1
|
Narducci ML, Scacciavillani R, Nano RL, Bisignani A, D'Alessandris N, Inzani F, Tiziano FD, Perna F, Bencardino G, Burzotta F, Pelargonio G, Imazio M. Prognostic value of electroanatomic-guided endomyocardial biopsy in patients with myocarditis, arrhythmogenic cardiomyopathy and non dilated left ventricular cardiomyopathy. Int J Cardiol 2024; 416:132489. [PMID: 39187071 DOI: 10.1016/j.ijcard.2024.132489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
A wide variety of non-invasive and invasive techniques for SCD risk stratification in non ischemic cardiomyopathy (NICM) have been proposed, including left ventricular (LV) ejection fraction, QRS duration, late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) and invasive electrophysiologic study with or without three-dimensional electroanatomic mapping (3D-EAM), to identify and characterize the arrhythmogenic substrate. There is still no clear consensus on the risk stratification in this clinical setting. The aim of our study is to characterize the 3D-EAM substrate in patients with the same clinical presentation of unexplained complex VAs and NICM using CMR, three-dimensional electranatomic mapping (3D-EAM) in association with endomyocardial biopsy (EMB) and genetic screening, as a more precise and early diagnostic assessment may provide important subsequent prognostic impact. The study was designed as a prospective multi-center observational evaluation and the patient follow-up was scheduled at 6 months interval. We enrolled 125 patients distinct into four different group by complete diagnostic work-up: myocarditis, non-dilated left ventricular cardiomyopathy, arrhythmogenic cardiomyopathy and control group. The four groups were compared in terms of clinical, imaging and 3D-EAM data. At multivariate analysis sustained VT/VF on admission [HR: 3.64 (1.79-7.4), p < 0.001], total bipolar scar area of left and right ventricle detected by 3D-EAM [HR: 2.24 (1.13-4.49), p = 0.02], histological diagnosis of myocarditis by 3D-EAM guided endomyocardial biopsy (EBM) [HR: 2.79 (1.04-7.44), p = 0.01] were independent predictors of complex VAs or death at follow-up. 3D-EAM guided EMB represent not only a valid diagnostic tool to identify the arrhythmogenic substrate in patients with NICM and ventricular arrhythmic phenotype but also an important predictor of complex Vas at long term follow-up.
Collapse
Affiliation(s)
- Maria Lucia Narducci
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Cardiology Department, University Hospital "Santa Maria della Misericordia ", Azienda Sanitaria Universitaria Integrata Friuli Centrale, Udine, Italy.
| | | | - Roberta Lo Nano
- Istituto di Cardiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Bisignani
- Center of excellence in Cardiovascular Sciences, Ospedale Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Nicoletta D'Alessandris
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Frediano Inzani
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Italy
| | - Francesco Danilo Tiziano
- Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore and UOC Genetica Medica, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Roma
| | - Francesco Perna
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluigi Bencardino
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Burzotta
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gemma Pelargonio
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Massimo Imazio
- Cardiology Department, University Hospital "Santa Maria della Misericordia ", Azienda Sanitaria Universitaria Integrata Friuli Centrale, Udine, Italy
| |
Collapse
|
2
|
Khan M, Jahangir A. The Uncertain Benefit from Implantable Cardioverter-Defibrillators in Nonischemic Cardiomyopathy: How to Guide Clinical Decision-Making? Heart Fail Clin 2024; 20:407-417. [PMID: 39216926 DOI: 10.1016/j.hfc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Life-threatening dysrhythmias remain a significant cause of mortality in patients with nonischemic cardiomyopathy (NICM). Implantable cardioverter-defibrillators (ICD) effectively reduce mortality in patients who have survived a life-threatening arrhythmic event. The evidence for survival benefit of primary prevention ICD for patients with high-risk NICM on guideline-directed medical therapy is not as robust, with efficacy questioned by recent studies. In this review, we summarize the data on the risk of life-threatening arrhythmias in NICM, the recommendations, and the evidence supporting the efficacy of primary prevention ICD, and highlight tools that may improve the identification of patients who could benefit from primary prevention ICD implantation.
Collapse
Affiliation(s)
- Mohsin Khan
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA
| | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA.
| |
Collapse
|
3
|
Eichhorn C, Koeckerling D, Reddy RK, Ardissino M, Rogowski M, Coles B, Hunziker L, Greulich S, Shiri I, Frey N, Eckstein J, Windecker S, Kwong RY, Siontis GCM, Gräni C. Risk Stratification in Nonischemic Dilated Cardiomyopathy Using CMR Imaging: A Systematic Review and Meta-Analysis. JAMA 2024:2823869. [PMID: 39298146 PMCID: PMC11413760 DOI: 10.1001/jama.2024.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024]
Abstract
Importance Accurate risk stratification of nonischemic dilated cardiomyopathy (NIDCM) remains challenging. Objective To evaluate the association of cardiac magnetic resonance (CMR) imaging-derived measurements with clinical outcomes in NIDCM. Data Sources MEDLINE, Embase, Cochrane Library, and Web of Science Core Collection databases were systematically searched for articles from January 2005 to April 2023. Study Selection Prospective and retrospective nonrandomized diagnostic studies reporting on the association between CMR imaging-derived measurements and adverse clinical outcomes in NIDCM were deemed eligible. Data Extraction and Synthesis Prespecified items related to patient population, CMR imaging measurements, and clinical outcomes were extracted at the study level by 2 independent reviewers. Random-effects models were fitted using restricted maximum likelihood estimation and the method of Hartung, Knapp, Sidik, and Jonkman. Main Outcomes and Measures All-cause mortality, cardiovascular mortality, arrhythmic events, heart failure events, and major adverse cardiac events (MACE). Results A total of 103 studies including 29 687 patients with NIDCM were analyzed. Late gadolinium enhancement (LGE) presence and extent (per 1%) were associated with higher all-cause mortality (hazard ratio [HR], 1.81 [95% CI, 1.60-2.04]; P < .001 and HR, 1.07 [95% CI, 1.02-1.12]; P = .02, respectively), cardiovascular mortality (HR, 2.43 [95% CI, 2.13-2.78]; P < .001 and HR, 1.15 [95% CI, 1.07-1.24]; P = .01), arrhythmic events (HR, 2.69 [95% CI, 2.20-3.30]; P < .001 and HR, 1.07 [95% CI, 1.03-1.12]; P = .004) and heart failure events (HR, 1.98 [95% CI, 1.73-2.27]; P < .001 and HR, 1.06 [95% CI, 1.01-1.10]; P = .02). Left ventricular ejection fraction (LVEF) (per 1%) was not associated with all-cause mortality (HR, 0.99 [95% CI, 0.97-1.02]; P = .47), cardiovascular mortality (HR, 0.97 [95% CI, 0.94-1.00]; P = .05), or arrhythmic outcomes (HR, 0.99 [95% CI, 0.97-1.01]; P = .34). Lower risks for heart failure events (HR, 0.97 [95% CI, 0.95-0.98]; P = .002) and MACE (HR, 0.98 [95% CI, 0.96-0.99]; P < .001) were observed with higher LVEF. Higher native T1 relaxation times (per 10 ms) were associated with arrhythmic events (HR, 1.07 [95% CI, 1.01-1.14]; P = .04) and MACE (HR, 1.06 [95% CI, 1.01-1.11]; P = .03). Global longitudinal strain (GLS) (per 1%) was not associated with heart failure events (HR, 1.06 [95% CI, 0.95-1.18]; P = .15) or MACE (HR, 1.03 [95% CI, 0.94-1.14]; P = .43). Limited data precluded definitive analysis for native T1 relaxation times, GLS, and extracellular volume fraction (ECV) with respect to mortality outcomes. Conclusion The presence and extent of LGE were associated with various adverse clinical outcomes, whereas LVEF was not significantly associated with mortality and arrhythmic end points in NIDCM. Risk stratification using native T1 relaxation times, extracellular volume fraction, and global longitudinal strain requires further evaluation.
