - Selvi Celik
- Department of Cardiology, Clinical Sciences, Skåne University Hospital, Lund University, BMC D12, S?gatan 19, 221 84, Lund, Sweden
| | - Anna Karlsson
- Department of Cardiology, Clinical Sciences, Skåne University Hospital, Lund University, BMC D12, S?gatan 19, 221 84, Lund, Sweden
| | - Zsuzsanna Hollander
- Prevention of Organ Failure (PROOF) Centre of Excellence, 1190 Hornby Street, Vancouver, British Columbia, V6Z 2K5. Canada.,UBC James Hogg Research Centre, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Karen Lam
- Prevention of Organ Failure (PROOF) Centre of Excellence, 1190 Hornby Street, Vancouver, British Columbia, V6Z 2K5. Canada
| | - Janet-Wilson McManus
- netCAD, Canadian Blood Services, 2150 Western Parkway, Vancouver, British Columbia V6T 1V6, Canada
| | - Scott Tebbutt
- Prevention of Organ Failure (PROOF) Centre of Excellence, 1190 Hornby Street, Vancouver, British Columbia, V6Z 2K5. Canada.,UBC James Hogg Research Centre, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada.,Department of Medicine, University of British Columbia, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada.,Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Raymond Ng
- Prevention of Organ Failure (PROOF) Centre of Excellence, 1190 Hornby Street, Vancouver, British Columbia, V6Z 2K5. Canada.,Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Paul Keown
- Vancouver General Hospital, 899 West 12th Avenue, Vancouver, British Columbia V5Z 1M9, Canada
| | - Robert McMaster
- Department of Transplantation and Immunology, Vancouver Coastal Health Research Institute, 910 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada
| | - Bruce McManus
- Prevention of Organ Failure (PROOF) Centre of Excellence, 1190 Hornby Street, Vancouver, British Columbia, V6Z 2K5. Canada.,UBC James Hogg Research Centre, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada.,Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Jenny Öhman
- Department of Cardiology, Clinical Sciences, Skåne University Hospital, Lund University, BMC D12, S?gatan 19, 221 84, Lund, Sweden
| | - Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Skåne University Hospital, Lund University, BMC D12, S?gatan 19, 221 84, Lund, Sweden
| |
Collapse
|
43
|
Guichard A, Jain P, Moayeri M, Schwartz R, Chin S, Zhu L, Cruz-Moreno B, Liu JZ, Aguilar B, Hollands A, Leppla SH, Nizet V, Bier E. Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport. PLoS Pathog 2017; 13:e1006603. [PMID: 28945820 PMCID: PMC5612732 DOI: 10.1371/journal.ppat.1006603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies. Recent anthrax outbreaks in Zambia and northern Russia and biodefense preparedness highlight the need for new therapies to counteract fatal late-stage pathologies in patients infected with Bacillus anthracis. Indeed, two toxins secreted by this pathogen—edema toxin (ET) and lethal toxin (LT)—can cause death in face of effective antibiotic treatment. ET, a potent adenylate cyclase, severely impacts host cells and tissues through an overproduction of the ubiquitous second messenger cAMP. Previously, we identified Rab11 as a key host factor inhibited by ET. Blockade of Rab11-dependent endocytic recycling resulted in the disruption of intercellular junctions, likely contributing to life threatening vascular effusion observed in anthrax patients. Here we present a multi-system analysis of the mechanism by which EF inhibits Rab11 and exocyst-dependent trafficking. Epistasis experiments in Drosophila reveal that over-activation of the cAMP effectors PKA and Epac/Rap1 interferes with Rab11-mediated trafficking at two distinct steps. We further describe conserved roles of Epac and the small GTPase Arf6 in ET-mediated disruption of vesicular trafficking and show how chemical inhibition of either pathway greatly alleviates ET-induced edema. Thus, our study defines Epac and Arf6 as promising drug targets for the treatment of infectious diseases and other pathologies involving cAMP overload or related barrier disruption.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Prashant Jain
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States of America
| | - Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Stephen Chin
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Lin Zhu
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Beatriz Cruz-Moreno
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Janet Z. Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Bernice Aguilar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Andrew Hollands
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Stephen H. Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
44
|
Rab11 family expression in the human placenta: Localization at the maternal-fetal interface. PLoS One 2017; 12:e0184864. [PMID: 28922401 PMCID: PMC5602629 DOI: 10.1371/journal.pone.0184864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/03/2017] [Indexed: 11/19/2022] Open
Abstract
