1
|
Tao Q, Fan LP, Feng J, Zhang ZJ, Liu XW, Qin Z, Li JY, Yang YJ. Platelet Proteomics and Tissue Metabolomics Investigation for the Mechanism of Aspirin Eugenol Ester on Preventive Thrombosis Mechanism in a Rat Thrombosis Model. Int J Mol Sci 2024; 25:10747. [PMID: 39409077 PMCID: PMC11476519 DOI: 10.3390/ijms251910747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Platelet activation is closely related to thrombosis. Aspirin eugenol ester (AEE) is a novel medicinal compound synthesized by esterifying aspirin with eugenol using the pro-drug principle. Pharmacological and pharmacodynamic experiments showed that AEE has excellent anti-inflammatory, antioxidant, and inhibitory platelet activation effects, preventing thrombosis. However, the regulatory network and action target of AEE in inhibiting platelet activation remain unknown. This study aimed to investigate the effects of AEE on platelets of thrombosed rats to reveal its regulatory mechanism via a multi-omics approach. The platelet proteomic results showed that 348 DEPs were identified in the AEE group compared with the model group, of which 87 were up- and 261 down-regulated. The pathways in this result were different from previous results, including mTOR signaling and ADP signaling at P2Y purinoceptor 12. The metabolomics of heart and abdominal aortic tissue results showed that the differential metabolites were mainly involved in steroid biosynthesis, the citric acid cycle, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, and glutathione metabolism. Molecular docking results showed that AEE had a better binding force to both the COX-1 and P2Y12 protein. AEE could effectively inhibit platelet activation by inhibiting COX-1 protein and P2Y12 protein activity, thereby inhibiting platelet aggregation. Therefore, AEE can have a positive effect on inhibiting platelet activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian-Yong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (Q.T.); (L.-P.F.); (J.F.); (Z.-J.Z.); (X.-W.L.); (Z.Q.)
| | - Ya-Jun Yang
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (Q.T.); (L.-P.F.); (J.F.); (Z.-J.Z.); (X.-W.L.); (Z.Q.)
| |
Collapse
|
2
|
Long J, Chen J, Huang G, Chen Z, Zhang H, Zhang Y, Duan Q, Wu B, He J. The differences of fibrinogen levels in various types of hemorrhagic transformations. Front Neurol 2024; 15:1364875. [PMID: 39119563 PMCID: PMC11306044 DOI: 10.3389/fneur.2024.1364875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Hemorrhagic transformation (HT) is a serious complication that can occur spontaneously after an acute ischemic stroke (AIS) or after a thrombolytic/mechanical thrombectomy. Our study aims to explore the potential correlations between fibrinogen levels and the occurrence of spontaneous HT (sHT) and HT after mechanical thrombectomy (tHT). Methods A total of 423 consecutive AIS patients diagnosed HT who did not undergone thrombolysis and 423 age- and sex-matched patients without HT (non-HT) were enrolled. Fibrinogen levels were measured within 24 h of admission after stroke. The cohorts were trisected according to fibrinogen levels. The HT were further categorized into hemorrhagic infarction (HI) or parenchymal hematoma (PH) based on their imaging characteristics. Results In sHT cohort, fibrinogen levels were higher in HT patients than non-HT patients (p < 0.001 versus p = 0.002). High fibrinogen levels were associated with the severity of HT. HT patients without atrial fibrillation (AF) had higher levels of fibrinogen compared to non-HT (median 3.805 vs. 3.160, p < 0.001). This relationship did not differ among AF patients. In tHT cohort, fibrinogen levels were lower in HT patients than non-HT patients (p = 0.002). Lower fibrinogen levels were associated with the severity of HT (p = 0.004). The highest trisection of fibrinogen both in two cohorts were associated with HT [sHT cohort: OR = 2.515 (1.339-4.725), p = 0.016; that cohort: OR = 0.238 (0.108-0.523), p = 0.003]. Conclusion Our study suggests that lower fibrinogen level in sHT without AF and higher fibrinogen level in tHT are associated with more severe HT.
Collapse
Affiliation(s)
- Jingfang Long
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Jiahao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guiqian Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Heyu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Duan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beilan Wu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Leonard J, Kepplinger D, Espina V, Gillevet P, Ke Y, Birukov KG, Doctor A, Hoemann CD. Whole blood coagulation in an ex vivo thrombus is sufficient to induce clot neutrophils to adopt a myeloid-derived suppressor cell signature and shed soluble Lox-1. J Thromb Haemost 2024; 22:1031-1045. [PMID: 38135253 PMCID: PMC11584067 DOI: 10.1016/j.jtha.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Blood clots are living tissues that release inflammatory mediators including IL-8/CXCL8 and MCP-1/CCL2. A deeper understanding of blood clots is needed to develop new therapies for prothrombotic disease states and regenerative medicine. OBJECTIVES To identify a common transcriptional shift in cultured blood clot leukocytes. METHODS Differential gene expression of whole blood and cultured clots (4 hours at 37 °C) was assessed by RNA sequencing (RNAseq), reverse transcriptase-polymerase chain reaction, proteomics, and histology (23 diverse healthy human donors). Cultured clot serum bioactivity was tested in endothelial barrier functional assays. RESULTS All cultured clots developed a polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) signature, including up-regulation of OLR1 (mRNA encoding lectin-like oxidized low-density lipoprotein receptor 1 [Lox-1]), IL-8/CXCL8, CXCL2, CCL2, IL10, IL1A, SPP1, TREM1, and DUSP4/MKP. Lipopolysaccharide enhanced PMN-MDSC gene expression and specifically induced a type II interferon response with IL-6 production. Lox-1 was specifically expressed by cultured clot CD15+ neutrophils. Cultured clot neutrophils, but not activated platelets, shed copious amounts of soluble Lox-1 (sLox-1) with a donor-dependent amplitude. sLox-1 shedding was enhanced by phorbol ester and suppressed by heparin and by beta-glycerol phosphate, a phosphatase inhibitor. Cultured clot serum significantly enhanced endothelial cell monolayer barrier function, consistent with a proresolving bioactivity. CONCLUSION This study suggests that PMN-MDSC activation is part of the innate immune response to coagulation which may have a protective role in inflammation. The cultured blood clot is an innovative thrombus model that can be used to study both sterile and nonsterile inflammatory states and could be used as a personalized medicine tool for drug screening.
