1
|
Lee G, Yang J, Kim S, Tran T, Lee SY, Park KH, Kwon S, Chung K, Koh J, Huh YH, Seon J, Kim HA, Chun J, Ryu J. Enhancement of Intracellular Cholesterol Efflux in Chondrocytes Leading to Alleviation of Osteoarthritis Progression. Arthritis Rheumatol 2025; 77:151-162. [PMID: 39262222 PMCID: PMC11782112 DOI: 10.1002/art.42984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/26/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common degenerative disease worldwide, with no practical means of prevention and limited treatment options. Recently, our group unveiled a novel mechanism contributing to OA pathogenesis in association with abnormal cholesterol metabolism in chondrocytes. In this study, we aimed to establish a clinical link between lipid profiles and OA in humans, assess the effectiveness of cholesterol-lowering drugs in suppressing OA development in mice, and uncover the cholesterol-lowering mechanisms that effectively impede OA progression. METHODS Five clinically approved cholesterol-lowering drugs (fenofibrate, atorvastatin, ezetimibe, niacin, and lomitapide) were injected into the knee joints or administered with diet to mice with OA who underwent destabilization of the medial meniscus induction and were fed a 2% high-cholesterol diet. Gene expression linked to cholesterol metabolism was determined using microarray analysis. Furthermore, the in vivo functions of these genes were explored through intra-articular injection of either its inhibitor or adenovirus. RESULTS Logistic regression analysis confirmed a close relationship between the diagnostic criteria of hyperlipidemia based on serum lipid levels and OA incidence. Among the cholesterol-lowering drugs examined, fenofibrate exerted the most significant protective effect against cartilage destruction, which was attributed to elevated levels of high-density lipoprotein cholesterol that are crucial for cholesterol efflux. Notably, cholesterol efflux was suppressed during OA progression via down-regulation of apolipoprotein A1-binding protein (AIBP) expression. Overexpression of AIBP effectively inhibits OA progression. CONCLUSION Our results suggest that restoration of cholesterol homeostasis to a normal state through administration of fenofibrate or AIBP overexpression, both of which induce cholesterol efflux, offers an effective therapeutic option for patients with OA.
Collapse
Affiliation(s)
- Gyuseok Lee
- Chonnam National UniversityGwangjuRepublic of Korea
| | - Jiye Yang
- Gwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Su‐Jin Kim
- Chonnam National UniversityGwangjuRepublic of Korea
| | | | | | - Ka Hyon Park
- Chonnam National UniversityGwangjuRepublic of Korea
| | | | - Ki‐Ho Chung
- Chonnam National UniversityGwangjuRepublic of Korea
| | | | - Yun Hyun Huh
- Gwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Jong‐Keun Seon
- Chonnam National University Hwasun Hospital and Medical SchoolHwasunRepublic of Korea
| | - Hyun Ah Kim
- Hallym University, Sacred Heart HospitalAnyangRepublic of Korea
| | - Jang‐Soo Chun
- Gwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Je‐Hwang Ryu
- Chonnam National UniversityGwangjuRepublic of Korea
| |
Collapse
|
2
|
Fang H, Jiang L, da Veiga Leprevost F, Jian R, Chan J, Glinos D, Lappalainen T, Nesvizhskii AI, Reiner AP, Consortium GTE, Snyder MP, Tang H. Regulation of protein abundance in normal human tissues. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.10.25320181. [PMID: 39867362 PMCID: PMC11759590 DOI: 10.1101/2025.01.10.25320181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
We report a systematic quantification of 10,841 unique proteins from over 700 GTEx samples, representing five human tissues. Sex, age and genetic factors are associated with variation in protein abundance. In total, 1981 cis-protein quantitative trait loci (cis-pQTL) are identified, of which a majority of protein targets have not been assayed in the recent plasma-based proteogenomic studies. Integrating transcriptomic information from matching tissues delineates concordant as well as discordant expression patterns at RNA and protein levels. Juxtaposition of data from different tissues indicates both shared and tissue-specific genetic architecture that underlie protein abundance. Complementing genomic annotation, RNA-based eQTL studies, as well as the recent establishment of plasma-based proteogenomic characterization, tissue-pQTLs shed light on biology underlying genotype-phenotype association of complex traits and diseases.
Collapse
|
3
|
Zhao Y, Chen Z, Dong R, Liu Y, Zhang Y, Guo Y, Yu M, Li X, Wang J. Multiomics analysis reveals the potential mechanism of high-fat diet in dextran sulfate sodium-induced colitis mice model. Food Sci Nutr 2024; 12:8309-8323. [PMID: 39479684 PMCID: PMC11521715 DOI: 10.1002/fsn3.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 11/02/2024] Open
Abstract
A high-fat diet (HFD) is recognized as an important contributor to inflammatory bowel disease (IBD). However, the precise underlying mechanism of HFD on IBD remains elusive. This study aimed to investigate the potential mechanism by which HFD affects IBD using 16S rRNA-sequencing and RNA-seq technology. Results indicated that HFD-treated mice exhibited notable alternations in the structure and composition of the gut microbiota, with some of these alternations being associated with the pathogenesis of IBD. Analysis of the colon transcriptome revealed 11 hub genes and 7 hub pathways among control, DSS-induced colitis, and HFD + DSS-treated groups. Further analysis explores the relationship between the hub pathways and genes, as well as the hub genes and gut microbiota. Overall, the findings indicate that the impact of HFD on DSS-induced colitis may be linked to intestinal dysbiosis and specific genes such as Abca8b, Ace2, Apoa1, Apoa4, Apoc3, Aspa, Dpp4, Maob, Slc34a2, Slc7a9, and Trpm6. These results provide valuable insights for determining potential therapeutic targets for addressing HFD-induced IBD.
Collapse
Affiliation(s)
- Yuyang Zhao
- Department of GastroenterologyChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Zhimin Chen
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Ruiyi Dong
- College of Physical Education, Hunan Normal UniversityChangshaChina
| | - Yufan Liu
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Yixin Zhang
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Yan Guo
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Meiyi Yu
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Xiang Li
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Jiangbin Wang
- Department of GastroenterologyChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
4
|
Yuan H, Wei W, Zhang Y, Li C, Zhao S, Chao Z, Xia C, Quan J, Gao C. Unveiling the Influence of Copy Number Variations on Genetic Diversity and Adaptive Evolution in China's Native Pig Breeds via Whole-Genome Resequencing. Int J Mol Sci 2024; 25:5843. [PMID: 38892031 PMCID: PMC11172908 DOI: 10.3390/ijms25115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Copy number variations (CNVs) critically influence individual genetic diversity and phenotypic traits. In this study, we employed whole-genome resequencing technology to conduct an in-depth analysis of 50 pigs from five local swine populations [Rongchang pig (RC), Wuzhishan pig (WZS), Tibetan pig (T), Yorkshire (YL) and Landrace (LR)], aiming to assess their genetic potential and explore their prospects in the field of animal model applications. We identified a total of 96,466 CNVs, which were subsequently integrated into 7112 non-redundant CNVRs, encompassing 1.3% of the swine genome. Functional enrichment analysis of the genes within these CNVRs revealed significant associations with sensory perception, energy metabolism, and neural-related pathways. Further selective scan analyses of the local pig breeds RC, T, WZS, along with YL and LR, uncovered that for the RC variety, the genes PLA2G10 and ABCA8 were found to be closely related to fat metabolism and cardiovascular health. In the T breed, the genes NCF2 and CSGALNACT1 were associated with immune response and connective tissue characteristics. As for the WZS breed, the genes PLIN4 and CPB2 were primarily linked to fat storage and anti-inflammatory responses. In summary, this research underscores the pivotal role of CNVs in fostering the diversity and adaptive evolution of pig breeds while also offering valuable insights for further exploration of the advantageous genetic traits inherent to China's local pig breeds. This facilitates the creation of experimental animal models tailored to the specific characteristics of these breeds, contributing to the advancement of livestock and biomedical research.
Collapse
Affiliation(s)
- Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Wenjing Wei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Yue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Changwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China;
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| |
Collapse
|
5
|
Reppe S, Gundersen S, Sandve GK, Wang Y, Andreassen OA, Medina-Gomez C, Rivadeneira F, Utheim TP, Hovig E, Gautvik KM. Identification of Transcripts with Shared Roles in the Pathogenesis of Postmenopausal Osteoporosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:5554. [PMID: 38791593 PMCID: PMC11121938 DOI: 10.3390/ijms25105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epidemiological evidence suggests existing comorbidity between postmenopausal osteoporosis (OP) and cardiovascular disease (CVD), but identification of possible shared genes is lacking. The skeletal global transcriptomes were analyzed in trans-iliac bone biopsies (n = 84) from clinically well-characterized postmenopausal women (50 to 86 years) without clinical CVD using microchips and RNA sequencing. One thousand transcripts highly correlated with areal bone mineral density (aBMD) were further analyzed using bioinformatics, and common genes overlapping with CVD and associated biological mechanisms, pathways and functions were identified. Fifty genes (45 mRNAs, 5 miRNAs) were discovered with established roles in oxidative stress, inflammatory response, endothelial function, fibrosis, dyslipidemia and osteoblastogenesis/calcification. These pleiotropic genes with possible CVD comorbidity functions were also present in transcriptomes of microvascular endothelial cells and cardiomyocytes and were differentially expressed between healthy and osteoporotic women with fragility fractures. The results were supported by a genetic pleiotropy-informed conditional False Discovery Rate approach identifying any overlap in single nucleotide polymorphisms (SNPs) within several genes encoding aBMD- and CVD-associated transcripts. The study provides transcriptional and genomic evidence for genes of importance for both BMD regulation and CVD risk in a large collection of postmenopausal bone biopsies. Most of the transcripts identified in the CVD risk categories have no previously recognized roles in OP pathogenesis and provide novel avenues for exploring the mechanistic basis for the biological association between CVD and OP.
Collapse
Affiliation(s)
- Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Sveinung Gundersen
- Center for Bioinformatics, Department of Informatics, University of Oslo, 0313 Oslo, Norway
| | - Geir K. Sandve
- Department of Informatics, University of Oslo, 0373 Oslo, Norway; (G.K.S.)
| | - Yunpeng Wang
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; (Y.W.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; (Y.W.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (C.M.-G.); (F.R.)
