1
|
Roston TM, Bezzerides VJ, Roberts JD, Abrams DJ. Management of ultrarare inherited arrhythmia syndromes. Heart Rhythm 2024:S1547-5271(24)03142-4. [PMID: 39154872 DOI: 10.1016/j.hrthm.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Ultrarare inherited arrhythmia syndromes are increasingly diagnosed as a result of increased awareness as well as increased availability and reduced cost of genetic testing. Yet by definition, their rarity and heterogeneous expression make development of evidence-based management strategies more challenging, typically employing strategies garnered from similar genetic cardiac disorders. For the most part, reliance on anecdotal experiences, expert opinion, and small retrospective cohort studies is the only means to diagnose and to treat these patients. Here we review the management of specific ultrarare inherited arrhythmic syndromes together with the genetic and molecular basis, which will become increasingly important with the development of targeted therapies to correct the biologic basis of these disorders.
Collapse
Affiliation(s)
- Thomas M Roston
- Division of Cardiology and Centre for Cardiovascular Innovation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Vassilios J Bezzerides
- Center for Cardiovascular Genetics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dominic J Abrams
- Center for Cardiovascular Genetics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
2
|
Eksi MA, Ozdemir Sahan Y, Koca S, Ozeke O. An unruly case of functional 2:1 atrioventricular block. Heart Rhythm 2024; 21:1433-1434. [PMID: 38461920 DOI: 10.1016/j.hrthm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Muhammed Ali Eksi
- Department of Pediatric Cardiology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Yasemin Ozdemir Sahan
- Department of Pediatric Cardiology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Serhat Koca
- Department of Pediatric Cardiology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Ozcan Ozeke
- Department of Cardiology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey.
| |
Collapse
|
3
|
Timothy KW, Bauer R, Larkin KA, Walsh EP, Abrams DJ, Corcia CG, Valsamakis A, Pitt GS, Dick IE, Golden A. A Natural History Study of Timothy Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307583. [PMID: 38826393 PMCID: PMC11142284 DOI: 10.1101/2024.05.20.24307583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Timothy syndrome (OMIM #601005) is a rare disease caused by variants in the gene CACNA1C . Timothy syndrome patients were first identified as having a cardiac presentation of Long QT and syndactyly of the fingers and/or toes, and an identical variant in CACNA1C , Gly406Arg. However, since this original identification, more individuals harboring diverse variants in CACNA1C have been identified and have presented with various cardiac and extra-cardiac symptoms. Furthermore, it has remained underexplored whether individuals harboring canonical Gly406Arg variants in mutually exclusive exon 8A (Timothy syndrome 1) or exon 8 (Timothy syndrome 2) have additional symptoms. Here, we describe the first Natural History Study for Timothy syndrome, providing a thorough resource describing the current understanding of disease manifestation in Timothy syndrome patients. Parents of Timothy syndrome children were queried regarding a wide-ranging set of symptoms and features via a survey. Importantly, we find that in addition to cardiac concerns, Timothy syndrome patients commonly share extra-cardiac features including neurodevelopmental impairments, hypoglycemia, and respiratory problems. Our work expands the current understanding of the disorder to better inform the care of Timothy syndrome patients.
Collapse
|
4
|
Porta-Sánchez A, Mazzanti A, Tarifa C, Kukavica D, Trancuccio A, Mohsin M, Zanfrini E, Perota A, Duchi R, Hernandez-Lopez K, Jáuregui-Abularach ME, Pergola V, Fernandez E, Bongianino R, Tavazzani E, Gambelli P, Memmi M, Scacchi S, Pavarino LF, Franzone PC, Lentini G, Filgueiras-Rama D, Galli C, Santiago DJ, Priori SG. Unexpected impairment of INa underpins reentrant arrhythmias in a knock-in swine model of Timothy syndrome. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1291-1309. [PMID: 38665938 PMCID: PMC11041658 DOI: 10.1038/s44161-023-00393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 11/15/2023] [Indexed: 04/28/2024]
Abstract
Timothy syndrome 1 (TS1) is a multi-organ form of long QT syndrome associated with life-threatening cardiac arrhythmias, the organ-level dynamics of which remain unclear. In this study, we developed and characterized a novel porcine model of TS1 carrying the causative p.Gly406Arg mutation in CACNA1C, known to impair CaV1.2 channel inactivation. Our model fully recapitulated the human disease with prolonged QT interval and arrhythmic mortality. Electroanatomical mapping revealed the presence of a functional substrate vulnerable to reentry, stemming from an unforeseen constitutional slowing of cardiac activation. This signature substrate of TS1 was reliably identified using the reentry vulnerability index, which, we further demonstrate, can be used as a benchmark for assessing treatment efficacy, as shown by testing of multiple clinical and preclinical anti-arrhythmic compounds. Notably, in vitro experiments showed that TS1 cardiomyocytes display Ca2+ overload and decreased peak INa current, providing a rationale for the arrhythmogenic slowing of impulse propagation in vivo.
Collapse
Affiliation(s)
- Andreu Porta-Sánchez
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Andrea Mazzanti
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carmen Tarifa
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Deni Kukavica
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Trancuccio
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Muhammad Mohsin
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | | | | | | | - Kevin Hernandez-Lopez
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Valerio Pergola
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Eugenio Fernandez
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Rossana Bongianino
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Elisa Tavazzani
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Patrick Gambelli
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Mirella Memmi
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Simone Scacchi
- Department of Mathematics, University of Milan, Milano, Italy
| | | | - Piero Colli Franzone
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- AVANTEA, Cremona, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Department of Mathematics, University of Milan, Milano, Italy
- Department of Mathematics, University of Pavia, Pavia, Italy
- Department of Pharmacology, University of Bari, Bari, Italy
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - David Filgueiras-Rama
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Demetrio Julián Santiago
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Silvia G. Priori
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Olleik F, Kamareddine MH, Spears J, Tse G, Liu T, Yan GX. Mexiletine: Antiarrhythmic mechanisms, emerging clinical applications and mortality. Pacing Clin Electrophysiol 2023; 46:1348-1356. [PMID: 37846818 DOI: 10.1111/pace.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Mexiletine, a class Ib antiarrhythmic drug, exhibits its major antiarrhythmic effect via inhibition of the fast and late Na+ currents in myocardial tissues that are dependent on the opening of Na+ channels for their excitation. Through a comprehensive examination of mexiletine's therapeutic benefits and potential risks, we aim to provide valuable insights that reinforce its role as a vital therapeutic option for patients with ventricular arrhythmias, long QT syndrome, and other heart rhythm disorders. This review will highlight the current understandings of the antiarrhythmic effects and rationales for recent off-label use and address the mortality and proarrhythmic effects of mexiletine utilizing published basic and clinical studies over the past five decades.
Collapse
Affiliation(s)
- Farah Olleik
- Lankenau Medical Center and Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | | | - Jenna Spears
- Lankenau Medical Center and Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Gary Tse
- Tianjin Key Laboratory of Ion-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
- Kent and Medway Medical School, Canterbury, Kent, UK
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, PR China
| | - Tong Liu
- Tianjin Key Laboratory of Ion-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Gan-Xin Yan
- Lankenau Medical Center and Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
- Fuwai Huazhong Hospital, Chinese Academy of Medical Sciences, Zhengzhou, PR China
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Jiang C, Zhang Y. Current updates on arrhythmia within Timothy syndrome: genetics, mechanisms and therapeutics. Expert Rev Mol Med 2023; 25:e17. [PMID: 37132248 PMCID: PMC10407238 DOI: 10.1017/erm.2023.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/04/2023]
Abstract
Timothy syndrome (TS), characterised by multiple system malfunction especially the prolonged corrected QT interval and synchronised appearance of hand/foot syndactyly, is an extremely rare disease affecting early life with devastating arrhythmia. In this work, firstly, the various mutations in causative gene CACNA1C encoding cardiac L-type voltage-gated calcium channel (LTCC), regard with the genetic pathogeny and nomenclature of TS are reviewed. Secondly, the expression profile and function of CACNA1C gene encoding Cav1.2 proteins, and its gain-of-function mutation in TS leading to multiple organ disease phenotypes especially arrhythmia are discussed. More importantly, we focus on the altered molecular mechanism underlying arrhythmia in TS, and discuss about how LTCC malfunction in TS can cause disorganised calcium handling with excessive intracellular calcium and its triggered dysregulated excitation-transcription coupling. In addition, current therapeutics for TS cardiac phenotypes including LTCC blockers, beta-adrenergic blocking agents, sodium channel blocker, multichannel inhibitors and pacemakers are summarised. Eventually, the research strategy using patient-specific induced pluripotent stem cells is recommended as one of the promising future directions for developing therapeutic approaches. This review updates our understanding on the research progress and future avenues to study the genetics and molecular mechanism underlying the pathogenesis of devastating arrhythmia within TS, and provides novel insights for developing therapeutic measures.
Collapse
Affiliation(s)
- Congshan Jiang
- National Regional Children's Medical Centre (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
| | - Yanmin Zhang
- National Regional Children's Medical Centre (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
- Department of Cardiology, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
| |
Collapse
|
7
|
Abstract
Cardiac alternans arises from dynamical instabilities in the electrical and calcium cycling systems of the heart, and often precedes ventricular arrhythmias and sudden cardiac death. In this review, we integrate clinical observations with theory and experiment to paint a holistic portrait of cardiac alternans: the underlying mechanisms, arrhythmic manifestations and electrocardiographic signatures. We first summarize the cellular and tissue mechanisms of alternans that have been demonstrated both theoretically and experimentally, including 3 voltage-driven and 2 calcium-driven alternans mechanisms. Based on experimental and simulation results, we describe their relevance to mechanisms of arrhythmogenesis under different disease conditions, and their link to electrocardiographic characteristics of alternans observed in patients. Our major conclusion is that alternans is not only a predictor, but also a causal mechanism of potentially lethal ventricular and atrial arrhythmias across the full spectrum of arrhythmia mechanisms that culminate in functional reentry, although less important for anatomic reentry and focal arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - James N. Weiss
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
8
|
Qi D, Li W, Quan XQ, Gao Y, Wang J, Guo L, Zhao W, Liu T, Gao C, Yan GX. Alternating Early Afterdepolarizations Underlying Bradycardia-Dependent Macroscopic T Wave and Discordant Mechanical Alternans. Circ Arrhythm Electrophysiol 2023; 16:e011453. [PMID: 36595630 DOI: 10.1161/circep.122.011453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Macroscopic T wave alternans (macro-TWA) often heralds the onset of Torsades de Pointes in patients with QT prolongation. However, the mechanisms underlying macro-TWA remain unclear. We examined the cellular and ionic basis for macro-TWA in rabbits with left ventricular hypertrophy (LVH). METHODS The renovascular hypertension model was used to induce LVH in rabbits. Action potentials were simultaneously recorded from epicardium and endocardium together with a transmural ECG and isometric contractility in arterially perfused left ventricular wedges. Late sodium current (INa-L) was recorded in single-isolated left ventricular myocytes with the whole cell patch-clamp technique. RESULTS Macro-TWA and accompanied mechanical alternans occurred spontaneously in 8 of 33 LVH rabbits (P<0.05, versus 0/15 in controls) and were induced by an INa-L enhancer ATX-II at 1 to 3 nM in additional 7. Macro-TWA and mechanical alternans occurred discordantly, that is, that longer QT interval and larger T wave were associated with weaker isometric contvractility. Alternating early afterdepolarizations in the endocardium caused macro-TWA in 12 of 15 LVH rabbits and, therefore, early afterdepolarization-dependent R-from-T extrasystoles and Torsades de Pointes always originated from the beats with longer QT and larger T wave during macro-TWA. INa-L density was significantly larger in LVH myocytes than that of control myocytes. Macro-TWA, mechanical alternans, R-from-T extrasystoles, and Torsades de Pointes were all abolished by INa-L blocker ranolazine or mexiletine. CONCLUSIONS LVH enhances INa-L density and promotes alternating early afterdepolarizations in the left ventricular endocardium that manifest as macro-TWA with discordant mechanical alternans. INa-L blockade abolishes macro-TWA, mechanical alternans, early afterdepolarization-dependent R-from-T extrasystoles, and Torsades de Pointes.