Collapse
Affiliation(s)
- Julia Leonard
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA
| | - David Kepplinger
- Department of Statistics, George Mason University, Fairfax, Virginia, USA
| | - Virginia Espina
- Department of Systems Biology, George Mason University, Fairfax, Virginia, USA
| | - Pat Gillevet
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| | - Yunbo Ke
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Allan Doctor
- Departments of Pediatrics & Bioengineering and Center for Blood Oxygen Transport and Hemostasis, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Caroline D Hoemann
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA.
| |
Collapse
|
4
|
Spadera L, Lugarà M, Spadera M, Conticelli M, Oliva G, Bassi V, Apuzzi V, Calderaro F, Fattoruso O, Guzzi P, D'Amora M, Catapano O, Marra R, Galdo M, Zappalà M, Inui T, Mette M, Vitiello G, Corvino M, Tortoriello G. Adjunctive use of oral MAF is associated with no disease progression or mortality in hospitalized patients with COVID-19 pneumonia: The single-arm COral-MAF1 prospective trial. Biomed Pharmacother 2023; 169:115894. [PMID: 37988850 DOI: 10.1016/j.biopha.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
Based on a growing body of evidence that a dysregulated innate immune response mediated by monocytes/macrophages plays a key role in the pathogenesis of COVID-19, a clinical trial was conducted to investigate the therapeutic potential and safety of oral macrophage activating factor (MAF) plus standard of care (SoC) in the treatment of hospitalized patients with COVID-19 pneumonia. Ninety-seven hospitalized patients with confirmed COVID-19 pneumonia were treated with oral MAF and a vitamin D3 supplement, in combination with SoC, in a single-arm, open label, multicentre, phase II clinical trial. The primary outcome measure was a reduction in an intensive care unit transfer rate below 13% after MAF administration. At the end of the study, an additional propensity score matching (PSM) analysis was performed to compare the MAF group with a control group treated with SoC alone. Out of 97 patients treated with MAF, none needed care in the ICU and/or intubation with mechanical ventilation or died during hospitalization. Oxygen therapy was discontinued after a median of nine days of MAF treatment. The median length of viral shedding and hospital stay was 14 days and 18 days, respectively. After PSM, statistically significant differences were found in all of the in-hospital outcomes between the two groups. No mild to serious adverse events were recorded during the study. Notwithstanding the limitations of a single-arm study, which prevented definitive conclusions, a 21-day course of MAF treatment plus SoC was found to be safe and promising in the treatment of hospitalized adult patients with COVID-19 pneumonia. Further research will be needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Lucrezia Spadera
- Department of Otolaryngology-Head and Neck Surgery, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy.
| | - Marina Lugarà
- Department of General Medicine, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Maria Spadera
- Department of Anesthesiology and Intensive Care, San Giovanni Bosco hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Mariano Conticelli
- Department of Clinical Pathology, Ospedale del Mare Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Gabriella Oliva
- Department of General Medicine, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Vincenzo Bassi
- Department of General Medicine, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Valentina Apuzzi
- Department of General Medicine, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Francesco Calderaro
- Department of General Medicine, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Olimpia Fattoruso
- Department of Clinical Pathology, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Pietro Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Campus Universitario, Germaneto, 88100 Catanzaro, Italy
| | - Maurizio D'Amora
- Department of Laboratory Medicine and Clinical Pathology, San Paolo Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Oriana Catapano
- Department of Laboratory Medicine and Clinical Pathology, San Paolo Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Roberta Marra
- Department of Pharmacy, Ospedale del Mare Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Maria Galdo
- Department of Pharmacy, AORN Ospedali dei Colli Monaldi - Cotugno - C.T.O. Hospital, Naples, Italy
| | - Michele Zappalà
- Department of Medicine, Vesuvio Clinic, ASL Napoli 1 Centro, Naples, Italy
| | - Toshio Inui
- Department of Life System, Institute of Technology and Science, Graduate School, Tokushima University, Tokushima, Japan; Saisei Mirai Cell Processing Center, Osaka, Japan; Saisei Mirai Keihan Clinic, Osaka, Japan; Saisei Mirai Kobe Clinic, Kobe, Japan
| | - Martin Mette
- Saisei Mirai Keihan Clinic, Osaka, Japan; Saisei Mirai Kobe Clinic, Kobe, Japan
| | - Giuseppe Vitiello
- Department of Health Management, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Maria Corvino
- Department of Health Management, ASL Napoli 1 Centro, Naples, Italy
| | - Giuseppe Tortoriello
- Department of Otolaryngology-Head and Neck Surgery, AORN Ospedali dei Colli Monaldi - Cotugno - C.T.O. Hospital, Naples, Italy
| |
Collapse
|
5
|
Wahlund CJ, Çaglayan S, Czarnewski P, Hansen JB, Snir O. Sustained and intermittent hypoxia differentially modulate primary monocyte immunothrombotic responses to IL-1β stimulation. Front Immunol 2023; 14:1240597. [PMID: 37753073 PMCID: PMC10518394 DOI: 10.3389/fimmu.2023.1240597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Venous thromboembolism (VTE) is a leading cause of preventable deaths in hospitals, and its incidence is not decreasing despite extensive efforts in clinical and laboratory research. Venous thrombi are primarily formed in the valve pockets of deep veins, where activated monocytes play a crucial role in bridging innate immune activation and hemostatic pathways through the production of inflammatory cytokines, chemokines, and tissue factor (TF) - a principal initiator of coagulation. In the valve pocket inflammation and hypoxia (sustained/intermittent) coexist, however their combined effects on immunothrombotic processes are poorly understood. Inflammation is strongly associated with VTE, while the additional contribution of hypoxia remains largely unexplored. To investigate this, we modelled the intricate conditions of the venous valve pocket using a state-of-the-art hypoxia chamber with software-controlled oxygen cycling. We comprehensively studied the effects of sustained and intermittent hypoxia alone, and in combination with VTE-associated inflammatory stimuli on primary monocytes. TF expression and activity was measured in monocytes subjected to sustained and intermittent hypoxia alone, or in combination with IL-1β. Monocyte responses were further analyzed in detailed by RNA sequencing and validated by ELISA. Stimulation with IL-1β alone promoted both transcription and activity of TF. Interestingly, the stimulatory effect of IL-1β on TF was attenuated by sustained hypoxia, but not by intermittent hypoxia. Our transcriptome analysis further confirmed that sustained hypoxia limited the pro-inflammatory response induced by IL-1β, and triggered a metabolic shift in monocytes. Intermittent hypoxia alone had a modest effect on monocyte transcript. However, in combination with IL-1β intermittent hypoxia significantly altered the expression of 2207 genes and enhanced the IL-1β-stimulatory effects on several chemokine and interleukin genes (e.g., IL-19, IL-24, IL-32, MIF), as well as genes involved in coagulation (thrombomodulin) and fibrinolysis (VEGFA, MMP9, MMP14 and PAI-1). Increased production of CCL2, IL-6 and TNF following stimulation with intermittent hypoxia and IL-1β was confirmed by ELISA. Our findings provide valuable insights into how the different hypoxic profiles shape the immunothrombotic response of monocytes and shed new light on the early events in the pathogenesis of venous thrombosis.