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (C.M.-G.); (F.R.)
| | - Tor P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, University of Oslo, 0373 Oslo, Norway; (G.K.S.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Kaare M. Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
| |
Collapse
|
6
|
Yang K, Li X, Jiang Z, Li J, Deng Q, He J, Chen J, Li X, Xu S, Jiang Z. Tumour suppressor ABCA8 inhibits malignant progression of colorectal cancer via Wnt/β-catenin pathway. Dig Liver Dis 2024; 56:880-893. [PMID: 37968146 DOI: 10.1016/j.dld.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most commonly diagnosed malignant tumours of the digestive tract, and new therapeutic targets and prognostic markers are still urgently required. However, the role and molecular mechanisms of ATP binding cassette subfamily A member 8 (ABCA8) in CRC remain unclear. METHODS Databases and clinical specimens were analysed to determine the expression level of ABCA8 in CRC. Colony formation, CCK-8 and Transwell assays were conducted to determine cell proliferation, viability, migration and invasion. Flow cytometry was used to detect cell cycle progression and apoptosis. Western blot and rescue experiments were performed to determine the specific mechanisms of action of ABCA8. RESULTS ABCA8 expression is dramatically down-regulated in CRC tissues and cell lines. Ectopic expression of ABCA8 induced apoptosis and cell cycle arrest in vitro, inhibited cell growth, suppressed migration and invasion, reversed epithelial-mesenchymal transition and suppressed xenograft tumour growth and metastasis in vivo. Mechanistically, ABCA8 inhibited CRC cell proliferation and metastasis through the Wnt/β-catenin signalling pathway, both in vitro and in vivo. CONCLUSION We verified that ABCA8 inhibits the malignant progression of CRC through the Wnt/β-catenin pathway. This newly discovered ABCA8-Wnt-β-catenin signalling axis is probably helpful in guiding the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Kun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolu Li
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Zhongxiang Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junfeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qianxi Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoqing Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuman Xu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Ding D, Zhong J, Xing Y, Hu Y, Ge X, Yao W. Bioinformatics and Experimental Study Revealed LINC00982/ miR-183-5p/ABCA8 Axis Suppresses LUAD Progression. Curr Cancer Drug Targets 2024; 24:654-667. [PMID: 38419344 DOI: 10.2174/0115680096266700231107071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a major health challenge worldwide with an undesirable prognosis. LINC00982 has been implicated as a tumor suppressor in diverse human cancers; however, its role in LUAD has not been fully characterized. METHODS Expression level and prognostic value of LINC00982 were investigated in pan-cancer and lung cancer from The Cancer Genome Atlas (TCGA) project. Differential expression analysis based on the LINC00982 expression level was performed in LUAD followed by gene set enrichment analysis (GSEA) and functional enrichment analyses. The association between LINC00982 expression and tumor immune microenvironment characteristics was evaluated. A potential ceRNA regulatory axis was identified and experimentally validated. RESULTS We found that LINC00982 expression was downregulated and correlated with poor prognosis in LUAD. Enrichment analyses revealed that LINC00982 could inhibit DNA damage repair and cell proliferation, but enhance tumor metabolic reprogramming. We identified a competing endogenous RNA network involving LINC00982, miR-183-5p, and ATP-binding cassette subfamily A member 8 (ABCA8). Luciferase assays confirmed that miR-183-5p can interact with LINC00982 and ABCA8. Forced miR-183-5p expression reduced LINC00982 transcript levels and suppressed ABCA8 expression. CONCLUSIONS Our findings revealed the LINC00982/miR-183-5p/ABCA8 axis as a potential therapeutic target in LUAD.
Collapse
Affiliation(s)
- Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
8
|
Liu W, Mossel P, Schwach V, Slart RHJA, Luurtsema G. Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges. Pharmaceuticals (Basel) 2023; 16:1715. [PMID: 38139840 PMCID: PMC10748140 DOI: 10.3390/ph16121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Adenosine triphosphate binding cassette (ABC) transporters are a broad family of membrane protein complexes that use energy to transport molecules across cells and/or intracellular organelle lipid membranes. Many drugs used to treat cardiac diseases have an affinity for these transporters. Among others, P-glycoprotein (P-gp) plays an essential role in regulating drug concentrations that reach cardiac tissue and therefore contribute to cardiotoxicity. As a molecular imaging modality, positron emission tomography (PET) has emerged as a viable technique to investigate the function of P-gp in organs and tissues. Using PET imaging to evaluate cardiac P-gp function provides new insights for drug development and improves the precise use of medications. Nevertheless, information in this field is limited. In this review, we aim to examine the current applications of ABC transporter PET imaging and its tracers in the heart, with a specific emphasis on P-gp. Furthermore, the opportunities and challenges in this novel field will be discussed.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Pascalle Mossel
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
- Department of Biomedical Photonic Imaging, University of Twente, 7500 AE Enschede, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| |
Collapse
|
9
|
Wiener JP, Desire S, Garliyev V, Lyssenko III N, Praticò D, Lyssenko NN. Down-Regulation of ABCA7 in Human Microglia, Astrocyte and THP-1 Cell Lines by Cholesterol Depletion, IL-1β and TNFα, or PMA. Cells 2023; 12:2143. [PMID: 37681876 PMCID: PMC10486366 DOI: 10.3390/cells12172143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) is a major risk factor for Alzheimer's disease. Human neural cell lines were used to investigate the regulation of ABCA7 expression by cholesterol and pro-inflammatory cytokines. Cholesterol was depleted by methyl-β-cyclodextrin, followed by treatment with rosuvastatin to suppress de novo synthesis, while the cells underwent adjustment to low cholesterol. Cholesterol depletion by 50-76% decreased ABCA7 expression by ~40% in C20 microglia and ~21% in A172 astrocytes but had no effect on the protein in SK-N-SH neurons. Cholesterol depletion also suppressed ABCA7 in HMC3 microglia. Previously, cholesterol loss was reported to up-regulate ABCA7 in murine macrophages. ABCA7 was down-regulated during PMA-induced differentiation of human THP-1 monocytes to macrophages. But, cholesterol depletion in THP-1 macrophages by ~71% had no effect on ABCA7. IL-1β and TNFα reduced ABCA7 expression in C20 and HMC3 microglia but not in A172 astrocytes or SK-N-SH neurons. IL-6 did not affect ABCA7 in the neural cells. These findings suggest that ABCA7 is active in regular homeostasis in human neural cells, is regulated by cholesterol in a cell type-dependent manner, i.e., cholesterol depletion down-regulates it in human neuroglia but not neurons, and is incompatible with IL-1β and TNFα inflammatory responses in human microglia.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas N. Lyssenko
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
10
|
Starr CR, Zhylkibayev A, Mobley JA, Gorbatyuk MS. Proteomic analysis of diabetic retinas. Front Endocrinol (Lausanne) 2023; 14:1229089. [PMID: 37693346 PMCID: PMC10486886 DOI: 10.3389/fendo.2023.1229089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction As a metabolic disease, diabetes often leads to health complications such as heart failure, nephropathy, neurological disorders, and vision loss. Diabetic retinopathy (DR) affects as many as 100 million people worldwide. The mechanism of DR is complex and known to impact both neural and vascular components in the retina. While recent advances in the field have identified major cellular signaling contributing to DR pathogenesis, little has been reported on the protein post-translational modifications (PTM) - known to define protein localization, function, and activity - in the diabetic retina overall. Protein glycosylation is the enzymatic addition of carbohydrates to proteins, which can influence many protein attributes including folding, stability, function, and subcellular localization. O-linked glycosylation is the addition of sugars to an oxygen atom in amino acids with a free oxygen atom in their side chain (i.e., threonine, serine). To date, more than 100 congenital disorders of glycosylation have been described. However, no studies have identified the retinal O-linked glycoproteome in health or disease. With a critical need to expedite the discovery of PTMomics in diabetic retinas, we identified both global changes in protein levels and the retinal O-glycoproteome of control and diabetic mice. Methods We used liquid chromatography/mass spectrometry-based proteomics and high throughput screening to identify proteins differentially expressed and proteins differentially O-glycosylated in the retinas of wildtype and diabetic mice. Results Changes in both global expression levels of proteins and proteins differentially glycosylated in the retinas of wild-type and diabetic mice have been identified. We provide evidence that diabetes shifts both global expression levels and O-glycosylation of metabolic and synaptic proteins in the retina. Discussion Here we report changes in the retinal proteome of diabetic mice. We highlight alterations in global proteins involved in metabolic processes, maintaining cellular structure, trafficking, and neuronal processes. We then showed changes in O-linked glycosylation of individual proteins in the diabetic retina.
Collapse
Affiliation(s)
- Christopher R. Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Zhang W, Liu QY, Haqqani AS, Liu Z, Sodja C, Leclerc S, Baumann E, Delaney CE, Brunette E, Stanimirovic DB. Differential Expression of ABC Transporter Genes in Brain Vessels vs. Peripheral Tissues and Vessels from Human, Mouse and Rat. Pharmaceutics 2023; 15:pharmaceutics15051563. [PMID: 37242805 DOI: 10.3390/pharmaceutics15051563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters comprise a superfamily of genes encoding membrane proteins with nucleotide-binding domains (NBD). These transporters, including drug efflux across the blood-brain barrier (BBB), carry a variety of substrates through plasma membranes against substrate gradients, fueled by hydrolyzing ATP. The expression patterns/enrichment of ABC transporter genes in brain microvessels compared to peripheral vessels and tissues are largely uncharacterized. METHODS In this study, the expression patterns of ABC transporter genes in brain microvessels, peripheral tissues (lung, liver and spleen) and lung vessels were investigated using RNA-seq and WesTM analyses in three species: human, mouse and rat. RESULTS The study demonstrated that ABC drug efflux transporter genes (including ABCB1, ABCG2, ABCC4 and ABCC5) were highly expressed in isolated brain microvessels in all three species studied; the expression of ABCB1, ABCG2, ABCC1, ABCC4 and ABCC5 was generally higher in rodent brain microvessels compared to those of humans. In contrast, ABCC2 and ABCC3 expression was low in brain microvessels, but high in rodent liver and lung vessels. Overall, most ABC transporters (with the exception of drug efflux transporters) were enriched in peripheral tissues compared to brain microvessels in humans, while in rodent species, additional ABC transporters were found to be enriched in brain microvessels. CONCLUSIONS This study furthers the understanding of species similarities and differences in the expression patterns of ABC transporter genes; this is important for translational studies in drug development. In particular, CNS drug delivery and toxicity may vary among species depending on their unique profiles of ABC transporter expression in brain microvessels and BBB.
Collapse
Affiliation(s)
- Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Qing Yan Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Ziying Liu
- Scientific Data Mining/Digital Technology Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Sonia Leclerc
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Christie E Delaney
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
12
|
Xia Y, Liu H, Zhu R. Analysis of differentially expressed genes related to cerebral ischaemia in young rats based on the Gene Expression Omnibus database. World J Clin Cases 2023; 11:1467-1476. [PMID: 36926408 PMCID: PMC10011979 DOI: 10.12998/wjcc.v11.i7.1467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The incidence rate of cerebral infarction in young people is increasing day by day, the age of onset tends to be younger, and its internal pathogenesis and mechanism are very complicated, which leads to greater difficulties in treatment. Therefore, it is essential to analyze the key pathway that affects the onset of cerebral infarction in young people from the perspective of genetics.
AIM To compare the differentially expressed genes in the brain tissue of young and aged rats with middle cerebral artery occlusion and to analyse their effect on the key signalling pathway involved in the development of cerebral ischaemia in young rats.
METHODS The Gene Expression Omnibus 2R online analysis tool was used to analyse the differentially expressed genes in the GSE166162 dataset regarding the development of cerebral ischaemia in young and aged groups of rats. DAVID 6.8 software was further used to filter the differentially expressed genes. These genes were subjected to Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to determine the key gene pathway that affects the occurrence of cerebral ischaemia in young rats.