Rab proteins are a family of small GTPases involved in a variety of cellular processes. The Rab11 subfamily in particular directs key steps of intracellular functions involving vesicle trafficking of the endosomal recycling pathway. This Rab subfamily works through a series of effector proteins including the Rab11-FIPs (Rab11 Family-Interacting Proteins). While the Rab11 subfamily has been well characterized at the cellular level, its function within human organ systems is still being explored. In an effort to further study these proteins, we conducted a preliminary investigation of a subgroup of endosomal Rab proteins in a range of human cell lines by Western blotting. The results from this analysis indicated that Rab11a, Rab11c(Rab25) and Rab14 were expressed in a wide range of cell lines, including the human placental trophoblastic BeWo cell line. These findings encouraged us to further analyse the localization of these Rabs and their common effector protein, the Rab Coupling Protein (RCP), by immunofluorescence microscopy and to extend this work to normal human placental tissue. The placenta is a highly active exchange interface, facilitating transfer between mother and fetus during pregnancy. As Rab11 proteins are closely involved in transcytosis we hypothesized that the placenta would be an interesting human tissue model system for Rab investigation. By immunofluorescence microscopy, Rab11a, Rab11c(Rab25), Rab14 as well as their common FIP effector RCP showed prominent expression in the placental cell lines. We also identified the expression of these proteins in human placental lysates by Western blot analysis. Further, via fluorescent immunohistochemistry, we noted abundant localization of these proteins within key functional areas of primary human placental tissues, namely the outer syncytial layer of placental villous tissue and the endothelia of fetal blood vessels. Overall these findings highlight the expression of the Rab11 family within the human placenta, with novel localization at the maternal-fetal interface.
Collapse
|
45
|
Yang Y, Luo NS, Ying R, Xie Y, Chen JY, Wang XQ, Gu ZJ, Mai JT, Liu WH, Wu MX, Chen ZT, Fang YB, Zhang HF, Zuo ZY, Wang JF, Chen YX. Macrophage-derived foam cells impair endothelial barrier function by inducing endothelial-mesenchymal transition via CCL-4. Int J Mol Med 2017; 40:558-568. [PMID: 28656247 PMCID: PMC5504989 DOI: 10.3892/ijmm.2017.3034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Recently, endothelial-mesenchymal transition (EndMT) has been demonstrated to play an important role in the development of atherosclerosis, the molecular mechanisms of which remain unclear. In the present study, scanning electron microscopy directly revealed a widened endothelial space and immunohistofluorescence demonstrated that EndMT was increased in human aorta atherosclerotic plaques. M1 macrophage-derived foam cell (M1-FC) supernatants, but not M2 macrophage-derived foam cell (M2-FC) supernatants, induced EndMT. A protein array and enzyme-linked immunosorbent assay identified that the levels of several cytokines, including C-C motif chemokine ligand 4 (CCL-4) were increased in M1-FC supernatants, in which EndMT was promoted, accompanied by increased endothelial permeability and monocyte adhesion. Furthermore, anti-CCL-4 antibody abolished the effects of M1-FC supernatants on EndMT. At the same time, CCL-4 activated its receptor, C-C motif chemokine receptor-5 (CCR-5), and upregulated transforming growth factor-β (TGF-β) expression. Further experiments revealed that EndMT induced by CCL-4 was reversed by treatment with CCR-5 antagonist and the RNA-mediated knockdown of TGF-β. On the whole, the data of the present study suggest that M1-FCs induce EndMT by upregulating CCL-4, and increase endothelial permeability and monocyte adhesion. These data may help to elucidate the important role of EndMT in the development of atherosclerosis.
Collapse
Affiliation(s)
- Ying Yang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Nian-Sang Luo
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ru Ying
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Xie
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jia-Yuan Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiao-Qiao Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhen-Jie Gu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jing-Ting Mai
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wen-Hao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Mao-Xiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yong-Biao Fang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhi-Yi Zuo
- Laboratory of RNA and Major Disease of Heart and Brain, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
46
|
Ramos CJ, Antonetti DA. The role of small GTPases and EPAC-Rap signaling in the regulation of the blood-brain and blood-retinal barriers. Tissue Barriers 2017. [PMID: 28632993 DOI: 10.1080/21688370.2017.1339768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Maintenance and regulation of the vascular endothelial cell junctional complex is critical for proper barrier function of the blood-brain barrier (BBB) and the highly related blood-retinal barrier (BRB) that help maintain proper neuronal environment. Recent research has demonstrated that the junctional complex is actively maintained and can be dynamically regulated. Studies focusing on the mechanisms of barrier formation, maintenance, and barrier disruption have been of interest to understanding development of the BBB and BRB and identifying a means for therapeutic intervention for diseases ranging from brain tumors and dementia to blinding eye diseases. Research has increasingly revealed that small GTPases play a critical role in both barrier formation and disruption mechanisms. This review will summarize the current data on small GTPases in barrier regulation with an emphasis on the EPAC-Rap1 signaling pathway to Rho in endothelial barriers, as well as explore its potential involvement in paracellular flux and transcytosis regulation.