Collapse
Affiliation(s)
- Casper J.E. Wahlund
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Safak Çaglayan
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Stockholm, Sweden
| | - John-Bjarne Hansen
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Omri Snir
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
6
|
Zhang C, Zeng S, Ji W, Li Z, Sun H, Teng T, Yu Y, Zhou X, Yang Q. Synergistic role of circulating CD14++CD16+ monocytes and fibrinogen in predicting the cardiovascular events after myocardial infarction. Clin Cardiol 2023; 46:521-528. [PMID: 36946389 DOI: 10.1002/clc.24005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Monocytes and fibrinogen (FIB) play important roles in driving acute and reparative inflammatory pathways after myocardial infarction (MI). In humans, there are three subsets of monocytes, namely, CD14++CD16- (Mon1), CD14++CD16+ (Mon2), and CD14+CD16++ (Mon3). During the inflammatory response, monocyte subsets express high levels of integrin αM β2 and protease-activated receptors 1 and 3 to interact with FIB. HYPOTHESIS However, whether there is a synergistic role of FIB combined with Mon2 counts in prioritizing patients at high risk of future major adverse cardiovascular events (MACEs) after MI remains unknown. METHODS The MI patients who treated with primary percutaneous coronary intervention were enrolled. MI patients were categorized into four groups, that is, low FIB/low Mon2, low FIB/high Mon2, high FIB/low Mon2, and high FIB/high Mon2, according to cutoff values of 3.28 g/L for FIB and 32.20 cells/μL for Mon2. Kaplan-Meier survival analysis and Cox proportional hazards models were used to estimate the risk of MACEs of MI patients during a median follow-up of 2.7 years. Mediating effects of high FIB levels and MACEs associated with high monocyte subsets were calculated by mediation analysis. RESULTS High FIB/high Mon2 group had the highest risk of MACEs during a median follow-up of 2.7 years. Moreover, mediation analysis showed that a high FIB level could explain 24.9% (p < .05) of the increased risk of MACEs associated with Mon2. CONCLUSION This work provides evidence indicating the translational potential of a synergistic role of FIB combined with Mon2 in prioritizing patients at high risk of future MACEs after MI.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shan Zeng
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Heart Center, Pingjin Hospital, Tianjin, China
| | - Wenjie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Heart Center, Pingjin Hospital, Tianjin, China
| | - Zhi Li
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Haonan Sun
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianming Teng
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Center for Cardiovascular Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Yang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Denorme F, Portier I, Rustad JL, Cody MJ, de Araujo CV, Hoki C, Alexander MD, Grandhi R, Dyer MR, Neal MD, Majersik JJ, Yost CC, Campbell RA. Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Invest 2022; 132:154225. [PMID: 35358095 PMCID: PMC9106355 DOI: 10.1172/jci154225] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke prompts a strong inflammatory response, which is associated with exacerbated outcomes. In this study, we investigated mechanistic regulators of neutrophil extracellular trap (NET) formation in stroke and whether they contribute to stroke outcomes. NET-forming neutrophils were found throughout brain tissue of ischemic stroke patients, and elevated plasma NET biomarkers correlated with worse stroke outcomes. Additionally, we observed increased plasma and platelet surface-expressed high-mobility group box 1 (HMGB1) in stroke patients. Mechanistically, platelets were identified as the critical source of HMGB1 that caused NETs in the acute phase of stroke. Depletion of platelets or platelet-specific knockout of HMGB1 significantly reduced plasma HMGB1 and NET levels after stroke, and greatly improved stroke outcomes. We subsequently investigated the therapeutic potential of neonatal NET-inhibitory factor (nNIF) in stroke. Mice treated with nNIF had smaller brain infarcts, improved long-term neurological and motor function, and enhanced survival after stroke. nNIF specifically blocked NET formation without affecting neutrophil recruitment after stroke. Importantly, nNIF also improved stroke outcomes in diabetic and aged mice and was still effective when given 1 hour after stroke onset. These results support a pathological role for NETs in ischemic stroke and warrant further investigation of nNIF for stroke therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ramesh Grandhi
- Deparment of Radiology and Imaging Sciences, and,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Mitchell R. Dyer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Robert A. Campbell
- Molecular Medicine Program,,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Wang XH, Song TZ, Zheng HY, Li YH, Zheng YT. Jejunal epithelial barrier disruption triggered by reactive oxygen species in early SIV infected rhesus macaques. Free Radic Biol Med 2021; 177:143-155. [PMID: 34687865 DOI: 10.1016/j.freeradbiomed.2021.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
