1
|
Kang M, Lee CS, Son H, Lee J, Lee J, Seo HJ, Kim MK, Choi M, Cho HJ, Kim HS. Latrophilin-2 Deletion in Cardiomyocyte Disrupts Cell Junction, Leading to D-CMP. Circ Res 2024; 135:1098-1115. [PMID: 39421931 DOI: 10.1161/circresaha.124.324670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Latrophilin-2 (Lphn2), an adhesive GPCR (G protein-coupled receptor), was found to be a specific marker of cardiac progenitors during the differentiation of pluripotent stem cells into cardiomyocytes or during embryonic heart development in our previous studies. Its role in adult heart physiology, however, remains unclear. METHODS The embryonic lethality resulting from Lphn2 deletion necessitates the establishment of cardiomyocyte-specific, tamoxifen-inducible Lphn2 knockout mice, which was achieved by crossing Lphn2 flox/flox mice with mice having MerCreMer (tamoxifen-inducible Cre [Cyclization recombinase] recombinase) under the α-myosin heavy chain promoter. RESULTS Tamoxifen treatment for several days completely suppressed Lphn2 expression, specifically in the myocardium, and induced the dilated cardiomyopathy (D-CMP) phenotype with serious arrhythmia and sudden death in a short period of time. Transmission electron microscopy showed mitochondrial abnormalities, blurred Z-discs, and dehiscent myofibrils. The D-CMP phenotype, or heart failure, worsened during myocardial infarction. In a mechanistic study of D-CMP, Lphn2 knockout suppressed PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and mitochondrial dysfunction, leading to the accumulation of reactive oxygen species and the global suppression of junctional molecules, such as N-cadherin (adherens junction), DSC-2 (desmocollin-2; desmosome), and connexin-43 (gap junction), leading to the dehiscence of cardiac myofibers and serious arrhythmia. In an experimental therapeutic trial, activators of p38-MAPK (p38 mitogen-activated protein kinases), which is a downstream signaling molecule of Lphn2, remarkably rescued the D-CMP phenotype of Lphn2 knockout in the heart by restoring PGC-1α and mitochondrial function and recovering global junctional proteins. CONCLUSIONS Lphn2 is a critical regulator of heart integrity by controlling mitochondrial functions and cell-to-cell junctions in cardiomyocytes. Its deficiency leads to D-CMP, which can be rescued by activators of the p38-MAPK pathway.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Mice, Knockout
- Mice
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Intercellular Junctions/metabolism
- Intercellular Junctions/drug effects
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Mice, Inbred C57BL
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/deficiency
- Tamoxifen/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
- Gene Deletion
- Male
- Cells, Cultured
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
Collapse
Affiliation(s)
- Minjun Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Choon-Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - HyunJu Son
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Jeongha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, South Korea (Jeongha Lee, M.C.)
| | - Jaewon Lee
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Hyun Ju Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Moo-Kang Kim
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, South Korea (Jeongha Lee, M.C.)
| | - Hyun-Jai Cho
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
| | - Hyo-Soo Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| |
Collapse
|
2
|
Pfenniger A, Yoo S, Arora R. Oxidative stress and atrial fibrillation. J Mol Cell Cardiol 2024; 196:141-151. [PMID: 39307416 DOI: 10.1016/j.yjmcc.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Though the pathogenesis of AF is complex and is not completely understood, many studies suggest that oxidative stress is a major mechanism in pathophysiology of AF. Through multiple mechanisms, reactive oxygen species (ROS) lead to the formation of an AF substrate that facilitates the development and maintenance of AF. In this review article, we provide an update on the different mechanisms by which oxidative stress promotes atrial remodeling. We then discuss several therapeutic strategies targeting oxidative stress for the prevention or treatment of AF. Considering the complex biology of ROS induced remodeling, and the evolution of ROS sources and compartmentalization during AF progression, there is a definite need for improvement in timing, targeting and reduction of off-target effects of therapeutic strategies targeting oxidative injury in AF.
Collapse
Affiliation(s)
- Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
3
|
Divya KP, Kanwar N, Anuranjana PV, Kumar G, Beegum F, George KT, Kumar N, Nandakumar K, Kanwal A. SIRT6 in Regulation of Mitochondrial Damage and Associated Cardiac Dysfunctions: A Possible Therapeutic Target for CVDs. Cardiovasc Toxicol 2024; 24:598-621. [PMID: 38689163 DOI: 10.1007/s12012-024-09858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular diseases (CVDs) can be described as a global health emergency imploring possible prevention strategies. Although the pathogenesis of CVDs has been extensively studied, the role of mitochondrial dysfunction in CVD development has yet to be investigated. Diabetic cardiomyopathy, ischemic-reperfusion injury, and heart failure are some of the CVDs resulting from mitochondrial dysfunction Recent evidence from the research states that any dysfunction of mitochondria has an impact on metabolic alteration, eventually causes the death of a healthy cell and therefore, progressively directing to the predisposition of disease. Cardiovascular research investigating the targets that both protect and treat mitochondrial damage will help reduce the risk and increase the quality of life of patients suffering from various CVDs. One such target, i.e., nuclear sirtuin SIRT6 is strongly associated with cardiac function. However, the link between mitochondrial dysfunction and SIRT6 concerning cardiovascular pathologies remains poorly understood. Although the Role of SIRT6 in skeletal muscles and cardiomyocytes through mitochondrial regulation has been well understood, its specific role in mitochondrial maintenance in cardiomyocytes is poorly determined. The review aims to explore the domain-specific function of SIRT6 in cardiomyocytes and is an effort to know how SIRT6, mitochondria, and CVDs are related.
Collapse
Affiliation(s)
- K P Divya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Navjot Kanwar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab, Technical University, Bathinda, Punjab, 151005, India
| | - P V Anuranjana
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, National Institute of Pharmaceutical Educations and Research, Hajipur, Bihar, 844102, India
| | - K Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, 151005, India.
| |
Collapse
|
4
|
Szyller J, Antoniak R, Wadowska K, Bil-Lula I, Hrymniak B, Banasiak W, Jagielski D. Redox imbalance in patients with heart failure and ICD/CRT-D intervention. Can it be an underappreciated and overlooked arrhythmogenic factor? A first preliminary clinical study. Front Physiol 2023; 14:1289587. [PMID: 38028798 PMCID: PMC10663344 DOI: 10.3389/fphys.2023.1289587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Redox imbalance and oxidative stress are involved in the pathogenesis of arrhythmias. They also play a significant role in pathogenesis of heart failure (HF). In patients with HFand implanted cardioverter-defibrillator (ICD) or cardiac resynchronization therapy defibrillator (CRT-D), the direct current shocks may be responsible for additional redox disturbances and additionally increase arrhythmia risk. However, the precise role of oxidative stress in potentially fatal arrhythmias and shock induction remains unclear. Methods: 36 patients with diagnosed HF and implanted ICD/CRT-D were included in this study. Patients were qualified to the study group in case of registered ventricular arrhythmia and adequate ICD/CRT-D intervention. The control group consisted of patients without arrhythmia with elective replacement indicator (ERI) status. Activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) in erythrocyte (RBC), SOD, GPx activity and reactive oxygen/nitrogen species (ROS/RNS) concentration in plasma were determined. The values were correlated with glucose, TSH, uric acid, Mg and ion concentrations. Results: In the perishock period, we found a significant decrease in RBC and extracellular (EC) SOD and RBC CAT activity (p = 0.0110, p = 0.0055 and p = 0.0002, respectively). EC GPx activity was also lower (p = 0.0313). In all patients, a decrease in the concentration of all forms of glutathione was observed compared to the ERI group. Important association between ROS/RNS and GSH, Mg, TSH and uric acid was shown. A relationship between the activity of GSH and antioxidant enzymes was found. Furthermore, an association between oxidative stress and ionic imbalance has also been demonstrated. The patients had an unchanged de Haan antioxidant ratio and glutathione redox potential. Conclusion: Here we show significant redox disturbances in patients with HF and ICD/CRT-D interventions. Oxidative stress may be an additional risk factor for the development of arrhythmia in patients with HF. The detailed role of oxidative stress in ventricular arrhythmias requires further research already undertaken by our team.
Collapse
Affiliation(s)
- Jakub Szyller
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Radosław Antoniak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Katarzyna Wadowska
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Bruno Hrymniak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Waldemar Banasiak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Dariusz Jagielski
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
5
|
Ramos-Mondragón R, Lozhkin A, Vendrov AE, Runge MS, Isom LL, Madamanchi NR. NADPH Oxidases and Oxidative Stress in the Pathogenesis of Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1833. [PMID: 37891912 PMCID: PMC10604902 DOI: 10.3390/antiox12101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its prevalence increases with age. The irregular and rapid contraction of the atria can lead to ineffective blood pumping, local blood stasis, blood clots, ischemic stroke, and heart failure. NADPH oxidases (NOX) and mitochondria are the main sources of reactive oxygen species in the heart, and dysregulated activation of NOX and mitochondrial dysfunction are associated with AF pathogenesis. NOX- and mitochondria-derived oxidative stress contribute to the onset of paroxysmal AF by inducing electrophysiological changes in atrial myocytes and structural remodeling in the atria. Because high atrial activity causes cardiac myocytes to expend extremely high energy to maintain excitation-contraction coupling during persistent AF, mitochondria, the primary energy source, undergo metabolic stress, affecting their morphology, Ca2+ handling, and ATP generation. In this review, we discuss the role of oxidative stress in activating AF-triggered activities, regulating intracellular Ca2+ handling, and functional and anatomical reentry mechanisms, all of which are associated with AF initiation, perpetuation, and progression. Changes in the extracellular matrix, inflammation, ion channel expression and function, myofibril structure, and mitochondrial function occur during the early transitional stages of AF, opening a window of opportunity to target NOX and mitochondria-derived oxidative stress using isoform-specific NOX inhibitors and mitochondrial ROS scavengers, as well as drugs that improve mitochondrial dynamics and metabolism to treat persistent AF and its transition to permanent AF.
Collapse
Affiliation(s)
- Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
| | - Andrey Lozhkin
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Marschall S. Runge
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| |
Collapse
|
6
|
Kelm NQ, Solinger JC, Piell KM, Cole MP. Conjugated Linoleic Acid-Mediated Connexin-43 Remodeling and Sudden Arrhythmic Death in Myocardial Infarction. Int J Mol Sci 2023; 24:11208. [PMID: 37446386 DOI: 10.3390/ijms241311208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Connexin 43 (Cx43) is expressed in the left and right ventricles and is primarily responsible for conducting physiological responses in microvasculature. Studies have demonstrated that NADPH oxidase (NOX) enzymes are essential in cardiac redox biology and are responsible for the generation of reactive oxygen species (ROS). NOX2 is linked to left ventricular remodeling following myocardial infarction (MI). It was hypothesized that conjugated linoleic acid (cLA) treatment increases NOX-2 levels in heart tissue and disrupts connexins between the myocytes in the ventricle. Data herein demonstrate that cLA treatment significantly decreases survival in a murine model of MI. The observance of cLA-induced ventricular tachyarrhythmia's (VT) led to the subsequent investigation of the underlying mechanism in this MI model. Mice were treated with cLA for 12 h, 24 h, 48 h, or 72 h to determine possible time-dependent changes in NOX and Cx43 signaling pathways in isolated left ventricles (LV) extracted from cardiac tissue. The results suggest that ROS generation, through the stimulation of NOX2 in the LV, triggers a decrease in Cx43 levels, causing dysfunction of the gap junctions following treatment with cLA. This cascade of events may initiate VT and subsequent death during MI. Taken together, individuals at risk of MI should use caution regarding cLA consumption.