Collapse
Affiliation(s)
- Datun Qi
- Zhengzhou University People's Hospital and Central China Fuwai Hospital, Zhengzhou, China (D.Q., C.G., G.-X.Y.).,Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.)
| | - Wei Li
- Department of Cardiology, Xinhua Hospital, Shanghai, China (W.L.)
| | - Xiao-Qing Quan
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.)
| | - Yuan Gao
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.).,Henan University of Traditional Chinese Medicine, Zhengzhou, China (Y.G.)
| | - Jianyong Wang
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.).,TEDA International Cardiovascular Hospital, Tianjin, China (J.W.)
| | | | - Wenping Zhao
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.).,Affiliated Hospital of Hebei University, Baoding, China (W.Z.)
| | - Tong Liu
- Department of Cardiology, Second Hospital of Tianjin Medical University, China (T.L.)
| | - Chuanyu Gao
- Zhengzhou University People's Hospital and Central China Fuwai Hospital, Zhengzhou, China (D.Q., C.G., G.-X.Y.)
| | - Gan-Xin Yan
- Zhengzhou University People's Hospital and Central China Fuwai Hospital, Zhengzhou, China (D.Q., C.G., G.-X.Y.).,Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.).,Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (G.-X.Y.)
| |
Collapse
|
9
|
Abstract
The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.
Collapse
Affiliation(s)
- Kevin G Herold
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John W Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Kashiwa A, Makiyama T, Kohjitani H, Maurissen TL, Ishikawa T, Yamamoto Y, Wuriyanghai Y, Gao J, Huang H, Imamura T, Aizawa T, Nishikawa M, Chonabayashi K, Mishima H, Ohno S, Toyoda F, Sato S, Yoshiura KI, Takahashi K, Yoshida Y, Woltjen K, Horie M, Makita N, Kimura T. Disrupted Ca V1.2 selectivity causes overlapping long QT and Brugada syndrome phenotypes in the CACNA1C-E1115K iPS cell model. Heart Rhythm 2023; 20:89-99. [PMID: 36007726 DOI: 10.1016/j.hrthm.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND A missense mutation in the α1c subunit of voltage-gated L-type Ca2+ channel-coding CACNA1C-E1115K, located in the Ca2+ selectivity site, causes a variety of arrhythmogenic phenotypes. OBJECTIVE We aimed to investigate the electrophysiological features and pathophysiological mechanisms of CACNA1C-E1115K in patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs). METHODS We generated iPSCs from a patient carrying heterozygous CACNA1C-E1115K with overlapping phenotypes of long QT syndrome, Brugada syndrome, and mild cardiac dysfunction. Electrophysiological properties were investigated using iPSC-CMs. We used iPSCs from a healthy individual and an isogenic iPSC line corrected using CRISPR-Cas9-mediated gene editing as controls. A mathematical E1115K-CM model was developed using a human ventricular cell model. RESULTS Patch-clamp analysis revealed that E1115K-iPSC-CMs exhibited reduced peak Ca2+ current density and impaired Ca2+ selectivity with an increased permeability to monovalent cations. Consequently, E1115K-iPSC-CMs showed decreased action potential plateau amplitude, longer action potential duration (APD), and a higher frequency of early afterdepolarization compared with controls. In optical recordings examining the antiarrhythmic drug effect, late Na+ channel current (INaL) inhibitors (mexiletine and GS-458967) shortened APDs specifically in E1115K-iPSC-CMs. The AP-clamp using a voltage command obtained from E1115K-iPSC-CMs with lower action potential plateau amplitude and longer APD confirmed the upregulation of INaL. An in silico study recapitulated the in vitro electrophysiological properties. CONCLUSION Our iPSC-based analysis in CACNA1C-E1115K with disrupted CaV1.2 selectivity demonstrated that the aberrant currents through the mutant channels carried by monovalent cations resulted in specific action potential changes, which increased endogenous INaL, thereby synergistically contributing to the arrhythmogenic phenotype.
Collapse
Affiliation(s)
- Asami Kashiwa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Community Medicine Supporting System, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Hirohiko Kohjitani
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Thomas L Maurissen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yuta Yamamoto
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yimin Wuriyanghai
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jingshan Gao
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hai Huang
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiko Imamura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takanori Aizawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Misato Nishikawa
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kazuhisa Chonabayashi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Seiichi Sato
- Division of Pediatric Cardiology & Pediatric Intensive Care Unit, Okinawa Prefectural Nanbu Medical Center & Children's Medical Center, Haebaru, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Yoshinori Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Bamgboye MA, Traficante MK, Owoyemi J, DiSilvestre D, Vieira DCO, Dick IE. Impaired Ca V1.2 inactivation reduces the efficacy of calcium channel blockers in the treatment of LQT8. J Mol Cell Cardiol 2022; 173:92-100. [PMID: 36272554 PMCID: PMC10583761 DOI: 10.1016/j.yjmcc.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the CaV1.2 L-type calcium channel can cause a profound form of long-QT syndrome known as long-QT type 8 (LQT8), which results in cardiac arrhythmias that are often fatal in early childhood. A growing number of such pathogenic mutations in CaV1.2 have been identified, increasing the need for targeted therapies. As many of these mutations reduce channel inactivation; resulting in excess Ca2+ entry during the action potential, calcium channel blockers (CCBs) would seem to represent a promising treatment option. Yet CCBs have been unsuccessful in the treatment of LQT8. Here, we demonstrate that this lack of efficacy likely stems from the impact of the mutations on CaV1.2 channel inactivation. As CCBs are known to preferentially bind to the inactivated state of the channel, mutation-dependent deficits in inactivation result in a decrease in use-dependent block of the mutant channel. Further, application of the CCB verapamil to induced pluripotent stem cell (iPSC) derived cardiomyocytes from an LQT8 patient demonstrates that this loss of use-dependent block translates to a lack of efficacy in correcting the LQT phenotype. As a growing number of channelopathic mutations demonstrate effects on channel inactivation, reliance on state-dependent blockers may leave a growing population of patients without a viable treatment option. This biophysical understanding of the interplay between inactivation deficits and state-dependent block may provide a new avenue to guide the development of improved therapies.
Collapse
Affiliation(s)
- Moradeke A Bamgboye
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Maria K Traficante
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Josiah Owoyemi
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Deborah DiSilvestre
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Daiana C O Vieira
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Ivy E Dick
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
12
|
Borbás J, Vámos M, Hategan L, Hanák L, Farkas N, Szakács Z, Csupor D, Tél B, Kupó P, Csányi B, Nagy V, Komócsi A, Habon T, Hegyi P, Sepp R. Geno- and phenotypic characteristics and clinical outcomes of CACNA1C gene mutation associated Timothy syndrome, “cardiac only” Timothy syndrome and isolated long QT syndrome 8: A systematic review. Front Cardiovasc Med 2022; 9:1021009. [DOI: 10.3389/fcvm.2022.1021009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
BackgroundMutations in the CACNA1C gene–encoding for the major Ca2+ channel of the heart–may exhibit a variety of clinical manifestations. These include typical or atypical Timothy syndromes (TS) which are associated with multiple organ manifestations, and cardiac involvement in form of malignant arrhythmias, QTc prolongation, or AV block. “Cardiac only” Timothy syndrome (COTS) shows no extracardiac manifestation, whereas some CACNA1C gene mutations are associated with QTc prolongation alone (isolated long QT syndrome 8, LQT8).MethodsA systematic search of the literature reporting cases of CACNA1C gene mutation associated syndromes, including TS, COTS and isolated LQT8 via major databases published from 2004 through 2019 was performed. Detailed patient-level phenotypic and genotypic characteristics, as well as long-term outcome measures were collected and compared between pre-specified patient groups, defined both on phenotype and genotype.ResultsA total of 59 TS, 6 COTS, and 20 isolated LQT8 index cases were identified. Apart of syndactyly or baldness, there were no major differences regarding clinical manifestations or outcome measures between TS subtypes, either defining TS subtypes on the genotype or based on the phenotype. Both subtypes were characterized by an extreme degree of QTc prolongation (median ≥600 ms) which were reflected in high major adverse cardiac event rate. On the other hand, there were marked differences between TS, COTS, and isolated LQT8. Timothy syndrome was characterized by a much earlier disease onset, much more pronounced QTc prolongation and much higher mortality rate than COTS or isolated LQT8. Similar differences were observed comparing CACNA1C exon 8/8A vs. non-exon 8/8A mutation carriers. TS showed a high degree of genetic homogeneity, as the p.Gly406Arg mutation either in exon 8 or exon 8A alone was responsible for 70% of the cases.ConclusionsClinical phenotypes associated with mutations in the CACNA1C gene show important clinical differences. Timothy syndrome is associated with the most severe clinical phenotype and with the highest risk of morbidity and mortality. However, distinguishing TS subtypes, in any form, are not supported by our data.Systematic review registration[https://www.crd.york.ac.uk/prospero/], identifier [CRD42020184737].