RESULTS Thirty-five differentially expressed genes (such as Igf2, Col1a2, and Sfrp1) were obtained; 73 GO enrichment analysis pathways are mainly involved in biological processes such as drug response, amino acid stimulation response, blood vessel development, various signalling pathways, and enzyme regulation. They are involved in molecular functions such as drug binding, protein binding, dopamine binding, metal ion binding, and dopamine neurotransmitter receptor activity. KEGG pathway enrichment analysis showed a significantly enriched pathway: The cyclic adenosine monophosphate (c-AMP) signalling pathway.
CONCLUSION The c-AMP signalling pathway might be the key pathway in the intervention of cerebral infarction in young people.
Collapse
Affiliation(s)
- Yu Xia
- Department of Neurology, The Third People’s Hospital of Hefei (The Third Clinical College of Anhui Medical University), Hefei 230022, Anhui Province, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University (Anhui Public Health Clinical Center), Hefei 230022, Anhui Province, China
| | - Rui Zhu
- Department of Neurology, The Third People’s Hospital of Hefei (The Third Clinical College of Anhui Medical University), Hefei 230022, Anhui Province, China
| |
Collapse
|
13
|
Moore JM, Bell EL, Hughes RO, Garfield AS. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023; 29:152-172. [PMID: 36503994 DOI: 10.1016/j.molmed.2022.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.
Collapse
|
14
|
Xie R, Liu L, Lu X, He C, Li G. Identification of the diagnostic genes and immune cell infiltration characteristics of gastric cancer using bioinformatics analysis and machine learning. Front Genet 2023; 13:1067524. [PMID: 36685898 PMCID: PMC9845288 DOI: 10.3389/fgene.2022.1067524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Finding reliable diagnostic markers for gastric cancer (GC) is important. This work uses machine learning (ML) to identify GC diagnostic genes and investigate their connection with immune cell infiltration. Methods: We downloaded eight GC-related datasets from GEO, TCGA, and GTEx. GSE13911, GSE15459, GSE19826, GSE54129, and GSE79973 were used as the training set, GSE66229 as the validation set A, and TCGA & GTEx as the validation set B. First, the training set screened differentially expressed genes (DEGs), and gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), disease Ontology (DO), and gene set enrichment analysis (GSEA) analyses were performed. Then, the candidate diagnostic genes were screened by LASSO and SVM-RFE algorithms, and receiver operating characteristic (ROC) curves evaluated the diagnostic efficacy. Then, the infiltration characteristics of immune cells in GC samples were analyzed by CIBERSORT, and correlation analysis was performed. Finally, mutation and survival analyses were performed for diagnostic genes. Results: We found 207 up-regulated genes and 349 down-regulated genes among 556 DEGs. gene ontology analysis significantly enriched 413 functional annotations, including 310 biological processes, 23 cellular components, and 80 molecular functions. Six of these biological processes are closely related to immunity. KEGG analysis significantly enriched 11 signaling pathways. 244 diseases were closely related to Ontology analysis. Multiple entries of the gene set enrichment analysis analysis were closely related to immunity. Machine learning screened eight candidate diagnostic genes and further validated them to identify ABCA8, COL4A1, FAP, LY6E, MAMDC2, and TMEM100 as diagnostic genes. Six diagnostic genes were mutated to some extent in GC. ABCA8, COL4A1, LY6E, MAMDC2, TMEM100 had prognostic value. Conclusion: We screened six diagnostic genes for gastric cancer through bioinformatic analysis and machine learning, which are intimately related to immune cell infiltration and have a definite prognostic value.
Collapse
Affiliation(s)
- Rongjun Xie
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Longfei Liu
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xianzhou Lu
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chengjian He
- Department of Intensive Care Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Guoxin Li,
| |
Collapse
|
15
|
Hwang HJ, Lee KH, Cho JY. ABCA9, an ER cholesterol transporter, inhibits breast cancer cell proliferation via SREBP-2 signaling. Cancer Sci 2022; 114:1451-1463. [PMID: 36576228 PMCID: PMC10067411 DOI: 10.1111/cas.15710] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The association between cholesterol metabolism and cancer development and progression has been recently highlighted. However, the role and function of many cholesterol transporters remain largely unknown. Here, we focused on the ATP-binding cassette subfamily A member 9 (ABCA9) transporter given that its expression is significantly downregulated in both canine mammary tumors and human breast cancers, which in breast cancer patients correlates with poor prognosis. We found that ABCA9 is mainly present in the endoplasmic reticulum (ER) and is responsible for promoting cholesterol accumulation in this structure. Accordingly, ABCA9 inhibited sterol-regulatory element binding protein-2 (SREBP-2) translocation from the ER to the nucleus, a crucial step for cholesterol synthesis, resulting in the downregulation of cholesterol synthesis gene expression. ABCA9 expression in breast cancer cells attenuated cell proliferation and reduced their colony-forming abilities. We identified ABCA9 expression to be regulated by Forkhead box O1 (FOXO1). Inhibition of PI3K induced enhanced ABCA9 expression through the activation of the PI3K-Akt-FOXO1 pathway in breast cancer cells. Altogether, our study suggests that ABCA9 functions as an ER cholesterol transporter that suppresses cholesterol synthesis via the inhibition of SREBP-2 signaling and that its restoration halts breast cancer cell proliferation. Our findings provide novel insight into the vital role of ABCA9 in breast cancer progression.
Collapse
Affiliation(s)
- Hyeon-Ji Hwang
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Comparative Medicine Disease Research Center, Seoul National University, Seoul, Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Comparative Medicine Disease Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Fu B, Wang J, Wang L, Wang Q, Guo Z, Xu M, Jiang N. Integrated proteomic and metabolomic profile analyses of cardiac valves revealed molecular mechanisms and targets in calcific aortic valve disease. Front Cardiovasc Med 2022; 9:944521. [PMID: 36312243 PMCID: PMC9606238 DOI: 10.3389/fcvm.2022.944521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background This study aimed to define changes in the metabolic and protein profiles of patients with calcific aortic valve disease (CAVD). Methods and results We analyzed cardiac valve samples of patients with and without (control) CAVD (n = 24 per group) using untargeted metabolomics and tandem mass tag-based quantitative proteomics. Significantly different metabolites and proteins between the CAVD and control groups were screened; then, functional enrichment was analyzed. We analyzed co-expressed differential metabolites and proteins, and constructed a metabolite-protein-pathway network. The expression of key proteins was validated using western blotting. Differential analysis identified 229 metabolites in CAVD among which, 2-aminophenol, hydroxykynurenine, erythritol, carnosine, and choline were the top five. Proteomic analysis identified 549 differentially expressed proteins in CAVD, most of which were localized in the nuclear, cytoplasmic, extracellular, and plasma membranes. Levels of selenium binding protein 1 (SELENBP1) positively correlated with multiple metabolites. Adenosine triphosphate-binding cassette transporters, starch and sucrose metabolism, hypoxia-inducible factor 1 (HIF-1) signaling, and purine metabolism were key pathways in the network. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), calcium2+/calmodulin-dependent protein kinase II delta (CAMK2D), and ATP binding cassette subfamily a member 8 (ABCA8) were identified as hub proteins in the metabolite-protein-pathway network as they interacted with ADP, glucose 6-phosphate, choline, and other proteins. Western blotting confirmed that ENPP1 was upregulated, whereas ABCA8 and CAMK2D were downregulated in CAVD samples. Conclusion The metabolic and protein profiles of cardiac valves from patients with CAVD significantly changed. The present findings provide a holistic view of the molecular mechanisms underlying CAVD that may lead to the development of novel diagnostic biomarkers and therapeutic targets to treat CAVD.
Collapse
Affiliation(s)
- Bo Fu
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,Postdoctoral Mobile Station, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Lianqun Wang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Qiang Wang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,Zhigang Guo,
| | - Meilin Xu
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Nan Jiang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,*Correspondence: Nan Jiang,
| |
Collapse
|
17
|
Dean M, Moitra K, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Hum Mutat 2022; 43:1162-1182. [PMID: 35642569 PMCID: PMC9357071 DOI: 10.1002/humu.24418] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily comprises membrane proteins that efflux various substrates across extra- and intracellular membranes. Mutations in ABC genes cause 21 human disorders or phenotypes with Mendelian inheritance, including cystic fibrosis, adrenoleukodystrophy, retinal degeneration, cholesterol, and bile transport defects. To provide tools to study the function of human ABC transporters we compiled data from multiple genomics databases. We analyzed ABC gene conservation within human populations and across vertebrates and surveyed phenotypes of ABC gene mutations in mice. Most mouse ABC gene disruption mutations have a phenotype that mimics human disease, indicating they are applicable models. Interestingly, several ABCA family genes, whose human function is unknown, have cholesterol level phenotypes in the mouse. Genome-wide association studies confirm and extend ABC traits and suggest several new functions to investigate. Whole-exome sequencing of tumors from diverse cancer types demonstrates that mutations in ABC genes are not common in cancer, but specific genes are overexpressed in select tumor types. Finally, an analysis of the frequency of loss-of-function mutations demonstrates that many human ABC genes are essential with a low level of variants, while others have a higher level of genetic diversity.
Collapse
Affiliation(s)
- Michael Dean
- Laboratory of Translational Genomics, National Cancer Institute, Gaithersburg, Maryland 21702
| | | | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, 10032
- Department of Pathology & Cell Biology, Columbia University, New York, New York, 10032
| |
Collapse
|
18
|
Dong W, Wong KHY, Liu Y, Levy-Sakin M, Hung WC, Li M, Li B, Jin SC, Choi J, Lopez-Giraldez F, Vaka D, Poon A, Chu C, Lao R, Balamir M, Movsesyan I, Malloy MJ, Zhao H, Kwok PY, Kane JP, Lifton RP, Pullinger CR. Whole-exome sequencing reveals damaging gene variants associated with hypoalphalipoproteinemia. J Lipid Res 2022; 63:100209. [PMID: 35460704 PMCID: PMC9126845 DOI: 10.1016/j.jlr.2022.100209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Low levels of high density lipoprotein-cholesterol (HDL-C) are associated with an elevated risk of arteriosclerotic coronary heart disease. Heritability of HDL-C levels is high. In this research discovery study, we used whole-exome sequencing to identify damaging gene variants that may play significant roles in determining HDL-C levels. We studied 204 individuals with a mean HDL-C level of 27.8 ± 6.4 mg/dl (range: 4-36 mg/dl). Data were analyzed by statistical gene burden testing and by filtering against candidate gene lists. We found 120 occurrences of probably damaging variants (116 heterozygous; four homozygous) among 45 of 104 recognized HDL candidate genes. Those with the highest prevalence of damaging variants were ABCA1 (n = 20), STAB1 (n = 9), OSBPL1A (n = 8), CPS1 (n = 8), CD36 (n = 7), LRP1 (n = 6), ABCA8 (n = 6), GOT2 (n = 5), AMPD3 (n = 5), WWOX (n = 4), and IRS1 (n = 4). Binomial analysis for damaging missense or loss-of-function variants identified the ABCA1 and LDLR genes at genome-wide significance. In conclusion, whole-exome sequencing of individuals with low HDL-C showed the burden of damaging rare variants in the ABCA1 and LDLR genes is particularly high and revealed numerous occurrences in HDL candidate genes, including many genes identified in genome-wide association study reports. Many of these genes are involved in cancer biology, which accords with epidemiologic findings of the association of HDL deficiency with increased risk of cancer, thus presenting a new area of interest in HDL genomics.