Collapse
Affiliation(s)
- Natia Qipshidze Kelm
- Department of Biochemistry and Molecular Genetics, Louisville, KY 40202, USA
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jane C Solinger
- Department of Biochemistry and Molecular Genetics, Louisville, KY 40202, USA
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, Louisville, KY 40202, USA
| | - Marsha P Cole
- Department of Biochemistry and Molecular Genetics, Louisville, KY 40202, USA
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Pereira CH, Bare DJ, Rosas PC, Dias FAL, Banach K. The role of P21-activated kinase (Pak1) in sinus node function. J Mol Cell Cardiol 2023; 179:90-101. [PMID: 37086972 PMCID: PMC10294268 DOI: 10.1016/j.yjmcc.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
Sinoatrial node (SAN) dysfunction (SND) and atrial arrhythmia frequently occur simultaneously with a hazard ratio of 4.2 for new onset atrial fibrillation (AF) in SND patients. In the atrial muscle attenuated activity of p21-activated kinase 1 (Pak1) increases the risk for AF by enhancing NADPH oxidase 2 dependent production of reactive oxygen species (ROS). However, the role of Pak1 dependent ROS regulation in SAN function has not yet been determined. We hypothesize that Pak1 activity maintains SAN activity by regulating the expression of the hyperpolarization activated cyclic nucleotide gated cation channel (HCN). To determine Pak1 dependent changes in heart rate (HR) regulation we quantified the intrinsic sinus rhythm in wild type (WT) and Pak1 deficient (Pak1-/-) mice of both sexes in vivo and in isolated Langendorff perfused hearts. Pak1-/- hearts displayed an attenuated HR in vivo after autonomic blockage and in isolated hearts. The contribution of the Ca2+ clock to pacemaker activity remained unchanged, but Ivabradine (3 μM), a blocker of HCN channels that are a membrane clock component, eliminated the differences in SAN activity between WT and Pak1-/- hearts. Reduced HCN4 expression was confirmed in Pak1-/- right atria. The reduced HCN activity in Pak1-/- could be rescued by class II HDAC inhibition (LMK235), ROS scavenging (TEMPOL) or attenuation of Extracellular Signal-Regulated Kinase (ERK) 1/2 activity (SCH772984). No sex specific differences in Pak1 dependent SAN regulation were determined. Our results establish Pak1 as a class II HDAC regulator and a potential therapeutic target to attenuate SAN bradycardia and AF susceptibility.
Collapse
Affiliation(s)
- Carlos H Pereira
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA; Biological Science Center, Department of Physiology, Av. Cel Francisco H. dos Santos 100, 19031 Centro Politécnico-Curitiba, Brazil.
| | - Dan J Bare
- Dept. of Physiology & Biophysics, The Ohio State University, 5018 Graves Hall, 333 W.10th Ave., Columbus, OH 4321, USA.
| | - Paola C Rosas
- Dept. of Pharmacy Practice, College of Pharmacy, 833 S Wood St., Chicago, IL 60612, USA.
| | - Fernando A L Dias
- Biological Science Center, Department of Physiology, Av. Cel Francisco H. dos Santos 100, 19031 Centro Politécnico-Curitiba, Brazil.
| | - Kathrin Banach
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA.
| |
Collapse
|
8
|
Mitochondrial connexin43 and mitochondrial K ATP channels modulate triggered arrhythmias in mouse ventricular muscle. Pflugers Arch 2023; 475:477-488. [PMID: 36707457 DOI: 10.1007/s00424-023-02789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
Connexin43 (Cx43) exits as hemichannels in the inner mitochondrial membrane. We examined how mitochondrial Cx43 and mitochondrial KATP channels affect the occurrence of triggered arrhythmias. To generate cardiac-specific Cx43-deficient (cCx43-/-) mice, Cx43flox/flox mice were crossed with α-MHC (Myh6)-cre+/- mice. The resulting offspring, Cx43flox/flox/Myh6-cre+/- mice (cCx43-/- mice) and their littermates (cCx43+/+ mice), were used. Trabeculae were dissected from the right ventricles of mouse hearts. Cardiomyocytes were enzymatically isolated from the ventricles of mouse hearts. Force was measured with a strain gauge in trabeculae (22°C). To assess arrhythmia susceptibility, the minimal extracellular Ca2+ concentration ([Ca2+]o,min), at which arrhythmias were induced by electrical stimulation, was determined in trabeculae. ROS production was estimated with 2',7'-dichlorofluorescein (DCF), mitochondrial membrane potential with tetramethylrhodamine methyl ester (TMRM), and Ca2+ spark frequency with fluo-4 and confocal microscopy in cardiomyocytes. ROS production within the mitochondria was estimated with MitoSoxRed and mitochondrial Ca2+ with rhod-2 in trabeculae. Diazoxide was used to activate mitochondrial KATP. Most of cCx43-/- mice died suddenly within 8 weeks. Cx43 was present in the inner mitochondrial membrane in cCx43+/+ mice but not in cCx43-/- mice. In cCx43-/- mice, the [Ca2+]o,min was lower, and Ca2+ spark frequency, the slope of DCF fluorescence intensity, MitoSoxRed fluorescence, and rhod-2 fluorescence were higher. TMRM fluorescence was more decreased in cCx43-/- mice. Most of these changes were suppressed by diazoxide. In addition, in cCx43-/- mice, antioxidant peptide SS-31 and N-acetyl-L-cysteine increased the [Ca2+]o,min. These results suggest that Cx43 deficiency activates Ca2+ leak from the SR, probably due to depolarization of mitochondrial membrane potential, an increase in mitochondrial Ca2+, and an increase in ROS production, thereby causing triggered arrhythmias, and that Cx43 hemichannel deficiency may be compensated by activation of mitochondrial KATP channels in mouse hearts.
Collapse
|
9
|
Deng J, Jiang Y, Chen ZB, Rhee JW, Deng Y, Wang ZV. Mitochondrial Dysfunction in Cardiac Arrhythmias. Cells 2023; 12:679. [PMID: 36899814 PMCID: PMC10001005 DOI: 10.3390/cells12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Electrophysiological and structural disruptions in cardiac arrhythmias are closely related to mitochondrial dysfunction. Mitochondria are an organelle generating ATP, thereby satisfying the energy demand of the incessant electrical activity in the heart. In arrhythmias, the homeostatic supply-demand relationship is impaired, which is often accompanied by progressive mitochondrial dysfunction leading to reduced ATP production and elevated reactive oxidative species generation. Furthermore, ion homeostasis, membrane excitability, and cardiac structure can be disrupted through pathological changes in gap junctions and inflammatory signaling, which results in impaired cardiac electrical homeostasis. Herein, we review the electrical and molecular mechanisms of cardiac arrhythmias, with a particular focus on mitochondrial dysfunction in ionic regulation and gap junction action. We provide an update on inherited and acquired mitochondrial dysfunction to explore the pathophysiology of different types of arrhythmias. In addition, we highlight the role of mitochondria in bradyarrhythmia, including sinus node dysfunction and atrioventricular node dysfunction. Finally, we discuss how confounding factors, such as aging, gut microbiome, cardiac reperfusion injury, and electrical stimulation, modulate mitochondrial function and cause tachyarrhythmia.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yunqiu Jiang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - June-Wha Rhee
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Department of Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhao V. Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
10
|
Connolly K, Batacan R, Jackson D, Vella R, Fenning A. Perindopril prevents development of obesity and hypertension in middle aged diet-induced obese rat models of metabolic syndrome. Life Sci 2023; 314:121291. [PMID: 36535403 DOI: 10.1016/j.lfs.2022.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
AIMS The therapeutic properties of anti-hypertensive medications that extend beyond blood pressure lowering have started to become important clinical targets in recent years. This study aimed to assess the cardioprotective effects of perindopril in attenuating complications associated with metabolic syndrome in diet induced obese rats. MAIN METHODS Male Wistar-Kyoto (WKY) rats aged 16 weeks were fed either standard rat chow (SC) or given a high-fat-high-carbohydrate (HFHC) diet for 20 weeks. Perindopril treatment (1 mg/kg/day) was administered to a subset of WKY rats commencing at week 8 of the 20 week HFHC feeding period. Body weights, food, water and energy intakes, blood pressure, heart rate and glucose tolerance were measured throughout the treatment period. Oxidative stress and inflammatory markers, lipid levels, cardiac collagen deposition, vascular function, aortic and cardiac electrical function were examined after the treatment. KEY FINDINGS WKY rats developed metabolic syndrome after 20 weeks of HFHC feeding, evidenced by the presence of abdominal obesity, dyslipidaemia, glucose intolerance and hypertension. Perindopril treatment prevented the development of obesity and hypertension in WKY-HFHC. Perindopril improved blood lipid profiles in HFHC rats with decreases in LDL cholesterol, triglycerides and total cholesterol. Type I collagen levels were decreased in WKY-HFHC rats along with decreases in left ventricle mass. Perindopril treated rats also showed improved cardiac electrical function indicated by decreases in action potential at 90 % of repolarisation in WKY-HFHC rats. SIGNIFICANCE These results show that perindopril has a profound effect on preventing the development of metabolic syndrome in animals fed a HFHC diet.
Collapse
Affiliation(s)
- Kylie Connolly
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4701, Australia
| | - Romeo Batacan
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4701, Australia.
| | - Douglas Jackson
- Australian Catholic University, 40 Edward St, North Sydney, NSW 2060, Australia
| | - Rebecca Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4701, Australia
| | - Andrew Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4701, Australia
| |
Collapse
|
11
|
Ran Q, Zhang C, Wan W, Ye T, Zou Y, Liu Z, Yu Y, Zhang J, Shen B, Yang B. Pinocembrin ameliorates atrial fibrillation susceptibility in rats with anxiety disorder induced by empty bottle stimulation. Front Pharmacol 2022; 13:1004888. [PMID: 36339600 PMCID: PMC9631028 DOI: 10.3389/fphar.2022.1004888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Anxiety disorder (AD) is the most common mental disorder, which is closely related to atrial fibrillation (AF) and is considered to be a trigger of AF. Pinocembrin has been demonstrated to perform a variety of neurological and cardiac protective effects through its anti-inflammatory and antioxidant activities. The current research aims to explore the antiarrhythmic effect of pinocembrin in anxiety disorder rats and its underlying mechanisms. Methods: 60 male Sprague-Dawley rats were distributed into four groups: CTL group: control rats + saline; CTP group: control rats + pinocembrin; Anxiety disorder group: anxiety disorder rats + saline; ADP group: anxiety disorder rats + pinocembrin. Empty bottle stimulation was conducted to induce anxiety disorder in rats for 3 weeks, and pinocembrin was injected through the tail vein for the last 2 weeks. Behavioral measurements, in vitro electrophysiological studies, biochemical assays, ELISA, Western blot and histological studies were performed to assess the efficacy of pinocembrin. In addition, HL-1 atrial cells were cultured in vitro to further verify the potential mechanism of pinocembrin. Results: After 3 weeks of empty bottle stimulation, pinocembrin significantly improved the exploration behaviors in anxiety disorder rats. Pinocembrin alleviated electrophysiological remodeling in anxiety disorder rats, including shortening the action potential duration (APD), prolonging the effective refractory period (ERP), increasing the expression of Kv1.5, Kv4.2 and Kv4.3, decreasing the expression of Cav1.2, and ultimately reducing the AF susceptibility. These effects may be attributed to the amelioration of autonomic remodeling and structural remodeling by pinocembrin, as well as the inhibition of oxidative stress with upregulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathway. Conclusion: Pinocembrin can reduce AF susceptibility in anxiety disorder rats induced by empty bottle stimulation, with the inhibition of autonomic remodeling, structural remodeling, and oxidative stress. Therefore, pinocembrin is a promising treatment for AF in patients with anxiety disorder.