Collapse
|
13
|
Qauli AI, Yoo Y, Marcellinus A, Lim KM. Verification of the Efficacy of Mexiletine Treatment for the A1656D Mutation on Downgrading Reentrant Tachycardia Using a 3D Cardiac Electrophysiological Model. Bioengineering (Basel) 2022; 9:531. [PMID: 36290499 PMCID: PMC9598628 DOI: 10.3390/bioengineering9100531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 10/21/2023] Open
Abstract
The SCN5A mutations have been long associated with long QT variant 3 (LQT3). Recent experimental and computation studies have reported that mexiletine effectively treats LQT3 patients associated with the A1656D mutation. However, they have primarily focused on cellular level evaluations and have only looked at the effects of mexiletine on action potential duration (APD) or QT interval reduction. We further investigated mexiletine's effects on cardiac cells through simulations of single-cell (behavior of alternant occurrence) and 3D (with and without mexiletine). We discovered that mexiletine could shorten the cell's APD and change the alternant's occurrence to a shorter basic cycle length (BCL) between 350 and 420 ms. The alternant also appeared at a normal heart rate under the A1656D mutation. Furthermore, the 3D ventricle simulations revealed that mexiletine could reduce the likelihood of a greater spiral wave breakup in the A1656D mutant condition by minimizing the appearance of rotors. In conclusion, we found that mexiletine could provide extra safety features during therapy for LQT3 patients because it can change the alternant occurrence from a normal to a faster heart rate, and it reduces the chance of a spiral wave breakup. Therefore, these findings emphasize the promising efficacy of mexiletine in treating LQT3 patients under the A1656D mutation.
Collapse
Affiliation(s)
- Ali Ikhsanul Qauli
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
- Robotics and Artificial Intelligence Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Jawa Timur, Indonesia
| | - Yedam Yoo
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Aroli Marcellinus
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Ki Moo Lim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea
| |
Collapse
|
14
|
van der Ree MH, van Dussen L, Rosenberg N, Stolwijk N, van den Berg S, van der Wel V, Jacobs BAW, Wilde AAM, Hollak CEM, Postema PG. Effectiveness and safety of mexiletine in patients at risk for (recurrent) ventricular arrhythmias: a systematic review. Europace 2022; 24:1809-1823. [PMID: 36036670 DOI: 10.1093/europace/euac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
While mexiletine has been used for over 40 years for prevention of (recurrent) ventricular arrhythmias and for myotonia, patient access has recently been critically endangered. Here we aim to demonstrate the effectiveness and safety of mexiletine in the treatment of patients with (recurrent) ventricular arrhythmias, emphasizing the absolute necessity of its accessibility. Studies were included in this systematic review (PROSPERO, CRD42020213434) if the efficacy or safety of mexiletine in any dose was evaluated in patients at risk for (recurrent) ventricular arrhythmias with or without comparison with alternative treatments (e.g. placebo). A systematic search was performed in Ovid MEDLINE, Embase, and in the clinical trial registry databases ClinicalTrials.gov and ICTRP. Risk of bias were assessed and tailored to the different study designs. Large heterogeneity in study designs and outcome measures prompted a narrative synthesis approach. In total, 221 studies were included reporting on 8970 patients treated with mexiletine. Age ranged from 0 to 88 years. A decrease in ventricular arrhythmias of >50% was observed in 72% of the studies for pre-mature ventricular complexes, 64% for ventricular tachycardia, and 33% for ventricular fibrillation. Electrocardiographic effects of mexiletine were small; only in a subset of patients with primary arrhythmia syndromes, a relative (desired) QTc decrease was reproducibly observed. As for adverse events, gastrointestinal complaints were most frequently observed (33% of the patients). In this systematic review, we present all the currently available knowledge of mexiletine in patients at risk for (recurrent) ventricular arrhythmias and show that mexiletine is both effective and safe.
Collapse
Affiliation(s)
- Martijn H van der Ree
- Department of Clinical Cardiology, Heart Center, Amsterdam UMC-University of Amsterdam, Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| | - Laura van Dussen
- Department of Endocrinology and Metabolism, Amsterdam UMC-University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
| | - Noa Rosenberg
- Department of Endocrinology and Metabolism, Amsterdam UMC-University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
| | - Nina Stolwijk
- Department of Endocrinology and Metabolism, Amsterdam UMC-University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
| | - Sibren van den Berg
- Department of Endocrinology and Metabolism, Amsterdam UMC-University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent van der Wel
- Medicine for Society, Platform at Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
| | - Bart A W Jacobs
- Medicine for Society, Platform at Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
- Department of Pharmacy, Amsterdam UMC-University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Clinical Cardiology, Heart Center, Amsterdam UMC-University of Amsterdam, Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carla E M Hollak
- Department of Endocrinology and Metabolism, Amsterdam UMC-University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam UMC-University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter G Postema
- Department of Clinical Cardiology, Heart Center, Amsterdam UMC-University of Amsterdam, Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Yanagida S, Satsuka A, Hayashi S, Ono A, Kanda Y. Proarrhythmia Risk Assessment Using Electro-Mechanical Window in Human iPS Cell-Derived Cardiomyocytes. Biol Pharm Bull 2022; 45:940-947. [PMID: 35786601 DOI: 10.1248/bpb.b22-00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evaluation of drug-induced cardiotoxicity is still challenging to avoid adverse effects, such as torsade de pointes (TdP), in non-clinical and clinical studies. Numerous studies have suggested that human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a useful platform for detecting drug-induced TdP risks. Comprehensive in vitro Proarrhythmia Assay (CiPA) validation study suggested that hiPSC-CMs can assess clinical TdP risk more accurately than the human ether-a-go-go-related assay and QT interval prolongation. However, there were still some outliers, such as bepridil, mexiletine, and ranolazine, among the CiPA 28 compounds in the CiPA international multi-site study using hiPSC-CMs. In this study, we assessed the effects of the positive compound dofetilide, the negative compound aspirin, and several CiPA compounds (bepridil, mexiletine, and ranolazine) on the electromechanical window (E-M window), which were evaluated using multi-electrode array assay and motion analysis, in hiPSC-CMs. Similar to previous in vivo studies, dofetilide, which has a high TdP risk, decreased the E-M window in hiPSC-CMs, whereas aspirin, which has a low TdP risk, had little effect. Bepridil, classified in the high TdP-risk group in CiPA, decreased the E-M window in hiPSC-CMs, whereas ranolazine and mexiletine, which are classified in the low TdP-risk group in CiPA, slightly decreased or had little effect on the E-M window of hiPSC-CMs. Thus, the E-M window in hiPSC-CMs can be used to classify drugs into high and low TdP risk.
Collapse
Affiliation(s)
- Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences.,Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences
| | - Sayo Hayashi
- Division of Pharmacology, National Institute of Health Sciences
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences.,Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
16
|
Ingleby-Talecki L, van Dijkman SC, Oosterholt SP, Della Pasqua O, Winter C, Cunnington M, Rebar L, Forero-Schwanhaeuser S, Patel V, Cooper JA, Bahinski A, Chaudhary KW. Cardiac sodium channel inhibition by lamotrigine: in vitro characterization and clinical implications. Clin Transl Sci 2022; 15:1978-1989. [PMID: 35579204 PMCID: PMC9372421 DOI: 10.1111/cts.13311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
Abstract
Lamotrigine, approved for use as an antiseizure medication as well as the treatment of bipolar disorder, inhibits sodium channels in the brain to reduce repetitive neuronal firing and pathological release of glutamate. The shared homology of sodium channels and lack of selectivity associated with channel blocking agents can cause slowing of cardiac conduction and increased proarrhythmic potential. The Vaughan‐Williams classification system differentiates sodium channel blockers using biophysical properties of binding. As such, Class Ib inhibitors, including mexiletine, do not slow cardiac conduction as measured by the electrocardiogram, at therapeutically relevant exposure. Our goal was to characterize the biophysical properties of NaV1.5 block and to support the observed clinical safety of lamotrigine. We used HEK‐293 cells stably expressing the hNaV1.5 channel and voltage clamp electrophysiology to quantify the potency (half‐maximal inhibitory concentration) against peak and late channel current, on‐/off‐rate binding kinetics, voltage‐dependence, and tonic block of the cardiac sodium channel by lamotrigine; and compared to clinically relevant Class Ia (quinidine), Ib (mexiletine), and Ic (flecainide) inhibitors. Lamotrigine blocked peak and late NaV1.5 current at therapeutically relevant exposure, with rapid kinetics and biophysical properties similar to the class Ib inhibitor mexiletine. However, no clinically meaningful prolongation in QRS or PR interval was observed in healthy subjects in a new analysis of a previously reported thorough QT clinical trial (SCA104648). In conclusion, the weak NaV1.5 block and rapid kinetics do not translate into clinically relevant conduction slowing at therapeutic exposure and support the clinical safety of lamotrigine in patients suffering from epilepsy and bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linda Rebar
- GSK US Regulatory Affairs, Collegeville, PA 19426, USA
| | | | - Vickas Patel
- Former GSK Employee, Collegeville, PA 19426, USA
| | | | | | | |
Collapse
|
17
|
Catalano A, Franchini C, Carocci A. Voltage-Gated Sodium Channel Blockers: Synthesis of Mexiletine Analogues and Homologues. Curr Med Chem 2021; 28:1535-1548. [PMID: 32364065 DOI: 10.2174/0929867327666200504080530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/22/2022]
Abstract
Mexiletine is an antiarrhythmic drug belonging to IB class, acting as sodium channel blocker. Besides its well-known activity on arrhythmias, its usefulness in the treatment of myotonia, myotonic dystrophy and amyotrophic lateral sclerosis is now widely recognized. Nevertheless, it has been retired from the market in several countries because of its undesired effects. Thus, several papers were reported in the last years about analogues and homologues of mexiletine being endowed with a wider therapeutic ratio and a more selectivity of action. Some of them showed sodium channel blocking activity higher than the parent compound. It is noteworthy that mexiletine is used in therapy as a racemate even though a difference in the activities of the two enantiomers was widely demonstrated, with (-)-(R)-enantiomer being more active: this finding led several research groups to study mexiletine and its analogues and homologues in their optically active forms. This review summarizes the different synthetic routes used to obtain these compounds. They could represent an interesting starting point to new mexiletine-like compounds without common side effects related to the use of mexiletine.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70126 Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70126 Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
18
|
Nascimento E, Tinoco CF, Silva CD, Cortez FFM, Kaufman R. Aborted Sudden Death Due to Severe Ventricular Arrhythmia in Timothy Syndrome. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Nakajima T, Tamura S, Kurabayashi M, Kaneko Y. Towards Mutation-Specific Precision Medicine in Atypical Clinical Phenotypes of Inherited Arrhythmia Syndromes. Int J Mol Sci 2021; 22:ijms22083930. [PMID: 33920294 PMCID: PMC8069124 DOI: 10.3390/ijms22083930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel-related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterologous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the pathophysiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a unique mixed electrophysiological property of V392I-Kv4.3. Since the epileptic phenotype appears to manifest prior to cardiac events in this mutation carrier, identifying KCND3 mutations in patients with epilepsy and providing optimal therapy will help prevent sudden unexpected death in epilepsy. Further studies using the iPSC technology may provide novel insights into the pathophysiology of atypical clinical phenotypes of IASs and the development of mutation-specific precision medicine.