Collapse
Affiliation(s)
- Carla J Ramos
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI USA
| | - David A Antonetti
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI USA
| |
Collapse
|
47
|
Chrifi I, Louzao-Martinez L, Brandt M, van Dijk CGM, Burgisser P, Zhu C, Kros JM, Duncker DJ, Cheng C. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions. Arterioscler Thromb Vasc Biol 2017; 37:1098-1114. [PMID: 28428220 DOI: 10.1161/atvbaha.116.308792] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/10/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1+ endothelial progenitor cells during embryonic development. APPROACH AND RESULTS Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin+ vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin+, EEA1+, Rab11+, Rab5+, and Rab7+ vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. CONCLUSIONS In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM3 mediates cell-cell adhesion at adherens junctions and contributes to the control of vascular sprouting.
Collapse
Affiliation(s)
- Ihsan Chrifi
- From the Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (I.C., M.B., P.B., D.J.D., C.C.); Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (L.L.-M., C.G.M.v.D., C.C.); Netherlands Heart Institute, Utrecht (L.L.-M.); and Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands (C.Z., J.M.K.)
| | - Laura Louzao-Martinez
- From the Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (I.C., M.B., P.B., D.J.D., C.C.); Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (L.L.-M., C.G.M.v.D., C.C.); Netherlands Heart Institute, Utrecht (L.L.-M.); and Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands (C.Z., J.M.K.)
| | - Maarten Brandt
- From the Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (I.C., M.B., P.B., D.J.D., C.C.); Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (L.L.-M., C.G.M.v.D., C.C.); Netherlands Heart Institute, Utrecht (L.L.-M.); and Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands (C.Z., J.M.K.)
| | - Christian G M van Dijk
- From the Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (I.C., M.B., P.B., D.J.D., C.C.); Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (L.L.-M., C.G.M.v.D., C.C.); Netherlands Heart Institute, Utrecht (L.L.-M.); and Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands (C.Z., J.M.K.)
| | - Petra Burgisser
- From the Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (I.C., M.B., P.B., D.J.D., C.C.); Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (L.L.-M., C.G.M.v.D., C.C.); Netherlands Heart Institute, Utrecht (L.L.-M.); and Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands (C.Z., J.M.K.)
| | - Changbin Zhu
- From the Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (I.C., M.B., P.B., D.J.D., C.C.); Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (L.L.-M., C.G.M.v.D., C.C.); Netherlands Heart Institute, Utrecht (L.L.-M.); and Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands (C.Z., J.M.K.)
| | - Johan M Kros
- From the Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (I.C., M.B., P.B., D.J.D., C.C.); Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (L.L.-M., C.G.M.v.D., C.C.); Netherlands Heart Institute, Utrecht (L.L.-M.); and Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands (C.Z., J.M.K.)
| | - Dirk J Duncker
- From the Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (I.C., M.B., P.B., D.J.D., C.C.); Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (L.L.-M., C.G.M.v.D., C.C.); Netherlands Heart Institute, Utrecht (L.L.-M.); and Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands (C.Z., J.M.K.)
| | - Caroline Cheng
- From the Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (I.C., M.B., P.B., D.J.D., C.C.); Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (L.L.-M., C.G.M.v.D., C.C.); Netherlands Heart Institute, Utrecht (L.L.-M.); and Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands (C.Z., J.M.K.).
| |
Collapse
|
48
|
Jiang C, Liu Z, Hu R, Bo L, Minshall RD, Malik AB, Hu G. Inactivation of Rab11a GTPase in Macrophages Facilitates Phagocytosis of Apoptotic Neutrophils. THE JOURNAL OF IMMUNOLOGY 2017; 198:1660-1672. [PMID: 28053235 PMCID: PMC5296368 DOI: 10.4049/jimmunol.1601495] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/06/2016] [Indexed: 02/05/2023]
Abstract
The timely and efficient clearance of apoptotic neutrophils by macrophages (efferocytosis) is required for the resolution of inflammation and tissue repair, but the regulatory mechanisms remain unclear. In this study, we investigated the role of the small GTPase Ras-related protein in brain (Rab)11a in regulating efferocytosis, and on this basis the resolution of inflammatory lung injury. We observed that apoptotic neutrophil feeding induced a rapid loss of Rab11a activity in bone marrow-derived macrophages and found that depletion of Rab11a in macrophages by small interfering RNA dramatically increased the phagocytosis of apoptotic neutrophils compared with control cells. Additionally, overexpression of wild-type Rab11a inhibited macrophage efferocytosis, whereas overexpression of dominant-negative Rab11a (Rab11a S25N) increased the clearance of apoptotic neutrophils. Rab11a knockdown also increased the surface level of CD36 in macrophages, but it reduced cell surface expression of a disintegrin and metalloproteinase (ADAM) 17. Depletion of ADAM17 rescued the decreased surface CD36 expression found in macrophages overexpressing wild-type Rab11a. Also, blockade of CD36 abolished the augmented efferocytosis seen in Rab11a-depleted macrophages. In mice challenged with endotoxin, intratracheal instillation of Rab11a-depleted macrophages reduced neutrophil count in bronchoalveolar lavage fluid, increased the number of macrophages containing apoptotic neutrophils, and prevented inflammatory lung injury. Thus, Rab11a inactivation in macrophages as a result of apoptotic cell binding initiates phagocytosis of apoptotic neutrophils via the modulation of ADAM17-mediated CD36 cell surface expression. Our results raise the possibility that inhibition of Rab11a activity in macrophages is a promising strategy for activating the resolution of inflammatory lung injury.