Intestinal epithelial barrier destruction occurs earlier than mucosal immune dysfunction in the acute stage of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. At present, however, the cause of compromised gastrointestinal integrity in early SIV infection remains unknown. In the current study, we investigated the effects of SIV infection on epithelial barrier integrity and explored oxidative stress-mediated DNA damage and apoptosis in epithelial cells from early acute SIVmac239-infected Chinese rhesus macaques (Macaca mulatta). Results showed that the sensitive molecular marker of small intestinal barrier dysfunction, i.e., intestinal fatty acid-binding protein (IFABP), was significantly increased in plasma at 14 days post-SIV infection. SIV infection induced a profound decrease in the expression of tight junction proteins, including claudin-1, claudin-3, and zonula occludens (ZO)-1, as well as a significant increase in the active form of caspase-3 level in epithelial cells. RNA sequencing (RNA-seq) analysis suggested that differentially expressed genes between pre- and post-SIV-infected jejuna were enriched in pathways involved in cell redox homeostasis, oxidoreductase activity, and mitochondria. Indeed, a SIV-mediated increase in reactive oxygen species (ROS) in the epithelium and macrophages, as well as an increase in hydrogen peroxide (H2O2) and decrease in glutathione (GSH)/glutathione disulfide (GSSG) antioxidant defense, were observed in SIV-infected jejuna. In addition, the accumulation of mitochondrial dysfunction and DNA oxidative damage led to an increase in senescence-associated β-galactosidase (SA-β-gal) and early apoptosis in intestinal epithelial cells. Furthermore, HIV-1 Tat protein-induced epithelial monolayer disruption in HT-29 cells was rescued by antioxidant N-acetylcysteine (NAC). These results indicate that mitochondrial dysfunction and oxidative stress in jejunal epithelial cells are primary contributors to gut epithelial barrier disruption in early SIV-infected rhesus macaques.
Collapse
Affiliation(s)
- Xue-Hui Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yi-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yong-Tang Zheng
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
| |
Collapse
|
9
|
Hulshof AM, Hemker HC, Spronk HMH, Henskens YMC, ten Cate H. Thrombin-Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis. Int J Mol Sci 2021; 22:2590. [PMID: 33806700 PMCID: PMC7961882 DOI: 10.3390/ijms22052590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Fibrinogen is a well-known risk factor for arterial and venous thrombosis. Its function is not restricted to clot formation, however, as it partakes in a complex interplay between thrombin, soluble plasma fibrinogen, and deposited fibrin matrices. Fibrinogen, like thrombin, participates predominantly in hemostasis to maintain vascular integrity, but executes some important pleiotropic effects: firstly, as observed in thrombin generation experiments, fibrin removes thrombin from free solution by adsorption. The adsorbed thrombin is protected from antithrombins, notably α2-macroglobulin, and remains physiologically active as it can activate factors V, VIII, and platelets. Secondly, immobilized fibrinogen or fibrin matrices activate monocytes/macrophages and neutrophils via Mac-1 interactions. Immobilized fibrin(ogen) thereby elicits a pro-inflammatory response with a reciprocal stimulating effect of the immune system on coagulation. In contrast, soluble fibrinogen prohibits recruitment of these immune cells. Thus, while fibrin matrices elicit a procoagulant response, both directly by protecting thrombin and indirectly through the immune system, high soluble fibrinogen levels might protect patients due to its immune diminutive function. The in vivo influence of the 'protective' plasma fibrinogen versus the 'pro-thrombotic' fibrin matrices on thrombosis should be explored in future research.
Collapse
Affiliation(s)
- Anne-Marije Hulshof
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - H. Coenraad Hemker
- Synapse Research Institute, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Yvonne M. C. Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Thrombosis Expert Centre Maastricht and Department of Internal Medicine, Section Vascular Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
10
|
Griffiths TM, Page L, Weyrich AS, Rondina MT, Campbell RA. Platelet electrical resistance for measuring platelet activation and adhesion in human health and disease. Thromb Res 2021; 198:204-209. [PMID: 33360636 PMCID: PMC7867577 DOI: 10.1016/j.thromres.2020.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The ability to measure changes in platelet reactivity is important to identify novel aspects of platelet biology and develop targeted therapeutics to prevent bleeding or thrombosis. Current platelet function testing allows for single agonist analysis at a time. The ability to phenotype platelets in a single assay with multiple agonists and adhesion substrates could yield more insights into altered pathways than are feasible with current approaches. We hypothesized platelet electrical resistance (PER) could be used for more comprehensive phenotyping of platelets. METHODS Platelets were isolated from male and female healthy donors (age 39.6 ± 6.9) and septic patients (age 44.0 ± 13.5). PER 96-well plates were coated with various substrates, including fibrinogen and collagen. Platelets were added to the coated plates in the presence or absence of thrombin or convulxin. Platelet activation and spreading was monitored by measuring changes in electrical impedance. RESULTS Platelets adhesion to fibrinogen and collagen increased impedance. In addition, impedance increased in response to thrombin or convulxin. No changes in impedance were observed in the absence of platelets or when wells were uncoated, indicating changes in impedance were directly due to platelet adhesion and activation. Inhibiting integrin αIIbβ3 decreased impedance when fibrinogen was used as a substrate, consistent with platelet-dependent effects. Platelets from septic patients caused increased impedance compared to healthy donors, demonstrating this assay can be used to assess platelet hyperreactivity. CONCLUSION PER can be applied as a high throughput tool to measure platelet reactivity in health and disease, where platelet activation is increased.
