1
|
Chen D, Yuan T, Chen Y, Zhang H, Niu Z, Fang L, Du G. DL0805-1, a novel Rho-kinase inhibitor, attenuates lung injury and vasculopathy in a rat model of monocrotaline-induced pulmonary hypertension. Eur J Pharmacol 2022; 919:174779. [DOI: 10.1016/j.ejphar.2022.174779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
|
2
|
ROCK Inhibition as Potential Target for Treatment of Pulmonary Hypertension. Cells 2021; 10:cells10071648. [PMID: 34209333 PMCID: PMC8303917 DOI: 10.3390/cells10071648] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disease caused by extensive vascular remodeling in the lungs, which ultimately leads to death in consequence of right ventricle (RV) failure. While current drugs for PH therapy address the sustained vasoconstriction, no agent effectively targets vascular cell proliferation and tissue inflammation. Rho-associated protein kinases (ROCKs) emerged in the last few decades as promising targets for PH therapy, since ROCK inhibitors demonstrated significant anti-remodeling and anti-inflammatory effects. In this review, current aspects of ROCK inhibition therapy are discussed in relation to the treatment of PH and RV dysfunction, from cell biology to preclinical and clinical studies.
Collapse
|
3
|
Satoh K. Drug discovery focused on novel pathogenic proteins for pulmonary arterial hypertension. J Cardiol 2021; 78:1-11. [PMID: 33563508 DOI: 10.1016/j.jjcc.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease in which the wall thickening and narrowing of pulmonary microvessels progress due to complicated interactions among processes such as endothelial dysfunction, the proliferation of pulmonary artery smooth muscle cells (PASMCs) and adventitial fibrocytes, and inflammatory cell infiltration. Early diagnosis of patients with PAH is difficult and lung transplantation is the only last choice to save severely ill patients. However, the number of donors is limited. Many patients with PAH show rapid progression and a high degree of pulmonary arterial remodeling characterized by the abnormal proliferation of PASMCs, which makes treatment difficult even with multidrug therapy comprising pulmonary vasodilators. Thus, it is important to develop novel therapy targeting factors other than vasodilation, such as PASMC proliferation. In the development of PAH, inflammation and oxidative stress are deeply involved in its pathogenesis. Excessive proliferation and apoptosis resistance in PASMCs are key mechanisms underlying PAH. Based on those characteristics, we recently screened novel pathogenic proteins and have performed drug discovery targeting those proteins. To confirm the clinical significance of this, we used patient-derived blood samples to evaluate biomarker potential for diagnosis and prognosis. Moreover, we conducted high throughput screening and found several inhibitors of the pathogenic proteins. In this review, we introduce the recent progress on basic and clinical PAH research, focusing on the screening of pathogenic proteins and drug discovery.
Collapse
Affiliation(s)
- Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| |
Collapse
|
4
|
Satoh K, Kikuchi N, Shimokawa H. PIM1 (Provirus Integration Site For Moloney Murine Leukemia Virus) as a Novel Biomarker and Therapeutic Target in Pulmonary Arterial Hypertension: Another Evidence for Cancer Theory. Arterioscler Thromb Vasc Biol 2020; 40:500-502. [PMID: 32101474 DOI: 10.1161/atvbaha.120.313975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiro Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Fernández AI, Yotti R, González-Mansilla A, Mombiela T, Gutiérrez-Ibanes E, Pérez del Villar C, Navas-Tejedor P, Chazo C, Martínez-Legazpi P, Fernández-Avilés F, Bermejo J. The Biological Bases of Group 2 Pulmonary Hypertension. Int J Mol Sci 2019; 20:ijms20235884. [PMID: 31771195 PMCID: PMC6928720 DOI: 10.3390/ijms20235884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a potentially fatal condition with a prevalence of around 1% in the world population and most commonly caused by left heart disease (PH-LHD). Usually, in PH-LHD, the increase of pulmonary pressure is only conditioned by the retrograde transmission of the left atrial pressure. However, in some cases, the long-term retrograde pressure overload may trigger complex and irreversible biomechanical and biological changes in the pulmonary vasculature. This latter clinical entity, designated as combined pre- and post-capillary PH, is associated with very poor outcomes. The underlying mechanisms of this progression are poorly understood, and most of the current knowledge comes from the field of Group 1-PAH. Treatment is also an unsolved issue in patients with PH-LHD. Targeting the molecular pathways that regulate pulmonary hemodynamics and vascular remodeling has provided excellent results in other forms of PH but has a neutral or detrimental result in patients with PH-LHD. Therefore, a deep and comprehensive biological characterization of PH-LHD is essential to improve the diagnostic and prognostic evaluation of patients and, eventually, identify new therapeutic targets. Ongoing research is aimed at identify candidate genes, variants, non-coding RNAs, and other biomarkers with potential diagnostic and therapeutic implications. In this review, we discuss the state-of-the-art cellular, molecular, genetic, and epigenetic mechanisms potentially involved in PH-LHD. Signaling and effective pathways are particularly emphasized, as well as the current knowledge on -omic biomarkers. Our final aim is to provide readers with the biological foundations on which to ground both clinical and pre-clinical research in the field of PH-LHD.