Collapse
Affiliation(s)
- Weilai Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Karen H Y Wong
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Youbin Liu
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Michal Levy-Sakin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Wei-Chien Hung
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mo Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | | | - Dedeepya Vaka
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Annie Poon
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Catherine Chu
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Richard Lao
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Melek Balamir
- Department of Internal Medicine, Istanbul University, Istanbul, Turkey
| | - Irina Movsesyan
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - John P Kane
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Physiological Nursing, University of California, San Francisco, CA, USA.
| |
Collapse
|
19
|
Lv C, Yang H, Yu J, Dai X. ABCA8 inhibits breast cancer cell proliferation by regulating the AMP activated protein kinase/mammalian target of rapamycin signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1423-1431. [PMID: 35191604 DOI: 10.1002/tox.23495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
ATP-binding cassette (ABC) subfamily A member 8 (ABCA8) has been reported to play a vital role in cancer development. Our study aimed to explore the role and the molecular mechanism of ABCA8 in breast cancer (BC) progression. GSE65194, GSE15852, and GSE45827 datasets were used to identify differentially expressed genes (DEGs) in BC. The diagnosis and prognosis value were determined using ROC curve analysis and Kaplan-Meier plotter, respectively. The relationship between ABCA8 expression and clinicopathological features in BC was analyzed by TCGA. Co-expressed genes of ABCA8 in BC were screened out through GEPIA and subjected to KEGG pathway enrichment analysis. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. Proliferating cell nuclear antigen (PCNA) expression and the changes of the AMP activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway were measured by western blot analysis. Totally 4 overlapping DEGs were identified and all reduced in BC samples. ABCA8 with high diagnostic and prognostic values was selected for further exploration. Low ABCA8 expression was correlated with clinicopathological features in BC patients. ABCA8 overexpression inhibited BC cell proliferation. The top 20 co-expressed genes of ABCA8 were identified by GEPIA and significantly enriched in AMPK signaling pathway. Inhibition of AMPK/mTOR pathway reversed the suppressive effect of ABCA8 on BC cell growth. These results suggested that ABCA8 overexpression repressed BC cell proliferation through regulating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chunliu Lv
- Department of Breast Tumor Plastic Surgery (Department of Head and Neck Surgery), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital of Nanyang, Nanyang, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
- Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
| | - Xiaowei Dai
- Department of Intensive Care Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
20
|
Fan LL, Liu L, Wang CY, Guo T, Luo H. A novel nonsense mutation of ABCA8 in a patient with reduced HDL-c levels and atherosclerosis. QJM 2022; 115:321-322. [PMID: 35060612 DOI: 10.1093/qjmed/hcac009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- L-L Fan
- From the Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital of Central South University, No.139, Renming Road, Changsha 410011, Hunan, China
- Department of Cell Biology, Hunan Key Laboratory of Animal Models for Human Diseases, The School of Life Sciences, Central South University, No.172, Tongzipo Raod, Changsha 410013, China
| | | | - C-Y Wang
- Department of Cell Biology, Hunan Key Laboratory of Animal Models for Human Diseases, The School of Life Sciences, Central South University, No.172, Tongzipo Raod, Changsha 410013, China
| | | | | |
Collapse
|
21
|
Juhl AD, Wüstner D. Pathways and Mechanisms of Cellular Cholesterol Efflux-Insight From Imaging. Front Cell Dev Biol 2022; 10:834408. [PMID: 35300409 PMCID: PMC8920967 DOI: 10.3389/fcell.2022.834408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential molecule in cellular membranes, but too much cholesterol can be toxic. Therefore, mammalian cells have developed complex mechanisms to remove excess cholesterol. In this review article, we discuss what is known about such efflux pathways including a discussion of reverse cholesterol transport and formation of high-density lipoprotein, the function of ABC transporters and other sterol efflux proteins, and we highlight their role in human diseases. Attention is paid to the biophysical principles governing efflux of sterols from cells. We also discuss recent evidence for cholesterol efflux by the release of exosomes, microvesicles, and migrasomes. The role of the endo-lysosomal network, lipophagy, and selected lysosomal transporters, such as Niemann Pick type C proteins in cholesterol export from cells is elucidated. Since oxysterols are important regulators of cellular cholesterol efflux, their formation, trafficking, and secretion are described briefly. In addition to discussing results obtained with traditional biochemical methods, focus is on studies that use established and novel bioimaging approaches to obtain insight into cholesterol efflux pathways, including fluorescence and electron microscopy, atomic force microscopy, X-ray tomography as well as mass spectrometry imaging.
Collapse
Affiliation(s)
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
22
|
Single-Cell Analysis Uncovers Osteoblast Factor Growth Differentiation Factor 10 as Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation Associated with Plaque Rupture in Human Carotid Artery Disease. Int J Mol Sci 2022; 23:ijms23031796. [PMID: 35163719 PMCID: PMC8836240 DOI: 10.3390/ijms23031796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Vascular smooth muscle cells (VSMCs) undergo a complex phenotypic switch in response to atherosclerosis environmental triggers, contributing to atherosclerosis disease progression. However, the complex heterogeneity of VSMCs and how VSMC dedifferentiation affects human carotid artery disease (CAD) risk has not been clearly established. (2) Method: A single-cell RNA sequencing analysis of CD45− cells derived from the atherosclerotic aorta of Apolipoprotein E-deficient (Apoe−/−) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the site-specific predisposition to atherosclerosis was performed. Growth Differentiation Factor 10 (GDF10) role in VSMCs phenotypic switch was investigated via flow cytometry, immunofluorescence in human atherosclerotic plaques. (3) Results: scRNAseq analysis revealed the transcriptomic profile of seven clusters, five of which showed disease-relevant gene signature of VSMC macrophagic calcific phenotype, VSMC mesenchymal chondrogenic phenotype, VSMC inflammatory and fibro-phenotype and VSMC inflammatory phenotype. Osteoblast factor GDF10 involved in ossification and osteoblast differentiation emerged as a hallmark of VSMCs undergoing phenotypic switch. Under hypercholesteremia, GDF10 triggered VSMC osteogenic switch in vitro. The abundance of GDF10 expressing osteogenic-like VSMCs cells was linked to the occurrence of carotid artery disease (CAD) events. (4) Conclusions: Taken together, these results provide evidence about GDF10-mediated VSMC osteogenic switch, with a likely detrimental role in atherosclerotic plaque stability.
Collapse
|
23
|
Liu Y, Castano D, Girolamo F, Trigueros-Motos L, Bae HG, Neo SP, Oh J, Narayanaswamy P, Torta F, Rye KA, Jo DG, Gunaratne J, Jung S, Virgintino D, Singaraja RR. Loss of ABCA8B decreases myelination by reducing oligodendrocyte precursor cells in mice. J Lipid Res 2022; 63:100147. [PMID: 34752805 PMCID: PMC8953628 DOI: 10.1016/j.jlr.2021.100147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023] Open
Abstract
The myelin sheath, which is wrapped around axons, is a lipid-enriched structure produced by mature oligodendrocytes. Disruption of the myelin sheath is observed in several neurological diseases, such as multiple sclerosis. A crucial component of myelin is sphingomyelin, levels of which can be increased by ABCA8, a member of the ATP-binding cassette transporter family. ABCA8 is highly expressed in the cerebellum, specifically in oligodendroglia. However, whether ABCA8 plays a role in myelination and mechanisms that would underlie this role remain unknown. Here, we found that the absence of Abca8b, a mouse ortholog of ABCA8, led to decreased numbers of cerebellar oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes in mice. We show that in oligodendrocytes, ABCA8 interacts with chondroitin sulfate proteoglycan 4 (CSPG4), a molecule essential for OPC proliferation, migration, and myelination. In the absence of Abca8b, localization of CSPG4 to the plasma membrane was decreased, contributing to reduced cerebellar CSPG4 expression. Cerebellar CSPG4+ OPCs were also diminished, leading to decreased mature myelinating oligodendrocyte numbers and cerebellar myelination levels in Abca8b-/- mice. In addition, electron microscopy analyses showed that the number of nonmyelinated cerebellar axons was increased, whereas cerebellar myelin thickness (g-ratio), myelin sheath periodicity, and axonal diameter were all decreased, indicative of disordered myelin ultrastructure. In line with disrupted cerebellar myelination, Abca8b-/- mice showed lower cerebellar conduction velocity and disturbed locomotion. In summary, ABCA8 modulates cerebellar myelination, in part through functional regulation of the ABCA8-interacting protein CSPG4. Our findings suggest that ABCA8 disruption may contribute to the pathophysiology of myelin disorders.
Collapse
Affiliation(s)
- Yiran Liu
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Health System, Singapore, Singapore
| | - David Castano
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Health System, Singapore, Singapore
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Laia Trigueros-Motos
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
| | - Han-Gyu Bae
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Suat Peng Neo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jeongah Oh
- Singapore Lipidomics Incubator, Department of Biochemistry, Life Sciences Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pradeep Narayanaswamy
- Singapore Lipidomics Incubator, Department of Biochemistry, Life Sciences Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Department of Biochemistry, Life Sciences Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kerry Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sangyong Jung
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Roshni R Singaraja
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
24
|
Liu W, Liu J, Zhou Y, Cao D, Lei Q, Han H, Wang J, Li D, Gao J, Li H, Li F. Genome-Wide Association Study of Abdominal Fat in Wenshang Barred Chicken Based on the Slaf-Seq Technology. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- W Liu
- Shandong Academy of Agricultural Sciences, P. R. China; Poultry Breeding Engineering Technology Center of Shandong Province, China
| | - J Liu
- Shandong Academy of Agricultural Sciences, P. R. China; Poultry Breeding Engineering Technology Center of Shandong Province, China
| | - Y Zhou
- Shandong Academy of Agricultural Sciences, P. R. China; Poultry Breeding Engineering Technology Center of Shandong Province, China
| | - D Cao
- Shandong Academy of Agricultural Sciences, P. R. China; Poultry Breeding Engineering Technology Center of Shandong Province, China
| | - Q Lei
- Shandong Academy of Agricultural Sciences, P. R. China; Poultry Breeding Engineering Technology Center of Shandong Province, China
| | - H Han
- Shandong Academy of Agricultural Sciences, P. R. China; Poultry Breeding Engineering Technology Center of Shandong Province, China
| | - J Wang
- Shandong Academy of Agricultural Sciences, P. R. China; Poultry Breeding Engineering Technology Center of Shandong Province, China
| | - D Li
- Shandong Academy of Agricultural Sciences, P. R. China; Poultry Breeding Engineering Technology Center of Shandong Province, China
| | - J Gao
- Shandong Academy of Agricultural Sciences, P. R. China; Poultry Breeding Engineering Technology Center of Shandong Province, China
| | - H Li
- Shandong Academy of Agricultural Sciences, P. R. China
| | - F Li
- Shandong Academy of Agricultural Sciences, P. R. China; Poultry Breeding Engineering Technology Center of Shandong Province, China
| |
Collapse
|
25
|
Yin H, Guo R, Zhang H, Liu S, Gong Y, Yuan Y. A Dynamic Transcriptome Map of Different Tissue Microenvironment Cells Identified During Gastric Cancer Development Using Single-Cell RNA Sequencing. Front Immunol 2021; 12:728169. [PMID: 34745098 PMCID: PMC8566821 DOI: 10.3389/fimmu.2021.728169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) development trends have identified multiple processes ranging from inflammation to carcinogenesis, however, key pathogenic mechanisms remain unclear. Tissue microenvironment (TME) cells are critical for the progression of malignant tumors. Here, we generated a dynamic transcriptome map of various TME cells during multi-disease stages using single-cell sequencing analysis. We observed a set of key transition markers related to TME cell carcinogenic evolution, and delineated landmark dynamic carcinogenic trajectories of these cells. Of these, macrophages, fibroblasts, and endothelial cells exerted considerable effects toward epithelial cells, suggesting these cells may be key TME factors promoting GC occurrence and development. Our results suggest a phenotypic convergence of different TME cell types toward tumor formation processes in GC. We believe our data would pave the way for early GC detection, diagnosis, and treatment therapies.