Collapse
Affiliation(s)
- Christian Eichhorn
- Division of Acute Medicine, University Hospital Basel, Basel, Switzerland
- Private University in the Principality of Liechtenstein, Triesen
- Department of Internal Medicine, See-Spital, Horgen, Switzerland
| | - David Koeckerling
- Department of Cardiology, Angiology and Respiratory Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Rohin K. Reddy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Maddalena Ardissino
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Marek Rogowski
- Private University in the Principality of Liechtenstein, Triesen
- Agaplesion General Hospital, Hagen, Germany
| | - Bernadette Coles
- Velindre University NHS Trust Library & Knowledge Service, Cardiff University, Cardiff, Wales
| | - Lukas Hunziker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Simon Greulich
- Department of Cardiology and Angiology, University of Tübingen, Tübingen, Germany
| | - Isaac Shiri
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Norbert Frey
- Department of Cardiology, Angiology and Respiratory Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens Eckstein
- Division of Acute Medicine, University Hospital Basel, Basel, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raymond Y. Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - George C. M. Siontis
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Beijnink CW, Raafs AG, Vos JL, Verdonschot JA, Sikking MA, Rodwell L, Heymans SR, Nijveldt R. Papillary Muscle Delayed Hyperenhancement: Prevalence and Clinical Implications in a Large Population With Dilated Cardiomyopathy. JACC. ADVANCES 2024; 3:101103. [PMID: 39105114 PMCID: PMC11298879 DOI: 10.1016/j.jacadv.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 08/07/2024]
Abstract
Background Papillary muscle-delayed hyperenhancement (papHE) at cardiac magnetic resonance indicates fibrotic or infiltrative processes. Contrary to myocardial HE, the prevalence and prognostic implications of papHE in patients with nonischemic dilated cardiomyopathy are unclear. Objectives The purpose of this study was to determine the prevalence of papHE and describe its association with adverse clinical outcomes. Methods This prospective cohort study included 528 patients who underwent late gadolinium enhancement cardiac magnetic resonance. The primary outcomes were all-cause mortality, sudden cardiac death, life-threatening arrhythmia, and hospitalization for heart failure. Patients were allocated into 4 categories: the first without papHE and without myocardial HE, the second with papHE, the third with myocardial HE, and the fourth with papHE and myocardial HE. The hazards of the primary outcomes for each category were compared using multivariable Cox regression. Results papHE was present in 131 patients (25%). The median follow-up duration was 6.1 years (IQR: 3.7-9.7 years). Isolated papHE and isolated myocardial HE were not significantly associated with any of the prespecified outcomes. Patients who had both myocardial HE and papHE were at an increased risk of all-cause mortality (HR: 2.33, 95% CI: 1.26-4.30), sudden cardiac death (HR: 3.77, 95% CI: 1.59-8.94), life-threatening arrhythmia (HR: 3.94, 95% CI: 1.34-11.58), and hospitalization for heart failure (HR: 2.97, 95% CI: 1.30-6.80). Conclusions The combined presence of myocardial and papHE was independently associated with adverse outcomes. Future studies should investigate if the incorporation of papHE and myocardial HE may improve clinical decision-making strategies to select dilated cardiomyopathy patients who would benefit the most from ICD implantation.
Collapse
Affiliation(s)
- Casper W.H. Beijnink
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anne G. Raafs
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacqueline L. Vos
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Job A.J. Verdonschot
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Maurits A. Sikking
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Laura Rodwell
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephane R.B. Heymans
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
5
|
Khan M, Jahangir A. The Uncertain Benefit from Implantable Cardioverter-Defibrillators in Nonischemic Cardiomyopathy: How to Guide Clinical Decision-Making? Cardiol Clin 2023; 41:545-555. [PMID: 37743077 DOI: 10.1016/j.ccl.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Life-threatening dysrhythmias remain a significant cause of mortality in patients with nonischemic cardiomyopathy (NICM). Implantable cardioverter-defibrillators (ICD) effectively reduce mortality in patients who have survived a life-threatening arrhythmic event. The evidence for survival benefit of primary prevention ICD for patients with high-risk NICM on guideline-directed medical therapy is not as robust, with efficacy questioned by recent studies. In this review, we summarize the data on the risk of life-threatening arrhythmias in NICM, the recommendations, and the evidence supporting the efficacy of primary prevention ICD, and highlight tools that may improve the identification of patients who could benefit from primary prevention ICD implantation.
Collapse
Affiliation(s)
- Mohsin Khan
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA
| | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA.
| |
Collapse
|
6
|
Chayanopparat P, Boonyasirinant T, Prapan N, Phoopattana S, Kaolawanich Y. Electrocardiographic characteristics associated with late gadolinium enhancement and prognostic value in patients with dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1281563. [PMID: 37920176 PMCID: PMC10619146 DOI: 10.3389/fcvm.2023.1281563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Background Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) imaging has emerged as an important tool for assessment of patients with dilated cardiomyopathy (DCM). Electrocardiography (ECG) is an accessible, reproducible, low-cost diagnostic and prognostic tool. This study aimed to investigate the ECG characteristics associated with LGE, as well as to assess the prognostic significance of ECG in patients with DCM. Methods Consecutive patients diagnosed with DCM by CMR [left ventricular ejection fraction (LVEF) < 50%] between 2011 and 2020 were included. Multivariable analysis was conducted to evaluate ECG predictors associated with LGE. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic performance of ECG in combination of clinical data and LVEF for LGE. Two composite outcomes were also assessed among patients with and without ECG predictors: (1) sudden cardiac death (SCD), sustained ventricular arrhythmia, or appropriate implantable cardioverter-defibrillator (ICD) therapy, and (2) all-cause death or hospitalization for heart failure. Results A total of 422 patients, with a mean age of 59.5 ± 16.3 years (58.3% male), were included. LGE was present in 169 (40%) of the patients. Multivariable analysis identified lateral inverted T-waves, intraventricular conduction delay, low voltage, and fragmented QRS as independent predictors of LGE. ROC analysis showed a significant increase in the area under the curve (AUC) when ECG predictors of the four aforementioned characteristics were added to the clinical-LVEF model (AUC 0.66, 95% CI 0.59-0.71 vs. 0.72, 95% CI 0.67-0.78, p = 0.003). During a median follow-up of 2.7 years (IQR 0.8, 5.2), 16 events of SCD, sustained ventricular arrhythmia, or appropriate ICD therapy, and 70 events of all-cause death or hospitalization for heart failure occurred. ECG predictors were independently associated with SCD, sustained ventricular arrhythmia, or appropriate ICD therapy (HR 4.84, 95% CI 1.34-17.40, p = 0.01). However, ECG predictors were not associated with all-cause death or hospitalization for heart failure (HR 1.22, 95% CI 0.76-1.96, p = 0.39). Conclusion In patients with DCM, lateral inverted T-waves, intraventricular conduction delay, low voltage, and fragmented QRS were independently associated with LGE. Additionally, these ECG predictors had prognostic value for predicting SCD, sustained ventricular arrhythmia, or appropriate ICD therapy, assisting clinicians in stratifying SCD risk and identifying primary prevention ICD implantation candidates.
Collapse
Affiliation(s)
| | | | | | | | - Yodying Kaolawanich
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Konagai N, Asaumi Y, Murata S, Noda T, Takeuchi S, Fujino M, Honda S, Yoneda S, Kataoka Y, Otsuka F, Nishimura K, Tsujita K, Kusano K, Noguchi T, Yasuda S. In-hospital predictors for primary prevention of sudden death after acute myocardial infarction with cardiac dysfunction. J Cardiol 2023; 82:186-193. [PMID: 37187290 DOI: 10.1016/j.jjcc.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Current guidelines recommend prophylactic defibrillator implantation in patients with acute myocardial infarction (AMI) and left ventricular ejection fraction (LVEF) ≤40 % or LVEF ≤35 % plus heart failure symptoms or inducible ventricular tachyarrhythmias during an electrophysiology study at 40 days after AMI or 90 days after revascularization. In-hospital predictors of sudden cardiac death (SCD) after AMI during the index hospitalization remain unsettled. We sought to examine in-hospital predictors of SCD in patients with AMI and LVEF ≤40 % evaluated during the index hospitalization. METHODS We retrospectively evaluated 441 consecutive patients with AMI and LVEF ≤40 % admitted to our hospital between 2001 and 2014 (77 % male gender; median age: 70 years; median hospitalization length: 23 days). The primary endpoint was a composite of SCD or aborted SCD at ≥30 days after AMI onset (composite arrhythmic event). LVEF and QRS duration (QRSd) on electrocardiography were measured at a median of 12 days and 18 days, respectively. RESULTS During a median follow-up of 7.6 years, the incidence of composite arrhythmic events was 7.3 % (32 of 441 patients). In multivariable analysis, QRSd ≥100 msec (beta-coefficient = 1.54, p = 0.003), LVEF ≤23 % (beta-coefficient = 1.14, p = 0.007), and onset-reperfusion time > 5.5 h (beta-coefficient = 1.16, p = 0.035) were independent predictors of composite arrhythmic events. The combination of these 3 factors was associated with the highest rate of composite arrhythmic events compared with 0-2 factors (p < 0.001). CONCLUSIONS The combination of QRSd ≥100 msec, LVEF ≤23 %, and onset-reperfusion time > 5.5 h during the index hospitalization provides precise risk stratification for SCD in patients early after AMI.