Collapse
|
20
|
Hermida A, Jedraszak G, Kubala M, Mathiron A, Berna P, Bennis Y, Hermida JS. Long-term follow-up of a patient with type 2 Timothy syndrome and the partial efficacy of mexiletine. Gene 2021; 777:145465. [PMID: 33524520 DOI: 10.1016/j.gene.2021.145465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/23/2020] [Accepted: 01/22/2021] [Indexed: 11/15/2022]
Abstract
We report a detailed case of type 2 TS due to a p.(Gly402Ser) mutation in exon 8 of the CACNA1C gene. The patient shows a marked prolongation of repolarization with a mean QTc of 540 ms. He shows no structural heart disease, syndactyly, or cranio-facial abnormalities. However, he shows developmental delays, without autism, and dental abnormalities. The cardiac phenotype is very severe, with a resuscitated cardiac arrest at 2.5 years of age, followed by 26 appropriate shocks during nine years of follow-up. Adding mexiletine to nadolol resulted in a reduction of the QTc and a slight decrease in the number of appropriate shocks.
Collapse
Affiliation(s)
- Alexis Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France.
| | - Guillaume Jedraszak
- Molecular Genetics Laboratory, Amiens-Picardie University Hospital, Amiens, France; EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens, France
| | - Maciej Kubala
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| | - Amel Mathiron
- Pediatric Cardiology Department, Amiens-Picardie University Hospital, Amiens, France
| | - Pascal Berna
- Department of Thoracic Surgery Service, Amiens-Picardie University Hospital, Amiens, France
| | - Youssef Bennis
- Laboratory of Pharmacology and Toxicology, Amiens-Picardie University Hospital, Amiens, France
| | - Jean-Sylvain Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| |
Collapse
|
21
|
Bauer R, Timothy KW, Golden A. Update on the Molecular Genetics of Timothy Syndrome. Front Pediatr 2021; 9:668546. [PMID: 34079780 PMCID: PMC8165229 DOI: 10.3389/fped.2021.668546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Timothy Syndrome (TS) (OMIM #601005) is a rare autosomal dominant syndrome caused by variants in CACNA1C, which encodes the α1C subunit of the voltage-gated calcium channel Cav1.2. TS is classically caused by only a few different genetic changes and characterized by prolonged QT interval, syndactyly, and neurodevelopmental delay; however, the number of identified TS-causing variants is growing, and the resulting symptom profiles are incredibly complex and variable. Here, we aim to review the genetic and clinical findings of all published case reports of TS to date. We discuss multiple possible mechanisms for the variability seen in clinical features across these cases, including mosaicism, genetic background, isoform complexity of CACNA1C and differential expression of transcripts, and biophysical changes in mutant CACNA1C channels. Finally, we propose future research directions such as variant validation, in vivo modeling, and natural history characterization.
Collapse
Affiliation(s)
- Rosemary Bauer
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Han H, Chen Y, Li S, Ren L, Zhang J, Sun H, Dong J, Zhao X. Clinical characterization and outcome of prolonged heart rate-corrected QT interval among children with syndactyly. Medicine (Baltimore) 2020; 99:e22740. [PMID: 33080735 PMCID: PMC7571997 DOI: 10.1097/md.0000000000022740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Prolonged heart rate-corrected QT (QTc) interval is an independent risk factor for sudden cardiac death, which is the hallmark of Timothy syndrome (TS). There are little data on children with syndactyly and QTc prolongation.To evaluate the characteristics and long-term outcomes in children with syndactyly, and to attempt to identify TS in patients with syndactyly and QTc prolongation.This is a retrospective case-control study of children with syndactyly who visited Beijing Jishuitan Hospital between July 2003 and February 2013. The patients with prolonged QTc intervals are matched 1:4 with patients without prolongation. Genetic testing of the CACNA1C gene is routinely performed in patients with QTc prolongation.The mean age at admission is 3.4 ± 2.3 years. Compared with the normal QTc group, those with QTc prolongation showed higher frequencies of congenital heart disease (11.8% vs 1.5%, P = .042), mental retardation and facial dysmorphia (11.8% vs 0, P = .004), and T wave alternans (23.5% vs 4.4%, P = .01). In the multivariable analysis, only T wave alternans (OR = 10.61, 95%CI: 1.39-81.16, P = .023) is independently associated with QTc prolongation in patients with syndactyly. One child with QTc prolongation had a mutation in the CACNA1C gene. No patients with prolonged QTs interval met the threshold for TS.Children with syndactyly and prolonged QTc interval had more multisystem diseases and electrocardiography abnormalities. T wave alternans is independently associated with QTc prolongation in patients with syndactyly.
Collapse
Affiliation(s)
- Hao Han
- Department of Cardiology, Beijing Jishuitan Hosptial, No. 31 East Street, Xinjiekou, XiCheng
| | - Youzhou Chen
- Department of Cardiology, Beijing Jishuitan Hosptial, No. 31 East Street, Xinjiekou, XiCheng
| | - Songnan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing
| | - Lan Ren
- Department of Cardiology, Beijing Jishuitan Hosptial, No. 31 East Street, Xinjiekou, XiCheng
| | - Jianqiang Zhang
- Department of Cardiology, Shanghai East Hospital, Shanghai, China
| | - Huayi Sun
- Department of Cardiology, Beijing Jishuitan Hosptial, No. 31 East Street, Xinjiekou, XiCheng
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing
| | - Xingshan Zhao
- Department of Cardiology, Beijing Jishuitan Hosptial, No. 31 East Street, Xinjiekou, XiCheng
| |
Collapse
|
23
|
Reevaluating the Mutation Classification in Genetic Studies of Bradycardia Using ACMG/AMP Variant Classification Framework. Int J Genomics 2020; 2020:2415850. [PMID: 32211440 PMCID: PMC7061116 DOI: 10.1155/2020/2415850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/08/2020] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Next-generation sequencing (NGS) has become more accessible, leading to an increasing number of genetic studies of familial bradycardia being reported. However, most of the variants lack full evaluation. The relationship between genetic factors and bradycardia should be summarized and reevaluated. METHODS We summarized genetic studies published in the PubMed database from 2008/1/1 to 2019/9/1 and used the ACMG/AMP classification framework to analyze related sequence variants. RESULTS We identified 88 articles, 99 sequence variants, and 34 genes after searching the PubMed database and classified ABCC9, ACTN2, CACNA1C, DES, HCN4, KCNQ1, KCNH2, LMNA, MECP2, LAMP2, NPPA, SCN5A, and TRPM4 as high-priority genes causing familial bradycardia. Most mutated genes have been reported as having multiple clinical manifestations. CONCLUSIONS For patients with familial CCD, 13 high-priority genes are recommended for evaluation. For genetic studies, variants should be carefully evaluated using the ACMG/AMP variant classification framework before publication.
Collapse
|
24
|
Han D, Xu L, Liu P, Liu Y, Sun C, Yin Y. Allicin disrupts cardiac Cav1.2 channels via trafficking. PHARMACEUTICAL BIOLOGY 2019; 57:245-249. [PMID: 30929547 PMCID: PMC6450490 DOI: 10.1080/13880209.2019.1577469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/06/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
CONTEXT Allicin is a potential antiarrhythmic agent. The antiarrhythmic properties of allicin rely on its blockade of various cardiac ion channels. The l-type calcium (Cav1.2) channel provides a pivotal substrate for cardiac electrophysiologic activities. The mechanism of allicin on Cav1.2 remains unclear. OBJECTIVE This study evaluated the potential of allicin on the synthesis and trafficking of Cav1.2 channels. MATERIALS AND METHODS Primary cardiomyocytes (CMs) from neonatal Sprague-Dawley (SD) rats were exposed to allicin (0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 μg/mL) for 24 and 48 h. The CellTiter-Glo assay was performed to measure CM viability. Western blot with grayscale analysis and confocal laser scanning microscopy were used to evaluate the effects of allicin on the synthesis and trafficking of Cav1.2 channel proteins in primary CMs. RESULTS There was no significant difference in apoptotic toxicity from the actual cell viability (p > 0.05) in any group (0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 μg/mL allicin), except that viability in the 0.001 and 0.01 μg/mL groups at 24 h were significantly greater (137.37 and 135.96%) (p < 0.05). Western blot with grayscale analysis revealed no substantial inhibition by allicin of the synthesis of Cav1.2 proteins. Confocal laser scanning microscopy revealed trafficking dysfunction of Cav1.2 channels caused by allicin in primary CMs. CONCLUSION This study is the first to demonstrate that allicin inhibits cardiac Cav1.2 channels by disrupting trafficking, possibly mediating its antiarrhythmic benefits. Therefore, allicin might serve as a new antiarrhythmic agent in the future.
Collapse
Affiliation(s)
- Dan Han
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lingping Xu
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Xianyang Central Hospital, Xianyang, China
| | - Peng Liu
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingying Liu
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chaofeng Sun
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanrong Yin
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
25
|
Kushner J, Ferrer X, Marx SO. Roles and Regulation of Voltage-gated Calcium Channels in Arrhythmias. J Innov Card Rhythm Manag 2019; 10:3874-3880. [PMID: 32494407 PMCID: PMC7252866 DOI: 10.19102/icrm.2019.101006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Calcium flowing through voltage-dependent calcium channels into cardiomyocytes mediates excitation–contraction coupling, controls action-potential duration and automaticity in nodal cells, and regulates gene expression. Proper surface targeting and basal and hormonal regulation of calcium channels are vital for normal cardiac physiology. In this review, we discuss the roles of voltage-gated calcium channels in the heart and the mechanisms by which these channels are regulated by physiological signaling pathways in health and disease.