Collapse
Affiliation(s)
- Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Rui Guo
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Huanyu Zhang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Kardassis D, Thymiakou E, Chroni A. Genetics and regulation of HDL metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159060. [PMID: 34624513 DOI: 10.1016/j.bbalip.2021.159060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The inverse association between plasma HDL cholesterol (HDL-C) levels and risk for cardiovascular disease (CVD) has been demonstrated by numerous epidemiological studies. However, efforts to reduce CVD risk by pharmaceutically manipulating HDL-C levels failed and refused the HDL hypothesis. HDL-C levels in the general population are highly heterogeneous and are determined by a combination of genetic and environmental factors. Insights into the causes of HDL-C heterogeneity came from the study of monogenic HDL deficiency syndromes but also from genome wide association and Μendelian randomization studies which revealed the contribution of a large number of loci to low or high HDL-C cases in the general or in restricted ethnic populations. Furthermore, HDL-C levels in the plasma are under the control of transcription factor families acting primarily in the liver including members of the hormone nuclear receptors (PPARs, LXRs, HNF-4) and forkhead box proteins (FOXO1-4) and activating transcription factors (ATFs). The effects of certain lipid lowering drugs used today are based on the modulation of the activity of specific members of these transcription factors. During the past decade, the roles of small or long non-coding RNAs acting post-transcriptionally on the expression of HDL genes have emerged and provided novel insights into HDL regulation and new opportunities for therapeutic interventions. In the present review we summarize recent progress made in the genetics and the regulation (transcriptional and post-transcriptional) of HDL metabolism.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
27
|
He B, Kang S, Chen Z, Liu X, Wang J, Li X, Liu X, Zheng L, Luo M, Wang Y. Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159006. [PMID: 34274505 DOI: 10.1016/j.bbalip.2021.159006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Hypercholesterolemia has strong heritability and about 40-60% of hypercholesterolemia is caused by genetic risk factors. A number of monogenic genes have been identified so far for familial hypercholesterolemia (FH). However, in the general population, more than 90% of individuals with LDL cholesterol over 190 mg/dL do not carry known FH mutations. Large scale whole-exome sequencing has identified thousands of variants that are predicted to be loss-of-function (LoF) and each individual has a median of about twenty rare LoF variants and several hundreds more common LoF variants. However, majority of those variants have not been characterized and their functional consequence remains largely unknown. Rs77542162 is a common missense variant in ABCA6 and is strongly associated with hypercholesterolemia in different populations. ABCA6 is a cholesterol responsive gene and has been suggested to play a role in lipid metabolism. However, whether and how rs77542162 and ABCA6 regulate lipoprotein metabolism remain unknown. In current study, we systemically characterized the function of rs77542162 and ABCA6 in cultured cells and in vivo of rodents. We found that Abca6 is specifically expressed on the basolateral surface of hepatocytes in mouse liver. The rs77542162 variant disrupts ABCA6 protein stability and results in loss of functional protein. However, we found no evidence that Abca6 plays a role in lipoprotein metabolism in either normal mice or hypercholesterolemia mice or hamsters. Thus, our results suggest that Abca6 does not regulate lipoprotein metabolism in rodents and highlight the challenge and importance of functional characterization of disease-associated variants in animal models.
Collapse
Affiliation(s)
- Baoshen He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Shijia Kang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Zhen Chen
- Hubei Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences Wuhan University, Wuhan 430072, People's Republic of China.
| | - Xiao Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Jinkai Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Xuedan Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Xiaomin Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Mengcheng Luo
- Hubei Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences Wuhan University, Wuhan 430072, People's Republic of China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
28
|
Moffatt P, Boraschi-Diaz I, Bardai G, Rauch F. Muscle transcriptome in mouse models of osteogenesis imperfecta. Bone 2021; 148:115940. [PMID: 33812081 DOI: 10.1016/j.bone.2021.115940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Osteogenesis imperfecta (OI) is a heritable connective tissue disorder that is most often caused by mutations in collagen type I encoding genes. Even though bone fragility is the most conspicuous finding in OI, the muscle system is also affected. In the present study we explored the muscle phenotype related to collagen type I mutations on the transcriptome level. RNA sequencing was performed in gastrocnemius muscles of homozygous oim mice and of heterozygous Jrt mice, two models of severe OI. We found that oim and Jrt mice shared 27 differentially expressed genes, of which 11 were concordantly upregulated and 15 concordantly downregulated. Gene Set Enrichment Analysis revealed that in both oim and Jrt mice, genes involved in 'metabolism of lipids' were significantly enriched among upregulated genes. In addition, several genes coding for extracellular matrix components were upregulated in both oim and Jrt mice. Among downregulated genes, genes involved in 'muscle contraction' were enriched in both OI mouse models. These 'muscle contraction' genes coded for slow-twitch type I muscle fiber components. Another shared downregulated gene was Mss51, a metabolic stress-inducible factor that is found in mitochondria. These data show that two mouse models of severe OI share abnormalities in the expression of genes that code for extracellular matrix proteins, lipid and energy metabolism and structural proteins of type I muscle fibers. The muscle disturbances resulting from the collagen type I mutations in these mouse models could be viewed as a mild form of muscle dystrophy.
Collapse
Affiliation(s)
- Pierre Moffatt
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Iris Boraschi-Diaz
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Ghalib Bardai
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
29
|
Ma Z, Shen Z, Gong Y, Zhou J, Chen X, Lv Q, Wang M, Chen J, Yu M, Fu G, He H, Lai D. Weighted gene co-expression network analysis identified underlying hub genes and mechanisms in the occurrence and development of viral myocarditis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1348. [PMID: 33313093 PMCID: PMC7723587 DOI: 10.21037/atm-20-3337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Myocarditis is an inflammatory myocardial disease, which may lead to heart failure and sudden death. Despite extensive research into the pathogenesis of myocarditis, effective treatments for this condition remain elusive. This study aimed to explore the potential pathogenesis and hub genes for viral myocarditis. Methods A weighted gene co-expression network analysis (WGCNA) was performed based on the gene expression profiles derived from mouse models at different stages of viral myocarditis (GSE35182). Functional annotation was executed within the key modules. Potential hub genes were predicted based on the intramodular connectivity (IC). Finally, potential microRNAs that regulate gene expression were predicted by miRNet analysis. Results Three gene co-expression modules showed the strongest correlation with the acute or chronic disease stage. A significant positive correlation was detected between the acute disease stage and the turquoise module, the genes of which were mainly enriched in antiviral response and immune-inflammatory activation. Furthermore, a significant positive correlation and a negative correlation were identified between the chronic disease stage and the brown and yellow modules, respectively. These modules were mainly associated with the cytoskeleton, phosphorylation, cellular catabolic process, and autophagy. Subsequently, we predicted the underlying hub genes and microRNAs in the three modules. Conclusions This study revealed the main biological processes in different stages of viral myocarditis and predicted hub genes in both the acute and chronic disease stages. Our results may be helpful for developing new therapeutic targets for viral myocarditis in future research.
Collapse
Affiliation(s)
- Zetao Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhida Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingchao Gong
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoou Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiawen Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong He
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Wang CY, Chen YQ, Jin JY, Du R, Fan LL, Xiang R. A Novel Nonsense Mutation of ABCA8 in a Han-Chinese Family With ASCVD Leads to the Reduction of HDL-c Levels. Front Genet 2020; 11:755. [PMID: 32760429 PMCID: PMC7373792 DOI: 10.3389/fgene.2020.00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023] Open
Abstract
Arteriosclerotic cardiovascular disease (ASCVD) is one of the major causes of death worldwide and most commonly develops as a result of atherosclerosis (AS). As we all know, dyslipidemia is a leading pathogenic risk factor for ASCVD, which leads to cardiac ischemic injury and myocardial infarction. Dyslipidemias include hypercholesterolemia, hypertriglyceridemia, increased low-density lipoprotein cholesterol (LDL-c) and decreased high density lipoproteins cholesterol (HDL-c). Mutations of dyslipidemia related genes have been proved to be the crucial contributor to the development of AS and ASCVD. In this study, a Han-Chinese family with ASCVD was enrolled and the lipid testing discovered an obvious reduced levels of HDL-c in the affected members. We then performed whole exome sequencing to detect the candidate genes of the family. After data filtering, a novel heterozygous nonsense mutation (NM_007168: c.3460C>T; p.R1154X) of ABCA8 was detected and validated to be co-separated in the family members by Sanger sequencing. Previous studies have proved that deleterious heterozygous ABCA8 variants may disrupt cholesterol efflux and reduce HDL-c levels in humans and mice. This study may be the second report related to ABCA8 mutations in patients with reduced levels of HDL-c. Our study not only contributed to the genetic counseling and prenatal genetic diagnosis of patients with ASCVD caused by reduced HDL-c levels, but also provided a new sight among ABCA8, cholesterol efflux and HDL-c levels.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Ya-Qin Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie-Yuan Jin
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Ran Du
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
31
|
Das AA, Choudhury KR, Jagadeeshaprasad MG, Kulkarni MJ, Mondal PC, Bandyopadhyay A. Proteomic analysis detects deregulated reverse cholesterol transport in human subjects with ST-segment elevation myocardial infarction. J Proteomics 2020; 222:103796. [PMID: 32376501 DOI: 10.1016/j.jprot.2020.103796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/05/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
Reverse cholesterol transport (RCT) plays a critical role in removing cholesterol from the arterial wall. However, very few reports directly relate chronic inflammation and RCT with atherosclerosis. The present study was undertaken to investigate clinical implications of significantly altered circulating proteins in subjects with ST-segment elevation myocardial infarction (STEMI) in the manifestation of atherosclerotic events. Using a case-control design, more than 2500 proteins in both STEMI and healthy control subjects were identified by Orbitrap mass spectrometer. Quantitative proteomics study revealed downregulation of 26 proteins while expression of 38 proteins increased significantly in STEMI subjects compared to healthy controls. Pathway enrichment analyses indicated that most of the identified proteins were related to chronic inflammation, atherosclerosis, and RCT. Altered proteins such as AZGP1, ABCA5, Calicin, PGLYRP2, HAVCR2 and C17ORF57 were further validated by Western blotting analysis of human plasma. Pathophysiological significance was studied using macrophage derived foam cell for their critical role in RCT which indicated the imbalance of RCT via the interaction of AZGP1 with CD36. In summary, this study revealed a unique relationship of some novel proteins apparently responsible for impaired RCT and chronic inflammation leading to atherothrombosis and myocardial infarction. SIGNIFICANCE: In the present study we identified ≥2500 unique circulating proteins in healthy control and clinically diagnosed STEMI subjects among which 423 proteins were found to be common in both the groups. We further show 64 proteins significantly different between healthy control and STEMI subjects. Proteomic analyses reveal a panel of proteins associated with atherosclerosis and STEMI. One of the proteins, AZGP1, an adipokine, is likely to act as the missing link between chronic inflammation and cholesterol transport. Deregulation of reverse cholesterol transport might be orchestrated by AZGP1, CD36, ABCA5, and PPARɣ in STEMI subjects. The present study employs shotgun and quantitative proteomics followed by in vitro validations demonstrating a biochemical basis for reverse cholesterol transport in the local milieu of the luminal wall of the artery which are critical for plaque build-up and atherosclerosis.