Collapse
Affiliation(s)
- Nao Konagai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Shunsuke Murata
- Department of Preventative Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takashi Noda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Cardiovascular Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Satoshi Takeuchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Cardiovascular Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Masashi Fujino
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Satoshi Honda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shuichi Yoneda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fumiyuki Otsuka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kunihiro Nishimura
- Department of Preventative Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kenichi Tsujita
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Cardiovascular Medicine, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Al-Sadawi M, Aslam F, Tao M, Fan R, Singh A, Rashba E. Association of Late-Gadolinium Enhancement in Cardiac Magnetic Resonance with Mortality, Ventricular Arrhythmias, and Heart Failure in Patients with Non-Ischemic Cardiomyopathy: A Systematic Review and Meta-Analysis. Heart Rhythm O2 2023; 4:241-250. [PMID: 37124560 PMCID: PMC10134398 DOI: 10.1016/j.hroo.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Late gadolinium enhancement (LGE) on cardiac magnetic resonance is a predictor of adverse events in patients with nonischemic cardiomyopathy (NICM). Objective This meta-analysis evaluated the correlation between LGE and mortality, ventricular arrhythmias (VAs) and sudden cardiac death (SCD), and heart failure (HF) outcomes. Methods A literature search was conducted for studies reporting the association between LGE in NICM and the study endpoints. The primary endpoint was mortality. Secondary endpoints included VA and SCD, HF hospitalization, improvement in left ventricular ejection fraction (LVEF) to >35%, and heart transplantation referral. The search was not restricted to time or publication status. The minimum follow-up duration was 1 year. Results A total of 46 studies and 10,548 NICM patients (4610 with LGE, 5938 without LGE) were included; mean follow-up was 3 years (range 13-71 months). LGE was associated with increased mortality (odds ratio [OR] 2.9; 95% confidence interval [CI] 2.3-3.8; P < .01) and VA and SCD (OR 4.6; 95% CI 3.5-6.0; P < .01). LGE was associated with an increased risk of HF hospitalization (OR 3.4; 95% CI 2.3-5.0; P < .01), referral for transplantation (OR 5.1; 95% CI 2.5-10.4; P < .01), and decreased incidence of LVEF improvement to >35% (OR 0.2; 95% CI 0.03-0.85; P = .03). Conclusion LGE in NICM patients is associated with increased mortality, VA and SCD, and HF hospitalization and heart transplantation referral during long-term follow up. Given these competing risks of mortality and HF progression, prospective randomized controlled trials are required to determine if LGE is useful for guiding prophylactic implantable cardioverter-defibrillator placement in NICM patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Eric Rashba
- Address reprint requests and correspondence: Dr Eric Rashba, Stony Brook Heart Rhythm Center, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794.
| |
Collapse
|
9
|
An autopsy case of sudden unexpected death of a young adult with progressive intraventricular conduction delay. Pathol Res Pract 2022; 240:154226. [DOI: 10.1016/j.prp.2022.154226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/12/2022] [Indexed: 11/15/2022]
|
10
|
Balaban G, Halliday BP, Hammersley D, Rinaldi CA, Prasad SK, Bishop MJ, Lamata P. Left ventricular shape predicts arrhythmic risk in fibrotic dilated cardiomyopathy. Europace 2022; 24:1137-1147. [PMID: 34907426 PMCID: PMC9301973 DOI: 10.1093/europace/euab306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
AIMS Remodelling of the left ventricular (LV) shape is one of the hallmarks of non-ischaemic dilated cardiomyopathy (DCM) and may contribute to ventricular arrhythmias and sudden cardiac death. We sought to investigate a novel three dimensional (3D) shape analysis approach to quantify LV remodelling for arrhythmia prediction in DCM. METHODS AND RESULTS We created 3D LV shape models from end-diastolic cardiac magnetic resonance images of 156 patients with DCM and late gadolinium enhancement (LGE). Using the shape models, principle component analysis, and Cox-Lasso regression, we derived a prognostic LV arrhythmic shape (LVAS) score which identified patients who reached a composite arrhythmic endpoint of sudden cardiac death, aborted sudden cardiac death, and sustained ventricular tachycardia. We also extracted geometrical metrics to look for potential prognostic markers. During a follow-up period of up to 16 years (median 7.7, interquartile range: 3.9), 25 patients met the arrhythmic endpoint. The optimally prognostic LV shape for predicting the time-to arrhythmic event was a paraboloidal longitudinal profile, with a relatively wide base. The corresponding LVAS was associated with arrhythmic events in univariate Cox regression (hazard ratio = 2.0 per quartile; 95% confidence interval: 1.3-2.9), in univariate Cox regression with propensity score adjustment, and in three multivariate models; with LV ejection fraction, New York Heart Association Class III/IV (Model 1), implantable cardioverter-defibrillator receipt (Model 2), and cardiac resynchronization therapy (Model 3). CONCLUSION Biomarkers of LV shape remodelling in DCM can help to identify the patients at greatest risk of lethal ventricular arrhythmias.
Collapse
Affiliation(s)
- Gabriel Balaban
- Department of Biomedical Engineering, School of Biomedical & Imaging Sciences, King’s College London, 249 Westminster Bridge Road, SE1 7EH London, UK
- Biomedical Informatics Group, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
- PharmaTox Strategic Research Initiative, Deparment of Pharmacy, University of Oslo, 0373 Oslo, Norway
| | - Brian P Halliday
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Daniel Hammersley
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Christopher A Rinaldi
- Department of Biomedical Engineering, School of Biomedical & Imaging Sciences, King’s College London, 249 Westminster Bridge Road, SE1 7EH London, UK
- Department of Cardiology, St Thomas’ Hospital, London, UK
| | - Sanjay K Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Martin J Bishop
- Department of Biomedical Engineering, School of Biomedical & Imaging Sciences, King’s College London, 249 Westminster Bridge Road, SE1 7EH London, UK
| | - Pablo Lamata
- Department of Biomedical Engineering, School of Biomedical & Imaging Sciences, King’s College London, 249 Westminster Bridge Road, SE1 7EH London, UK
| |
Collapse
|
11
|
Sepehri Shamloo A, Dilk P, Dagres N. Prävention des plötzlichen Herztods. Herz 2022; 47:135-140. [DOI: 10.1007/s00059-022-05106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/04/2022]
|
12
|
Dziewięcka E, Winiarczyk M, Wiśniowska-Śmiałek S, Karabinowska-Małocha A, Gliniak M, Robak J, Kaciczak M, Leszek P, Celińska-Spodar M, Dziewięcki M, Rubiś P. Clinical Utility and Validation of the Krakow DCM Risk Score—A Prognostic Model Dedicated to Dilated Cardiomyopathy. J Pers Med 2022; 12:jpm12020236. [PMID: 35207723 PMCID: PMC8879244 DOI: 10.3390/jpm12020236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/30/2021] [Accepted: 01/27/2022] [Indexed: 12/28/2022] Open
Abstract
Background: One of the most common causes of heart failure is dilated cardiomyopathy (DCM). In DCM, the mortality risk is high and reaches approximately 20% in 5 years. A patient’s prognosis should be established for appropriate HF management. However, so far, no validated tools have been available for the DCM population. Methods: The study population consisted of 735 DCM patients: 406 from the derivation cohort (previously described) and 329 from the validation cohort (from 2009 to 2020, with outcome data after a mean of 42 months). For each DCM patient, the individual mortality risk was calculated based on the Krakow DCM Risk Score. Results: During follow-up, 49 (15%) patients of the validation cohort died. They had shown significantly higher calculated 1-to-5-year mortality risks. The Krakow DCM Risk Score yielded good discrimination in terms of overall mortality risk, with an AUC of 0.704–0.765. Based on a 2-year mortality risk, patients were divided into non-high (≤6%) and high (>6%) mortality risk groups. The observed mortality rates were 8.3% (n = 44) vs. 42.6% (n = 75), respectively (HR 3.37; 95%CI 1.88–6.05; p < 0.0001). Conclusions: The Krakow DCM Risk Score was found to have good predictive accuracy. The 2-year mortality risk > 6% has good discrimination for the identification of high-risk patients and can be applied in everyday practice.
Collapse
Affiliation(s)
- Ewa Dziewięcka
- Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, 31-202 Krakow, Poland; (S.W.-Ś); (A.K.-M.)
- Correspondence: (E.D.); (P.R.); Tel.: +48-126142287 (E.D.)
| | - Mateusz Winiarczyk
- Students’ Scientific Group at Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, 31-008 Krakow, Poland; (M.W.); (M.G.); (J.R.); (M.K.)
| | - Sylwia Wiśniowska-Śmiałek
- Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, 31-202 Krakow, Poland; (S.W.-Ś); (A.K.-M.)