Collapse
Affiliation(s)
- Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xavier Ferrer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Ortmans S, Daval C, Aguilar M, Compagno P, Cadrin-Tourigny J, Dyrda K, Rivard L, Tadros R. Pharmacotherapy in inherited and acquired ventricular arrhythmia in structurally normal adult hearts. Expert Opin Pharmacother 2019; 20:2101-2114. [DOI: 10.1080/14656566.2019.1669561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Staniel Ortmans
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Charline Daval
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Martin Aguilar
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Electrophysiology service, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Pablo Compagno
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Julia Cadrin-Tourigny
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Katia Dyrda
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Lena Rivard
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Electrophysiology service, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafik Tadros
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Physiology and Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Hu RM, Tester DJ, Li R, Sun T, Peterson BZ, Ackerman MJ, Makielski JC, Tan BH. Mexiletine rescues a mixed biophysical phenotype of the cardiac sodium channel arising from the SCN5A mutation, N406K, found in LQT3 patients. Channels (Austin) 2019; 12:176-186. [PMID: 29983085 PMCID: PMC6104686 DOI: 10.1080/19336950.2018.1475794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Individual mutations in the SCN5A-encoding cardiac sodium channel α-subunit usually cause a single cardiac arrhythmia disorder, some cause mixed biophysical or clinical phenotypes. Here we report an infant, female patient harboring a N406K mutation in SCN5A with a marked and mixed biophysical phenotype and assess pathogenic mechanisms. Methods and Results: A patient suffered from recurrent seizures during sleep and torsades de pointes with a QTc of 530 ms. Mutational analysis identified a N406K mutation in SCN5A. The mutation was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells. After 48 hours incubation with and without mexiletine, macroscopic voltage-gated sodium current (INa) was measured with standard whole-cell patch clamp techniques. SCN5A-N406K elicited both a significantly decreased peak INa and a significantly increased late INa compared to wide-type (WT) channels. Furthermore, mexiletine both restored the decreased peak INa of the mutant channel and inhibited the increased late INa of the mutant channel. Conclusion: SCN5A-N406K channel displays both “gain-of-function” in late INa and “loss-of-function” in peak INa density contributing to a mixed biophysical phenotype. Moreover, our finding may provide the first example that mexiletine exerts a dual rescue of both “gain-of-function” and “loss-of-function” of the mutant sodium channel.
Collapse
Affiliation(s)
- Rou-Mu Hu
- a Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital , Capital Medical University , Beijing , China.,b Division of Cardiovascular Medicine, Department of Medicine , University of Wisconsin , Madison , Wisconsin , USA
| | - David J Tester
- c Departments of Medicine, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Ryan Li
- d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Tianyu Sun
- d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Blaise Z Peterson
- d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Michael J Ackerman
- c Departments of Medicine, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Jonathan C Makielski
- b Division of Cardiovascular Medicine, Department of Medicine , University of Wisconsin , Madison , Wisconsin , USA
| | - Bi-Hua Tan
- b Division of Cardiovascular Medicine, Department of Medicine , University of Wisconsin , Madison , Wisconsin , USA.,d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|
28
|
Han D, Xue X, Yan Y, Li G. Dysfunctional Cav1.2 channel in Timothy syndrome, from cell to bedside. Exp Biol Med (Maywood) 2019; 244:960-971. [PMID: 31324123 DOI: 10.1177/1535370219863149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Timothy syndrome is a rare disorder caused by CACNA1C gene mutations and characterized by multi-organ system dysfunctions, including ventricular arrhythmias, syndactyly, dysmorphic facial features, intermittent hypoglycemia, immunodeficiency, developmental delay, and autism. Because of the low morbidity and high mortality at a young age, it remains a huge challenge to establish a diagnosis and treatment system to manage Timothy syndrome patients. Here, we aim to provide a detailed review of Timothy syndrome, discuss the mechanisms underlying dysfunctional Cav1.2 due to CACNA1C mutations, and provide some new emerging evidences in treating Timothy syndrome from cell to bedside, promoting the management of this rare disease. Impact statement The knowledge of Timothy syndrome (TS) caused by dysfunctional Cav1.2 channel due to CACNA1C mutations is rapidly evolving as novel technologies of electrophysiology are introduced and our understanding of the mechanisms of TS develops. In this review, we focus on the TS-related dysfunctional Cav1.2 and the underlying mechanisms. We update TS-related CACNA1C mutations in a precise way over the past 20 years and summarize all reported TS patients based on their clinical presentations and molecular mechanisms, respectively. We hope this review will provide a new comprehensive way to better understand the electrophysiological mechanisms underlying TS from cell to bedside, promoting the management of TS in practice.
Collapse
Affiliation(s)
- Dan Han
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China.,2 Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P.R. China*These authors contributed equally to this work and should be considered to share first authorship
| | - Xiaolin Xue
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Yang Yan
- 2 Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P.R. China*These authors contributed equally to this work and should be considered to share first authorship
| | - Guoliang Li
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| |
Collapse
|
29
|
Abstract
The coexistence of long QT syndrome with 2:1 or complete atrioventricular blocks has been reported in the literature, but, to the best of our knowledge, this is the first pediatric case of long QT syndrome coexisting with first-degree atrioventricular blocks( 1 - 3 ).
Collapse
|
30
|
Colson C, Mittre H, Busson A, Leenhardt A, Denjoy I, Fressard V, Troadec Y. Unusual clinical description of adult with Timothy syndrome, carrier of a new heterozygote mutation of CACNA1C. Eur J Med Genet 2019; 62:103648. [PMID: 30998997 DOI: 10.1016/j.ejmg.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/11/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
CANAC1C encodes for the main cardiac L-type calcium channel and mutations on it lead to a prolonged QT interval in Timothy Syndrome (TS). We provide a new de novo constitutional heterozygote missense variation in CACNA1C in a living adult woman, also carrier of the known c.2146-1G>C heterozygous variation of PKP2 inherited from her father. To our knowledge, this patient is the first to have the two variations in these genes. Theses clinical and molecular findings expand the clinical and molecular spectrum of TS and show the interest of next generation sequencing or whole exome sequencing in rare disorders, atypical or novel phenotype.
Collapse
Affiliation(s)
- Cindy Colson
- Service Génétique, Génétique Clinique, CHU, Caen, France; Normandy University, UNICAEN, BIOTARGEN, Caen, France.
| | - Hervé Mittre
- Service Génétique, Génétique Moléculaire, CHU, Caen, France
| | - Adeline Busson
- Service de Génétique Clinique, Hôpital Erasme, Bruxelles, Belgium
| | - Antoine Leenhardt
- Service de cardiologie, Hôpital Xavier Bichat-Claude Bernard, Paris, France
| | - Isabelle Denjoy
- Service de cardiologie, Hôpital Xavier Bichat-Claude Bernard, Paris, France
| | - Véronique Fressard
- Centre de génétique moléculaire et chromosomique, UF cardiogénétique et myogénétique moléculaire et cellulaire, Hôpital Pitié-Salpétrière, Paris, France
| | - Yann Troadec
- Service Génétique, Génétique Clinique, CHU, Caen, France; Normandy University, UNICAEN, BIOTARGEN, Caen, France
| |
Collapse
|
31
|
Alvarez‐Collazo J, López‐Requena A, Galán L, Talavera A, Alvarez JL, Talavera K. The citrus flavanone hesperetin preferentially inhibits slow-inactivating currents of a long QT syndrome type 3 syndrome Na + channel mutation. Br J Pharmacol 2019; 176:1090-1105. [PMID: 30650182 PMCID: PMC6451064 DOI: 10.1111/bph.14577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The citrus flavanone hesperetin has been proposed for the treatment of several human pathologies, but its cardiovascular actions remain largely unexplored. Here, we evaluated the effect of hesperetin on cardiac electrical and contractile activities, on aortic contraction, on the wild-type voltage-gated NaV 1.5 channel, and on a channel mutant (R1623Q) associated with lethal ventricular arrhythmias in the long QT syndrome type 3 (LQT3). EXPERIMENTAL APPROACH We used cardiac surface ECG and contraction force recordings to evaluate the effects of hesperetin in rat isolated hearts and aortic rings. Whole-cell patch clamp was used to record NaV 1.5 currents (INa ) in rat ventricular cardiomyocytes and in HEK293T cells expressing hNaV 1.5 wild-type or mutant channels. KEY RESULTS Hesperetin increased the QRS interval and heart rate and decreased the corrected QT interval and the cardiac and aortic contraction forces at concentrations equal or higher than 30 μmol·L-1 . Hesperetin blocked rat and human NaV 1.5 channels with an effective inhibitory concentration of ≈100 μmol·L-1 . This inhibition was enhanced at depolarized holding potentials and higher stimulation frequency and was reduced by the disruption of the binding site for local anaesthetics. Hesperetin increased the rate of inactivation and preferentially inhibited INa during the slow inactivation phase, these effects being more pronounced in the R1623Q mutant. CONCLUSIONS AND IMPLICATIONS Hesperetin preferentially inhibits the slow inactivation phase of INa , more markedly in the mutant R1623Q. Hesperetin could be used as a template to develop drugs against lethal cardiac arrhythmias in LQT3.
Collapse
Affiliation(s)
- Julio Alvarez‐Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Alejandro López‐Requena
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Loipa Galán
- Laboratory of ElectrophysiologyInstitute of Cardiology and Cardiovascular SurgeryHavanaCuba
| | - Ariel Talavera
- Laboratory of Microscopy, Center for Microscopy and Molecular ImagingUniversité Libre de BruxellesGosseliesBelgium
| | - Julio L. Alvarez
- Laboratory of ElectrophysiologyInstitute of Cardiology and Cardiovascular SurgeryHavanaCuba
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
32
|
Walsh MA, Turner C, Timothy KW, Seller N, Hares DL, James AF, Hancox JC, Uzun O, Boyce D, Stuart AG, Brennan P, Sarton C, McGuire K, Newbury-Ecob RA, Mcleod K. A multicentre study of patients with Timothy syndrome. Europace 2018; 20:377-385. [PMID: 28371864 DOI: 10.1093/europace/euw433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/20/2016] [Indexed: 11/13/2022] Open
Abstract
Aims Timothy syndrome (TS) is an extremely rare multisystem disorder characterized by marked QT prolongation, syndactyly, seizures, behavioural abnormalities, immunodeficiency, and hypoglycaemia. The aim of this study was to categorize the phenotypes and examine the outcomes of patients with TS. Methods and results All patients diagnosed with TS in the United Kingdom over a 24-year period were reviewed. Fifteen centres in the British Congenital Arrhythmia Group network were contacted to partake in the study. Six patients with TS were identified over a 24-year period (4 boys and 2 girls). Five out of the six patients were confirmed to have a CACNA1C mutation (p.Gly406Arg) and the other patient was diagnosed clinically. Early presentation with heart block, due to QT prolongation was frequently seen. Four are still alive, two of these have a pacemaker and two have undergone defibrillator implantation. Five out of six patients have had a documented cardiac arrest with three occurring under general anaesthesia. Two patients suffered a cardiac arrest while in hospital and resuscitation was unsuccessful, despite immediate access to a defibrillator. Surviving patients seem to have mild developmental delay and learning difficulties. Conclusion Timothy syndrome is a rare disorder with a high attrition rate if undiagnosed. Perioperative cardiac arrests are common and not always amenable to resuscitation. Longer-term survival is possible, however, patients invariably require pacemaker or defibrillator implantation.