Collapse
Affiliation(s)
- Apabrita Ayan Das
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology (TRUE campus), Kolkata 700091, India
| | - Kamalika Roy Choudhury
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology (TRUE campus), Kolkata 700091, India
| | | | | | | | - Arun Bandyopadhyay
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology (TRUE campus), Kolkata 700091, India.
| |
Collapse
|
32
|
Cui Y, Liang S, Zhang S, Zhang C, Zhao Y, Wu D, Wang J, Song R, Wang J, Yin D, Liu Y, Pan S, Liu X, Wang Y, Han J, Meng F, Zhang B, Guo H, Lu Z, Liu L. ABCA8 is regulated by miR-374b-5p and inhibits proliferation and metastasis of hepatocellular carcinoma through the ERK/ZEB1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:90. [PMID: 32430024 PMCID: PMC7236190 DOI: 10.1186/s13046-020-01591-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Background ATP binding cassette subfamily A member 8 (ABCA8) belongs to the ATP binding cassette (ABC) transporter superfamily. ABCA8 is a transmembrane transporter responsible for the transport of organics, such as cholesterol, and drug efflux. Some members of the ABC subfamily, such as ABCA1, may inhibit cancer development. However, the mechanism of ABCA8 in the process of cancer activation is still ambiguous. Methods The expression of ABCA8 in human hepatocellular carcinoma (HCC) tissues and cell lines was examined using qPCR, immunoblotting, and immunohistochemical staining. The effects of ABCA8 on the proliferation and metastasis of HCC were examined using in vitro and in vivo functional tests. A luciferase reporter assay was performed to explore the binding between microRNA-374b-5p (miR-374b-5p) and the ABCA8 3′-untranslated region (UTR). Results ABCA8 was frequently down-regulated in HCC and this down-regulation was negatively correlated with prognosis. The overexpression of ABCA8 inhibited growth and metastasis in HCC, whereas the knockdown of ABCA8 exerted the antithetical effects both in vivo and in vitro. ABCA8 was down-regulated by miR-374b-5p; this down-regulation can induce epithelial transformation to mesenchyme via the ERK/ZEB1 signaling pathway and promote HCC progression. Conclusion We exposed the prognostic value of ABCA8 in HCC, and illuminated a novel pathway in ABCA8-regulated inhibition of HCC tumorigenesis and metastasis. These findings may lead to a new targeted therapy for HCC through the regulation of ABCA8, and miR-374b-5p.
Collapse
Affiliation(s)
- Yifeng Cui
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Shuhang Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Shugeng Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Congyi Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yunzheng Zhao
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Dehai Wu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Ruipeng Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Jizhou Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Xirui Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yan Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jihua Han
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Fanzheng Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Hongrui Guo
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhaoyang Lu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China. .,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China. .,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China. .,Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
33
|
Zeng L, Yang J, Peng S, Zhu J, Zhang B, Suh Y, Tu Z. Transcriptome analysis reveals the difference between "healthy" and "common" aging and their connection with age-related diseases. Aging Cell 2020; 19:e13121. [PMID: 32077223 PMCID: PMC7059150 DOI: 10.1111/acel.13121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
A key goal of aging research was to understand mechanisms underlying healthy aging and develop methods to promote the human healthspan. One approach is to identify gene regulations unique to healthy aging compared with aging in the general population (i.e., "common" aging). Here, we leveraged Genotype-Tissue Expression (GTEx) project data to investigate "healthy" and "common" aging gene expression regulations at a tissue level in humans and their interconnection with diseases. Using GTEx donors' disease annotations, we defined a "healthy" aging cohort for each tissue. We then compared the age-associated genes derived from this cohort with age-associated genes from the "common" aging cohort which included all GTEx donors; we also compared the "healthy" and "common" aging gene expressions with various disease-associated gene expressions to elucidate the relationships among "healthy," "common" aging and disease. Our analyses showed that 1. GTEx "healthy" and "common" aging shared a large number of gene regulations; 2. Despite the substantial commonality, "healthy" and "common" aging genes also showed distinct function enrichment, and "common" aging genes had a higher enrichment for disease genes; 3. Disease-associated gene regulations were overall different from aging gene regulations. However, for genes regulated by both, their regulation directions were largely consistent, implying some aging processes could increase the susceptibility to disease development; and 4. Possible protective mechanisms were associated with some "healthy" aging gene regulations. In summary, our work highlights several unique features of GTEx "healthy" aging program. This new knowledge could potentially be used to develop interventions to promote the human healthspan.
Collapse
Affiliation(s)
- Lu Zeng
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Jialiang Yang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Shouneng Peng
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Jun Zhu
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Bin Zhang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Yousin Suh
- Department of GeneticsAlbert Einstein College of MedicineNew YorkNew York
| | - Zhidong Tu
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
34
|
Cui Y, Chang R, Zhang T, Zhou X, Wang Q, Gao H, Hou L, Loor JJ, Xu C. Chinese Herbal Formula (CHF03) Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) Through Inhibiting Lipogenesis and Anti-Oxidation Mechanisms. Front Pharmacol 2019; 10:1190. [PMID: 31680967 PMCID: PMC6803500 DOI: 10.3389/fphar.2019.01190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 12/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a hepatic ailment with a rapidly increasing incidence in the human population due largely to dietary hyper nutrition and subsequent obesity. Discovering effective natural compounds and herbs against NAFLD can provide alternative and complementary medical treatments to current chemical pharmaceuticals. In this study, ICR male mice were fed a high-fat diet (HFD) in vivo and the AML12 cells were treated with palmitic acid (PA) in vitro. We explore the protective effect and potential mechanism of Chinese Herbal Formula (CHF03) against NAFLD by HE staining, transmission Electron Microscopy assay, Western blotting, and gene expression. In vivo, oxidative stress markers (GSH, GSH-px, MDA, SOD, and CAT) confirmed that CHF03 alleviated oxidative stress and abundance of NF-κB proteins indicating a reduction in inflammation and oxidative stress. The lower protein abundance of ACACA and FASN indicated a preventive effect on lipogenesis. Histological and ultrastructural observations revealed that CHF03 inhibited NAFLD. Expression of Srebf1, Fasn, and Acaca, which are associated with lipogenesis, were downregulated. In vitro, genes and proteins are expressed in a dose-dependent manner, consistent with those in the liver. CHF03 inhibited lipid accumulation and expression of NF-κB, nuclear transfer, and transcriptional activity in AML12 cells. The CHF03 might have a beneficial role in the prevention of hepatic steatosis by altering the expression of lipogenic genes and attenuating oxidative stress.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Renxu Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tao Zhang
- Open Project Program of Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Xiaocui Zhou
- Laboratory of Zoonosis, China Animal Health and Epidemiology Center, Qingdao, China
| | - Qiuju Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Haiyun Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lintong Hou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
35
|
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 2019; 60:57-71. [PMID: 31605751 DOI: 10.1016/j.semcancer.2019.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a cause of drug resistance in a plethora of tumors. More recent evidence indicates additional contribution of these transporters to other processes, such as tumor cell dissemination and metastasis, thereby extending their possible roles in tumor progression. While the role of some ABC transporters, such as ABCB1, ABCC1 and ABCG2, in multidrug resistance is well documented, the mechanisms by which ABC transporters affect the proliferation, differentiation, migration and invasion of cancer cells are still poorly defined and are frequently controversial. This review, summarizes recent advances that highlight the role of subfamily A members in cancer. Emerging evidence highlights the potential value of ABCA members as biomarkers of risk and response in different tumors, but information is disperse and very little is known about their possible mechanisms of action. The only clear evidence is that ABCA members are involved in lipid metabolism and homeostasis. In particular, the relationship between ABCA1 and cholesterol is becoming evident in different fields of biology, including cancer. In parallel, emerging findings indicate that cholesterol, the main component of cell membranes, can influence many physiological and pathological processes, including cell migration, cancer progression and metastasis. This review aims to link the dispersed knowledge regarding the relationship of ABCA members with lipid metabolism and cancer in an effort to stimulate and guide readers to areas that the writers consider to have significant impact and relevant potentialities.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
36
|
Rogg EM, Abplanalp WT, Bischof C, John D, Schulz MH, Krishnan J, Fischer A, Poluzzi C, Schaefer L, Bonauer A, Zeiher AM, Dimmeler S. Analysis of Cell Type-Specific Effects of MicroRNA-92a Provides Novel Insights Into Target Regulation and Mechanism of Action. Circulation 2019; 138:2545-2558. [PMID: 30571345 DOI: 10.1161/circulationaha.118.034598] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND MicroRNAs (miRs) regulate nearly all biological pathways. Because the dysregulation of miRs can lead to disease progression, they are being explored as novel therapeutic targets. However, the cell type-specific effects of miRs in the heart are poorly understood. Thus, we assessed miR target regulation using miR-92a-3p as an example. Inhibition of miR-92a is known to improve endothelial cell function and recovery after acute myocardial infarction. METHODS miR-92a-3p was inhibited by locked nucleic acid (LNA)-based antimiR (LNA-92a) in mice after myocardial infarction. Expression of regulated genes was evaluated 3 days after myocardial infarction by RNA sequencing of isolated endothelial cells, cardiomyocytes, fibroblasts, and CD45+ hematopoietic cells. RESULTS LNA-92a depleted miR-92a-3p expression in all cell types and derepressed predicted miR-92a-3p targets in a cell type-specific manner. RNAseq showed endothelial cell-specific regulation of autophagy-related genes. Imaging confirmed increased endothelial cell autophagy in LNA-92a treated relative to control animals. In vitro inhibition of miR-92a-3p augmented EC autophagy, derepressed autophagy-related gene 4a, and increased luciferase activity in autophagy-related gene 4a 3'UTR containing reporters, whereas miR-92a-3p overexpression had the opposite effect. In cardiomyocytes, LNA-92a derepressed metabolism-related genes, notably, the high-density lipoprotein transporter Abca8b. LNA-92a further increased fatty acid uptake and mitochondrial function in cardiomyocytes in vitro. CONCLUSIONS Our data show that miRs have cell type-specific effects in vivo. Analysis of miR targets in cell subsets disclosed a novel function of miR-92a-3p in endothelial cell autophagy and cardiomyocyte metabolism. Because autophagy is upregulated during ischemia to supply nutrients and cardiomyocyte metabolic-switching improves available substrate utilization, these prosurvival mechanisms may diminish tissue damage.