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Collegium Medicum, John Paul II Hospital, 31-008 Krakow, Poland
| | - Aleksandra Karabinowska-Małocha
- Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, 31-202 Krakow, Poland; (S.W.-Ś); (A.K.-M.)
| | - Matylda Gliniak
- Students’ Scientific Group at Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, 31-008 Krakow, Poland; (M.W.); (M.G.); (J.R.); (M.K.)
| | - Jan Robak
- Students’ Scientific Group at Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, 31-008 Krakow, Poland; (M.W.); (M.G.); (J.R.); (M.K.)
| | - Monika Kaciczak
- Students’ Scientific Group at Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, 31-008 Krakow, Poland; (M.W.); (M.G.); (J.R.); (M.K.)
| | - Przemysław Leszek
- Department of Heart Failure and Transplantation, The Cardinal Stefan Wyszyński Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Małgorzata Celińska-Spodar
- Department of Anaesthesiology and Intensive Care, The National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Marcin Dziewięcki
- College of Economics and Computer Science (WSEI), 31-150 Krakow, Poland;
| | - Paweł Rubiś
- Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, 31-202 Krakow, Poland; (S.W.-Ś); (A.K.-M.)
- Correspondence: (E.D.); (P.R.); Tel.: +48-126142287 (E.D.)
| |
Collapse
|
13
|
Zhong C, Zhao H, Xie X, Qi Z, Li Y, Jia L, Zhang J, Lu Y. Protein Kinase C-Mediated Hyperphosphorylation and Lateralization of Connexin 43 Are Involved in Autoimmune Myocarditis-Induced Prolongation of QRS Complex. Front Physiol 2022; 13:815301. [PMID: 35418879 PMCID: PMC9000987 DOI: 10.3389/fphys.2022.815301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Myocarditis is a serious and potentially life-threatening disease, which leads to cardiac dysfunction and sudden cardiac death. An increasing number of evidence suggests that myocarditis is also a malignant complication of coronavirus pneumonia, associated with heart failure and sudden cardiac death. Prolonged QRS complexes that are related to malignant arrhythmias caused by myocarditis significantly increase the risk of sudden cardiac death in patients. However, the molecular mechanisms are not fully known at present. In this study, we identify protein kinase C (PKC) as a new regulator of the QRS complex. In isolated hearts of normal rats, the PKC agonist, phorbol-12-myristate-13-acetate (PMA), induced prolongation of the QRS complex. Mechanistically, hyperphosphorylation and lateralization of connexin 43 (Cx43) by PKC induced depolymerization and internalization of Cx43 gap junction channels and prolongation of the QRS duration. Conversely, administration of the PKC inhibitor, Ro-32-0432, in experimental autoimmune myocarditis (EAM) rats after the most severe inflammation period still significantly rescued the stability of the Cx43 gap junction and alleviated prolongation of the QRS complex. Ro-32-0432 reduced phosphorylation and blocked translocation of Cx43 in EAM rat heart but did not regulate the mRNA expression level of ventricular ion channels and the other regulatory proteins, which indicates that the inhibition of PKC might have no protective effect on ion channels that generate ventricular action potential in EAM rats. These results suggest that the pharmacological inhibition of PKC ameliorates the prolongation of the QRS complex via suppression of Cx43 hyperphosphorylation, lateralization, and depolymerization of Cx43 gap junction channels in EAM rats, which provides a potential therapeutic strategy for myocarditis-induced arrhythmias.
Collapse
Affiliation(s)
- Chunlian Zhong
- School of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Xinwen Xie
- Liancheng County General Hospital, Longyan, China
| | - Zhi Qi
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiamen, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Lee Jia
- School of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
- *Correspondence: Lee Jia, ,
| | - Jinwei Zhang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
- Hatherly Laboratories, Medical School, College of Medicine and Health, Institute of Biomedical and Clinical Sciences, University of Exeter, Exeter, United Kingdom
- Jinwei Zhang,
| | - Yusheng Lu
- School of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
- Yusheng Lu, ,
| |
Collapse
|
14
|
Merlo M, Grilli G, Cappelletto C, Masé M, Porcari A, Ferro MD, Gigli M, Stolfo D, Zecchin M, De Luca A, Mestroni L, Sinagra G. The Arrhythmic Phenotype in Cardiomyopathy. Heart Fail Clin 2022; 18:101-113. [PMID: 34776072 DOI: 10.1016/j.hfc.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the wide phenotypic spectrum of cardiomyopathies, sudden cardiac death (SCD) has always been the most visible and devastating disease complication. The introduction of implantable cardioverter-defibrillators for SCD prevention by the late 1980s has moved the question from how to whom we should protect from SCD, leaving clinicians with a measure of uncertainty regarding the most reliable option to guide identification of the highest-risk patients. In this review, we will go through all the available evidence in the field of arrhythmic expression and arrhythmic risk stratification in the different phenotypes of cardiomyopathies to provide practical suggestions in daily clinical management.
Collapse
Affiliation(s)
- Marco Merlo
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy.
| | - Giulia Grilli
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Chiara Cappelletto
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Marco Masé
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Aldostefano Porcari
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Matteo Dal Ferro
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Marta Gigli
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Davide Stolfo
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Massimo Zecchin
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Antonio De Luca
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| |
Collapse
|
15
|
Echocardiographic Advances in Dilated Cardiomyopathy. J Clin Med 2021; 10:jcm10235518. [PMID: 34884220 PMCID: PMC8658091 DOI: 10.3390/jcm10235518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 12/29/2022] Open
Abstract
Although the overall survival of patients with dilated cardiomyopathy (DCM) has improved significantly in the last decades, a non-negligible proportion of DCM patients still shows an unfavorable prognosis. DCM patients not only need imaging techniques that are effective in diagnosis, but also suitable for long-term follow-up with frequent re-evaluations. The exponential growth of echocardiography’s technology and performance in recent years has resulted in improved diagnostic accuracy, stratification, management and follow-up of patients with DCM. This review summarizes some new developments in echocardiography and their promising applications in DCM. Although nowadays cardiac magnetic resonance (CMR) remains the gold standard technique in DCM, the echocardiographic advances and novelties proposed in the manuscript, if properly integrated into clinical practice, could bring echocardiography closer to CMR in terms of accuracy and may certify ultrasound as the technique of choice in the follow-up of DCM patients. The application in DCM patients of novel echocardiographic techniques represents an interesting emergent research area for scholars in the near future.
Collapse
|
16
|
Cui C, Li Y, Liu Y, Huang D, Hu Y, Wang Y, Ma L, Liu L. Association Between Echocardiographic Non-invasive Myocardial Work Indices and Myocardial Fibrosis in Patients With Dilated Cardiomyopathy. Front Cardiovasc Med 2021; 8:704251. [PMID: 34485405 PMCID: PMC8415625 DOI: 10.3389/fcvm.2021.704251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Objectives: To analyze the association between global myocardial work indices evaluated by non-invasive left ventricular (LV) pressure-strain loop (PSL) and LV myocardial fibrosis in patients with dilated cardiomyopathy (DCM). Methods: A total of 57 patients with DCM were included in this prospective study. Global work index (GWI), global constructive work (GCW), global wasted work (GWW), global work efficiency (GWE) and global longitudinal strain (GLS) were measured using LVPSL. LV volumes and LV ejection fraction (LVEF) were evaluated using cardiac magnetic resonance imaging (CMRI), LV myocardial fibrosis was estimated at CMRI by qualitative assessment of late gadolinium enhancement (LGE). According to the CMRI, the studied population was divided into two groups, namely: patients without LGE (LGE-) and patients with LGE (LGE+). Results: The LGE+ group presented with increased age, LV end systolic volume (LVESV) index and reduced GWI, GCW, GWE, GLS, CMRI-derived LVEF (LVEFCMRI), the differences between the two groups were statistically significant (P < 0.05). After correcting for age and LVESV index, LVEFCMRI, GLS, GWI, GCW, and GWE retained independent associations with LV myocardial fibrosis. According to receiver operating characteristics (ROC) analysis, LVEFCMRI, and GCW showed larger AUC and higher accuracy, sensitivity, and specificity than GLS, the accuracy of predicting LV myocardial fibrosis ranged from high to low as: LVEFCMRI, GCW, GWE, GWI, and GLS. Conclusions: LVEFCMRI, GWI, GCW, GWE, and GLS remained significant predictors of LV myocardial fibrosis. LVEFCMRI, and GCW appeared to better predict LV myocardial fibrosis compared with GLS.