Collapse
Affiliation(s)
- Qian Ran
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ying Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhangchi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | | | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Bo Shen, ; Bo Yang,
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Bo Shen, ; Bo Yang,
| |
Collapse
|
12
|
Wu PY, Lai SY, Su YT, Yang KC, Chau YP, Don MJ, Lu KH, Shy HT, Lai SM, Kung HN. β-Lapachone, an NQO1 activator, alleviates diabetic cardiomyopathy by regulating antioxidant ability and mitochondrial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154255. [PMID: 35738116 DOI: 10.1016/j.phymed.2022.154255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DC) is one of the major lethal complications in patients with diabetes mellitus (DM); however, no specific strategy for preventing or treating DC has been identified. PURPOSE This study aimed to investigate the effects of β-lapachone (Lap), a natural compound that increases antioxidant activity in various tissues, on DC and explore the underlying mechanisms. STUDY DESIGN AND METHODS As an in vivo model, C57BL/6 mice were fed with the high-fat diet (HF) for 10 weeks to induce type 2 DM. Mice were fed Lap with the HF or after 5 weeks of HF treatment to investigate the protective effects of Lap against DC. RESULTS In the two in vivo models, Lap decreased heart weight, increased heart function, reduced oxidative stress, and elevated mitochondrial content under the HF. In the in vitro model, palmitic acid (PA) was used to mimic the effects of an HF on the differentiated-cardiomyoblast cell line H9c2. The results demonstrated that Lap reduced PA-induced ROS production by increasing the expression of antioxidant regulators and enzymes, inhibiting inflammation, increasing mitochondrial activity, and thus reducing cell damage. Via the use of specific inhibitors and siRNA, the protective effects of Lap were determined to be mediated mainly by NQO1, Sirt1 and mitochondrial activity. CONCLUSION Heart damage in DM is usually caused by excessive oxidative stress. This study showed that Lap can protect the heart from DC by upregulating antioxidant ability and mitochondrial activity in cardiomyocytes. Lap has the potential to serve as a novel therapeutic agent for both the prevention and treatment of DC.
Collapse
Affiliation(s)
- Pei-Yu Wu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University
| | - Shin-Yu Lai
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University
| | - Yi-Ting Su
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University
| | - Kai-Chien Yang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University
| | | | | | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University
| | - Shu-Mei Lai
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University.
| |
Collapse
|
13
|
Zhou Y, Suo W, Zhang X, Lv J, Liu Z, Liu R. Roles and mechanisms of quercetin on cardiac arrhythmia: A review. Biomed Pharmacother 2022; 153:113447. [DOI: 10.1016/j.biopha.2022.113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
14
|
Antioxidants in Arrhythmia Treatment—Still a Controversy? A Review of Selected Clinical and Laboratory Research. Antioxidants (Basel) 2022; 11:antiox11061109. [PMID: 35740006 PMCID: PMC9220256 DOI: 10.3390/antiox11061109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Antioxidants are substances that can prevent damage to cells caused by free radicals. Production of reactive oxygen species and the presence of oxidative stress play an important role in cardiac arrhythmias. Currently used antiarrhythmic drugs have many side effects. The research on animals and humans using antioxidants (such as vitamins C and E, resveratrol and synthetic substances) yields many interesting but inconclusive results. Natural antioxidants, such as vitamins C and E, can reduce the recurrence of atrial fibrillation (AF) after successful electrical cardioversion and protect against AF after cardiac surgery, but do not affect the incidence of atrial arrhythmias in critically ill patients with trauma. Vitamins C and E may also effectively treat ventricular tachycardia, ventricular fibrillation and long QT-related arrhythmias. Another natural antioxidant—resveratrol—may effectively treat AF and ventricular arrhythmias caused by ischaemia–reperfusion injury. It reduces the mortality associated with life-threatening ventricular arrhythmias and can be used to prevent myocardial remodelling. Statins also show antioxidant activity. Their action is related to the reduction of oxidative stress and anti-inflammatory effect. Therefore, statins can reduce the post-operative risk of AF and may be useful in lowering its recurrence rate after successful cardioversion. Promising results also apply to polyphenols, nitric oxide synthase inhibitors and MitoTEMPO. Although few clinical trials have been conducted, the use of antioxidants in treating arrhythmias is an interesting prospect.
Collapse
|
15
|
Tirandi A, Carbone F, Montecucco F, Liberale L. The role of metabolic syndrome in sudden cardiac death risk: Recent evidence and future directions. Eur J Clin Invest 2022; 52:e13693. [PMID: 34714544 PMCID: PMC9286662 DOI: 10.1111/eci.13693] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a frequent condition whose deleterious effects on the cardiovascular system are often underestimated. MetS is nowadays considered a real pandemic with an estimated prevalence of 25% in general population. Individuals with MetS are at high risk of sudden cardiac death (SCD) as this condition accounts for 50% of all cardiac deaths in such a population. Of interest, recent studies demonstrated that individuals with MetS show 70% increased risk of SCD even without previous history of coronary heart disease (CHD). However, little is known about the interplay between the two conditions. MetS is a complex disease determined by genetic predisposition, unhealthy lifestyle and ageing with deleterious effects on different organs. MetS components trigger a systemic chronic low-grade pro-inflammatory state, associated with excess of sympathetic activity, cardiac hypertrophy, arrhythmias and atherosclerosis. Thus, MetS has an important burden on the cardiovascular system as demonstrated by both preclinical and clinical evidence. The aim of this review is to summarize recent evidence concerning the association between MetS and SCD, showing possible common aetiological processes, and to indicate prospective for future studies and therapeutic targets.
Collapse
Affiliation(s)
- Amedeo Tirandi
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| |
Collapse
|
16
|
Pinocembrin mediates antiarrhythmic effects in rats with isoproterenol-induced cardiac remodeling. Eur J Pharmacol 2022; 920:174799. [DOI: 10.1016/j.ejphar.2022.174799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
|
17
|
Sodium Glucose Cotransporter 1 (SGLT1) Inhibitors in Cardiovascular Protection: Mechanism Progresses and Challenges. Pharmacol Res 2021; 176:106049. [PMID: 34971725 DOI: 10.1016/j.phrs.2021.106049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022]
Abstract
In recent years, multiple clinical trials have shown that sodium glucose cotransporter 1 (SGLT1) inhibitors have significant beneficial cardiovascular effects. This includes reducing the incidence of cardiovascular deaths and heart failure hospitalizations in people with and without diabetes, as well as those with and without generalized heart failure. The exact mechanism responsible for these beneficial effects is not completely understood. To explain the cardiovascular protective effects of SGLT1 inhibitors, several potential arguments have been proposed, including decreasing oxidative stress, regulating cardiac glucose uptake, preventing ischemia/reperfusion injury, alleviating the activation of cardiac fibroblasts, attenuating apoptosis, reducing intermittent high glucose-induced pyroptosis, ameliorating cardiac hypertrophy, attenuating arrhythmic vulnerabilities, and improving left ventricular systolic disorder. This article reviews the advantages and disadvantages of these mechanisms, and attempts to synthesize and prioritize mechanisms related to the reduction of clinical events.
Collapse
|
18
|
Liu C, Ma N, Guo Z, Zhang Y, Zhang J, Yang F, Su X, Zhang G, Xiong X, Xing Y. Relevance of mitochondrial oxidative stress to arrhythmias: Innovative concepts to target treatments. Pharmacol Res 2021; 175:106027. [PMID: 34890774 DOI: 10.1016/j.phrs.2021.106027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Cardiac arrhythmia occurs frequently worldwide, and in severe cases can be fatal. Mitochondria are the power plants of cardiomyocytes. In recent studies, mitochondria under certain stimuli produced excessive reactive oxygen species (ROS), which affect the normal function of cardiomyocytes through ion channels and related proteins. Mitochondrial oxidative stress (MOS) plays a key role in diseases with multifactorial etiopathogenesis, such as arrhythmia; MOS can lead to arrhythmias such as atrial fibrillation and ventricular tachycardia. This review discusses the mechanisms of arrhythmias caused by MOS, particularly of ROS produced by mitochondria. MOS can cause arrhythmias by affecting the activities of Ca2+-related proteins, the mitochondrial permeability transition pore protein, connexin 43, hyperpolarization-activated cyclic nucleotide-gated potassium channel 4, and ion channels. Based on these mechanisms, we discuss possible new treatments for arrhythmia. Targeted treatments focusing on mitochondria may reduce the progression of arrhythmias, as well as the occurrence of severe arrhythmias, and may be effective for personalized disease prevention.
Collapse
Affiliation(s)
- Can Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ning Ma
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Ziru Guo
- Xingtai People's Hospital, Xingtai 054001, China
| | - Yijun Zhang
- The First Affiliated Hospital, Hebei North University, Zhangjiakou 075000, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xingjiang Xiong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
19
|
Abstract
Mitochondria have been recognized as key organelles in cardiac physiology and are potential targets for clinical interventions to improve cardiac function. Mitochondrial dysfunction has been accepted as a major contributor to the development of heart failure. The main function of mitochondria is to meet the high energy demands of the heart by oxidative metabolism. Ionic homeostasis in mitochondria directly regulates oxidative metabolism, and any disruption in ionic homeostasis causes mitochondrial dysfunction and eventually contractile failure. The mitochondrial ionic homeostasis is closely coupled with inner mitochondrial membrane potential. To regulate and maintain ionic homeostasis, mitochondrial membranes are equipped with ion transporting proteins. Ion transport mechanisms involving several different ion channels and transporters are highly efficient and dynamic, thus helping to maintain the ionic homeostasis of ions as well as their salts present in the mitochondrial matrix. In recent years, several novel proteins have been identified on the mitochondrial membranes and these proteins are actively being pursued in research for roles in the organ as well as organelle physiology. In this article, the role of mitochondrial ion channels in cardiac function is reviewed. In recent times, the major focus of the mitochondrial ion channel field is to establish molecular identities as well as assigning specific functions to them. Given the diversity of mitochondrial ion channels and their unique roles in cardiac function, they present novel and viable therapeutic targets for cardiac diseases.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
20
|
Hamilton S, Terentyeva R, Perger F, Hernández Orengo B, Martin B, Gorr MW, Belevych AE, Clements RT, Györke S, Terentyev D. MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca 2+ release in hypertrophic rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2021; 321:H615-H632. [PMID: 34415186 PMCID: PMC8794228 DOI: 10.1152/ajpheart.00126.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Cardiac dysfunction in heart failure (HF) and diabetic cardiomyopathy (DCM) is associated with aberrant intracellular Ca2+ handling and impaired mitochondrial function accompanied with reduced mitochondrial calcium concentration (mito-[Ca2+]). Pharmacological or genetic facilitation of mito-Ca2+ uptake was shown to restore Ca2+ transient amplitude in DCM and HF, improving contractility. However, recent reports suggest that pharmacological enhancement of mito-Ca2+ uptake can exacerbate ryanodine receptor-mediated spontaneous sarcoplasmic reticulum (SR) Ca2+ release in ventricular myocytes (VMs) from diseased animals, increasing propensity to stress-induced ventricular tachyarrhythmia. To test whether chronic recovery of mito-[Ca2+] restores systolic Ca2+ release without adverse effects in diastole, we overexpressed mitochondrial Ca2+ uniporter (MCU) in VMs from male rat hearts with hypertrophy induced by thoracic aortic banding (TAB). Measurement of mito-[Ca2+] using genetic probe mtRCamp1h revealed that mito-[Ca2+] in TAB VMs paced at 2 Hz under β-adrenergic stimulation is lower compared with shams. Adenoviral 2.5-fold MCU overexpression in TAB VMs fully restored mito-[Ca2+]. However, it failed to improve cytosolic Ca2+ handling and reduce proarrhythmic spontaneous Ca2+ waves. Furthermore, mitochondrial-targeted genetic probes MLS-HyPer7 and OMM-HyPer revealed a significant increase in emission of reactive oxygen species (ROS) in TAB VMs with 2.5-fold MCU overexpression. Conversely, 1.5-fold MCU overexpression in TABs, that led to partial restoration of mito-[Ca2+], reduced mitochondria-derived reactive oxygen species (mito-ROS) and spontaneous Ca2+ waves. Our findings emphasize the key role of elevated mito-ROS in disease-related proarrhythmic Ca2+ mishandling. These data establish nonlinear mito-[Ca2+]/mito-ROS relationship, whereby partial restoration of mito-[Ca2+] in diseased VMs is protective, whereas further enhancement of MCU-mediated Ca2+ uptake exacerbates damaging mito-ROS emission.NEW & NOTEWORTHY Defective intracellular Ca2+ homeostasis and aberrant mitochondrial function are common features in cardiac disease. Here, we directly compared potential benefits of mito-ROS scavenging and restoration of mito-Ca2+ uptake by overexpressing MCU in ventricular myocytes from hypertrophic rat hearts. Experiments using novel mito-ROS and Ca2+ biosensors demonstrated that mito-ROS scavenging rescued both cytosolic and mito-Ca2+ homeostasis, whereas moderate and high MCU overexpression demonstrated disparate effects on mito-ROS emission, with only a moderate increase in MCU being beneficial.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Biosensing Techniques
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Disease Models, Animal
- Heart Rate
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Microscopy, Confocal
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Up-Regulation
- Ventricular Function, Left
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Fruzsina Perger
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Benjamín Hernández Orengo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Benjamin Martin
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Matthew W Gorr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Richard T Clements
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Sandor Györke
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| |
Collapse
|
21
|
D’Errico S, Russa RL, Maiese A, Santurro A, Scopetti M, Romano S, Zanon M, Frati P, Fineschi V. Atypical antipsychotics and oxidative cardiotoxicity: review of literature and future perspectives to prevent sudden cardiac death. J Geriatr Cardiol 2021; 18:663-685. [PMID: 34527032 PMCID: PMC8390928 DOI: 10.11909/j.issn.1671-5411.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress is considered the principal mediator of myocardial injury under pathological conditions. It is well known that reactive oxygen (ROS) or nitrogen species (RNS) are involved in myocardial injury and repair at the same time and that cellular damage is generally due to an unbalance between generation and elimination of the free radicals due to an inadequate mechanism of antioxidant defense or to an increase in ROS and RNS. Major adverse cardiovascular events are often associated with drugs with associated findings such as fibrosis or inflammation of the myocardium. Despite efforts in the preclinical phase of the development of drugs, cardiotoxicity still remains a great concern. Cardiac toxicity due to second-generation antipsychotics (clozapine, olanzapine, quetiapine) has been observed in preclinical studies and described in patients affected with mental disorders. A role of oxidative stress has been hypothesized but more evidence is needed to confirm a causal relationship. A better knowledge of cardiotoxicity mechanisms should address in the future to establish the right dose and length of treatment without impacting the physical health of the patients.