Collapse
Affiliation(s)
- Eva-Maria Rogg
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (E.-M.R., W.T.A., C.B., D.J., M.H.S., J.K., A.F., A.B., S.D.).,German Centre of Cardiovascular Research, RheinMain (E.-M.R., W.T.A., M.H.S., A.B., A.M.Z., S.D.)
| | - Wesley T Abplanalp
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (E.-M.R., W.T.A., C.B., D.J., M.H.S., J.K., A.F., A.B., S.D.).,German Centre of Cardiovascular Research, RheinMain (E.-M.R., W.T.A., M.H.S., A.B., A.M.Z., S.D.)
| | - Corinne Bischof
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (E.-M.R., W.T.A., C.B., D.J., M.H.S., J.K., A.F., A.B., S.D.)
| | - David John
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (E.-M.R., W.T.A., C.B., D.J., M.H.S., J.K., A.F., A.B., S.D.)
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (E.-M.R., W.T.A., C.B., D.J., M.H.S., J.K., A.F., A.B., S.D.).,German Centre of Cardiovascular Research, RheinMain (E.-M.R., W.T.A., M.H.S., A.B., A.M.Z., S.D.)
| | - Jaya Krishnan
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (E.-M.R., W.T.A., C.B., D.J., M.H.S., J.K., A.F., A.B., S.D.)
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (E.-M.R., W.T.A., C.B., D.J., M.H.S., J.K., A.F., A.B., S.D.)
| | - Chiara Poluzzi
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der JW Goethe-Universität, Germany (C.P., L.S.)
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der JW Goethe-Universität, Germany (C.P., L.S.)
| | - Angelika Bonauer
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (E.-M.R., W.T.A., C.B., D.J., M.H.S., J.K., A.F., A.B., S.D.).,German Centre of Cardiovascular Research, RheinMain (E.-M.R., W.T.A., M.H.S., A.B., A.M.Z., S.D.)
| | - Andreas M Zeiher
- Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe-University Hospital, Frankfurt, Germany (A.M.Z.).,German Centre of Cardiovascular Research, RheinMain (E.-M.R., W.T.A., M.H.S., A.B., A.M.Z., S.D.)
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (E.-M.R., W.T.A., C.B., D.J., M.H.S., J.K., A.F., A.B., S.D.).,German Centre of Cardiovascular Research, RheinMain (E.-M.R., W.T.A., M.H.S., A.B., A.M.Z., S.D.)
| |
Collapse
|
37
|
Glöcklhofer CR, Steinfurt J, Franke G, Hoppmann A, Glantschnig T, Perez-Feliz S, Alter S, Fischer J, Brunner M, Rainer PP, Köttgen A, Bode C, Odening KE. A novel LMNA nonsense mutation causes two distinct phenotypes of cardiomyopathy with high risk of sudden cardiac death in a large five-generation family. Europace 2019; 20:2003-2013. [PMID: 29947763 DOI: 10.1093/europace/euy127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022] Open
Abstract
Aims Characterization of the cardiac phenotype associated with the novel LMNA nonsense mutation c.544C>T, p.Q182*, which we have identified in a large five-generation family. Methods and results A family tree was constructed. Clinical data [arrhythmia, syncope, sudden cardiac death (SCD), New York Heart Association (NYHA) class] were collected from living and deceased family members. DNA of 23 living family members was analysed for mutations in LMNA. Additionally, dilated cardiomyopathy multi-gene-panel testing and whole exome sequencing were performed in some family members to identify potential phenotype-modifiers. In this five-generation family (n = 65), 17 SCDs occurred at 49.3 ± 10.0 years. Furthermore, we identified eight additional mutation-carriers, seven symptomatic (44 ± 13 years), and one asymptomatic (44 years). First signs of disease [sinus bradycardia with atrioventricular (AV)-block I°] occurred at 36.5 ± 8.1 years. Paroxysmal atrial fibrillation (AF) (onset at 41.8 ± 5.7 years) rapidly progressed to permanent AF (46.2 ± 9.8 years). Subsequently, AV-conduction worsened, syncope, pacemaker-dependence, and non-sustained ventricular tachycardia (43.3 ± 8.2 years) followed. Ventricular arrhythmia caused SCD in patients without implantable cardioverter-defibrillator (ICD). Patients protected by ICD developed rapidly progressive heart failure (45.2 ± 10.6 years). A different phenotype was seen in a sub-family in three patients with early onset of rapidly decompensating heart failure and only minor prior arrhythmia-related symptoms. One patient received high-urgency heart transplantation (HTX) at 32 years, while two died prior to HTX. One of them developed lethal peripartum-associated heart failure. Possible disease-modifiers were identified in this 'heart failure sub-family'. Conclusion The novel LMNA nonsense mutation c.544C>T causes a severe arrhythmogenic phenotype manifesting with high incidence of SCD in most patients; and in one sub-family, a distinct phenotype with fast progressing heart failure, indicating the need for early consideration of ICD-implantation and listing for heart-transplantation.
Collapse
Affiliation(s)
- Christina R Glöcklhofer
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Steinfurt
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerlind Franke
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anselm Hoppmann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Genetic Epidemiology, Medical Center University of Freiburg, Freiburg, Germany.,Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Stefanie Perez-Feliz
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Svenja Alter
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Human Genetics, Medical Center University of Freiburg, Freiburg, Germany
| | - Judith Fischer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Human Genetics, Medical Center University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Anna Köttgen
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Genetic Epidemiology, Medical Center University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Sliz E, Kalaoja M, Ahola-Olli A, Raitakari O, Perola M, Salomaa V, Lehtimäki T, Karhu T, Viinamäki H, Salmi M, Santalahti K, Jalkanen S, Jokelainen J, Keinänen-Kiukaanniemi S, Männikkö M, Herzig KH, Järvelin MR, Sebert S, Kettunen J. Genome-wide association study identifies seven novel loci associating with circulating cytokines and cell adhesion molecules in Finns. J Med Genet 2019; 56:607-616. [PMID: 31217265 PMCID: PMC6817708 DOI: 10.1136/jmedgenet-2018-105965] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/10/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory processes contribute to the pathophysiology of multiple chronic conditions. Genetic factors play a crucial role in modulating the inflammatory load, but the exact mechanisms are incompletely understood. OBJECTIVE To assess genetic determinants of 16 circulating cytokines and cell adhesion molecules (inflammatory phenotypes) in Finns. METHODS Genome-wide associations of the inflammatory phenotypes were studied in Northern Finland Birth Cohort 1966 (N=5284). A subsequent meta-analysis was completed for 10 phenotypes available in a previous genome-wide association study, adding up to 13 577 individuals in the study. Complementary association tests were performed to study the effect of the ABO blood types on soluble adhesion molecule levels. RESULTS We identified seven novel and six previously reported genetic associations (p<3.1×10-9). Three loci were associated with soluble vascular cell adhesion molecule-1 (sVCAM-1) level, one of which was the ABO locus that has been previously associated with soluble E-selectin (sE-selectin) and intercellular adhesion molecule-1 (sICAM-1) levels. Our findings suggest that the blood type B associates primarily with sVCAM-1 level, while the A1 subtype shows a robust effect on sE-selectin and sICAM-1 levels. The genotypes in the ABO locus associating with higher soluble adhesion molecule levels tend to associate with lower circulating cholesterol levels and lower cardiovascular disease risk. CONCLUSION The present results extend the knowledge about genetic factors contributing to the inflammatory load. Our findings suggest that two distinct mechanisms contribute to the soluble adhesion molecule levels in the ABO locus and that elevated soluble adhesion molecule levels per se may not increase risk for cardiovascular disease.
Collapse
Affiliation(s)
- Eeva Sliz
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
| | - Marita Kalaoja
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
| | - Ari Ahola-Olli
- Department of Internal Medicine, Satakunta Central Hospital, Pori, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- University of Tartu, Estonian Genome Center, Tartu, Estonia
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Toni Karhu
- Biocenter Oulu, Oulu, Finland
- Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Heimo Viinamäki
- Department of Psychiatry, University of Eastern Finland, and Kuopio University Hospital, Kuopio, Finland
| | - Marko Salmi
- Medicity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kristiina Santalahti
- Medicity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- Medicity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jari Jokelainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Unit of General Practice, Oulu University Hospital, Oulu, Finland
- Oulu Deaconess Institute/Diapolis Oy Research Unit, Oulu, Finland
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Karl-Heinz Herzig
- Biocenter Oulu, Oulu, Finland
- Institute of Biomedicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), University of Oulu, and Oulu University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
- Department of Genomics and Complex Diseases, School of Public Health, Imperial College, London, UK
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
| |
Collapse
|
39
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
40
|
Csányi G, Singla B. Arterial Lymphatics in Atherosclerosis: Old Questions, New Insights, and Remaining Challenges. J Clin Med 2019; 8:jcm8040495. [PMID: 30979062 PMCID: PMC6518204 DOI: 10.3390/jcm8040495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
The lymphatic network is well known for its role in the maintenance of tissue fluid homeostasis, absorption of dietary lipids, trafficking of immune cells, and adaptive immunity. Aberrant lymphatic function has been linked to lymphedema and immune disorders for a long time. Discovery of lymphatic cell markers, novel insights into developmental and postnatal lymphangiogenesis, development of genetic mouse models, and the introduction of new imaging techniques have improved our understanding of lymphatic function in both health and disease, especially in the last decade. Previous studies linked the lymphatic vasculature to atherosclerosis through regulation of immune responses, reverse cholesterol transport, and inflammation. Despite extensive research, many aspects of the lymphatic circulation in atherosclerosis are still unknown and future studies are required to confirm that arterial lymphangiogenesis truly represents a therapeutic target in patients with cardiovascular disease. In this review article, we provide an overview of factors and mechanisms that regulate lymphangiogenesis, summarize recent findings on the role of lymphatics in macrophage reverse cholesterol transport, immune cell trafficking and pathogenesis of atherosclerosis, and present an overview of pharmacological and genetic strategies to modulate lymphatic vessel density in cardiovascular tissue.