Collapse
Affiliation(s)
- Cunying Cui
- Department of Ultrasound, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yanan Li
- Department of Ultrasound, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yuanyuan Liu
- Department of Ultrasound, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Danqing Huang
- Department of Ultrasound, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yanbin Hu
- Department of Ultrasound, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Ying Wang
- Department of Ultrasound, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Lijia Ma
- Department of Radiology, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lin Liu
- Department of Ultrasound, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| |
Collapse
|
17
|
Marume K, Noguchi T, Kamakura T, Tateishi E, Morita Y, Miura H, Nakaoku Y, Nishimura K, Yamada N, Tsujita K, Izumi C, Kusano K, Ogawa H, Yasuda S. Prognostic impact of multiple fragmented QRS on cardiac events in idiopathic dilated cardiomyopathy. Europace 2021; 23:287-297. [PMID: 33212485 DOI: 10.1093/europace/euaa193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS To evaluate the prognostic impact of fragmented QRS (fQRS) on idiopathic dilated cardiomyopathy (DCM). METHODS AND RESULTS We conducted a prospective observational study of 290 consecutive patients with DCM (left ventricular ejection fraction ≤ 40%) and narrow QRS who underwent cardiac magnetic resonance. We defined fQRS as the presence of various RSR' patterns in ≥2 contiguous leads representing the anterior (V1-V5), inferior (II, III, and aVF), or lateral (I, aVL, and V6) myocardial segments. Multiple fQRS was defined as the presence of fQRS in ≥2 myocardial segments. Patients were divided into three groups: no fQRS, single fQRS, or multiple fQRS. The primary endpoint was a composite of hard cardiac events consisting of heart failure death, sudden cardiac death (SCD), or aborted SCD. The secondary endpoints were all-cause death and arrhythmic event. During a median follow-up of 3.8 years (interquartile range, 1.8-6.2), 31 (11%) patients experienced hard cardiac events. Kaplan-Meier analysis showed that the rates of hard cardiac events and all-cause death were similar in the single-fQRS and no-fQRS groups and higher in the multiple-fQRS group (P = 0.004 and P = 0.017, respectively). Multivariable Cox regression identified that multiple fQRS is a significant predictor of hard cardiac events (hazard ratio, 2.23; 95% confidence interval, 1.07-4.62; P = 0.032). The multiple-fQRS group had the highest prevalence of a diffuse late gadolinium enhancement pattern (no fQRS, 21%; single fQRS, 22%; multiple fQRS, 39%; P < 0.001). CONCLUSION Multiple fQRS, but not single fQRS, is associated with future hard cardiac events in patients with DCM.
Collapse
Affiliation(s)
- Kyohei Marume
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan.,Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Tsukasa Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Emi Tateishi
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yoshiaki Morita
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Yuriko Nakaoku
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Naoaki Yamada
- Department of Radiology, Osaka Neurological Institute, Toyonaka, Osaka, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chisato Izumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Hisao Ogawa
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| |
Collapse
|
18
|
Manca P, Nuzzi V, Cannatà A, Merlo M, Sinagra G. Contemporary etiology and prognosis of dilated non-ischemic cardiomyopathy. Minerva Cardiol Angiol 2021; 70:171-188. [PMID: 34338487 DOI: 10.23736/s2724-5683.21.05736-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Non-ischemic dilated cardiomyopathy (NI-DCM) represents a specific etiology of systolic heart failure that usually affect young individuals with a genetic background in up to 40% of cases. Behind the term NI-DCM there is a spectrum of different diseases, and an accurate etiological classification appears pivotal for the clinical management and prognostic stratification of these patients. EVIDENCE ACQUISITION In the last years the prognosis of NI-DCM patients dramatically improved thanks to the progresses in medical treatment/ device therapy and earlier diagnosis especially in familial context. In this review we summarize the actual state of art in the management of these patients. EVIDENCE SYNTHESIS In the era of precision medicine, a lot of progresses have been made to expand our knowledge on the management of NI-DCM patients. A complex interaction between genotype and external triggers is the main determinant of the clinical phenotype in NI-DCM, and a lot of efforts must be done by clinicians to systematically rule out all the possible causes involved in the pathogenesis. Progresses in cardiac imaging and familial screening led us to detect subtle abnormalities in the initial phase of the disease and also helped us to furtherly stratify the prognosis and arrhythmic risk of these patients. It is plausible that a more precise etiological classification will be needed in the near future. CONCLUSIONS NI-DCM contains a spectrum of different diseases. Proper etiological classification, early diagnosis and strict follow-up are essential to tailor care of these patients.
Collapse
Affiliation(s)
- Paolo Manca
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Vincenzo Nuzzi
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Antonio Cannatà
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy.,Department of Cardiovascular Science, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Marco Merlo
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy -
| | - Gianfranco Sinagra
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| |
Collapse
|
19
|
Kayvanpour E, Sammani A, Sedaghat-Hamedani F, Lehmann DH, Broezel A, Koelemenoglu J, Chmielewski P, Curjol A, Socie P, Miersch T, Haas J, Gi WT, Richard P, Płoski R, Truszkowska G, Baas AF, Foss-Nieradko B, Michalak E, Stępień-Wojno M, Zakrzewska-Koperska J, Śpiewak M, Zieliński T, Villard E, Te Riele ASJM, Katus HA, Frey N, Bilińska ZT, Charron P, Asselbergs FW, Meder B. A novel risk model for predicting potentially life-threatening arrhythmias in non-ischemic dilated cardiomyopathy (DCM-SVA risk). Int J Cardiol 2021; 339:75-82. [PMID: 34245791 DOI: 10.1016/j.ijcard.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Non-ischemic dilated cardiomyopathy (DCM) can be complicated by sustained ventricular arrhythmias (SVA) and sudden cardiac death (SCD). By now, left-ventricular ejection fraction (LV-EF) is the main guideline criterion for primary prophylactic ICD implantation, potentially leading either to overtreatment or failed detection of patients at risk without severely impaired LV-EF. The aim of the European multi-center study DETECTIN-HF was to establish a clinical risk calculator for individualized risk stratification of DCM patients. METHODS 1393 patients (68% male, mean age 50.7 ± 14.3y) from four European countries were included. The outcome was occurrence of first potentially life-threatening ventricular arrhythmia. The model was developed using Cox proportional hazards, and internally validated using cross validation. The model included seven independent and easily accessible clinical parameters sex, history of non-sustained ventricular tachycardia, history of syncope, family history of cardiomyopathy, QRS duration, LV-EF, and history of atrial fibrillation. The model was also expanded to account for presence of LGE as the eight8h parameter for cases with available cMRI and scar information. RESULTS During a mean follow-up period of 57.0 months, 193 (13.8%) patients experienced an arrhythmic event. The calibration slope of the developed model was 00.97 (95% CI 0.90-1.03) and the C-index was 0.72 (95% CI 0.71-0.73). Compared to current guidelines, the model was able to protect the same number of patients (5-year risk ≥8.5%) with 15% fewer ICD implantations. CONCLUSIONS This DCM-SVA risk model could improve decision making in primary prevention of SCD in non-ischemic DCM using easily accessible clinical information and will likely reduce overtreatment.
Collapse
MESH Headings
- Adult
- Aged
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/epidemiology
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/epidemiology
- Death, Sudden, Cardiac/epidemiology
- Death, Sudden, Cardiac/prevention & control
- Defibrillators, Implantable
- Female
- Humans
- Male
- Middle Aged
- Risk Factors
- Stroke Volume
- Ventricular Function, Left
Collapse
Affiliation(s)
- Elham Kayvanpour
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Arjan Sammani
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Farbod Sedaghat-Hamedani
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - David H Lehmann
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany
| | - Alicia Broezel
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany
| | - Jan Koelemenoglu
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany
| | - Przemysław Chmielewski
- Department of Medical Biology, The Cardinal Stefan Wyszyński National Institute of Cardiology, Warsaw, Poland
| | - Angelique Curjol
- APHP, Referral Center for Hereditary Heart Disease, Department of Genetics and Department of Cardiology, Pitié Salpêtrière Hospital, Paris, France
| | - Pierre Socie
- APHP, Referral Center for Hereditary Heart Disease, Department of Genetics and Department of Cardiology, Pitié Salpêtrière Hospital, Paris, France; Department of Cardiology, Center Hospitalier de Chartres, Chartres, France
| | - Tobias Miersch
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany
| | - Jan Haas
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Weng-Tein Gi
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Pascale Richard
- APHP, UF Molecular Cardiogenetics and Myogenetics, Pitié Salpêtrière Hospital, Paris, France
| | - Rafał Płoski
- Molecular Biology Laboratory, Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Grażyna Truszkowska
- Molecular Biology Laboratory, Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Annette F Baas
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Bogna Foss-Nieradko
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Ewa Michalak
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Małgorzata Stępień-Wojno
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | | | - Mateusz Śpiewak
- Department of Radiology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Tomasz Zieliński
- Department of Heart Failure and Transplantology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Eric Villard
- Sorbonne Université, INSERM UMRS 1166 and ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Anneline S J M Te Riele
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Hugo A Katus
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Norbert Frey
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Zofia T Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Philippe Charron
- APHP, Referral Center for Hereditary Heart Disease, Department of Genetics and Department of Cardiology, Pitié Salpêtrière Hospital, Paris, France; Sorbonne Université, INSERM UMRS 1166 and ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands; Institute of Cardiovascular Science and Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK
| | - Benjamin Meder
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany; Department of Genetics, Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Chyou JY, Tay WT, Anand IS, Teng THK, Yap JJL, MacDonald MR, Chopra V, Loh SY, Shimizu W, Abidin IZ, Richards AM, Butler J, Lam CSP. Electroanatomic Ratios and Mortality in Patients With Heart Failure: Insights from the ASIAN-HF Registry. J Am Heart Assoc 2021; 10:e017932. [PMID: 33719492 PMCID: PMC8174226 DOI: 10.1161/jaha.120.017932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background QRS duration (QRSd) is a marker of electrical remodeling in heart failure. Anthropometrics and left ventricular size may influence QRSd and, in turn, may influence the association between QRSd and heart failure outcomes. Methods and Results Using the prospective, multicenter, multinational ASIAN‐HF (Asian Sudden Cardiac Death in Heart Failure) registry, this study evaluated whether electroanatomic ratios (QRSd indexed for height or left ventricular end‐diastole volume) are associated with 1‐year mortality in individuals with heart failure with reduced ejection fraction. The study included 4899 individuals (aged 60±19 years, 78% male, mean left ventricular ejection fraction: 27.3±7.1%). In the overall cohort, QRSd was not associated with all‐cause mortality (hazard ratio [HR], 1.003; 95% CI, 0.999–1.006, P=0.142) or sudden cardiac death (HR, 1.006; 95% CI, 1.000–1.013, P=0.059). QRS/height was associated with all‐cause mortality (HR, 1.165; 95% CI, 1.046–1.296, P=0.005 with interaction by sex pinteraction=0.020) and sudden cardiac death (HR, 1.270; 95% CI, 1.021–1.580, P=0.032). QRS/left ventricular end‐diastole volume was associated with all‐cause mortality (HR, 1.22; 95% CI, 1.05–1.43, P=0.011) and sudden cardiac death (HR, 1.461; 95% CI, 1.090–1.957, P=0.011) in patients with nonischemic cardiomyopathy but not in patients with ischemic cardiomyopathy (all‐cause mortality: HR, 0.94; 95% CI, 0.79–1.11, P=0.467; sudden cardiac death: HR, 0.734; 95% CI, 0.477–1.132, P=0.162). Conclusions Electroanatomic ratios of QRSd indexed for body size or left ventricular size are associated with mortality in individuals with heart failure with reduced ejection fraction. In particular, increased QRS/height may be a marker of high risk in individuals with heart failure with reduced ejection fraction, and QRS/left ventricular end‐diastole volume may further risk stratify individuals with nonischemic heart failure with reduced ejection fraction. Registration URL: https://Clinicaltrials.gov. Unique identifier: NCT01633398.