Collapse
Affiliation(s)
- Stefano D’Errico
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
| | - Aniello Maiese
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Santurro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Scopetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Romano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Martina Zanon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Paola Frati
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Fineschi
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Liu M, Liu H, Parthiban P, Kang GJ, Shi G, Feng F, Zhou A, Gu L, Karnopp C, Tolkacheva EG, Dudley SC. Inhibition of the unfolded protein response reduces arrhythmic risk after myocardial infarction. J Clin Invest 2021; 131:e147836. [PMID: 34324437 DOI: 10.1172/jci147836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic cardiomyopathy is associated with an increased risk of sudden death, activation of the unfolded protein response (UPR), and reductions in multiple cardiac ion channels. When activated, the protein kinase-like ER kinase (PERK) branch of the UPR reduces protein translation and abundance. We hypothesized that PERK inhibition could prevent ion channel downregulation and reduce arrhythmic risk after myocardial infarct (MI). MI induced by coronary artery ligation resulted in mice exhibited reduced ion channel levels, ventricular tachycardia (VT), and prolonged corrected intervals between the Q and T waves of the ECGs (QTc). Protein levels of major cardiac ion channels were decreased. MI cardiomyocytes showed significantly prolonged action potential duration and decreased maximum upstroke velocity. Cardiac-specific PERK knockout (PERKKO) reduced electrical remodeling in response to MI with shortened QTc intervals, less VT episodes, and higher survival rates (P<0.05 vs. MI). Pharmacological PERK inhibition had similar effects. In conclusion, activated PERK during MI contributed to arrhythmic risk by downregulation of select cardiac ion channels. PERK inhibition prevented these changes and reduced arrhythmic risk. These results suggest that ion channel downregulation during MI is a fundamental arrhythmic mechanism and maintaining ion channel levels is antiarrhythmic.
Collapse
Affiliation(s)
- Man Liu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Hong Liu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Preethy Parthiban
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Gyeoung-Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Guangbin Shi
- Department of Medicine, Brown University, Providence, United States of America
| | - Feng Feng
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Anyu Zhou
- Department of Medicine, Brown University, Providence, United States of America
| | - Lianzhi Gu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Courtney Karnopp
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Samuel C Dudley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
23
|
Lee CC, Chen WT, Chen SY, Lee TM. Dapagliflozin attenuates arrhythmic vulnerabilities by regulating connexin43 expression via the AMPK pathway in post-infarcted rat hearts. Biochem Pharmacol 2021; 192:114674. [PMID: 34252408 DOI: 10.1016/j.bcp.2021.114674] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
We have demonstrated that dapagliflozin, a sodium-glucose cotransporter (SGLT) 2 inhibitor, attenuates reactive oxygen species (ROS) production. Connexin43 playing a role in ventricular arrhythmia is sensitive to redox status. No data are available on the effects of dapagliflozin on arrhythmogenesis. This study was to determine whether dapagliflozin attenuated arrhythmias through modulating AMP-activated protein kinase (AMPK)/free radicals-induced connexin43 after myocardial infarction. After coronary ligation, normoglycemic male Wistar rats were randomized to either vehicle or dapagliflozin (0.1 mg/kg per day) for 4 weeks. Myocardial ROS levels were significantly increased (p < 0.05) and connexin43 levels were substantially decreased after myocardial infarction (p < 0.05). Dapagliflozin administration was associated with increased SGLT1, attenuated ROS and increased connexin43 levels in myocardium (all p < 0.05). During programmed electrical stimulation, arrhythmic severity was significantly improved in the dapagliflozin-treated infarcted rats than those in the vehicle-treated infarcted rats (p < 0.05). Dapagliflozin significantly increased AMPK phosphorylation compared to vehicle after infarction (p < 0.05). Inhibition of AMPK signaling by SBI-0206965 prevented increased SGLT1 and blocked the effects of dapagliflozin on attenuated ROS levels and increased connexin43 phosphorylation (all p < 0.05). SGLT1 inhibited by KGA-2727 showed attenuated ROS levels and increased connexin43 phosphorylation (both p < 0.05) although AMPK phosphorylation was not changed, implying SGLT1 activation was mediated by AMPK in dapagliflozin-treated hearts. Dapagliflozin-treated hearts had significantly increased connexin43 phosphorylation (p < 0.05), which was significantly decreased after adding 3-morpholinosydnonimine (p < 0.05). These data indicate that clinically-relevant dapagliflozin concentrations decreased free radicals content and increased connexin43 levels through AMPK-dependent and SGLT1-independent mechanisms, which attenuated ventricular arrhythmias in the normoglycemic infarcted rats.
Collapse
Affiliation(s)
| | - Wei-Ting Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Syue-Yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
24
|
Liu M, Liu H, Feng F, Xie A, Kang G, Zhao Y, Hou CR, Zhou X, Dudley SC. Magnesium Deficiency Causes a Reversible, Metabolic, Diastolic Cardiomyopathy. J Am Heart Assoc 2021; 10:e020205. [PMID: 34096318 PMCID: PMC8477865 DOI: 10.1161/jaha.120.020205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Background Dietary Mg intake is associated with a decreased risk of developing heart failure, whereas low circulating Mg level is associated with increased cardiovascular mortality. We investigated whether Mg deficiency alone could cause cardiomyopathy. Methods and Results C57BL/6J mice were fed with a low Mg (low-Mg, 15-30 mg/kg Mg) or a normal Mg (nl-Mg, 600 mg/kg Mg) diet for 6 weeks. To test reversibility, half of the low-Mg mice were fed then with nl-Mg diet for another 6 weeks. Low-Mg diet significantly decreased mouse serum Mg (0.38±0.03 versus 1.14±0.03 mmol/L for nl-Mg; P<0.0001) with a reciprocal increase in serum Ca, K, and Na. Low-Mg mice exhibited impaired cardiac relaxation (ratio between mitral peak early filling velocity E and longitudinal tissue velocity of the mitral anterior annulus e, 21.1±1.1 versus 15.4±0.4 for nl-Mg; P=0.011). Cellular ATP was decreased significantly in low-Mg hearts. The changes were accompanied by mitochondrial dysfunction with mitochondrial reactive oxygen species overproduction and membrane depolarization. cMyBPC (cardiac myosin-binding protein C) was S-glutathionylated in low-Mg mouse hearts. All these changes were normalized with Mg repletion. In vivo (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride treatment during low-Mg diet improved cardiac relaxation, increased ATP levels, and reduced S-glutathionylated cMyBPC. Conclusions Mg deficiency caused a reversible diastolic cardiomyopathy associated with mitochondrial dysfunction and oxidative modification of cMyBPC. In deficiency states, Mg supplementation may represent a novel treatment for diastolic heart failure.
Collapse
Affiliation(s)
- Man Liu
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of Minnesota at Twin CitiesMinneapolisMN
| | - Hong Liu
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of Minnesota at Twin CitiesMinneapolisMN
| | - Feng Feng
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of Minnesota at Twin CitiesMinneapolisMN
| | - An Xie
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of Minnesota at Twin CitiesMinneapolisMN
| | - Gyeoung‐Jin Kang
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of Minnesota at Twin CitiesMinneapolisMN
| | - Yang Zhao
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of Minnesota at Twin CitiesMinneapolisMN
| | - Cody R. Hou
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of Minnesota at Twin CitiesMinneapolisMN
| | - Xiaoxu Zhou
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of Minnesota at Twin CitiesMinneapolisMN
| | - Samuel C. Dudley
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of Minnesota at Twin CitiesMinneapolisMN
| |
Collapse
|
25
|
Dobrev D, Dudley SC. Oxidative stress: a baystander or a causal contributor to atrial remodeling and fibrillation? Cardiovasc Res 2021; 117:2291-2293. [PMID: 33822005 DOI: 10.1093/cvr/cvab124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.,Montréal Heart Institute, University de Montréal, Montréal, Quebec, Canada.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA
| | - Samuel C Dudley
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Lkhagva B, Lin Y, Chen Y, Cheng W, Higa S, Kao Y, Chen Y. ZFHX3 knockdown dysregulates mitochondrial adaptations to tachypacing in atrial myocytes through enhanced oxidative stress and calcium overload. Acta Physiol (Oxf) 2021; 231:e13604. [PMID: 33332716 DOI: 10.1111/apha.13604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023]
Abstract
AIM To investigate the role of zinc finger homeobox 3 gene (ZFHX3) in tachypacing-induced mitochondrial dysfunction and explore its molecular mechanisms and potential as a therapeutic target in atrial fibrillation (AF). METHODS Through a bioluminescent assay, a patch clamp, confocal fluorescence and fluorescence microscopy, microplate enzyme activity assays and Western blotting, we studied ATP and ADP production, mitochondrial electron transfer chain complex activities, ATP-sensitive potassium channels (IKATP ), mitochondrial oxidative stress, Ca2+ content, and protein expression in control and ZFHX3 knockdown (KD) HL-1 cells subjected to 1 and 5-Hz pacing for 24 hours. RESULTS Compared with 1-Hz pacing, 5-Hz pacing increased ATP and ADP production, IKATP , phosphorylated adenosine monophosphate-activated protein kinase and inositol 1,4,5-triphosphate (IP3 ) receptor (IP3 R) protein expression. Tachypacing induced mitochondrial oxidative stress and Ca2+ overload in both cell types. Furthermore, under 1- and 5-Hz pacing, ZFHX3 KD cells showed higher IKATP , ATP and ADP production, mitochondrial oxidative stress and Ca2+ content than control cells. Under 5-Hz pacing, 2-aminoethoxydiphenyl borate (2-APB; 3 μmol/L, an IP3 R inhibitor) and MitoTEMPO (10 µmol/L, a mitochondria-targeted antioxidant) reduced ADP and increased ATP production in both cell types; however, only 2-APB significantly reduced mitochondrial Ca2+ overload in control cells. Under 5-Hz pacing, mitochondrial oxidative stress was significantly reduced by both MitoTEMPO and 2-APB and only by 2-APB in control and ZFHX3 KD cells respectively. CONCLUSION ZFHX3 KD cells modulate mitochondrial adaptations to tachypacing in HL-1 cardiomyocytes through Ca2+ overload, oxidative stress and metabolic disorder. Targeting IP3 R signalling or oxidative stress could reduce AF.