Collapse
Affiliation(s)
- Mark A Walsh
- Bristol Royal Hospital for Children, University Hospital Bristol, Bristol, UK.,Bristol Heart Institute, University Hospital Bristol, Bristol, UK
| | - Christian Turner
- Department of Congenital Cardiology, Freeman Hospital, Newcastle upon Tyne, UK.,Children's Hospital at Westmead, Sydney, Australia
| | | | - Neil Seller
- Department of Congenital Cardiology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Dominic L Hares
- Department of Cardiology, The Yorkshire Heart Centre, Leeds General Infirmary, Leeds, UK
| | - Andrew F James
- School of Physiology, Pharmacology and Neuroscience Cardiovascular Research Laboratories, University of Bristol, Bristol, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience Cardiovascular Research Laboratories, University of Bristol, Bristol, UK
| | - Orhan Uzun
- Department of Cardiology, University Hospital Wales, Cardiff, UK
| | - Dean Boyce
- Department of Plastic Surgery, University Hospital Wales, Cardiff, UK
| | - Alan G Stuart
- Bristol Royal Hospital for Children, University Hospital Bristol, Bristol, UK.,Bristol Heart Institute, University Hospital Bristol, Bristol, UK
| | - Paul Brennan
- Department of Clinical Genetics, Freeman Hospital, Newcastle upon Tyne, UK
| | - Caroline Sarton
- Oxford Medical Genetics Laboratories, Cardiac Service, Oxford University Hospitals NHS Trust, The Churchill Hospital, Oxford, UK
| | - Karen McGuire
- Oxford Medical Genetics Laboratories, Cardiac Service, Oxford University Hospitals NHS Trust, The Churchill Hospital, Oxford, UK
| | | | - Karen Mcleod
- Department of Cardiology, Royal Hospital for Sick Children, Glasgow, UK
| |
Collapse
|
33
|
Li G, Zhang L. The role of mexiletine in the management of long QT syndrome. J Electrocardiol 2018; 51:1061-1065. [DOI: 10.1016/j.jelectrocard.2018.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/25/2023]
|
34
|
Abstract
BACKGROUND Among his major cardiac electrophysiological contributions, Miles Vaughan Williams (1918-2016) provided a classification of antiarrhythmic drugs that remains central to their clinical use. METHODS We survey implications of subsequent discoveries concerning sarcolemmal, sarcoplasmic reticular, and cytosolic biomolecules, developing an expanded but pragmatic classification that encompasses approved and potential antiarrhythmic drugs on this centenary of his birth. RESULTS We first consider the range of pharmacological targets, tracking these through to cellular electrophysiological effects. We retain the original Vaughan Williams Classes I through IV but subcategorize these divisions in light of more recent developments, including the existence of Na+ current components (for Class I), advances in autonomic (often G protein-mediated) signaling (for Class II), K+ channel subspecies (for Class III), and novel molecular targets related to Ca2+ homeostasis (for Class IV). We introduce new classes based on additional targets, including channels involved in automaticity, mechanically sensitive ion channels, connexins controlling electrotonic cell coupling, and molecules underlying longer-term signaling processes affecting structural remodeling. Inclusion of this widened range of targets and their physiological sequelae provides a framework for a modernized classification of established antiarrhythmic drugs based on their pharmacological targets. The revised classification allows for the existence of multiple drug targets/actions and for adverse, sometimes actually proarrhythmic, effects. The new scheme also aids classification of novel drugs under investigation. CONCLUSIONS We emerge with a modernized classification preserving the simplicity of the original Vaughan Williams framework while aiding our understanding and clinical management of cardiac arrhythmic events and facilitating future developments in this area.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, United Kingdom (M.L., D.A.T.)
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (M.L., L.W.)
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing, China (L.W.)
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (M.L., L.W.)
| | - Derek A Terrar
- Department of Pharmacology, University of Oxford, United Kingdom (M.L., D.A.T.)
| | - Christopher L-H Huang
- Physiological Laboratory (C.L.-H.H.), University of Cambridge, United Kingdom
- Department of Biochemistry (C.L.-H.H.). University of Cambridge, United Kingdom
| |
Collapse
|
35
|
Karagueuzian HS, Klein U. Wanted: Class VI Antiarrhythmic Drug Action; New Start for a Rational Drug Therapy. ACTA ACUST UNITED AC 2018; 5. [PMID: 31080887 PMCID: PMC6508654 DOI: 10.16966/2379-769x.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hrayr S Karagueuzian
- Department of Medicine, David Geffen School of Medicine, Los Angeles, California, USA.,Cardiovascular Research Laboratories UCLA, Los Angeles, California, USA
| | - Uwe Klein
- Numerate Inc., San Francisco, California, USA
| |
Collapse
|
36
|
Radwański PB, Johnson CN, Györke S, Veeraraghavan R. Cardiac Arrhythmias as Manifestations of Nanopathies: An Emerging View. Front Physiol 2018; 9:1228. [PMID: 30233404 PMCID: PMC6131669 DOI: 10.3389/fphys.2018.01228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
A nanodomain is a collection of proteins localized within a specialized, nanoscale structural environment, which can serve as the functional unit of macroscopic physiologic processes. We are beginning to recognize the key roles of cardiomyocyte nanodomains in essential processes of cardiac physiology such as electrical impulse propagation and excitation–contraction coupling (ECC). There is growing appreciation of nanodomain dysfunction, i.e., nanopathy, as a mechanistic driver of life-threatening arrhythmias in a variety of pathologies. Here, we offer an overview of current research on the role of nanodomains in cardiac physiology with particular emphasis on: (1) sodium channel-rich nanodomains within the intercalated disk that participate in cell-to-cell electrical coupling and (2) dyadic nanodomains located along transverse tubules that participate in ECC. The beat to beat function of cardiomyocytes involves three phases: the action potential, the calcium transient, and mechanical contraction/relaxation. In all these phases, cell-wide function results from the aggregation of the stochastic function of individual proteins. While it has long been known that proteins that exist in close proximity influence each other’s function, it is increasingly appreciated that there exist nanoscale structures that act as functional units of cardiac biophysical phenomena. Termed nanodomains, these structures are collections of proteins, localized within specialized nanoscale structural environments. The nano-environments enable the generation of localized electrical and/or chemical gradients, thereby conferring unique functional properties to these units. Thus, the function of a nanodomain is determined by its protein constituents as well as their local structural environment, adding an additional layer of complexity to cardiac biology and biophysics. However, with the emergence of experimental techniques that allow direct investigation of structure and function at the nanoscale, our understanding of cardiac physiology and pathophysiology at these scales is rapidly advancing. Here, we will discuss the structure and functions of multiple cardiomyocyte nanodomains, and novel strategies that target them for the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Przemysław B Radwański
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Christopher N Johnson
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Vanderbilt Center for Arrhythmia Research and Therapeutics, Nashville, TN, United States
| | - Sándor Györke
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rengasayee Veeraraghavan
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
37
|
El-Bizri N, Xie C, Liu L, Limberis J, Krause M, Hirakawa R, Nguyen S, Tabuena DR, Belardinelli L, Kahlig KM. Eleclazine exhibits enhanced selectivity for long QT syndrome type 3–associated late Na + current. Heart Rhythm 2018; 15:277-286. [DOI: 10.1016/j.hrthm.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Indexed: 01/13/2023]
|
38
|
De Bellis M, Sanarica F, Carocci A, Lentini G, Pierno S, Rolland JF, Conte Camerino D, De Luca A. Dual Action of Mexiletine and Its Pyrroline Derivatives as Skeletal Muscle Sodium Channel Blockers and Anti-oxidant Compounds: Toward Novel Therapeutic Potential. Front Pharmacol 2018; 8:907. [PMID: 29379434 PMCID: PMC5770958 DOI: 10.3389/fphar.2017.00907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
Mexiletine (Mex) has been recently appointed as an orphan-drug in myotonic-syndromes, being a potent use-dependent blocker of skeletal-muscle sodium channels (NaV1.4). Available evidences about a potential anti-oxidant effect of Mex and its tetramethyl-pyrroline-derivatives in vivo, suggest the possibility to further enlarge the therapeutic potential of Mex-like compounds in myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative stress. In line with this and based on our previous structure-activity-relationship studies, we synthesized new compounds with a tetramethyl-pyrroline-ring on the amino-group of both Mex (VM11) and of its potent use-dependent isopropyl-derivative (CI16). The compounds were tested for their ability to block native NaV1.4 and to exert cyto-protective effects against oxidative-stress injury in myoblasts. Voltage-clamp-recordings on adult myofibers were performed to assess the tonic and use-dependent block of peak sodium-currents (INa) by VM11 and CI16, as well as Mex, VM11 and CI16 were 3 and 6-fold more potent than Mex in producing a tonic-block of peak sodium-currents (INa), respectively. Interestingly, CI16 showed a 40-fold increase of potency with respect to Mex during high-frequency stimulation (10-Hz), resulting the strongest use-dependent Mex-like compound so far. The derivatives also behaved as inactivated channel blockers, however the voltage dependent block was modest. The experimental data fitted with the molecular-modeling simulation based on previously proposed interaction of main pharmacophores with NaV1.4 binding-site. CI16 and VM11 were then compared to Mex and its isopropyl derivative (Me5) for the ability to protect C2C12-cells from H2O2-cytotoxicity in the concentration range effective on Nav1.4. Mex and Me5 showed a moderate cyto-protective effect in the presence of H2O2, Importantly, CI16 and VM11 showed a remarkable cyto-protection at concentrations effective for use-dependent block of NaV1.4. This effect was comparable to that of selected anti-oxidant drugs proved to exert protective effect in preclinical models of progressive myopathies such as muscular dystrophies. Then, the tetramethyl-pyrroline compounds have increased therapeutic profile as sodium channel blockers and an interesting cyto-protective activity. The overall profile enlarges therapeutic potential from channelopathies to myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative-stress, i.e., muscular dystrophies.