Collapse
Affiliation(s)
- Janice Y Chyou
- Division of Cardiology Icahn School of Medicine at Mount Sinai and the Mount Sinai Health System New York NY
| | - Wan Ting Tay
- National Heart Centre Singapore Singapore Singapore
| | - Inder S Anand
- Department of Medicine University of Minnesota Medical School and VA Medical Center Minneapolis MN
| | | | | | | | - Vijay Chopra
- Heart Institute Medanta-The Medicity Gurugram India
| | - Seet Yoong Loh
- Department of Cardiology Tan Tock Seng Hospital Singapore Singapore
| | - Wataru Shimizu
- Department of Cardiovascular MedicineNippon Medical School Tokyo Japan
| | | | | | - Arthur Mark Richards
- Cardiovascular Research InstituteNational University of Singapore Singapore Singapore
| | - Javed Butler
- Department of Medicine University of Mississippi Medical Center Jackson MI
| | - Carolyn S P Lam
- National Heart Centre SingaporeDuke-NUS Medical School Singapore Singapore
| |
Collapse
|
21
|
Balaban G, Halliday BP, Porter B, Bai W, Nygåard S, Owen R, Hatipoglu S, Ferreira ND, Izgi C, Tayal U, Corden B, Ware J, Pennell DJ, Rueckert D, Plank G, Rinaldi CA, Prasad SK, Bishop MJ. Late-Gadolinium Enhancement Interface Area and Electrophysiological Simulations Predict Arrhythmic Events in Patients With Nonischemic Dilated Cardiomyopathy. JACC Clin Electrophysiol 2021; 7:238-249. [PMID: 33602406 PMCID: PMC7900608 DOI: 10.1016/j.jacep.2020.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study sought to investigate whether shape-based late gadolinium enhancement (LGE) metrics and simulations of re-entrant electrical activity are associated with arrhythmic events in patients with nonischemic dilated cardiomyopathy (NIDCM). BACKGROUND The presence of LGE predicts life-threatening ventricular arrhythmias in NIDCM; however, risk stratification remains imprecise. LGE shape and simulations of electrical activity may be able to provide additional prognostic information. METHODS Cardiac magnetic resonance (CMR)-LGE shape metrics were computed for a cohort of 156 patients with NIDCM and visible LGE and tested retrospectively for an association with an arrhythmic composite endpoint of sudden cardiac death and ventricular tachycardia. Computational models were created from images and used in conjunction with simulated stimulation protocols to assess the potential for re-entry induction in each patient's scar morphology. A mechanistic analysis of the simulations was carried out to explain the associations. RESULTS During a median follow-up of 1,611 (interquartile range: 881 to 2,341) days, 16 patients (10.3%) met the primary endpoint. In an inverse probability weighted Cox regression, the LGE-myocardial interface area (hazard ratio [HR]: 1.75; 95% confidence interval [CI]: 1.24 to 2.47; p = 0.001), number of simulated re-entries (HR: 1.40; 95% CI: 1.23 to 1.59; p < 0.01) and LGE volume (HR: 1.44; 95% CI: 1.07 to 1.94; p = 0.02) were associated with arrhythmic events. Computational modeling revealed repolarization heterogeneity and rate-dependent block of electrical wavefronts at the LGE-myocardial interface as putative arrhythmogenic mechanisms directly related to the LGE interface area. CONCLUSIONS The area of interface between scar and surviving myocardium, as well as simulated re-entrant activity, are associated with an elevated risk of major arrhythmic events in patients with NIDCM and LGE and represent novel risk predictors.
Collapse
Affiliation(s)
- Gabriel Balaban
- Department of Biomedical Engineering, School of Biomedical & Imaging Sciences, King's College London, United Kingdom; Department of Informatics, University of Oslo, Oslo, Norway
| | - Brian P Halliday
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Bradley Porter
- Department of Biomedical Engineering, School of Biomedical & Imaging Sciences, King's College London, United Kingdom; Department of Cardiology, St Thomas' Hospital, London, United Kingdom
| | - Wenjia Bai
- Department of Computer Science, Imperial College London, United Kingdom
| | - Ståle Nygåard
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ruth Owen
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Suzan Hatipoglu
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom
| | - Nuno Dias Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom
| | - Cemil Izgi
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom
| | - Upasana Tayal
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom
| | - Ben Corden
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - James Ware
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Daniel Rueckert
- Department of Computer Science, Imperial College London, United Kingdom
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Christopher A Rinaldi
- Department of Biomedical Engineering, School of Biomedical & Imaging Sciences, King's College London, United Kingdom; Department of Cardiology, St Thomas' Hospital, London, United Kingdom
| | - Sanjay K Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Martin J Bishop
- Department of Biomedical Engineering, School of Biomedical & Imaging Sciences, King's College London, United Kingdom.