Collapse
Affiliation(s)
- Ana I. Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Enrique Gutiérrez-Ibanes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Candelas Pérez del Villar
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Paula Navas-Tejedor
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Christian Chazo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-91-586-8279
| |
Collapse
|
6
|
Siddique MAH, Satoh K, Kurosawa R, Kikuchi N, Elias-Al-Mamun M, Omura J, Satoh T, Nogi M, Sunamura S, Miyata S, Ueda H, Tokuyama H, Shimokawa H. Identification of Emetine as a Therapeutic Agent for Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:2367-2385. [DOI: 10.1161/atvbaha.119.313309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
Excessive proliferation and apoptosis resistance are special characteristics of pulmonary artery smooth muscle cells (PASMCs) in pulmonary arterial hypertension (PAH). However, the drugs in clinical use for PAH target vascular dilatation, which do not exert adequate effects in patients with advanced PAH. Here, we report a novel therapeutic effect of emetine, a principal alkaloid extracted from the root of ipecac clinically used as an emetic and antiprotozoal drug.
Approach and Results:
We performed stepwise screenings for 5562 compounds from original library. First, we performed high-throughput screening with PASMCs from patients with PAH (PAH-PASMCs) and found 80 compounds that effectively inhibited proliferation. Second, we performed the repeatability and counter assay. Finally, we performed a concentration-dependent assay and found that emetine inhibits PAH-PASMC proliferation. Interestingly, emetine significantly reduced protein levels of HIFs (hypoxia-inducible factors; HIF-1α and HIF-2α) and downstream PDK1 (pyruvate dehydrogenase kinase 1). Moreover, emetine significantly reduced the protein levels of RhoA (Ras homolog gene family, member A), Rho-kinases (ROCK1 and ROCK2 [rho-associated coiled-coil containing protein kinases 1 and 2]), and their downstream CyPA (cyclophilin A), and Bsg (basigin) in PAH-PASMCs. Consistently, emetine treatment significantly reduced the secretion of cytokines/chemokines and growth factors from PAH-PASMCs. Interestingly, emetine reduced protein levels of BRD4 (bromodomain-containing protein 4) and downstream survivin, both of which are involved in many cellular functions, such as cell cycle, apoptosis, and inflammation. Finally, emetine treatment ameliorated pulmonary hypertension in 2 experimental rat models, accompanied by reduced inflammatory changes in the lungs and recovered right ventricular functions.
Conclusions:
Emetine is an old but novel drug for PAH that reduces excessive proliferation of PAH-PASMCs and improves right ventricular functions.
Collapse
Affiliation(s)
- Mohammad Abdul Hai Siddique
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| | - Ryo Kurosawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| | - Nobuhiro Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| | - Md. Elias-Al-Mamun
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| | - Junichi Omura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| | - Taijyu Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| | - Masamichi Nogi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| | - Shinichiro Sunamura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| | - Hirofumi Ueda
- Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan (H.U., H.T.)
| | - Hidetoshi Tokuyama
- Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan (H.U., H.T.)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (M.A.H.S., K.S., R.K., N.K., M.E.-A.-M., J.O., T.S., M.N., S.S., S.M., H.S.)