Collapse
Affiliation(s)
- Michela De Bellis
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Sanarica
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Carocci
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Diana Conte Camerino
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
39
|
Zhang Q, Chen J, Qin Y, Wang J, Zhou L. Mutations in voltage-gated L-type calcium channel: implications in cardiac arrhythmia. Channels (Austin) 2018; 12:201-218. [PMID: 30027834 PMCID: PMC6104696 DOI: 10.1080/19336950.2018.1499368] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023] Open
Abstract
The voltage-gated L-type calcium channel (LTCC) is essential for multiple cellular processes. In the heart, calcium influx through LTCC plays an important role in cardiac electrical excitation. Mutations in LTCC genes, including CACNA1C, CACNA1D, CACNB2 and CACNA2D, will induce the dysfunctions of calcium channels, which result in the abnormal excitations of cardiomyocytes, and finally lead to cardiac arrhythmias. Nevertheless, the newly found mutations in LTCC and their functions are continuously being elucidated. This review summarizes recent findings on the mutations of LTCC, which are associated with long QT syndromes, Timothy syndromes, Brugada syndromes, short QT syndromes, and some other cardiac arrhythmias. Indeed, we describe the gain/loss-of-functions of these mutations in LTCC, which can give an explanation for the phenotypes of cardiac arrhythmias. Moreover, we present several challenges in the field at present, and propose some diagnostic or therapeutic approaches to these mutation-associated cardiac diseases in the future.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, the Second Affiliated Hospital of Nantong University, Nantong First Hospital, Nantong, Jiangsu, China
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Chen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Qin
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Ligneau X, Shah RR, Berrebi‐Bertrand I, Mirams GR, Robert P, Landais L, Maison‐Blanche P, Faivre J, Lecomte J, Schwartz J. Nonclinical cardiovascular safety of pitolisant: comparing International Conference on Harmonization S7B and Comprehensive in vitro Pro-arrhythmia Assay initiative studies. Br J Pharmacol 2017; 174:4449-4463. [PMID: 28941245 PMCID: PMC5715595 DOI: 10.1111/bph.14047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE We evaluated the concordance of results from two sets of nonclinical cardiovascular safety studies on pitolisant. EXPERIMENTAL APPROACH Nonclinical studies envisaged both in the International Conference on Harmonization (ICH) S7B guideline and Comprehensive in vitro Pro-arrhythmia Assay (CiPA) initiative were undertaken. The CiPA initiative included in vitro ion channels, stem cell-derived human ventricular myocytes, and in silico modelling to simulate human ventricular electrophysiology. ICH S7B-recommended assays included in vitro hERG (KV 11.1) channels, in vivo dog studies with follow-up investigations in rabbit Purkinje fibres and the in vivo Carlsson rabbit pro-arrhythmia model. KEY RESULTS Both sets of nonclinical data consistently excluded pitolisant from having clinically relevant QT-liability or pro-arrhythmic potential. CiPA studies revealed pitolisant to have modest calcium channel blocking and late INa reducing activities at high concentrations, which resulted in pitolisant reducing dofetilide-induced early after-depolarizations (EADs) in the ICH S7B studies. Studies in stem cell-derived human cardiomyocytes with dofetilide or E-4031 given alone and in combination with pitolisant confirmed these properties. In silico modelling confirmed that the ion channel effects measured are consistent with results from both the stem cell-derived cardiomyocytes and rabbit Purkinje fibres and categorized pitolisant as a drug with low torsadogenic potential. Results from the two sets of nonclinical studies correlated well with those from two clinical QT studies. CONCLUSIONS AND IMPLICATIONS Our findings support the CiPA initiative but suggest that sponsors should consider investigating drug effects on EADs and the use of pro-arrhythmia models when the results from CiPA studies are ambiguous.
Collapse
Affiliation(s)
| | | | | | - Gary R Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
| | | | | | | | - Jean‐François Faivre
- Laboratoire Signalisation et Transports Ioniques MembranairesUniversité de Poitiers‐CNRSPoitiersFrance
| | | | | |
Collapse
|
41
|
Tunca Sahin G, Ergul Y. A case report: Is mexiletine usage effective in the shortening of QTC interval and improving the T-wave alternans in Timothy syndrome? Ann Noninvasive Electrocardiol 2017; 23:e12522. [PMID: 29194862 DOI: 10.1111/anec.12522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/14/2017] [Indexed: 01/12/2023] Open
Abstract
Timothy syndrome (TS) is a multisystemic disease that occurs because of a mutation in CACN1C gene and is characterized by prolonged QT interval. Mexiletine is a Class 1B antiarrhythmic drug that causes the disappearance of T-wave alternans by shortening QTc and peak-to-end of the T wave. It may block the development of torsades de pointes in a prolonged QT. This study presented the case of a patient diagnosed with TS and had a cardiac arrest history, prolonged QT, and T-wave alternans. After mexiletine treatment, the QTc interval shortened and T-wave alternans disappeared. Such a case has rarely been seen in the literature, and hence considered rare. This case presentation was of particular importance because it highlighted the use of mexiletine besides an initial beta-blocker treatment in the cases with TS.
Collapse
Affiliation(s)
- Gulhan Tunca Sahin
- Department of Pediatric Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Education and Research Hospital, Istanbul Saglik Bilimleri University, Istanbul, Turkey
| | - Yakup Ergul
- Department of Pediatric Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Education and Research Hospital, Istanbul Saglik Bilimleri University, Istanbul, Turkey
| |
Collapse
|
42
|
Frommeyer G, Garthmann J, Ellermann C, Dechering DG, Kochhäuser S, Reinke F, Köbe J, Wasmer K, Eckardt L. Broad antiarrhythmic effect of mexiletine in different arrhythmia models. Europace 2017; 20:1375-1381. [DOI: 10.1093/europace/eux221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Jonas Garthmann
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Christian Ellermann
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Dirk G Dechering
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Simon Kochhäuser
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Florian Reinke
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Julia Köbe
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Kristina Wasmer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Campus 1, Münster, Germany
| |
Collapse
|
43
|
Liu G, Xue X, Gao C, Huang J, Qi D, Zhang Y, Dong JZ, Ma CS, Yan GX. Synergistic Effect of Dofetilide and Mexiletine on Prevention of Atrial Fibrillation. J Am Heart Assoc 2017; 6:JAHA.117.005482. [PMID: 28522677 PMCID: PMC5524094 DOI: 10.1161/jaha.117.005482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Although atrial fibrillation (AF) is the most common abnormal heart rhythm and its prevalence continues to rise, there is a marked paucity of effective and safe antiarrhythmic drugs for AF. This study was done to test whether combined use of dofetilide and mexiletine exhibits not only a synergistic effect on AF suppression but also a safer profile in drug‐induced ventricular proarrhythmias. Methods and Results The effects of dofetilide plus mexiletine on atrial effective refractory period (ERP), AF inducibility, QT, and QT‐related ventricular arrhythmias were studied using the isolated arterially perfused rabbit atrial and ventricular wedge preparations. Dofetilide or mexiletine alone mildly to moderately prolonged atrial ERP, but their combined use produced a markedly rate‐dependent increase in atrial ERP. Dofetilide (3 nmol/L) plus mexiletine (10 μmol/L) increased the ERP by 28.2% from 72.2±5.7 to 92.8±5.9 ms (n=9, P<0.01) at a pacing rate of 0.5 Hz and by 94.5% from 91.7±5.2 to 178.3±12.0 ms (n=9, P<0.01) at 3.3 Hz. Dofetilide plus mexiletine strongly suppressed AF inducibility. On the other hand, dofetilide at 10 nmol/L produced marked QT and Tp‐e prolongation, steeper QT‐BCL and Tp‐e‐BCL slopes, and induced early afterdepolarizations and torsade de pointes in the ventricular wedges. Mexiletine at 10 μmol/L reduced dofetilide‐induced QT and Tp‐e prolongation, QT‐BCL and Tp‐e‐BCL slopes, and abolished early afterdepolarizations and torsade de pointes. Conclusions In rabbits, combined use of dofetilide and mexiletine not only synergistically increases atrial ERP and effectively suppresses AF inducibility, but also markedly reduces QT liability and torsade de pointes risk posed by dofetilide alone.
Collapse
Affiliation(s)
- Guizhi Liu
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolin Xue
- Department of Cardiology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chuanyu Gao
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaqi Huang
- Lankenau Institute for Medical Research, Wynnewood, PA
| | - Datun Qi
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanzhou Zhang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Zeng Dong
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China .,Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chang-Sheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Gan-Xin Yan
- Department of Cardiology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China .,Lankenau Institute for Medical Research, Wynnewood, PA.,Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Wei XH, Yu SD, Ren L, Huang SH, Yang QM, Wang P, Chu YP, Yang W, Ding YS, Huo Y, Wu L. Inhibition of late sodium current suppresses calcium-related ventricular arrhythmias by reducing the phosphorylation of CaMK-II and sodium channel expressions. Sci Rep 2017; 7:981. [PMID: 28428622 PMCID: PMC5430524 DOI: 10.1038/s41598-017-01056-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/20/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias associated with intracellular calcium inhomeostasis are refractory to antiarrhythmic therapy. We hypothesized that late sodium current (I Na) contributed to the calcium-related arrhythmias. Monophasic action potential duration at 90% completion of repolarization (MAPD90) was significantly increased and ventricular arrhythmias were observed in hearts with increased intracellular calcium concentration ([Ca2+]i) by using Bay K 8644, and the increase became greater in hearts treated with a combination of ATX-II and Bay K 8644 compared to Bay K 8644 alone. The prolongations caused by Bay K 8644 and frequent episodes of ventricular tachycardias, both in absence and presence of ATX-II, were significantly attenuated or abolished by late I Na inhibitors TTX and eleclazine. In rabbit ventricular myocytes, Bay K 8644 increased I CaL density, calcium transient and myocyte contraction. TTX and eleclazine decreased the amplitude of late I Na, the reverse use dependence of MAPD90 at slower heart rate, and attenuated the increase of intracellular calcium transient and myocyte contraction. TTX diminished the phosphorylation of CaMKII-δ and Nav 1.5 in hearts treated with Bay K 8644 and ATX-II. In conclusion, late I Na contributes to ventricular arrhythmias and its inhibition is plausible to treat arrhythmias in hearts with increased [Ca2+]i.
Collapse
Affiliation(s)
- Xiao-Hong Wei
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Shan-Dong Yu
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Lu Ren
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Si-Hui Huang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Qiao-Mei Yang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Ping Wang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Yan-Peng Chu
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Wei Yang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Yan-Sheng Ding
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China. .,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China. .,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
45
|
Bezzerides VJ, Zhang A, Xiao L, Simonson B, Khedkar SA, Baba S, Ottaviano F, Lynch S, Hessler K, Rigby AC, Milan D, Das S, Rosenzweig A. Inhibition of serum and glucocorticoid regulated kinase-1 as novel therapy for cardiac arrhythmia disorders. Sci Rep 2017; 7:346. [PMID: 28336914 PMCID: PMC5428512 DOI: 10.1038/s41598-017-00413-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
Alterations in sodium flux (INa) play an important role in the pathogenesis of cardiac arrhythmias and may also contribute to the development of cardiomyopathies. We have recently demonstrated a critical role for the regulation of the voltage-gated sodium channel NaV1.5 in the heart by the serum and glucocorticoid regulated kinase-1 (SGK1). Activation of SGK1 in the heart causes a marked increase in both the peak and late sodium currents leading to prolongation of the action potential duration and an increased propensity to arrhythmia. Here we show that SGK1 directly regulates NaV1.5 channel function, and genetic inhibition of SGK1 in a zebrafish model of inherited long QT syndrome rescues the long QT phenotype. Using computer-aided drug discovery coupled with in vitro kinase assays, we identified a novel class of SGK1 inhibitors. Our lead SGK1 inhibitor (5377051) selectively inhibits SGK1 in cultured cardiomyocytes, and inhibits phosphorylation of an SGK1-specific target as well as proliferation in the prostate cancer cell line, LNCaP. Finally, 5377051 can reverse SGK1's effects on NaV1.5 and shorten the action potential duration in induced pluripotent stem cell (iPSC)-derived cardiomyocytes from a patient with a gain-of-function mutation in Nav 1.5 (Long QT3 syndrome). Our data suggests that SGK1 inhibitors warrant further investigation in the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Vassilios J Bezzerides
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Children's Hospital, Department of Cardiology, Boston, MA, USA
| | - Aifeng Zhang
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Ling Xiao
- Massachusetts General Hospital, Boston, MA, USA
| | - Bridget Simonson
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Santosh A Khedkar
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- ChemBio Discovery Solutions, Lexington, MA, USA
| | - Shiro Baba
- Graduate School of Medicine Kyoto University, Kyoto City, Japan
| | | | | | | | - Alan C Rigby
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Warp Drive Bio Inc., Cambridge, MA, USA
| | - David Milan
- Massachusetts General Hospital, Boston, MA, USA
| | - Saumya Das
- Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Massachusetts General Hospital, Boston, MA, USA.