| |
Collapse
|
22
|
Kimura Y, Okumura T, Morimoto R, Kazama S, Shibata N, Oishi H, Araki T, Mizutani T, Kuwayama T, Hiraiwa H, Kondo T, Murohara T. A clinical score for predicting left ventricular reverse remodelling in patients with dilated cardiomyopathy. ESC Heart Fail 2021; 8:1359-1368. [PMID: 33471966 PMCID: PMC8006712 DOI: 10.1002/ehf2.13216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
Aims Left ventricular reverse remodelling (LVRR) is a well‐established predictor of a good prognosis in patients with dilated cardiomyopathy (DCM). The prediction of LVRR is important when developing a long‐term treatment strategy. This study aimed to assess the clinical predictors of LVRR and establish a scoring system for predicting LVRR in patients with DCM that can be used at any institution. Methods and results We consecutively enrolled 131 patients with DCM and assessed the clinical predictors of LVRR. LVRR was defined as an absolute increase in left ventricular ejection fraction (LVEF) from ≥10% to a final value of >35%, accompanied by a decrease in left ventricular end‐diastolic dimension (LVEDD) ≥ 10% on echocardiography at 1 ± 0.5 years after a diagnosis of DCM. The mean patient age was 50.1 ± 11.9 years. The mean LVEF was 32.2 ± 9.5%, and the mean LVEDD was 64.1 ± 12.5 mm at diagnosis. LVRR was observed in 45 patients (34%) at 1 ± 0.5 years. In a multivariate analysis, hypertension [odds ratio (OR): 6.86; P = 0.002], no family history of DCM (OR: 10.45; P = 0.037), symptom duration <90 days (OR: 6.72; P < 0.001), LVEF <35% (OR: 13.66; P < 0.0001), and QRS duration <116 ms (OR: 5.94; P = 0.005) were found to be independent predictors of LVRR. We scored the five independent predictors according to the ORs (1 point, 2 points, 1 point, 2 points, and 1 point, respectively), and the total LVRR predicting score was calculated by adding these scores. The LVRR rate was stratified by the LVRR predicting score (0–2 points: 0%; 3 points: 6.7%; 4 points: 17.4%; 5 points: 48.2%; 6 points: 79.2%; and 7 points: 100%). The cut‐off value of the LVRR predicting score was >5 in receiver‐operating characteristic curve analysis (area under the curve: 0.89; P < 0.0001; sensitivity: 87%; specificity: 78%). An LVRR predicting score of >5 was an independent predictor compared with the presence of late gadolinium enhancement on cardiovascular magnetic resonance or the severity of fibrosis on endomyocardial biopsy (OR: 11.79; 95% confidence interval: 2.40–58.00; P = 0.002). Conclusions The LVRR predicting score using five predictors including hypertension, no family history of DCM, symptom duration <90 days, LVEF <35%, and QRS duration <116 ms can stratify the LVRR rate in patients with DCM. The LVRR predicting score may be a useful clinical tool that can be used easily at any institution.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Kazama
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Naoki Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideo Oishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Araki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Mizutani
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tasuku Kuwayama
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
23
|
Dziewięcka E, Gliniak M, Winiarczyk M, Karapetyan A, Wiśniowska-Śmiałek S, Karabinowska A, Dziewięcki M, Podolec P, Rubiś P. Mortality risk in dilated cardiomyopathy: the accuracy of heart failure prognostic models and dilated cardiomyopathy-tailored prognostic model. ESC Heart Fail 2020; 7:2455-2467. [PMID: 32853471 PMCID: PMC7524139 DOI: 10.1002/ehf2.12809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/04/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022] Open
Abstract
Aims The aims of this paper were to investigate the analytical performance of the nine prognostic scales commonly used in heart failure (HF), in patients with dilated cardiomyopathy (DCM), and to develop a unique prognostic model tailored to DCM patients. Methods and results The hospital and outpatient records of 406 DCM patients were retrospectively analysed. The information on patient status was gathered after 48.2 ± 32.0 months. Tests were carried out to ascertain the prognostic accuracy in DCM using some of the most frequently applied HF prognostic scales (Barcelona Bio‐Heart Failure, Candesartan in Heart Failure‐Assessment of Reduction in Mortality and Morbidity, Studio della Streptochinasi nell'Infarto Miocardico‐Heart Failure, Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure, Meta‐Analysis Global Group in Chronic Heart Failure, MUerte Subita en Insuficiencia Cardiaca, Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients With Heart Failure, Seattle Heart Failure Model) and one dedicated to DCM, that of Miura et al. At follow‐up, 70 DCM patients (17.2%) died. Most analysed scores substantially overestimated the mortality risk, especially in survivors. The prognostic accuracy of the scales were suboptimal, varying between 60% and 80%, with the best performance from Barcelona Bio‐Heart Failure and Seattle Heart Failure Model for 1–5 year mortality [areas under the receiver operating curve 0.792–0.890 (95% confidence interval 0.725–0.918) and 0.764–0.808 (95% confidence interval 0.682–0.934), respectively].Based on our accumulated data, a self‐developed DCM prognostic model was constructed. The model consists of age, gender, body mass index, symptoms duration, New York Heart Association class, diabetes mellitus, prior stroke, abnormal liver function, dyslipidaemia, left bundle branch block, left ventricle end‐diastolic diameter, ejection fraction, N terminal pro brain natriuretic peptide, haemoglobin, estimated glomerular filtration rate, and pharmacological and resynchronisation therapy. This newly created prognostic model outperformed the analysed HF scales. Conclusions An analysis of various HF prognostic models found them to be suboptimal for DCM patients. A self‐developed DCM prognostic model showed improved performance over the nine other models studied. However, further validation of the prognostic model in different DCM populations is required.
Collapse
Affiliation(s)
- Ewa Dziewięcka
- Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, Prądnicka Street 80, Kraków, 31-202, Poland
| | - Matylda Gliniak
- Jagiellonian University Collegium Medicum, Students' Scientific Group at the Department of Cardiac and Vascular Diseases, John Paul II Hospital, Krakow, Poland
| | - Mateusz Winiarczyk
- Jagiellonian University Collegium Medicum, Students' Scientific Group at the Department of Cardiac and Vascular Diseases, John Paul II Hospital, Krakow, Poland
| | - Arman Karapetyan
- Jagiellonian University Collegium Medicum, Students' Scientific Group at the Department of Cardiac and Vascular Diseases, John Paul II Hospital, Krakow, Poland
| | - Sylwia Wiśniowska-Śmiałek
- Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, Prądnicka Street 80, Kraków, 31-202, Poland
| | - Aleksandra Karabinowska
- Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, Prądnicka Street 80, Kraków, 31-202, Poland
| | | | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, Prądnicka Street 80, Kraków, 31-202, Poland
| | - Paweł Rubiś
- Department of Cardiac and Vascular Diseases, Jagiellonian University Collegium Medicum, John Paul II Hospital, Prądnicka Street 80, Kraków, 31-202, Poland
| |
Collapse
|
24
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, Lim HS, Lip GYH, Nava-Townsend S, Pak HN, Rodríguez Diez G, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Pava Molano LF, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Europace 2020; 22:1147-1148. [PMID: 32538434 PMCID: PMC7400488 DOI: 10.1093/europace/euaa065] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Alberto Alfie
- Division of Electrophysiology, Instituto Cardiovascular Adventista, Clinica Bazterrica, Buenos Aires, Argentina
| | - Serge Boveda
- Department of Cardiology, Clinique Pasteur, Toulouse, France
| | - Nikolaos Dagres
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Dario Di Toro
- Department of Cardiology, Division of Electrophysiology, Argerich Hospital and CEMIC, Buenos Aires, Argentina
| | - Lee L Eckhardt
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth Ellenbogen
- Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Carina Hardy
- Arrhythmia Unit, Heart Institute, University of São, Paulo Medical School, Instituto do Coração -InCor- Faculdade de Medicina de São Paulo-São Paulo, Brazil
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Faculty of Medicine, Toho University, Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center, Metrohealth Campus of Case Western Reserve University, Cleveland, OH, USA
| | - Andrew Krahn
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kengo Kusano
- Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Valentina Kutyifa
- University of Rochester, Medical Center, Rochester, USA
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Han S Lim
- Department of Cardiology, Austin Health, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology, National Institute of Cardiology “Ignacio Chavez,” Mexico City, Mexico
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic, Arrhytmias Unity, CMN 20 de Noviembre, ISSSTE, Mexico City, Mexico
| | - William Sauer
- Cardiovascular Division, Brigham and Women s Hospital and Harvard Medical School, Boston, USA
| | - Anil Saxena
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Diego Vanegas
- Hospital Militar Central, Fundarritmia, Bogotá, Colombia
| | - Marmar Vaseghi
- Los Angeles UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine, at UCLA, USA
| | - Arthur Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - T Jared Bunch
- Department of Medicine, Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, USA
| | | | - Alfred E Buxton
- Department of Medicine, The Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lars Eckardt
- Department for Cardiology, Electrophysiology, University Hospital Münster, Münster, Germany
| | - Heidi Estner
- Department of Medicine, I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Anne M Gillis
- University of Calgary - Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Rodrigo Isa
- Clínica RedSalud Vitacura and Hospital el Carmen de Maipú, Santiago, Chile
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Joshua D Moss
- Department of Cardiac Electrophysiology, University of California San Francisco, San Francisco, USA
| | - Gi-Byung Nam
- Division of Cardiology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Brian Olshansky
- University of Iowa Carver College of Medicine, Iowa City, USA
| | | | - Mauricio Pimentel
- Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mukund Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Wendy S Tzou
- Department of Cardiology/Cardiac Electrophysiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum, Clinic for Electrophysiology, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Alejandro Vidal
- Division of Cardiology, McGill University Health Center, Montreal, Canada
| | - Thomas Deneke
- Clinic for Cardiology II (Interventional Electrophysiology), Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
25
|
Marume K, Noguchi T, Tateishi E, Morita Y, Miura H, Nishimura K, Ohta-Ogo K, Yamada N, Tsujita K, Izumi C, Kusano K, Ogawa H, Yasuda S. Prognosis and Clinical Characteristics of Dilated Cardiomyopathy With Family History via Pedigree Analysis. Circ J 2020; 84:1284-1293. [PMID: 32624524 DOI: 10.1253/circj.cj-19-1176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The clinical characteristics and prognostic outcomes of dilated cardiomyopathy (DCM) with a familial history (FHx) via pedigree analysis are unclear. METHODS AND RESULTS We conducted a prospective observational study of 514 consecutive Japanese patients with DCM. FHx was defined as the presence of DCM in ≥1 family member within 2-degrees relative based on pedigree analysis. The primary endpoint was a composite of major cardiac events (sudden cardiac death and pump failure death). The prevalence of FHx was 7.4% (n=38). During a median follow-up of 3.6 years, 77 (15%) patients experienced a major cardiac event. Multivariable Cox regression analysis identified FHx as independently associated with major cardiac events (hazard ratio [HR] 4.32; 95% confidence interval [CI], 2.04-9.19; P<0.001) compared with conventional risk factors such as age, QRS duration, and left ventricular volume. In the propensity score-matched cohort (n=38 each), the FHx group had a significantly higher incidence of major cardiac events (HR, 4.48; 95% CI, 1.25-16.13; P=0.022). In addition, the FHx group had a higher prevalence of a diffuse late gadolinium enhancement (LGE) pattern than the no-FHx group (32% vs. 17%, P=0.022). CONCLUSIONS DCM patients with FHx had a worse prognosis, which was associated with a higher prevalence of a diffuse LGE pattern, than patients without FHx.