| |
Collapse
|
7
|
Satoh K, Kikuchi N, Kurosawa R, Shimokawa H. Checkpoint Kinase 1 Promotes the Development of Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:1504-1506. [PMID: 31339778 DOI: 10.1161/atvbaha.119.312969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiro Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Kurosawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Satoh K, Shimokawa H. Recent Advances in the Development of Cardiovascular Biomarkers. Arterioscler Thromb Vasc Biol 2019; 38:e61-e70. [PMID: 29695533 DOI: 10.1161/atvbaha.118.310226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
9
|
Identification of Novel Therapeutic Targets for Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19124081. [PMID: 30562953 PMCID: PMC6321293 DOI: 10.3390/ijms19124081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are fatal diseases; however, their pathogenesis still remains to be elucidated. We have recently screened novel pathogenic molecules and have performed drug discovery targeting those molecules. Pulmonary artery smooth muscle cells (PASMCs) in patients with PAH (PAH-PASMCs) have high proliferative properties like cancer cells, which leads to thickening and narrowing of distal pulmonary arteries. Thus, we conducted a comprehensive analysis of PAH-PASMCs and lung tissues to search for novel pathogenic proteins. We validated the pathogenic role of the selected proteins by using tissue-specific knockout mice. To confirm its clinical significance, we used patient-derived blood samples to evaluate the potential as a biomarker for diagnosis and prognosis. Finally, we conducted a high throughput screening and found inhibitors for the pathogenic proteins.
Collapse
|
10
|
Cheng XW, Narisawa M, Jin X, Murohara T, Kuzuya M. Sirtuin 1 as a potential therapeutic target in pulmonary artery hypertension. J Hypertens 2018; 36:1032-1035. [PMID: 29578961 DOI: 10.1097/hjh.0000000000001694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology and Heart Center, Yanbian University Hospital, Yanji, Jilin Province, China.,Institute of Innovation for the Future Society.,Department of Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Department of Internal Medicine, Kyung Hee University, Seoul, South Korea
| | - Megumi Narisawa
- Department of Cardiology, Tajimikenlitsu General Hospital, Tajimi, Gifu Prefecture
| | - Xiongjie Jin
- Department of Cardiology and Heart Center, Yanbian University Hospital, Yanji, Jilin Province, China
| | | | - Masafumi Kuzuya
- Institute of Innovation for the Future Society.,Department of Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Xiong PY, Potus F, Chan W, Archer SL. Models and Molecular Mechanisms of World Health Organization Group 2 to 4 Pulmonary Hypertension. Hypertension 2018; 71:34-55. [PMID: 29158355 PMCID: PMC5777609 DOI: 10.1161/hypertensionaha.117.08824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Yu Xiong
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada
| | - Francois Potus
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada
| | - Winnie Chan
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
12
|
|
13
|
Abstract
Cyclophilin A (CyPA) is secreted from vascular smooth muscle cells, inflammatory cells, activated platelets, and cardiac fibroblasts in response to oxidative stress. Excessive and continuous activation of the RhoA/Rho-kinase system promotes the secretion of CyPA, resulting in the development of multiple cardiovascular diseases. Basigin (Bsg), a transmembrane glycoprotein that activates matrix metalloproteinases, is an extracellular receptor for CyPA that promotes cell proliferation and inflammation. Thus, the CyPA/Bsg system is potentially a novel therapeutic target for cardiovascular diseases. Importantly, plasma CyPA levels are increased in patients with coronary artery disease, abdominal aortic aneurysms, pulmonary hypertension, and heart failure. Moreover, plasma CyPA levels can predict all-cause death in patients with coronary artery disease and pulmonary hypertension. Additionally, plasma soluble Bsg levels are increased and predict all-cause death in patients with heart failure, suggesting that CyPA and Bsg are novel biomarkers for cardiovascular diseases. To discover further novel molecules targeting the CyPA/Bsg system, high-throughput screening of compounds found molecules that ameliorate the development of cardiovascular diseases. In addition to CyPA and Bsg, novel therapeutic targets and their inhibitors for patients with pulmonary arterial hypertension have been recently screened and identified. Ultimately, the final goal is to develop novel biomarkers and medications that will be useful for improving the prognosis and quality of life in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| |
Collapse
|