| | - Anthony Rosenzweig
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
46
|
Gurabi Z, Patocskai B, Györe B, Virág L, Mátyus P, Papp JG, Varró A, Koncz I. Different electrophysiological effects of the levo- and dextro-rotatory isomers of mexiletine in isolated rabbit cardiac muscle. Can J Physiol Pharmacol 2017; 95:830-836. [PMID: 28226224 DOI: 10.1139/cjpp-2016-0599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Racemic mexiletine is a widely used antiarrhythmic agent that blocks sodium channels. The effects of R-(-) and S-(+) mexiletine stereoisomers on maximum rate of depolarization ([Formula: see text]), conduction time, and repolarization have not yet been investigated in isolated cardiac preparations. We studied the effect of the R-(-) and S-(+) mexiletine on rabbit cardiac action potential parameters by using the conventional microelectrode technique. Both enantiomers at 20 μmol/L of therapeutically and experimentally relevant concentration, significantly depressed the [Formula: see text] at fast heart rates (BCLs 300-700 ms). R-(-) mexiletine has more potent inhibitory effect than S-(+) mexiletine. Both R-(-) and S-(+) mexiletine significantly inhibited the [Formula: see text] of early extrasystoles measured at 70 ms diastolic interval induced by S1-S2 stimuli. R-(-) mexiletine has more pronounced inhibitory effect than S-(+) mexiletine. Both R-(-) and S-(+) mexiletine increased significantly the ERP/APD90 ratio. The time constant (τ) of recovery of [Formula: see text] was found to be τ = 376.0 ± 77.8 ms for R-(-) mexiletine and τ = 227.1 ± 23.4 ms for S-(+) mexiletine, which indicates a slower offset kinetics for R-(-) mexiletine from sodium channels than that of the S-(+) enantiomer. These data suggest that R-(-) mexiletine might be a more potent antiarrhythmic agent than S-(+) mexiletine.
Collapse
Affiliation(s)
- Zsolt Gurabi
- a Department of Pharmacology & Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bence Patocskai
- a Department of Pharmacology & Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,b First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,c DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany
| | - Balázs Györe
- d Faculty of Dentistry, University of Szeged, Hungary
| | - László Virág
- a Department of Pharmacology & Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Mátyus
- e Department of Organic Chemistry, Faculty of Pharmacology, Semmelweis University, Budapest, Hungary
| | - Julius Gy Papp
- a Department of Pharmacology & Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,f Hungarian Academy of Sciences - University of Szeged (MTA-SZTE) Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - András Varró
- a Department of Pharmacology & Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,f Hungarian Academy of Sciences - University of Szeged (MTA-SZTE) Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - István Koncz
- a Department of Pharmacology & Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
47
|
Karagueuzian HS, Pezhouman A, Angelini M, Olcese R. Enhanced Late Na and Ca Currents as Effective Antiarrhythmic Drug Targets. Front Pharmacol 2017; 8:36. [PMID: 28220073 PMCID: PMC5292429 DOI: 10.3389/fphar.2017.00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/18/2017] [Indexed: 11/30/2022] Open
Abstract
While recent advances clarified the molecular and cellular modes of action of antiarrhythmic drugs (AADs), their link to suppression of dynamical arrhythmia mechanisms remains only partially understood. The current classifications of AADs (Classes I, III, and IV) rely on blocking peak Na, K and L-type calcium currents (ICa,L), with Class II with dominant beta receptor blocking activity and Class V including drugs with diverse classes of actions. The discovery that the calcium and redox sensor, cardiac Ca/calmodulin-dependent protein kinase II (CaMKII) enhances both the late Na (INa-L) and the late ICa,L in patients at high risk of VT/VF provided a new and a rational AAD target. Pathological rise of either or both of INa-L and late ICa,L are demonstrated to promote cellular early afterdepolarizations (EADs) and EAD-mediated triggered activity that can initiate VT/VF in remodeled hearts. Selective inhibition of the INa-L without affecting their peak transients with the highly specific prototype drug, GS-967 suppresses these EAD-mediated VT/VFs. As in the case of INa-L, selective inhibition of the late ICa,L without affecting its peak with the prototype drug, roscovitine suppressed oxidative EAD-mediated VT/VF. These findings indicate that specific blockers of the late inward currents without affecting their peaks (gating modifiers), offer a new and effective AAD class action i.e., “Class VI.” The development of safe drugs with selective Class VI actions provides a rational and effective approach to treat VT/VF particularly in cardiac conditions associated with enhanced CaMKII activity such as heart failure.
Collapse
Affiliation(s)
- Hrayr S Karagueuzian
- Translational Arrhythmia Section, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Arash Pezhouman
- Translational Arrhythmia Section, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Riccardo Olcese
- Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Department of Physiology, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
48
|
Baurand A, Falcon-Eicher S, Laurent G, Villain E, Bonnet C, Thauvin-Robinet C, Jacquot C, Eicher JC, Gourraud JB, Schmitt S, Bézieau S, Giraud M, Dumont S, Kuentz P, Probst V, Burguet A, Kyndt F, Faivre L. Incomplete Timothy syndrome secondary to a mosaic mutation of the CACNA1C gene diagnosed using next-generation sequencing. Am J Med Genet A 2016; 173:531-536. [PMID: 27868338 DOI: 10.1002/ajmg.a.38045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/14/2016] [Indexed: 11/12/2022]
Abstract
Autosomal dominant genetic diseases can occur de novo and in the form of somatic mosaicism, which can give rise to a less severe phenotype, and make diagnosis more difficult given the sensitivity limits of the methods used. We report the case of female child with a history of surgery for syndactyly of the hands and feet, who was admitted at 6 years of age to a pediatric intensive care unit following cardiac arrest. The electrocardiogram (ECG) showed a long QT interval that on occasions reached 500 ms. Despite the absence of facial dysmorphism and the presence of normal psychomotor development, a diagnosis of Timothy syndrome was made given the association of syndactyly and the ECG features. Sanger sequencing of the CACNA1C gene, followed by sequencing of the genes KCNQ1, KCNH2, KCNE1, KCNE2, were negative. The subsequent analysis of a panel of genes responsible for hereditary cardiac rhythm disorders using Haloplex technology revealed a recurrent mosaic p.Gly406Arg missense mutation of the CACNA1C gene in 18% of the cells. This mosaicism can explain the negative Sanger analysis and the less complete phenotype in this patient. Given the other cases in the literature, mosaic mutations in Timothy syndrome appear more common than previously thought. This case demonstrates the importance of using next-generation sequencing to identify mosaic mutations when the clinical picture supports a specific mutation that is not identified using conventional testing. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amandine Baurand
- Centre de Génétique et Centre de Référence des Maladies Rares-Anomalies du Développement et Syndromes Malformatifs, CHU Dijon, Dijon, France
| | - Sylvie Falcon-Eicher
- Cardiologie Pédiatrique, CHU Dijon, Dijon, France.,Cardiologie et Centre de Compétence des Troubles du Rythme Cardiaque Héréditaires, CHU Dijon, Dijon, France
| | - Gabriel Laurent
- Cardiologie et Centre de Compétence des Troubles du Rythme Cardiaque Héréditaires, CHU Dijon, Dijon, France
| | - Elisabeth Villain
- Cardiologie Pédiatrique, Hôpital Necker-Enfants Malades, Paris, France
| | - Caroline Bonnet
- Cardiologie Pédiatrique, CHU Dijon, Dijon, France.,Cardiologie et Centre de Compétence des Troubles du Rythme Cardiaque Héréditaires, CHU Dijon, Dijon, France
| | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence des Maladies Rares-Anomalies du Développement et Syndromes Malformatifs, CHU Dijon, Dijon, France
| | - Caroline Jacquot
- Centre de Génétique et Centre de Référence des Maladies Rares-Anomalies du Développement et Syndromes Malformatifs, CHU Dijon, Dijon, France
| | - Jean-Christophe Eicher
- Cardiologie et Centre de Compétence des Troubles du Rythme Cardiaque Héréditaires, CHU Dijon, Dijon, France
| | | | | | | | | | - Solenne Dumont
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Paul Kuentz
- EA4271, Génétique des Anomalies du Développement, Université de Bourgogne-Franche Comté, Dijon, France
| | - Vincent Probst
- Institut du Thorax, INSERM U1087, CHU Nantes, Nantes, France
| | | | - Florence Kyndt
- Institut du Thorax, INSERM U1087, CHU Nantes, Nantes, France.,Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence des Maladies Rares-Anomalies du Développement et Syndromes Malformatifs, CHU Dijon, Dijon, France.,Cardiologie et Centre de Compétence des Troubles du Rythme Cardiaque Héréditaires, CHU Dijon, Dijon, France.,EA4271, Génétique des Anomalies du Développement, Université de Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
49
|
Ergül Y, Özyılmaz İ, Haydın S, Güzeltaş A, Tuzcu V. A rare association with suffered cardiac arrest, long QT interval, and syndactyly: Timothy syndrome (LQT-8). Anatol J Cardiol 2016; 15:672-4. [PMID: 26301350 PMCID: PMC5336871 DOI: 10.5152/anatoljcardiol.2015.6315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yakup Ergül
- Clinic of Pediatric Cardiology, Mehmet Akif Ersoy Cardiovascular Training and Research Hospital; İstanbul-Turkey.
| | | | | | | | | |
Collapse
|
50
|
Liu G, Liu T, Cohen D, Liu T, Yan GX. How to determine cardiac ion channels targeted by drugs using the isolated rabbit ventricular wedge model. J Pharmacol Toxicol Methods 2016; 81:161-70. [PMID: 27195944 DOI: 10.1016/j.vascn.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/05/2016] [Accepted: 05/15/2016] [Indexed: 12/01/2022]
|