Collapse
Affiliation(s)
- Chunling Jiang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zheng Liu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612.,Department of Anesthesiology and Intensive Care, Changhai Hospital, Shanghai 200433, China
| | - Rong Hu
- Undergraduate Program, Department of Biology, Washington University in St. Louis, St. Louis, MO 63130; and
| | - Lulong Bo
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612.,Department of Anesthesiology and Intensive Care, Changhai Hospital, Shanghai 200433, China
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612.,Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612; .,Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
| |
Collapse
|
49
|
Cadwell CM, Su W, Kowalczyk AP. Cadherin tales: Regulation of cadherin function by endocytic membrane trafficking. Traffic 2016; 17:1262-1271. [PMID: 27624909 DOI: 10.1111/tra.12448] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
Abstract
Cadherins are the primary adhesion molecules in adherens junctions and desmosomes and play essential roles in embryonic development. Although significant progress has been made in understanding cadherin structure and function, we lack a clear vision of how cells confer plasticity upon adhesive junctions to allow for cellular rearrangements during development, wound healing and metastasis. Endocytic membrane trafficking has emerged as a fundamental mechanism by which cells confer a dynamic state to adhesive junctions. Recent studies indicate that the juxtamembrane domain of classical cadherins contains multiple endocytic motifs, or "switches," that can be used by cellular membrane trafficking machinery to regulate adhesion. The cadherin-binding protein p120-catenin (p120) appears to be the master regulator of access to these switches, thereby controlling cadherin endocytosis and turnover. This review focuses on p120 and other cadherin-binding proteins, ubiquitin ligases, and growth factors as key modulators of cadherin membrane trafficking.
Collapse
Affiliation(s)
- Chantel M Cadwell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Wenji Su
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia.,Biochemistry, Cell, and Developmental Biology Graduate Training Program, Emory University, Atlanta, Georgia
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
50
|
Su W, Kowalczyk AP. The VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis. Mol Biol Cell 2016; 28:76-84. [PMID: 27798242 PMCID: PMC5221631 DOI: 10.1091/mbc.e16-09-0658] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 12/26/2022] Open
Abstract
VE-cadherin is cleaved by calpain to remove the β-catenin–binding domain upon entry into clathrin-enriched membrane domains. Calpain cleavage of VE-cadherin cytoplasmic tail appears to fate cadherin for degradation rather than recycling and thus alters the cadherin trafficking itinerary after endocytosis. VE-cadherin trafficking to and from the plasma membrane has emerged as a critical mechanism for regulating cadherin surface levels and adhesion strength. In addition, proteolytic processing of cadherin extracellular and cytoplasmic domains has been reported to regulate cadherin adhesion and signaling. Here we provide evidence that VE-cadherin is cleaved by calpain upon entry into clathrin-enriched domains. This cleavage event occurs between the β-catenin and p120-binding domains within the cadherin cytoplasmic tail. Of interest, VE-cadherin mutants that are resistant to endocytosis are similarly resistant to cleavage. Furthermore, p120-catenin overexpression blocks cadherin internalization and cleavage, coupling entry into the endocytic pathway with proteolytic processing. Of importance, the cleavage of the VE-cadherin tail alters the postendocytic trafficking itinerary of the cadherin, resulting in a higher turnover rate due to decreased recycling and increased degradation. In conclusion, this study identifies a novel proteolytic event that regulates the trafficking of VE-cadherin after endocytosis.
Collapse
Affiliation(s)
- Wenji Su
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322.,Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA 30322 .,Department of Dermatology, Emory University, Atlanta, GA 30322.,Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|