Collapse
Affiliation(s)
- Baigalmaa Lkhagva
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
| | - Yung‐Kuo Lin
- Division of Cardiology Department of Internal Medicine School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
| | - Yao‐Chang Chen
- Department of Biomedical Engineering National Defense Medical Center Taipei Taiwan
| | - Wan‐Li Cheng
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory Division of Cardiovascular Medicine Makiminato Central Hospital Okinawa Japan
| | - Yu‐Hsun Kao
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Department of Medical Education and Research Wan‐Fang Hospital Taipei Medical University Taipei Taiwan
| | - Yi‐Jen Chen
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Cardiovascular Research CenterWan‐Fang HospitalTaipei Medical University Taipei Taiwan
| |
Collapse
|
27
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
28
|
Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020; 22:ijms22010260. [PMID: 33383853 PMCID: PMC7795512 DOI: 10.3390/ijms22010260] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Emiliano Raul Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
- Correspondence: ; Tel.: +421-2-32295-423
| |
Collapse
|
29
|
O'Rourke B, Ashok D, Liu T. Mitochondrial Ca 2+ in heart failure: Not enough or too much? J Mol Cell Cardiol 2020; 151:126-134. [PMID: 33290770 DOI: 10.1016/j.yjmcc.2020.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/18/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Ca2+ serves as a ubiquitous second messenger mediating a variety of cellular processes including electrical excitation, contraction, gene expression, secretion, cell death and others. The identification of the molecular components of the mitochondrial Ca2+ influx and efflux pathways has created a resurgent interest in the regulation of mitochondrial Ca2+ balance and its physiological and pathophysiological roles. While the pace of discovery has quickened with the availability of new cellular and animal models, many fundamental questions remain to be answered regarding the regulation and functional impact of mitochondrial Ca2+ in health and disease. This review highlights several experimental observations pertaining to key aspects of mitochondrial Ca2+ homeostasis that remain enigmatic, particularly whether mitochondrial Ca2+ signaling is depressed or excessive in heart failure, which will determine the optimal approach to therapeutic intervention.
Collapse
Affiliation(s)
- Brian O'Rourke
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA.
| | - Deepthi Ashok
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA
| | - Ting Liu
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Forini F, Canale P, Nicolini G, Iervasi G. Mitochondria-Targeted Drug Delivery in Cardiovascular Disease: A Long Road to Nano-Cardio Medicine. Pharmaceutics 2020; 12:E1122. [PMID: 33233847 PMCID: PMC7699942 DOI: 10.3390/pharmaceutics12111122] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) represents a major threat for human health. The available preventive and treatment interventions are insufficient to revert the underlying pathological processes, which underscores the urgency of alternative approaches. Mitochondria dysfunction plays a key role in the etiopathogenesis of CVD and is regarded as an intriguing target for the development of innovative therapies. Oxidative stress, mitochondrial permeability transition pore opening, and excessive fission are major noxious pathways amenable to drug therapy. Thanks to the advancements of nanotechnology research, several mitochondria-targeted drug delivery systems (DDS) have been optimized with improved pharmacokinetic and biocompatibility, and lower toxicity and antigenicity for application in the cardiovascular field. This review summarizes the recent progress and remaining obstacles in targeting mitochondria as a novel therapeutic option for CVD. The advantages of nanoparticle delivery over un-targeted strategies are also discussed.
Collapse
Affiliation(s)
- Francesca Forini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Paola Canale
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
- Department of Biology, University of Pisa, Via Volta 4 bis, 56126 Pisa, Italy
| | - Giuseppina Nicolini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Giorgio Iervasi
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| |
Collapse
|
31
|
Mastroianno S, Germano M, Maggio A, Massaro R, Potenza DR, Russo A, Carella M, Di Stolfo G. Electrocardiogram in Friedreich's ataxia: A short-term surrogate endpoint for treatment efficacy. Ann Noninvasive Electrocardiol 2020; 26:e12813. [PMID: 33151022 PMCID: PMC8293611 DOI: 10.1111/anec.12813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023] Open
Abstract
Friedreich's ataxia is a rare degenerative neuromuscular disorder, caused by a homozygous GAA triplet repeat expansion in the frataxin (FXN) gene, with a broad clinical phenotype characterized by progressive gait and limb ataxia, dysarthria, and loss of lower limb reflexes; cardiac involvement is represented by hypertrophic cardiomyopathy, ventricular arrhythmias, and sudden cardiac deaths. Currently, no definite therapy is available, while many drugs are under investigation; for this reasons, we need markers of short‐ and long‐term treatment efficacy acting on different tissue for trial evaluation. We describe the case of a 21‐year‐old patient affected by Friedreich's ataxia on wheel‐chair, with initial cardiac involvement and electrocardiographic features characterized by thiamine treatment‐related negative T wave and QTc variations. We discuss plausible physiopathology and potential ECG role implications as an intermediate marker of treatment response in future clinical trials considering patients affected by Friedreich's ataxia.
Collapse
Affiliation(s)
- Sandra Mastroianno
- Cardiology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Michele Germano
- Child Neuropsychiatry Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angela Maggio
- Paediatric Oncology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Raimondo Massaro
- Cardiology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Aldo Russo
- Cardiology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Medical Genetic Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Di Stolfo
- Cardiology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
32
|
Interplay of pro-inflammatory cytokines, pro-inflammatory microparticles and oxidative stress and recurrent ventricular arrhythmias in elderly patients after coronary stent implantations. Cytokine 2020; 137:155345. [PMID: 33137563 DOI: 10.1016/j.cyto.2020.155345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/09/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The roles of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress were unknown in elderly patients with recurrent ventricular arrhythmias (VA). We evaluated whether cross talk between oxidative stress, pro-inflammatory microparticles, and pro-inflammatory cytokines play the roles in elderly patients with recurrent VA after coronary stenting. This research sought to investigate the effects of oxidative stress, pro-inflammatory microparticles, and pro-inflammatory cytokines on recurrent VA in elderly patients after coronary stenting. METHODS In this study, we included 613 consecutive elderly patients with recurrent ventricular arrhythmias induced by coronary reocclusions after coronary stenting. We measured CD31+ endothelial microparticle (CD31+EMP), CD62E+ endothelial microparticle (CD62E+EMP), high-sensitivity C-reactive protein (hs-CRP), aldosterone (ALD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), soluble tumor necrosis factor receptor-1 (sTNFR-1) and soluble tumor necrosis factor receptor-2 (sTNFR-2) in elderly patients with recurrent VA and assessed impacts of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress on recurrent VA in elderly patients after coronary stenting. RESULTS The levels of CD31+EMP, CD62E+EMP, hs-CRP, ALD, MDA, TNF-α, sTNFR-1 and sTNFR-2 were increased in recurrent malignant ventricular arrhythmia, sustained ventricular tachycardia, multiple ventricular premature beat and left and right ventricular bundle branch block groups (P < 0.001) in elderly patients with coronary reocclusions after coronary stent implantation. Upregulation of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress markers induced recurrent VA in elderly patients after coronary stenting. CONCLUSIONS High levels of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress markers were associated with recurrent VA in elderly patients after coronary stenting. Our results suggested that the pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress may simultaneously induce and aggravate recurrent VA in elderly patients after coronary stenting.
Collapse
|
33
|
Dostal V, Wood SD, Thomas CT, Han Y, Lau E, Lam MPY. Proteomic signatures of acute oxidative stress response to paraquat in the mouse heart. Sci Rep 2020; 10:18440. [PMID: 33116222 PMCID: PMC7595225 DOI: 10.1038/s41598-020-75505-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023] Open
Abstract
The heart is sensitive to oxidative damage but a global view on how the cardiac proteome responds to oxidative stressors has yet to fully emerge. Using quantitative tandem mass spectrometry, we assessed the effects of acute exposure of the oxidative stress inducer paraquat on protein expression in mouse hearts. We observed widespread protein expression changes in the paraquat-exposed heart especially in organelle-containing subcellular fractions. During cardiac response to acute oxidative stress, proteome changes are consistent with a rapid reduction of mitochondrial metabolism, coupled with activation of multiple antioxidant proteins, reduction of protein synthesis and remediation of proteostasis. In addition to differential expression, we saw evidence of spatial reorganizations of the cardiac proteome including the translocation of hexokinase 2 to more soluble fractions. Treatment with the antioxidants Tempol and MitoTEMPO reversed many proteomic signatures of paraquat but this reversal was incomplete. We also identified a number of proteins with unknown function in the heart to be triggered by paraquat, suggesting they may have functions in oxidative stress response. Surprisingly, protein expression changes in the heart correlate poorly with those in the lung, consistent with differential sensitivity or stress response in these two organs. The results and data set here could provide insights into oxidative stress responses in the heart and avail the search for new therapeutic targets.