Collapse
Affiliation(s)
- Travis M Griffiths
- University of Utah Molecular Medicine Program, Salt Lake City, UT 84112, United States of America
| | - Lauren Page
- University of Utah Molecular Medicine Program, Salt Lake City, UT 84112, United States of America
| | - Andrew S Weyrich
- University of Utah Molecular Medicine Program, Salt Lake City, UT 84112, United States of America; Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, United States of America
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT 84112, United States of America; Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, United States of America; George E. Wahlen VAMC Department of Internal Medicine and GRECC, Salt Lake City, UT 84148, United States of America; Department of Pathology, University of Utah, Salt Lake City, UT 84132, United States of America
| | - Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT 84112, United States of America; Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, United States of America.
| |
Collapse
|
11
|
Rehnström M, Frederiksen SD, Ansar S, Edvinsson L. Transcriptome profiling revealed early vascular smooth muscle cell gene activation following focal ischemic stroke in female rats - comparisons with males. BMC Genomics 2020; 21:883. [PMID: 33297959 PMCID: PMC7726885 DOI: 10.1186/s12864-020-07295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Women account for 60% of all stroke deaths and are more often permanently disabled than men, despite their higher observed stroke incidence. Considering the clinical population affected by stroke, an obvious drawback is that many pre-clinical and clinical studies only investigate young males. To improve therapeutic translation from bench to bedside, we believe that it is advantageous to include both sexes in experimental models of stroke. The aims of this study were to identify early cerebral vascular responses to ischemic stroke in females, compare the differential gene expression patterns with those seen in males, and identify potential new therapeutic targets. Results Transient middle cerebral artery occlusion (tMCAO) was used to induce stroke in both female and male rats, the middle cerebral arteries (MCAs) were isolated 3 h post reperfusion and RNA was extracted. Affymetrix whole transcriptome expression profiling was performed on female (n = 12) MCAs to reveal differentially expressed genes. In total, 1076 genes had an increased expression and 879 genes a decreased expression in the occluded MCAs as compared with the control MCAs from female rats. An enrichment of genes related to apoptosis, regulation of transcription, protein autophosphorylation, inflammation, oxidative stress, and tissue repair and recovery were seen in the occluded MCA. The high expression genes chosen for qPCR verification (Adamts4, Olr1, JunB, Fosl1, Serpine1, S1pr3, Ccl2 and Socs3) were all shown to be upregulated in the same manner in both females and males after tMCAO (p < 0.05; n = 23). When comparing the differentially expressed genes in female MCAs (occluded and non-occluded) with our previous findings in males after tMCAO, a total of 297 genes overlapped (all groups had 32 genes in common). Conclusions The cascades of processes initiated in the vasculature following reperfusion are complex. Dynamic gene expression alterations were observed in the occluded MCAs, and to a less pronounced degree in the non-occluded MCAs. Dysregulation of inflammation and blood-brain barrier breakdown are possible pharmacological targets. The sample of genes (< 1% of the differentially expressed genes) validated for this microarray did not reveal any sex differences. However, sex differences might be observed for other gene targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07295-2.
Collapse
Affiliation(s)
- Mimmi Rehnström
- Department of Internal Medicine, Lund University Hospital, S22185, Lund, Sweden
| | | | - Saema Ansar
- Department of Clinical Sciences, Neurosurgery, Lund University, Lund, Sweden
| | - Lars Edvinsson
- Department of Internal Medicine, Lund University Hospital, S22185, Lund, Sweden.
| |
Collapse
|
12
|
Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben C, Petrey AC, Tolley ND, Guo L, Cody M, Weyrich AS, Yost CC, Rondina MT, Campbell RA. Platelet gene expression and function in patients with COVID-19. Blood 2020; 136:1317-1329. [PMID: 32573711 PMCID: PMC7483430 DOI: 10.1182/blood.2020007214] [Citation(s) in RCA: 666] [Impact Index Per Article: 133.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to understand the pathogenesis of coronavirus disease 2019 (COVID-19). In particular, thrombotic complications in patients with COVID-19 are common and contribute to organ failure and mortality. Patients with severe COVID-19 present with hemostatic abnormalities that mimic disseminated intravascular coagulopathy associated with sepsis, with the major difference being increased risk of thrombosis rather than bleeding. However, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters platelet function to contribute to the pathophysiology of COVID-19 remains unknown. In this study, we report altered platelet gene expression and functional responses in patients infected with SARS-CoV-2. RNA sequencing demonstrated distinct changes in the gene-expression profile of circulating platelets of COVID-19 patients. Pathway analysis revealed differential gene-expression changes in pathways associated with protein ubiquitination, antigen presentation, and mitochondrial dysfunction. The receptor for SARS-CoV-2 binding, angiotensin-converting enzyme 2 (ACE2), was not detected by messenger RNA (mRNA) or protein in platelets. Surprisingly, mRNA from the SARS-CoV-2 N1 gene was detected in platelets from 2 of 25 COVID-19 patients, suggesting that platelets may take-up SARS-COV-2 mRNA independent of ACE2. Resting platelets from COVID-19 patients had increased P-selectin expression basally and upon activation. Circulating platelet-neutrophil, -monocyte, and -T-cell aggregates were all significantly elevated in COVID-19 patients compared with healthy donors. Furthermore, platelets from COVID-19 patients aggregated faster and showed increased spreading on both fibrinogen and collagen. The increase in platelet activation and aggregation could partially be attributed to increased MAPK pathway activation and thromboxane generation. These findings demonstrate that SARS-CoV-2 infection is associated with platelet hyperreactivity, which may contribute to COVID-19 pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | - Jesse W Rowley
- Molecular Medicine Program
- Department of Internal Medicine
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute
| | | | | | - Li Guo
- Molecular Medicine Program
| | - Mark Cody
- Molecular Medicine Program
- Department of Pediatrics, University of Utah, Salt Lake City, UT; and
| | - Andrew S Weyrich
- Molecular Medicine Program
- Department of Internal Medicine
- Department of Pathology, and
| | - Christian C Yost