Collapse
Affiliation(s)
- Gábor Csányi
- Vascular Biology Center, 1460 Laney Walker Blvd., Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Pharmacology & Toxicology, 1460 Laney Walker Blvd., Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Bhupesh Singla
- Vascular Biology Center, 1460 Laney Walker Blvd., Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
41
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
42
|
Horodyska J, Hamill RM, Reyer H, Trakooljul N, Lawlor PG, McCormack UM, Wimmers K. RNA-Seq of Liver From Pigs Divergent in Feed Efficiency Highlights Shifts in Macronutrient Metabolism, Hepatic Growth and Immune Response. Front Genet 2019; 10:117. [PMID: 30838035 PMCID: PMC6389832 DOI: 10.3389/fgene.2019.00117] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Liver is a metabolically complex organ that influences nutrient partitioning and potentially modulates the efficiency of converting energy acquired from macronutrients ingestion into a muscle and/or adipose tissue (referred to as feed efficiency, FE). The objective of this study was to sequence the hepatic tissue transcriptome of closely related but differently feed efficient pigs (n = 16) and identify relevant biological processes that underpin the differences in liver phenotype between FE groups. Liver weight did not significantly differ between the FE groups, however, blood parameters showed that total protein, glucose, cholesterol and percentage of lymphocytes were significantly greater in high-FE pigs. Ontology analysis revealed carbohydrate, lipid and protein metabolism to be significantly enriched with differentially expressed genes. In particular, high-FE pigs exhibited gene expression patterns suggesting improved absorption of carbohydrates and cholesterol as well as enhanced reverse cholesterol transport. Furthermore, the inferred decrease in bile acid synthesis in high-FE pigs may contribute to the observed greater levels of serum glucose, which can be then delivered to cells and utilized for growth and maintenance. Gene ontology analysis also suggested that livers of more efficient pigs may be characterized by higher protein turnover and increased epithelial cell differentiation, whereby an enhanced quantity of invariant natural killer T-cells and viability of natural killer cells could induce a quicker and more effective hepatic response to inflammatory stimuli. Our findings suggest that this prompt hepatic response to inflammation in high-FE group may contribute to the more efficient utilization of nutrients for growth in these animals.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | | | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Peadar G Lawlor
- Teagasc, Pig Production Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ursula M McCormack
- Teagasc, Pig Production Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|
43
|
He Y, Kothari V, Bornfeldt KE. High-Density Lipoprotein Function in Cardiovascular Disease and Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2019; 38:e10-e16. [PMID: 29367232 DOI: 10.1161/atvbaha.117.310222] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yi He
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle
| | - Vishal Kothari
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle
| | - Karin E Bornfeldt
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle.
| |
Collapse
|
44
|
Ibold B, Faust I, Tiemann J, Gorgels TGMF, Bergen AAB, Knabbe C, Hendig D. Abcc6 deficiency in mice leads to altered ABC transporter gene expression in metabolic active tissues. Lipids Health Dis 2019; 18:2. [PMID: 30611276 PMCID: PMC6320597 DOI: 10.1186/s12944-018-0943-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/05/2018] [Indexed: 01/04/2023] Open
Abstract
Background ATP-binding cassette (ABC) transporters are involved in a huge range of physiological processes. Mutations in the ABCC6 gene cause pseudoxanthoma elasticum, a metabolic disease with progressive soft tissue calcification. Methods The aim of the present study was to analyze gene expression levels of selected ABC transporters associated with cholesterol homeostasis in metabolic active tissues, such as the liver, kidney and white adipose tissue (WAT) of Abcc6−/− mice from an early and late disease stage (six-month-old and 12-month-old mice). Results The strongest regulation of ABC transporter genes was observed in the liver tissue of six-month-old Abcc6−/− mice. Here, we found a significant increase of mRNA expression levels of phospholipid, bile salt and cholesterol/sterol transporters Abcb1b, Abcb11, Abcg1, Abcg5 and Abcg8. Abcd2 mRNA expression was increased by 3.2-fold in the liver tissue. We observed strong upregulation of Abca3 and Abca1 mRNA expression up to 3.3-fold in kidney and WAT, and a 2-fold increase of Abca9 mRNA in the WAT of six-month-old Abcc6 knockout mice. Gene expression levels of Abcb1b and Abcg1 remained increased in the liver tissue after an age-related disease progression, while we observed lower mRNA expression of Abca3 and Abca9 in the kidney and WAT of 12-month-old Abcc6−/− mice. Conclusions These data support previous findings that Abcc6 deficiency leads to an altered gene expression of other ABC transporters depending on the status of disease progression. The increased expression of fatty acid, bile salt and cholesterol/sterol transporters may be linked to an altered cholesterol and lipoprotein metabolism due to a loss of Abcc6 function. Electronic supplementary material The online version of this article (10.1186/s12944-018-0943-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bettina Ibold
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, D-32545, Bad Oeynhausen, Germany
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, D-32545, Bad Oeynhausen, Germany
| | - Janina Tiemann
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, D-32545, Bad Oeynhausen, Germany
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, 6202, AZ, Maastricht, The Netherlands.,Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Arthur A B Bergen
- Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands.,Academic Medical Centre, University of Amsterdam, 1100, DD, Amsterdam, The Netherlands
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, D-32545, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, D-32545, Bad Oeynhausen, Germany.
| |
Collapse
|
45
|
Horodyska J, Reyer H, Wimmers K, Trakooljul N, Lawlor PG, Hamill RM. Transcriptome analysis of adipose tissue from pigs divergent in feed efficiency reveals alteration in gene networks related to adipose growth, lipid metabolism, extracellular matrix, and immune response. Mol Genet Genomics 2018; 294:395-408. [PMID: 30483895 DOI: 10.1007/s00438-018-1515-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
Abstract
Adipose tissue is hypothesized to play a vital role in regulation of feed efficiency (FE; efficiency in converting energy and nutrients into tissue), of which improvement will simultaneously reduce environmental impact and feed cost per pig. The objective of the present study was to sequence the subcutaneous adipose tissue transcriptome in FE-divergent pigs (n = 16) and identify relevant biological processes underpinning observed differences in FE. We previously demonstrated that high-FE pigs were associated with lower fatness when compared to their counterparts. Here, ontology analysis of a total of 209 annotated genes that were differentially expressed at a p < 0.01 revealed establishment of a dense extracellular matrix and inhibition of capillary formation as one underlying mechanism to achieve suppressed adipogenesis. Moreover, mechanisms ensuring an efficient utilization of lipids in high-FE pigs might be orchestrated by upstream regulators including CEBPA and EGF. Consequently, high-FE adipose tissue could exhibit more efficient cholesterol disposal, whilst inhibition of inflammatory and immune response in high-FE pigs may be an indicator of an optimally functioning adipose tissue. Taken together, adipose tissue growth, extracellular matrix formation, lipid metabolism and inflammatory and immune response are key biological events underpinning the differences in FE. Further investigations focusing on elucidating these processes would assist the animal production industry in optimizing strategies related to nutrient utilization and product quality.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Dublin 15, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ruth M Hamill
- Teagasc, Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
46
|
Affiliation(s)
- Jacqueline S Dron
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Julieta Lazarte
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
47
|
Tachikawa M, Toki H, Watanabe M, Tomi M, Hosoya KI, Terasaki T. Gene expression of A6-like subgroup of ATP-binding cassette transporters in mouse brain parenchyma and microvessels. Anat Sci Int 2018. [DOI: 10.1007/s12565-018-0435-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed Pharmacother 2018; 100:335-348. [PMID: 29453043 DOI: 10.1016/j.biopha.2018.02.038] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/27/2023] Open
Abstract
Indeed, multi-drug resistance (MDR) is a significant obstacle to effective chemotherapy. The overexpression of ATP-binding cassette (ABC) membrane transporters is a principal cause of enhanced cytotoxic drug efflux and treatment failure in various types of cancers. At cellular level, the pumps of ABC family regulate the transportation of numerous substances including drugs in and out of the cells. In past, the overexpression of ABC pumps suggested a well-known mechanism of drug resistance in cancers as well as infectious diseases. In oncology, the search for new compounds for the inhibition of these hyperactive ABC pumps either genetically or functionally, growing interest to reverse multi-drug resistance and increase chemotherapeutic effects. Several ABC pump inhibitor/modulators has been explored to address the cancer associated MDR. However, the clinical results are still disappointing and conventional chemotherapies are constantly failed in successful eradication of MDR tumors. In this context, the structural and functional understanding of different ATP pumps is most important. In this concise review, we elaborated basic crystal structure of ABC transporter proteins as well as its critical elements such as different domains, motifs as well as some important amino acids which are responsible for ATP binding and drug efflux as well as demonstrated an ATP-switch model employed by various ABC membrane transporters. Furthermore, we briefly summarized different newly identified MDR inhibitors/modulators, deployed alone or in combination with cytotoxic agents to deal with MDR in different types of cancers.
Collapse
|
49
|
Sasaki K, Tachikawa M, Uchida Y, Hirano S, Kadowaki F, Watanabe M, Ohtsuki S, Terasaki T. ATP-Binding Cassette Transporter A Subfamily 8 Is a Sinusoidal Efflux Transporter for Cholesterol and Taurocholate in Mouse and Human Liver. Mol Pharm 2018; 15:343-355. [DOI: 10.1021/acs.molpharmaceut.7b00679] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazunari Sasaki
- Membrane Transport
and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Membrane Transport
and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yasuo Uchida
- Membrane Transport
and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Hirano
- Membrane Transport
and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Fumito Kadowaki
- Membrane Transport
and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Michitoshi Watanabe
- Membrane Transport
and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - Tetsuya Terasaki
- Membrane Transport
and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
50
|
Yamauchi Y, Rogers MA. Sterol Metabolism and Transport in Atherosclerosis and Cancer. Front Endocrinol (Lausanne) 2018; 9:509. [PMID: 30283400 PMCID: PMC6157400 DOI: 10.3389/fendo.2018.00509] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
Cholesterol is a vital lipid molecule for mammalian cells, regulating fluidity of biological membranes, and serving as an essential constituent of lipid rafts. Mammalian cells acquire cholesterol from extracellular lipoproteins and from de novo synthesis. Cholesterol biosynthesis generates various precursor sterols. Cholesterol undergoes metabolic conversion into oxygenated sterols (oxysterols), bile acids, and steroid hormones. Cholesterol intermediates and metabolites have diverse and important cellular functions. A network of molecular machineries including transcription factors, protein modifiers, sterol transporters/carriers, and sterol sensors regulate sterol homeostasis in mammalian cells and tissues. Dysfunction in metabolism and transport of cholesterol, sterol intermediates, and oxysterols occurs in various pathophysiological settings such as atherosclerosis, cancers, and neurodegenerative diseases. Here we review the cholesterol, intermediate sterol, and oxysterol regulatory mechanisms and intracellular transport machineries, and discuss the roles of sterols and sterol metabolism in human diseases.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- *Correspondence: Yoshio Yamauchi
| | - Maximillian A. Rogers
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|