Collapse
Affiliation(s)
- Vishantie Dostal
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Silas D Wood
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Cody T Thomas
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yu Han
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maggie P Y Lam
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
34
|
Chen WT, Chen SY, Wu DW, Lee CC, Lee TM. Effect of icosapent ethyl on susceptibility to ventricular arrhythmias in postinfarcted rat hearts: Role of GPR120-mediated connexin43 phosphorylation. J Cell Mol Med 2020; 24:9267-9279. [PMID: 32639107 PMCID: PMC7417730 DOI: 10.1111/jcmm.15575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
The ω‐3 fatty acids exert as an antioxidant via the G protein‐coupled receptor 120 (GPR120). Icosapent ethyl, a purified eicosapentaenoic acid, showed a marked reduction in sudden cardiac death. Connexin43 is sensitive to redox status. We assessed whether icosapent ethyl attenuates fatal arrhythmias after myocardial infarction, a status of high oxidative stress, through increased connexin43 expression and whether the GPR120 signalling is involved in the protection. Male Wistar rats after ligating coronary artery were assigned to either vehicle or icosapent ethyl for 4 weeks. The postinfarction period was associated with increased oxidative‐nitrosative stress. In concert, myocardial connexin43 levels revealed a significant decrease in vehicle‐treated infarcted rats compared with sham. These changes of oxidative‐nitrosative stress and connexin43 levels were blunted after icosapent ethyl administration. Provocative arrhythmias in the infarcted rats treated with icosapent ethyl were significantly improved than vehicle. Icosapent ethyl significantly increased GPR120 compared to vehicle after infarction. The effects of icosapent ethyl on superoxide and connexin43 were similar to GPR120 agonist GW9508. Besides, the effects of icosapent ethyl on oxidative‐nitrosative stress and connexin43 phosphorylation were abolished by administering AH‐7614, an inhibitor of GPR120. SIN‐1 abolished the Cx43 phosphorylation of icosapent ethyl without affecting GPR120 levels. Taken together, chronic use of icosapent ethyl after infarction is associated with up‐regulation of connexin43 phosphorylation through a GPR120‐dependent antioxidant pathway and thus plays a beneficial effect on arrhythmogenic response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Syue-Yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - De-Wei Wu
- Tainan First Senior High School, Tainan, Taiwan
| | | | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
35
|
Juang JMJ, Binda A, Lee SJ, Hwang JJ, Chen WJ, Liu YB, Lin LY, Yu CC, Ho LT, Huang HC, Chen CYJ, Lu TP, Lai LC, Yeh SFS, Lai LP, Chuang EY, Rivolta I, Antzelevitch C. GSTM3 variant is a novel genetic modifier in Brugada syndrome, a disease with risk of sudden cardiac death. EBioMedicine 2020; 57:102843. [PMID: 32645615 PMCID: PMC7341360 DOI: 10.1016/j.ebiom.2020.102843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is a rare inherited disease causing sudden cardiac death (SCD). Copy number variants (CNVs) can contribute to disease susceptibility, but their role in Brugada syndrome (BrS) is unknown. We aimed to identify a CNV associated with BrS and elucidated its clinical implications. METHODS We enrolled 335 unrelated BrS patients from 2000 to 2018 in the Taiwanese population. Microarray and exome sequencing were used for discovery phase whereas Sanger sequencing was used for the validation phase. HEK cells and zebrafish were used to characterize the function of the CNV variant. FINDINGS A copy number deletion of GSTM3 (chr1:109737011-109737301, hg38) containing the eighth exon and the transcription stop codon was observed in 23.9% of BrS patients versus 0.8% of 15,829 controls in Taiwan Biobank (P < 0.001), and 0% in gnomAD. Co-segregation analysis showed that the co-segregation rate was 20%. Patch clamp experiments showed that in an oxidative stress environment, GSTM3 down-regulation leads to a significant decrease of cardiac sodium channel current amplitude. Ventricular arrhythmia incidence was significantly greater in gstm3 knockout zebrafish at baseline and after flecainide, but was reduced after quinidine, consistent with clinical observations. BrS patients carrying the GSTM3 deletion had higher rates of sudden cardiac arrest and syncope compared to those without (OR: 3.18 (1.77-5.74), P<0.001; OR: 1.76 (1.02-3.05), P = 0.04, respectively). INTERPRETATION This GSTM3 deletion is frequently observed in BrS patients and is associated with reduced INa, pointing to this as a novel potential genetic modifier/risk predictor for the development of the electrocardiographic and arrhythmic manifestations of BrS. FUNDING This work was supported by the Ministry of Science and Technology (107-2314-B-002-261-MY3 to J.M.J. Juang), and by grants HL47678, HL138103 and HL152201 from the National Institutes of Health to CA.
Collapse
Affiliation(s)
- Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Anna Binda
- University of Milano Bicocca School of Medicine and Surgery, Via Cadore, 48, 20900 Monza (MB), Italy
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Juey-Jen Hwang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Jone Chen
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Bin Liu
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lian-Yu Lin
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Chieh Yu
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Ting Ho
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui-Chun Huang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Yu Julius Chen
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan; Department of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shih-Fan Sherri Yeh
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Hsin-Chu branch and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ling-Ping Lai
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ilaria Rivolta
- University of Milano Bicocca School of Medicine and Surgery, Via Cadore, 48, 20900 Monza (MB), Italy
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research and Lankenau Heart Institute, Wynnewood, PA and Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Redox-Active Drug, MnTE-2-PyP 5+, Prevents and Treats Cardiac Arrhythmias Preserving Heart Contractile Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4850697. [PMID: 32273944 PMCID: PMC7115175 DOI: 10.1155/2020/4850697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/11/2020] [Indexed: 01/06/2023]
Abstract
Background Cardiomyopathies remain among the leading causes of death worldwide, despite all efforts and important advances in the development of cardiovascular therapeutics, demonstrating the need for new solutions. Herein, we describe the effects of the redox-active therapeutic Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, AEOL10113, BMX-010 (MnTE-2-PyP5+), on rat heart as an entry to new strategies to circumvent cardiomyopathies. Methods Wistar rats weighing 250-300 g were used in both in vitro and in vivo experiments, to analyze intracellular Ca2+ dynamics, L-type Ca2+ currents, Ca2+ spark frequency, intracellular reactive oxygen species (ROS) levels, and cardiomyocyte and cardiac contractility, in control and MnTE-2-PyP5+-treated cells, hearts, or animals. Cells and hearts were treated with 20 μM MnTE-2-PyP5+ and animals with 1 mg/kg, i.p. daily. Additionally, we performed electrocardiographic and echocardiographic analysis. Results Using isolated rat cardiomyocytes, we observed that MnTE-2-PyP5+ reduced intracellular Ca2+ transient amplitude, without altering cell contractility. Whereas MnTE-2-PyP5+ did not alter basal ROS levels, it was efficient in modulating cardiomyocyte redox state under stress conditions; MnTE-2-PyP5+ reduced Ca2+ spark frequency and increased sarcoplasmic reticulum (SR) Ca2+ load. Accordingly, analysis of isolated perfused rat hearts showed that MnTE-2-PyP5+ preserves cardiac function, increases SR Ca2+ load, and reduces arrhythmia index, indicating an antiarrhythmic effect. In vivo experiments showed that MnTE-2-PyP5+ treatment increased Ca2+ transient, preserved cardiac ejection fraction, and reduced arrhythmia index and duration. MnTE-2-PyP5+ was effective both to prevent and to treat cardiac arrhythmias. Conclusion MnTE-2-PyP5+ prevents and treats cardiac arrhythmias in rats. In contrast to most antiarrhythmic drugs, MnTE-2-PyP5+ preserves cardiac contractile function, arising, thus, as a prospective therapeutic for improvement of cardiac arrhythmia treatment.
Collapse
|
37
|
Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, Emdin M, Giannoni A. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur J Prev Cardiol 2020; 27:494-510. [DOI: 10.1177/2047487319870344] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Both oxidative stress and inflammation are enhanced in chronic heart failure. Dysfunction of cardiac mitochondria is a hallmark of heart failure and a leading cause of oxidative stress, which in turn exerts detrimental effects on cellular components, including mitochondria themselves, thus generating a vicious circle. Oxidative stress also causes myocardial tissue damage and inflammation, contributing to heart failure progression. Furthermore, a subclinical inflammatory state may be caused by heart failure comorbidities such as obesity, diabetes mellitus or sleep apnoeas. Some markers of both oxidative stress and inflammation are enhanced in chronic heart failure and hold prognostic significance. For all these reasons, antioxidants or anti-inflammatory drugs may represent interesting additional therapies for subjects either at high risk or with established heart failure. Nonetheless, only a few clinical trials on antioxidants have been carried out so far, with several disappointing results except for vitamin C, elamipretide and coenzyme Q10. With regard to anti-inflammatory drugs, only preliminary data on the interleukin-1 antagonist anakinra are currently available. Therefore, a comprehensive, deep understanding of our current knowledge on oxidative stress and inflammation in chronic heart failure is key to providing some suggestions for future research on this topic.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Chiara Borrelli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Luigi F Saccaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
38
|
Chen Y, Liu H, Huang H, Ma Y, Wang R, Hu Y, Zheng X, Chen C, Tang H. Squid Ink Polysaccharides Protect Human Fibroblast Against Oxidative Stress by Regulating NADPH Oxidase and Connexin43. Front Pharmacol 2020; 10:1574. [PMID: 32009967 PMCID: PMC6978904 DOI: 10.3389/fphar.2019.01574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Oxidation injury to skin is one of the main reasons for skin aging. The aim of the present study was to explore the protective effect of squid ink polysaccharides and its mechanism of action against H2O2-induced dermal fibroblast damage. Our results show that squid ink polysaccharides effectively reduce the fibroblast oxidative damage mediated by the up-regulation of NADPH oxidase and Connexin43. Concurrently, squid ink polysaccharides decrease the ROS induced up-regulation of MMP1 and MMP9 to decrease MMP-mediated skin aging. Therefore, we hypothesize that squid ink polysaccharides play an antioxidant role by inhibiting the expression of NADPH oxidase and connexin43. This provides a new target for the effective clinical prevention and treatment of oxidative skin damage.
Collapse
Affiliation(s)
- Ying Chen
- Department of Dermatology, Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.,Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Huazhong Liu
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, China
| | - Hao Huang
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Yuetang Ma
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Ruihua Wang
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Yong Hu
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Xiufen Zheng
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Chunmei Chen
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Hongfeng Tang
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| |
Collapse
|
39
|
Dimos A, Xanthopoulos A, Papamichalis M, Bourazana A, Tavoularis D, Skoularigis J, Triposkiadis F. Sudden Arrhythmic Death at the Higher End of the Heart Failure Spectrum. Angiology 2019; 71:389-396. [DOI: 10.1177/0003319719896475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The risk of sudden cardiac death (SCD) is high in heart failure (HF) patients. Sudden arrhythmic death (SAD) is a frequent cause of exit in HF patients at the lower end of the HF spectrum, and implantable cardioverter–defibrillators have been recommended to prevent these life-threatening rhythm disturbances in select patients. However, less is known regarding the cause of SCD in patients at the upper end of the HF spectrum, despite the fact that the majority of out-of-hospital SCD victims have unknown or near-normal/normal left ventricular ejection fraction (LVEF). In this review, we report the epidemiology, summarize the mechanisms, discuss the diagnostic challenges, and propose a stepwise approach for the prevention of SAD in HF with near-normal/normal LVEF.
Collapse
Affiliation(s)
- Apostolos Dimos
- Department of Cardiology, University General Hospital of Larissa, Larisa, Greece
| | - Andrew Xanthopoulos
- Department of Cardiology, University General Hospital of Larissa, Larisa, Greece
| | - Michail Papamichalis
- Department of Cardiology, University General Hospital of Larissa, Larisa, Greece
| | - Angeliki Bourazana
- Department of Cardiology, University General Hospital of Larissa, Larisa, Greece
| | - Dimitrios Tavoularis
- Department of Cardiology, University General Hospital of Larissa, Larisa, Greece
| | - John Skoularigis
- Department of Cardiology, University General Hospital of Larissa, Larisa, Greece
| | | |
Collapse
|
40
|
Murphy KR, Baggett B, Cooper LL, Lu Y, O-Uchi J, Sedivy JM, Terentyev D, Koren G. Enhancing Autophagy Diminishes Aberrant Ca 2+ Homeostasis and Arrhythmogenesis in Aging Rabbit Hearts. Front Physiol 2019; 10:1277. [PMID: 31636573 PMCID: PMC6787934 DOI: 10.3389/fphys.2019.01277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Aim Aging in humans is associated with a 10–40-fold greater incidence of sudden cardiac death from malignant tachyarrhythmia. We have reported that thiol oxidation of ryanodine receptors (RyR2s) by mitochondria-derived reactive oxygen species (mito-ROS) contributes to defective Ca2+ homeostasis in cardiomyocytes (CMs) from aging rabbit hearts. However, mechanisms responsible for the increase in mito-ROS in the aging heart remain poorly understood. Here we test the hypothesis that age-associated decrease in autophagy is a major contributor to enhanced mito-ROS production and thereby pro-arrhythmic disturbances in Ca2+ homeostasis. Methods and Results Ventricular tissues from aged rabbits displayed significant downregulation of proteins involved in mitochondrial autophagy compared with tissues from young controls. Blocking autophagy with chloroquine increased total ROS production in primary rabbit CMs and mito-ROS production in HL-1 CMs. Furthermore, chloroquine treatment of HL-1 cells depolarized mitochondrial membrane potential (Δψm) to 50% that of controls. Blocking autophagy significantly increased oxidation of RyR2, resulting in enhanced propensity to pro-arrhythmic spontaneous Ca2+ release under β-adrenergic stimulation. Aberrant Ca2+ release was abolished by treatment with the mito-ROS scavenger mito-TEMPO. Importantly, the autophagy enhancer Torin1 and ATG7 overexpression reduced the rate of mito-ROS production and restored both Δψm and defective Ca2+ handling in CMs derived from aged rabbit hearts. Conclusion Decreased autophagy is a major cause of increased mito-ROS production in the aging heart. Our data suggest that promoting autophagy may reduce pathologic mito-ROS during normal aging and reduce pro-arrhythmic spontaneous Ca2+ release via oxidized RyR2s.