- Molecular Medicine Program
- Department of Pediatrics, University of Utah, Salt Lake City, UT; and
| | - Matthew T Rondina
- Molecular Medicine Program
- Department of Internal Medicine
- Department of Pathology, and
- Department of Internal Medicine, George E. Wahlen Department of Veterans Affairs (VA) Medical Center, and
- Geriatric Research, Education, and Clinical Center (GRECC), VA Salt Lake City Healthcare System, Salt Lake City, UT
| | | |
Collapse
|
13
|
Denorme F, Manne BK, Portier I, Eustes AS, Kosaka Y, Kile BT, Rondina MT, Campbell RA. Platelet necrosis mediates ischemic stroke outcome in mice. Blood 2020; 135:429-440. [PMID: 31800959 PMCID: PMC7005363 DOI: 10.1182/blood.2019002124] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
Dysregulated platelet functions contribute to the development and progression of ischemic stroke. Utilizing mice with a platelet-specific deletion of cyclophilin D (CypD), a mediator of necrosis, we found that platelet necrosis regulates tissue damage and outcomes during ischemic stroke in vivo. Mice with loss of CypD in platelets (CypDplt-/-mice) exhibited significantly enhanced cerebral blood flow, improved neurological and motor functions, and reduced ischemic stroke infarct volume after cerebral ischemia-reperfusion injury. These effects were attributable, at least in part, to platelet-neutrophil interactions. Twenty-four hours after stroke, significantly more circulating platelet-neutrophil aggregates (PNAs) were found in CypDplt+/+ mice. Underscoring the role of platelet necrosis in PNA formation, we observed a significant number of phosphatidylserine (PS)+ platelets in PNAs in CypDplt+/+ mice. In contrast, significantly fewer platelets in PNAs were PS+ in CypDplt-/- counterparts. Accordingly, mice with CypD-deficient platelets had fewer neutrophils and PNAs recruited to their brain following stroke relative to wild-type counterparts. Neutrophil depletion in wild-type mice conferred protection from ischemic stroke to a similar degree as observed in mice with CypD-deficient platelets. Neutrophil depletion in CypDplt-/- mice did not further reduce infarct size. Transmission electron microscopy of ex vivo-formed PNAs revealed a propensity of necrotic platelets to interact with neutrophils. These results suggest that necrotic platelets interact with neutrophils to exacerbate brain injury during ischemic stroke. Because inhibiting platelet necrosis does not compromise hemostasis, targeting platelet CypD may be a potential therapeutic strategy to limit brain damage following ischemic stroke.
Collapse
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Belgium
| | | | - Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Alicia S Eustes
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Yasuhiro Kosaka
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
- George E. Wahlen Veterans Affairs Medical Centers Department of Internal Medicine and Geriatric Research Education and Clinical Center, Salt Lake City, UT; and
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
14
|
Cytokine concentrations are related to level of mental distress in inpatients not using anti-inflammatory drugs. Acta Neuropsychiatr 2020; 32:23-31. [PMID: 31576798 DOI: 10.1017/neu.2019.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Cross-sectional data show elevated levels of circulating cytokines in psychiatric patients. The literature is divided concerning anti-inflammatory drugs' ability to relieve symptoms, questioning a causal link between inflammatory pathways and psychiatric conditions. We hypothesised that the development of circulating cytokine levels is related to mental distress, and that this relationship is affected by the use of anti-inflammatory drugs. METHODS The study was a longitudinal assessment of 12-week inpatient treatment at Modum Bad Psychiatric Center, Norway. Sera and self-reported Global Severity Index (GSI) scores, which measure psychological distress, were collected at admission (T0), halfway (T1) and before discharge (T2). Other variables known to distort the neuroimmune interplay were included. These were age, gender, diagnosis of PTSD, antidepressants and anti-inflammatory drugs. A total of 128 patients (92 women and 36 men) were included, and 28 were using anti-inflammatory medication. Multilevel modelling was used for data analysis. RESULTS Patients with higher levels of IL-1RA and MCP-1 had higher GSI scores (p = 0.005 and p = 0.020). PTSD patients scored higher on GSI than non-PTSD patients (p = 0.002). These relationships were mostly present among those not using anti-inflammatory drugs (n = 99), with higher levels of IL-1RA and MCP-1 being related to higher GSI score (p = 0.023 and 0.018, respectively). Again, PTSD patients showed higher GSI levels than non-PTSD patients (p = 0.014). CONCLUSIONS Cytokine levels were associated with level of mental distress as measured by the GSI scores, but this relationship was not present among those using anti-inflammatory drugs. We found no association between cytokine levels and development of GSI score over time.
Collapse
|
15
|
Frey C, Koliopoulou AG, Montenont E, Tolley ND, Javan H, McKellar SH, Drakos SG, Selzman CH, Rondina MT. Longitudinal assessment of the platelet transcriptome in advanced heart failure patients following mechanical unloading. Platelets 2020; 31:952-959. [PMID: 31934818 DOI: 10.1080/09537104.2020.1714573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Patients with heart failure (HF) and left ventricular assist devices (LVAD) have dysregulated thrombo-inflammatory responses, mediated in part by platelets. While studies of platelet activation have been undertaken in HF, changes in the platelet transcriptome in HF patients following mechanical unloading with an LVAD have not been investigated. We prospectively enrolled and longitudinally followed advanced HF patients (n = 32) for a mean of 57 months post-LVAD implantation. For comparison, healthy donors were also enrolled (n = 20). Platelets were hyperactive in HF, as evidenced by significantly increased formation of circulating platelet-monocyte aggregate formation. Platelet transcriptome interrogation by next-generation RNA-sequencing identified that the expression of numerous genes (n = 588) was significantly (FDR < 0.05) altered in HF patients prior to LVAD implantation. Differentially expressed genes were predicted to have roles in angiogenesis, immune and inflammatory responses, apoptosis, and cardiac muscle contraction. 90 days following LVAD implantation, the majority (80%) of differentially expressed genes in HF patients normalized, as compared to the platelet transcriptomes of healthy donors. In conclusion, advanced HF is associated with marked alterations in the platelet transcriptome. While LVAD implantation to off load the failing heart results in resolution in the majority of differentially expressed genes, a subset of the platelet transcriptome remains persistently altered.
Collapse
Affiliation(s)
- Callie Frey
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA
| | - Antigoni G Koliopoulou
- Department of Surgery, Division of Cardiothoracic Surgery, University of Utah , Salt Lake City, Utah, USA
| | - Emilie Montenont
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA
| | - Neal D Tolley
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA
| | - Hadi Javan
- Department of Surgery, Division of Cardiothoracic Surgery, University of Utah , Salt Lake City, Utah, USA
| | - Stephen H McKellar
- Department of Surgery, Division of Cardiothoracic Surgery, University of Utah , Salt Lake City, Utah, USA
| | - Stavros G Drakos
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute , Salt Lake City, Utah.,Departments of Internal Medicine and Pathology, University of Utah , Salt Lake City, Utah, USA
| | - Craig H Selzman
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA.,Department of Surgery, Division of Cardiothoracic Surgery, University of Utah , Salt Lake City, Utah, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute , Salt Lake City, Utah
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA.,Departments of Internal Medicine and Pathology, University of Utah , Salt Lake City, Utah, USA.,Department of Internal Medicine and GRECC, Salt Lake City, Utah, USA
| |
Collapse
|
16
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
17
|
Palasubramaniam J, Wang X, Peter K. Myocardial Infarction-From Atherosclerosis to Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:e176-e185. [PMID: 31339782 DOI: 10.1161/atvbaha.119.312578] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jathushan Palasubramaniam
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| | - Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.)
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| |
Collapse
|
18
|
Campbell RA, Schwertz H, Hottz ED, Rowley JW, Manne BK, Washington AV, Hunter-Mellado R, Tolley ND, Christensen M, Eustes AS, Montenont E, Bhatlekar S, Ventrone CH, Kirkpatrick BD, Pierce KK, Whitehead SS, Diehl SA, Bray PF, Zimmerman GA, Kosaka Y, Bozza PT, Bozza FA, Weyrich AS, Rondina MT. Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood 2019; 133:2013-2026. [PMID: 30723081 PMCID: PMC6509546 DOI: 10.1182/blood-2018-09-873984] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
Evolving evidence indicates that platelets and megakaryocytes (MKs) have unexpected activities in inflammation and infection; whether viral infections upregulate biologically active, antiviral immune genes in platelets and MKs is unknown, however. We examined antiviral immune genes in these cells in dengue and influenza infections, viruses that are global public health threats. Using complementary biochemical, pharmacological, and genetic approaches, we examined the regulation and function of interferon-induced transmembrane protein 3 (IFITM3), an antiviral immune effector gene not previously studied in human platelets and MKs. IFITM3 was markedly upregulated in platelets isolated from patients during clinical influenza and dengue virus (DENV) infections. Lower IFITM3 expression in platelets correlated with increased illness severity and mortality in patients. Administering a live, attenuated DENV vaccine to healthy subjects significantly increased platelet IFITM3 expression. Infecting human MKs with DENV selectively increased type I interferons and IFITM3. Overexpression of IFITM3 in MKs was sufficient to prevent DENV infection. In naturally occurring, genetic loss-of-function studies, MKs from healthy subjects harboring a homozygous mutation in IFITM3 (rs12252-C, a common single-nucleotide polymorphism in areas of the world where DENV is endemic) were significantly more susceptible to DENV infection. DENV-induced MK secretion of interferons prevented infection of bystander MKs and hematopoietic stem cells. Thus, viral infections upregulate IFITM3 in human platelets and MKs, and IFITM3 expression is associated with adverse clinical outcomes. These observations establish, for the first time, that human MKs possess antiviral functions, preventing DENV infection of MKs and hematopoietic stem cells after local immune signaling.
Collapse
Affiliation(s)
- Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
| | - Hansjorg Schwertz
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT
| | - Eugenio D Hottz
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Instituto Nacional de Infectologia Evandro Chagas and
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jesse W Rowley
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
| | | | - A Valance Washington
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- Department of Internal Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Robert Hunter-Mellado
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- Department of Internal Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Neal D Tolley
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | | | - Alicia S Eustes
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Emilie Montenont
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Seema Bhatlekar
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Cassandra H Ventrone
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT
| | - Kristen K Pierce
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT
| | - Stephen S Whitehead
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sean A Diehl
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT
| | - Paul F Bray
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
| | - Guy A Zimmerman
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
| | - Yasuhiro Kosaka
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- Instituto Nacional de Infectologia Evandro Chagas and
- Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil; and
| | - Andrew S Weyrich
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
- Department of Internal Medicine, George E. Wahlen Veterans Affairs Medical Center and Geriatric Research, Education, and Clinical Center, Salt Lake City, UT
| |
Collapse
|
19
|
Rondina MT, Zimmerman GA. The Role of Platelets in Inflammation. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
20
|
Bucur M, Constantin C, Neagu M, Zurac S, Dinca O, Vladan C, Cioplea M, Popp C, Nichita L, Ionescu E. Alveolar blood clots and platelet-rich fibrin induce in vitro fibroblast proliferation and migration. Exp Ther Med 2018; 17:982-989. [PMID: 30679963 PMCID: PMC6327514 DOI: 10.3892/etm.2018.7063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 12/23/2022] Open
Abstract
Wound healing process comprises a complex network of cells and molecules that are regulated in order to pursue tissue regeneration. Our study focused on the capacity of alveolar blood clots (ABCs), platelet-rich fibrin (PRF) and plasma rich in growth factors (PRGF) to induce in vitro fibroblasts proliferation and migration as a measure of alveolar regeneration. Using cellular impedance with xCELLigence technology we quantified the proliferation and the migration capacity of L929 fibroblast standard cell line in the presence of 4 different ABCs and 3 different PRFs harvested from healthy individuals during standard tooth extraction. We obtained a clear cellular proliferation induced by the compounds mainly after 24 h of cultivation, in a dose-dependent manner. After 48 h of cultivation we registered activated proliferation, but slightly decreased compared to the 24 h profile. Our data confirm that the presence of the blood clot is involved in the regenerative processes. The migratory capacity of fibroblasts was statistically activated by the PL compounds while not affected by the tested PRFs. The chemical mediators present within the blood clot, either produced by inflammatory cells captive within, or by endothelial or mesenchymal cells induced fibroblastic proliferation and subsequent collagen deposition.