Collapse
Affiliation(s)
- Kevin R Murphy
- Cardiovascular Research Center at the Cardiovascular Institute, Division of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Brett Baggett
- Cardiovascular Research Center at the Cardiovascular Institute, Division of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Leroy L Cooper
- Cardiovascular Research Center at the Cardiovascular Institute, Division of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Department of Biology, Vassar College, Poughkeepsie, NY, United States
| | - Yichun Lu
- Cardiovascular Research Center at the Cardiovascular Institute, Division of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jin O-Uchi
- Cardiovascular Research Center at the Cardiovascular Institute, Division of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - John M Sedivy
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Dmitry Terentyev
- Cardiovascular Research Center at the Cardiovascular Institute, Division of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Gideon Koren
- Cardiovascular Research Center at the Cardiovascular Institute, Division of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
41
|
Castañeda D, Gabani M, Choi SK, Nguyen QM, Chen C, Mapara A, Kassan A, Gonzalez AA, Ait-Aissa K, Kassan M. Targeting Autophagy in Obesity-Associated Heart Disease. Obesity (Silver Spring) 2019; 27:1050-1058. [PMID: 30938942 DOI: 10.1002/oby.22455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/30/2019] [Indexed: 01/18/2023]
Abstract
Over the past three decades, the increasing rates of obesity have led to an alarming obesity epidemic worldwide. Obesity is associated with an increased risk of cardiovascular diseases; thus, it is essential to define the molecular mechanisms by which obesity affects heart function. Individuals with obesity and overweight have shown changes in cardiac structure and function, leading to cardiomyopathy, hypertrophy, atrial fibrillation, and arrhythmia. Autophagy is a highly conserved recycling mechanism that delivers proteins and damaged organelles to lysosomes for degradation. In the hearts of patients and mouse models with obesity, this process is impaired. Furthermore, it has been shown that autophagy flux restoration in obesity models improves cardiac function. Therefore, autophagy may play an important role in mitigating the adverse effects of obesity on the heart. Throughout this review, we will discuss the benefits of autophagy on the heart in obesity and how regulating autophagy might be a therapeutic tool to reduce the risk of obesity-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Diana Castañeda
- Department of Biological Sciences, California State University, Los Angeles, California, USA
| | - Mohanad Gabani
- Cardiovascular Division, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Cheng Chen
- Department of Emergency and Critical Care, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China, Shanghai
| | - Ayesha Mapara
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA
| | - Adam Kassan
- School of Pharmacy, West Coast University, Los Angeles, California, USA
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karima Ait-Aissa
- Cardiovascular Division, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Modar Kassan
- Cardiovascular Division, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
42
|
Edling CE, Fazmin IT, Chadda KR, Ahmad S, Valli H, Huang CLH, Jeevaratnam K. Atrial Transcriptional Profiles of Molecular Targets Mediating Electrophysiological Function in Aging and Pgc-1β Deficient Murine Hearts. Front Physiol 2019; 10:497. [PMID: 31068841 PMCID: PMC6491872 DOI: 10.3389/fphys.2019.00497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/08/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Deficiencies in the transcriptional co-activator, peroxisome proliferative activated receptor, gamma, coactivator-1β are implicated in deficient mitochondrial function. The latter accompanies clinical conditions including aging, physical inactivity, obesity, and diabetes. Recent electrophysiological studies reported that Pgc-1β-/- mice recapitulate clinical age-dependent atrial pro-arrhythmic phenotypes. They implicated impaired chronotropic responses to adrenergic challenge, compromised action potential (AP) generation and conduction despite normal AP recovery timecourses and background resting potentials, altered intracellular Ca2+ homeostasis, and fibrotic change in the observed arrhythmogenicity. OBJECTIVE We explored the extent to which these age-dependent physiological changes correlated with alterations in gene transcription in murine Pgc-1β-/- atria. METHODS AND RESULTS RNA isolated from murine atrial tissue samples from young (12-16 weeks) and aged (>52 weeks of age), wild type (WT) and Pgc-1β-/- mice were studied by pre-probed quantitative PCR array cards. We examined genes encoding sixty ion channels and other strategic atrial electrophysiological proteins. Pgc-1β-/- genotype independently reduced gene transcription underlying Na+-K+-ATPase, sarcoplasmic reticular Ca2+-ATPase, background K+ channel and cholinergic receptor function. Age independently decreased Na+-K+-ATPase and fibrotic markers. Both factors interacted to alter Hcn4 channel activity underlying atrial automaticity. However, neither factor, whether independently or interactively, affected transcription of cardiac Na+, voltage-dependent K+ channels, surface or intracellular Ca2+ channels. Nor were gap junction channels, β-adrenergic receptors or transforming growth factor-β affected. CONCLUSION These findings limit the possible roles of gene transcriptional changes in previously reported age-dependent pro-arrhythmic electrophysiologial changes observed in Pgc-1β-/- atria to an altered Ca2+-ATPase (Atp2a2) expression. This directly parallels previously reported arrhythmic mechanism associated with p21-activated kinase type 1 deficiency. This could add to contributions from the direct physiological outcomes of mitochondrial dysfunction, whether through reactive oxygen species (ROS) production or altered Ca2+ homeostasis.
Collapse
Affiliation(s)
- Charlotte E. Edling
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim T. Fazmin
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Karan R. Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom,School of Medicine, Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia,*Correspondence: Kamalan Jeevaratnam,
| |
Collapse
|
43
|
Effect of mito-TEMPO, a mitochondria-targeted antioxidant, in rats with neuropathic pain. Neuroreport 2019; 29:1275-1281. [PMID: 30052549 DOI: 10.1097/wnr.0000000000001105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The therapeutic effects of mitochondria-targeted antioxidants have been demonstrated in many pathological conditions, but their effect on neuropathic pain remains unclear. The objective was to study the therapeutic effects and mechanisms of mito-TEMPO (MT), as a nitroxide conjugated with a triphenylphosphonium moiety, on neuropathic pain in rats. Rats were randomly assigned to sham control (sham), chronic constrictive injury (CCI) or MT treatment groups (sham+MT and CCI+MT). All animals received CCI of the left sciatic nerve except those in the sham group. Overall, 0.7 mg/kg of MT was intraperitoneally injected once daily for 14 consecutive days starting from day 7 after surgery. Mechanical paw withdrawal threshold and thermal paw withdrawal latency were detected to assess pain behavior. Malondialdehyde and reduced glutathione content and total superoxide dismutase activity of serum and spinal cord tissues were estimated to assess oxidative stress levels. Mitochondrial morphology and dynamin-related proteins were used to evaluate mitochondrial function, such as fusion [Mitofusin (Mfn) and optic atrophy 1 gene protein (OPA1)] and fission [dynamin-related protein (DRP1) and Fis1]. Paw withdrawal threshold and thermal paw withdrawal latency were significantly increased in the CCI+MT group compared with the CCI group. The malondialdehyde content was decreased whereas glutathione content and superoxide dismutase activity were increased in the serum of CCI+MT rats. Furthermore, MT substantially attenuated the elevated number and decreased size of mitochondria induced by CCI. Finally, MT significantly increased expressions of Mfn1 and OPA1 and significantly decreased expression of DRP1 and Fis1. The mitochondria-targeted antioxidant MT relieved neuropathic pain induced by CCI by protecting mitochondria against oxidative stress injury.
Collapse
|
44
|
Yu X, He W, Xie J, He B, Luo D, Wang X, Jiang H, Lu Z. Selective ablation of ligament of Marshall inhibits ventricular arrhythmias during acute myocardial infarction: Possible mechanisms. J Cardiovasc Electrophysiol 2018; 30:374-382. [PMID: 30516302 DOI: 10.1111/jce.13802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaomei Yu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Wenbo He
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Jing Xie
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Bo He
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Da Luo
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Xiaoying Wang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Hong Jiang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Zhibing Lu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| |
Collapse
|
45
|
Egan Benova T, Viczenczova C, Szeiffova Bacova B, Knezl V, Dosenko V, Rauchova H, Zeman M, Reiter RJ, Tribulova N. Obesity-associated alterations in cardiac connexin-43 and PKC signaling are attenuated by melatonin and omega-3 fatty acids in female rats. Mol Cell Biochem 2018; 454:191-202. [PMID: 30446908 DOI: 10.1007/s11010-018-3463-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022]
Abstract
We aimed to explore whether specific high-sucrose intake in older female rats affects myocardial electrical coupling protein, connexin-43 (Cx43), protein kinase C (PKC) signaling, miR-1 and miR-30a expression, and susceptibility of the heart to malignant arrhythmias. Possible benefit of the supplementation with melatonin (40 µg/ml/day) and omega-3 polyunsaturated fatty acids (Omacor, 25 g/kg of rat chow) was examined as well. Results have shown that 8 weeks lasting intake of 30% sucrose solution increased serum cholesterol, triglycerides, body weight, heart weight, and retroperitoneal adipose tissues. It was accompanied by downregulation of cardiac Cx43 and PKCε signaling along with an upregulation of myocardial PKCδ and miR-30a rendering the heart prone to ventricular arrhythmias. There was a clear benefit of melatonin or omega-3 PUFA supplementation due to their antiarrhythmic effects associated with the attenuation of myocardial Cx43, PKC, and miR-30a abnormalities as well as adiposity. The potential impact of these findings may be considerable, and suggests that high-sucrose intake impairs myocardial signaling mediated by Cx43 and PKC contributing to increased susceptibility of the older obese female rat hearts to malignant arrhythmias.
Collapse
Affiliation(s)
- Tamara Egan Benova
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bartislava, Slovakia
| | - Csilla Viczenczova
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bartislava, Slovakia
| | - Barbara Szeiffova Bacova
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bartislava, Slovakia
| | - Vladimir Knezl
- Center of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Victor Dosenko
- State Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Hana Rauchova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, 78229, TX, USA
| | - Narcis Tribulova
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bartislava, Slovakia.
| |
Collapse
|
46
|
Prado NJ, Casarotto M, Calvo JP, Mazzei L, Ponce Zumino AZ, García IM, Cuello-Carrión FD, Fornés MW, Ferder L, Diez ER, Manucha W. Antiarrhythmic effect linked to melatonin cardiorenal protection involves AT 1 reduction and Hsp70-VDR increase. J Pineal Res 2018; 65:e12513. [PMID: 29851143 DOI: 10.1111/jpi.12513] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022]
Abstract
Lethal ventricular arrhythmias increase in patients with chronic kidney disease that suffer an acute coronary event. Chronic kidney disease induces myocardial remodeling, oxidative stress, and arrhythmogenesis. A manifestation of the relationship between kidney and heart is the concomitant reduction in vitamin D receptor (VDR) and the increase in angiotensin II receptor type 1 (AT1 ). Melatonin has renal and cardiac protective actions. One potential mechanism is the increase in the heat shock protein 70 (Hsp70)-an antioxidant factor. We aim to determine the mechanisms involved in melatonin (Mel) prevention of kidney damage and arrhythmogenic heart remodeling. Unilateral ureteral-obstruction (UUO) and sham-operated rats were treated with either melatonin (4 mg/kg/day) or vehicle for 15 days. Hearts and kidneys from obstructed rats showed a reduction in VDR and Hsp70. Associated with AT1 up-regulation in the kidneys and the heart of UUO rats also increased oxidative stress, fibrosis, apoptosis, mitochondrial edema, and dilated crests. Melatonin prevented these changes and ventricular fibrillation during reperfusion. The action potential lengthened and hyperpolarized in melatonin-treated rats throughout the experiment. We conclude that melatonin prevents renal damage and arrhythmogenic myocardial remodeling during unilateral ureteral obstruction due to a decrease in oxidative stress/fibrosis/apoptosis associated with AT1 reduction and Hsp70-VDR increase.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Apoptosis/drug effects
- Fibrosis/metabolism
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- In Situ Nick-End Labeling
- In Vitro Techniques
- Kidney/metabolism
- Male
- Melatonin/therapeutic use
- Microscopy, Electron
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Myocardium/metabolism
- NADPH Oxidases/metabolism
- Rats
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Tachycardia, Ventricular/drug therapy
- Tachycardia, Ventricular/metabolism
Collapse
Affiliation(s)
- Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Mariana Casarotto
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Juan Pablo Calvo
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Luciana Mazzei
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Amira Zulma Ponce Zumino
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Isabel Mercedes García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Fernando Darío Cuello-Carrión
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Miguel Walter Fornés
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Department of Pediatrics, Nephrology Division, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Emiliano Raúl Diez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
47
|
Zhang Y, Guallar E, Ashar FN, Longchamps RJ, Castellani CA, Lane J, Grove ML, Coresh J, Sotoodehnia N, Ilkhanoff L, Boerwinkle E, Pankratz N, Arking DE. Association between mitochondrial DNA copy number and sudden cardiac death: findings from the Atherosclerosis Risk in Communities study (ARIC). Eur Heart J 2018; 38:3443-3448. [PMID: 29020391 DOI: 10.1093/eurheartj/ehx354] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
Abstract
Aims Sudden cardiac death (SCD) is a major public health burden. Mitochondrial dysfunction has been implicated in a wide range of cardiovascular diseases including cardiomyopathy, heart failure, and arrhythmias, but it is unknown if it also contributes to SCD risk. We sought to examine the prospective association between mtDNA copy number (mtDNA-CN), a surrogate marker of mitochondrial function, and SCD risk. Methods and results We measured baseline mtDNA-CN in 11 093 participants from the Atherosclerosis Risk in Communities (ARIC) study. mtDNA copy number was calculated from probe intensities of mitochondrial single nucleotide polymorphisms (SNP) on the Affymetrix Genome-Wide Human SNP Array 6.0. Sudden cardiac death was defined as a sudden pulseless condition presumed due to a ventricular tachyarrhythmia in a previously stable individual without evidence of a non-cardiac cause of cardiac arrest. Sudden cardiac death cases were reviewed and adjudicated by an expert committee. During a median follow-up of 20.4 years, we observed 361 SCD cases. After adjusting for age, race, sex, and centre, the hazard ratio for SCD comparing the 1st to the 5th quintiles of mtDNA-CN was 2.24 (95% confidence interval 1.58-3.19; P-trend <0.001). When further adjusting for traditional cardiovascular disease risk factors, prevalent coronary heart disease, heart rate, QT interval, and QRS duration, the association remained statistically significant. Spline regression models showed that the association was approximately linear over the range of mtDNA-CN values. No apparent interaction by race or by sex was detected. Conclusion In this community-based prospective study, mtDNA-CN in peripheral blood was inversely associated with the risk of SCD.
Collapse
Affiliation(s)
- Yiyi Zhang
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 2024 E. Monument St.. Room 2-645, Baltimore, MD 21205, USA
| | - Eliseo Guallar
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 2024 E. Monument St.. Room 2-645, Baltimore, MD 21205, USA
| | - Foram N Ashar
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 459, Baltimore, MD 21205, USA
| | - Ryan J Longchamps
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 459, Baltimore, MD 21205, USA
| | - Christina A Castellani
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 459, Baltimore, MD 21205, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota, Room 1-156, Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Josef Coresh
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 2024 E. Monument St.. Room 2-645, Baltimore, MD 21205, USA
| | - Nona Sotoodehnia
- Department of Medicine, Division of Cardiology, Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, Washington 98101, USA
| | - Leonard Ilkhanoff
- Department of Medicine, Division of Cardiology, Electrophysiology Section, Northwestern University, 676 N. St. Clair, Suite 600, Chicago, Illinois, USA.,Inova Heart and Vascular Institute, 3300 Gallows Rd, Falls Church, VA 22042, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Baylor College of Medicine, Human Genome Sequencing Center, One Baylor Plaza, Alkek N1419, MS: BCM226, Houston, TX 77030-3411, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Room 1-156, Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 459, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Ahmad S, Valli H, Chadda KR, Cranley J, Jeevaratnam K, Huang CLH. Ventricular pro-arrhythmic phenotype, arrhythmic substrate, ageing and mitochondrial dysfunction in peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β -/-) murine hearts. Mech Ageing Dev 2018; 173:92-103. [PMID: 29763629 PMCID: PMC6004599 DOI: 10.1016/j.mad.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/19/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors. MATERIALS AND METHODS Pro-arrhythmic properties in electrocardiographic and intracellular recordings were compared in young and aged, peroxisome proliferator-activated receptor-γ coactivator-1β knockout (Pgc-1β-/-) and wild type (WT), Langendorff-perfused murine hearts, during regular and programmed stimulation (PES), comparing results by two-way ANOVA. RESULTS AND DISCUSSION Young and aged Pgc-1β-/- showed higher frequencies and durations of arrhythmic episodes through wider PES coupling-interval ranges than WT. Both young and old, regularly-paced, Pgc-1β-/- hearts showed slowed maximum action potential (AP) upstrokes, (dV/dt)max (∼157 vs. 120-130 V s-1), prolonged AP latencies (by ∼20%) and shortened refractory periods (∼58 vs. 51 ms) but similar AP durations (∼50 ms at 90% recovery) compared to WT. However, Pgc-1β-/- genotype and age each influenced extrasystolic AP latencies during PES. Young and aged WT ventricles displayed distinct, but Pgc-1β-/- ventricles displayed similar dependences of AP latency upon (dV/dt)max resembling aged WT. They also independently increased myocardial fibrosis. AP wavelengths combining activation and recovery terms paralleled contrasting arrhythmic incidences in Pgc-1β-/- and WT hearts. Mitochondrial dysfunction thus causes pro-arrhythmic Pgc-1β-/- phenotypes by altering AP conduction through reducing (dV/dt)max and causing age-dependent fibrotic change.
Collapse
Affiliation(s)
- Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Karan R Chadda
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom
| | - James Cranley
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom; PU-RCSI School of Medicine, Perdana University, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom.
| |
Collapse
|
49
|
Dey S, DeMazumder D, Sidor A, Foster DB, O'Rourke B. Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure. Circ Res 2018; 123:356-371. [PMID: 29898892 DOI: 10.1161/circresaha.118.312708] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Despite increasing prevalence and incidence of heart failure (HF), therapeutic options remain limited. In early stages of HF, sudden cardiac death (SCD) from ventricular arrhythmias claims many lives. Reactive oxygen species (ROS) have been implicated in both arrhythmias and contractile dysfunction. However, little is known about how ROS in specific subcellular compartments contribute to HF or SCD pathophysiology. The role of ROS in chronic proteome remodeling has not been explored. OBJECTIVE We will test the hypothesis that elevated mitochondrial ROS (mROS) is a principal source of oxidative stress in HF and in vivo reduction of mROS mitigates SCD. METHODS AND RESULTS Using a unique guinea pig model of nonischemic HF that recapitulates important features of human HF, including prolonged QT interval and high incidence of spontaneous arrhythmic SCD, compartment-specific ROS sensors revealed increased mROS in resting and contracting left ventricular myocytes in failing hearts. Importantly, the mitochondrially targeted antioxidant (MitoTEMPO) normalized global cellular ROS. Further, in vivo MitoTEMPO treatment of HF animals prevented and reversed HF, eliminated SCD by decreasing dispersion of repolarization and ventricular arrhythmias, suppressed chronic HF-induced remodeling of the expression proteome, and prevented specific phosphoproteome alterations. Pathway analysis of mROS-sensitive networks indicated that increased mROS in HF disrupts the normal coupling between cytosolic signals and nuclear gene programs driving mitochondrial function, antioxidant enzymes, Ca2+ handling, and action potential repolarization, suggesting new targets for therapeutic intervention. CONCLUSIONS mROS drive both acute emergent events, such as electrical instability responsible for SCD, and those that mediate chronic HF remodeling, characterized by suppression or altered phosphorylation of metabolic, antioxidant, and ion transport protein networks. In vivo reduction of mROS prevents and reverses electrical instability, SCD, and HF. Our findings support the feasibility of targeting the mitochondria as a potential new therapy for HF and SCD while identifying new mROS-sensitive protein modifications.
Collapse
Affiliation(s)
- Swati Dey
- From the Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (S.D., D.D., A.S., D.B.F., B.O.)
| | - Deeptankar DeMazumder
- From the Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (S.D., D.D., A.S., D.B.F., B.O.).,Division of Cardiology, Department of Medicine, University of Cincinnati, OH (D.D.)
| | - Agnieszka Sidor
- From the Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (S.D., D.D., A.S., D.B.F., B.O.)
| | - D Brian Foster
- From the Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (S.D., D.D., A.S., D.B.F., B.O.)
| | - Brian O'Rourke
- From the Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (S.D., D.D., A.S., D.B.F., B.O.)
| |
Collapse
|
50
|
Luo B, Yan Y, Zeng Z, Zhang Z, Liu H, Liu H, Li J, Huang W, Wu J, He Y. Connexin 43 reduces susceptibility to sympathetic atrial fibrillation. Int J Mol Med 2018; 42:1125-1133. [PMID: 29717772 DOI: 10.3892/ijmm.2018.3648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia reported in clinical practice. Connexin 43 (Cx43) is a member of the connexin protein family, which serves important roles in signal transduction in vivo. The aim of the present study was to investigate the role of Cx43 in the induction and maintenance of atrial fibrillation by using an animal model of sympathomimetic atrial fibrillation. Cx43 was successfully knocked down in the myocardium with gene‑specific small interfering (si)RNA via lentiviral infection. A total of 25 dogs were randomly and evenly divided into five groups: Normal (N), rapid atrial pacing (RAP), isoproterenol (ISO) + RAP, RAP + Cx43 siRNA and ISO + RAP + Cx43 siRNA. The mRNA and protein levels, as well as the distribution of Cx43 on the cell membrane, were gradually decreased in each group compared with the N group following treatment (P<0.05). The induction rate of the atrial effective refractory period was not significantly affected in the RAP and RAP + Cx43 siRNA groups, whereas it was significantly reduced in the ISO + RAP and ISO + RAP + Cx43 siRNA groups compared with the N group (P<0.05). The induction rate of AF was gradually increased in the RAP + Cx43 siRNA, ISO + RAP and ISO + RAP + Cx43 siRNA groups compared with the N group (P<0.05). The expression of nerve growth factor (NGF) and tyrosine hydroxylase (TH) was gradually increased in the ISO + RAP and ISO + RAP + Cx43 siRNA groups compared with their respective controls (RAP and RAP + Cx43 siRNA groups, respectively). However, no significant difference in the levels of NGF and TH was observed between the RAP, RAP + Cx43 siRNA, ISO + RAP and ISO + RAP + Cx43 siRNA groups. The mitochondrial morphology in each group was notably altered compared with the N group. The mitochondrial reactive oxygen species production and apoptotic index were gradually increased in each group compared with the N group (P<0.05). The results of the present study suggest that Cx43 reduces susceptibility to AF. Downregulation of Cx43 mediates the induction and maintenance of sympathetic AF.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Yifei Yan
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Zhiyu Zeng
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Zhengnan Zhang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Haide Liu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Hao Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Jinyi Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Weiqiang Huang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Jiangtao Wu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Yan He
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|