Collapse
Affiliation(s)
- Mihai Bucur
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Oro-Maxillofacial Surgery, 'Prof. Dr. Dan Theodorescu' Clinical Hospital of Oro-Maxillofacial Surgery, 101022 Bucharest, Romania
| | - Carolina Constantin
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.,Department of Immunology, 'Victor Babeş' National Institute of Pathology, 050096 Bucharest, Romania
| | - Monica Neagu
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.,Department of Immunology, 'Victor Babeş' National Institute of Pathology, 050096 Bucharest, Romania.,Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Sabina Zurac
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Octavian Dinca
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Oro-Maxillofacial Surgery, 'Prof. Dr. Dan Theodorescu' Clinical Hospital of Oro-Maxillofacial Surgery, 101022 Bucharest, Romania
| | - Cristian Vladan
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Oro-Maxillofacial Surgery, 'Prof. Dr. Dan Theodorescu' Clinical Hospital of Oro-Maxillofacial Surgery, 101022 Bucharest, Romania
| | - Mirela Cioplea
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Cristiana Popp
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Luciana Nichita
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Ecaterina Ionescu
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Ambulatory of Orthodontics, 'Prof. Dr. Dan Theodorescu' Clinical Hospital of Oro-Maxillofacial Surgery, 010221 Bucharest, Romania
| |
Collapse
|
21
|
Miyazawa K, Pastori D, Hammerstingl C, Cappato R, Meng IL, Kramer F, Cohen A, Schulz A, Eickels MV, Lip GYH, Marin F. Left atrial thrombus resolution in non-valvular atrial fibrillation or flutter: biomarker substudy results from a prospective study with rivaroxaban (X-TRA). Ann Med 2018; 50:511-518. [PMID: 29956554 DOI: 10.1080/07853890.2018.1495337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Non-vitamin K antagonist oral anticoagulants including rivaroxaban are widely used for stroke prevention in patients with atrial fibrillation (AF). We investigated the relationship between plasma biomarkers (indicative of thrombogenesis, fibrinolysis and inflammation) and left atrial thrombus resolution after rivaroxaban treatment. METHODS This was an ancillary analysis of the X-TRA study, which was a prospective interventional study evaluating the use of rivaroxaban for left atrial/left atrial appendage (LA/LAA) thrombus resolution in AF patients. We assessed various biomarkers of thrombogenesis/fibrinolysis [D-dimer, plasminogen activator inhibitor-1 (PAI-1), prothrombin fragment 1 + 2 (F1,2), thrombin-antithrombin (TAT) complexes, von Willebrand factor (vWF)] and inflammation [high-sensitivity interleukin-6 (hsIL-6), and high-sensitivity C-reactive protein (hsCRP)], measured at baseline and after 6 weeks' of rivaroxaban treatment. RESULTS There was a significant decrease in the mean levels of hsCRP, D-dimer, vWF, and TAT from baseline to end of treatment with rivaroxaban. Although none of the thrombogenesis/fibrinolysis biomarkers showed a significant relationship with thrombus resolution, high inflammatory biomarkers at baseline were significantly associated with an increased chance of the thrombus being completely resolved (hsIL-6) or reduced/resolved (hsCRP). CONCLUSIONS Biomarkers of inflammation are significantly associated with LA/LAA thrombus outcomes in AF patients prospectively treated with rivaroxaban.
Collapse
Affiliation(s)
- Kazuo Miyazawa
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Daniele Pastori
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,b Department of Internal Medicine and Medical Specialties, I Clinica Medica, Atherothrombosis Centre , Sapienza University of Rome , Rome , Italy
| | - Christoph Hammerstingl
- c Department of Medicine II , Heart Centre Bonn, University Hospital Bonn , Bonn , Germany
| | | | | | - Frank Kramer
- e Global Medical Affairs, Bayer AG , Berlin , Germany
| | - Ariel Cohen
- f Cardiology Department , Assistance publique-Hôpitaux de Paris and Université Pierre-et-Marie-Curie, Saint-Antoine University and Medical School , Paris , France
| | - Anke Schulz
- g Research and Clinical Sciences Statistics, Bayer AG , Berlin , Germany
| | | | - Gregory Y H Lip
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,h Aalborg Thrombosis Research Unit, Department of Clinical Medicine , Aalborg University , Aalborg , Denmark
| | - Francisco Marin
- i Department of Cardiology , Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, CIBER-CV , Murcia , Spain
| |
Collapse
|
22
|
Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost 2018; 2:549-557. [PMID: 30046760 PMCID: PMC6046589 DOI: 10.1002/rth2.12109] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
The blood coagulation system and immune system of higher organisms are thought to have a common ancestral origin. During infections, the blood coagulation system is activated and components of the hemostatic system are directly involved in the immune response and immune system modulations. The current view is that the activation of coagulation is beneficial for infections with bacteria and viruses. It limits pathogen dissemination and supports pathogen killing and tissue repair. On the other hand, over-activation can lead to thrombosis with subsequent depletion of hemostatic factors and secondary bleeding. This review will summarize the current knowledge on blood coagulation and pathogen infection with focus on most recent studies of the role of the different parts of the blood coagulation system in selected bacterial and viral infections.
Collapse
Affiliation(s)
- Silvio Antoniak
- Program in Thrombosis and HemostasisDepartment of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|