Collapse
Affiliation(s)
- Kyohei Marume
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Emi Tateishi
- Department of Radiology, National Cerebral and Cardiovascular Center
| | - Yoshiaki Morita
- Department of Radiology, National Cerebral and Cardiovascular Center
- Department of Radiology, Tohoku University Hospital
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Kunihiro Nishimura
- Department of Statistics and Data Analysis, National Cerebral and Cardiovascular Center
| | - Keiko Ohta-Ogo
- Department of Pathology, National Cerebral and Cardiovascular Center
| | - Naoaki Yamada
- Department of Radiology, Osaka Neurological Institute
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Chisato Izumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hisao Ogawa
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| |
Collapse
|
26
|
Xu Y, Lin J, Liang Y, Wan K, Li W, Wang J, Zhu Y, Mui D, Wang L, Li Y, Cheng W, Sun J, Zhang Q, Han Y, Chen Y. Prognostic value of left ventricular remodelling index in idiopathic dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 2020; 22:1197-1207. [PMID: 32658979 DOI: 10.1093/ehjci/jeaa144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/04/2020] [Accepted: 05/03/2020] [Indexed: 02/05/2023] Open
Abstract
AIMS To evaluate the prognostic value of left ventricular (LV) remodelling index (RI) in idiopathic dilated cardiomyopathy (DCM) patients. METHODS AND RESULTS We prospectively enrolled 412 idiopathic DCM patients and 130 age- and sex-matched healthy volunteers who underwent cardiovascular magnetic resonance imaging between September 2013 and March 2018. RI was defined as the cubic root of the LV end-diastolic volume divided by the mean LV wall thickness on basal short-axis slice. The primary endpoint included all-cause mortality and heart transplantation. The secondary endpoint included the primary endpoint and heart failure (HF) readmission. During the median follow-up of 28.1 months (interquartile range: 19.3-43.0 months), 62 (15.0%) and 143 (34.7%) patients reached the primary and secondary endpoints, respectively. Stepwise multivariate Cox regression showed that RI [hazard ratio (HR) 1.20, 95% confidence interval (CI) 1.11-1.30, P < 0.001], late gadolinium enhancement (LGE) presence and log (N-terminal pro-B-type natriuretic peptide) were independent predictors of the primary endpoint, while RI (HR 1.15, 95% CI 1.08-1.23, P < 0.001) and extracellular volume were independent predictors of the secondary endpoint. The addition of RI to LV ejection fraction (EF) and LGE presence showed significantly improved global χ2 for predicting primary and secondary endpoints (both P < 0.001). Furthermore, RI derived from echocardiography also showed independent prognostic value for primary and secondary endpoints with clinical risk factors. CONCLUSIONS RI is an independent predictor of all-cause mortality, heart transplantation, and HF readmission in DCM patients and provides incremental prognostic value to LVEF and LGE presence.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Jiayi Lin
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yaodan Liang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China.,Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, No.1, Dahua Road, Dongcheng District, Beijing 100730, China
| | - Ke Wan
- Department of Geriatrics, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Weihao Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Jie Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yanjie Zhu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen University Town, Nanshan, Shenzhen, Guangdong 518055, China
| | - David Mui
- Cardiovascular Division, Department of Medicine, University of Pennsylvania, 3400 civic center boulevard, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yuancheng Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Wei Cheng
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yuchi Han
- Cardiovascular Division, Department of Medicine, University of Pennsylvania, 3400 civic center boulevard, Philadelphia, PA 19104, USA
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| |
Collapse
|
27
|
Arrhythmic risk stratification by cardiac magnetic resonance tissue characterization: disclosing the arrhythmic substrate within the heart muscle. Heart Fail Rev 2020; 27:49-69. [PMID: 32564329 DOI: 10.1007/s10741-020-09986-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sudden cardiac death (SCD) is a pivotal health problem worldwide. The identification of subjects at increased risk of SCD is crucial for the accurate selection of candidates for implantable cardioverter defibrillator (ICD) therapy. Current strategies for arrhythmic stratification largely rely on left ventricular (LV) ejection fraction (EF), mostly measured by echocardiography, and New York Heart Association functional status for heart failure with reduced EF. For specific diseases, such as hypertrophic and arrhythmogenic cardiomyopathy, some risk scores have been proposed; however, these scores take into account some parameters that are a partial reflection of the global arrhythmic risk and show a suboptimal accuracy. Thanks to a more comprehensive evaluation, cardiac magnetic resonance (CMR) provides insights into the heart muscle (the so-called tissue characterization) identifying cardiac fibrosis as an arrhythmic substrate. Combining sequences before and after administration of contrast media and mapping techniques, CMR is able to characterize the myocardial tissue composition, shedding light on both intracellular and extracellular alterations. Over time, late gadolinium enhancement (LGE) emerged as solid prognostic marker, strongly associated with major arrhythmic events regardless of LVEF, adding incremental value over current strategy in ischemic heart disease and non-ischemic cardiomyopathies. The evidence on a potential prognostic role of mapping imaging is promising. However, mapping techniques require further investigation and standardization. Disclosing the arrhythmic substrate within the myocardium, CMR should be considered as part of a multiparametric approach to personalized arrhythmic stratification.
Collapse
|
28
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, Lim HS, Lip GYH, Nava-Townsend S, Pak HN, Diez GR, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Pava Molano LF, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Heart Rhythm 2020; 17:e269-e316. [PMID: 32553607 DOI: 10.1016/j.hrthm.2020.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Alberto Alfie
- Division of Electrophysiology, Instituto Cardiovascular Adventista, Clinica Bazterrica, Buenos Aires, Argentina
| | - Serge Boveda
- Department of Cardiology, Clinique Pasteur, Toulouse, France
| | - Nikolaos Dagres
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Dario Di Toro
- Department of Cardiology, Division of Electrophysiology, Argerich Hospital and CEMIC, Buenos Aires, Argentina
| | - Lee L Eckhardt
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kenneth Ellenbogen
- Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Carina Hardy
- Arrhythmia Unit, Heart Institute, University of São Paulo Medical School, Instituto do Coração -InCor- Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center, Metrohealth Campus of Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Krahn
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kengo Kusano
- Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Valentina Kutyifa
- University of Rochester, Medical Center, Rochester, New York, USA; Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Han S Lim
- Department of Cardiology, Austin Health, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology, National Institute of Cardiology "Ignacio Chavez," Mexico City, Mexico
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic, Arrhytmias Unity, CMN 20 de Noviembre, ISSSTE, Mexico City, Mexico
| | - William Sauer
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anil Saxena
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Diego Vanegas
- Hospital Militar Central, Fundarritmia, Bogotá, Colombia
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Arthur Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam, the Netherlands
| | - T Jared Bunch
- Department of Medicine, Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, Utah, USA
| | | | - Alfred E Buxton
- Department of Medicine, The Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lars Eckardt
- Department for Cardiology, Electrophysiology, University Hospital Münster, Münster, Germany
| | - Heidi Estner
- Department of Medicine, I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Anne M Gillis
- University of Calgary - Libin Cardiovascular Institute of Alberta, Calgary, Canada
| | - Rodrigo Isa
- Clínica RedSalud Vitacura and Hospital el Carmen de Maipú, Santiago, Chile
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Joshua D Moss
- Department of Cardiac Electrophysiology, University of California San Francisco, San Francisco, California, USA
| | - Gi-Byung Nam
- Division of Cardiology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Brian Olshansky
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Mauricio Pimentel
- Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mukund Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Wendy S Tzou
- Department of Cardiology/Cardiac Electrophysiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum, Clinic for Electrophysiology, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Alejandro Vidal
- Division of Cardiology, McGill University Health Center, Montreal, Canada
| | - Thomas Deneke
- Clinic for Cardiology II (Interventional Electrophysiology), Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
29
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, S Lim H, Lip GYH, Nava-Townsend S, Pak HN, Rodríguez Diez G, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Molano LFP, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. J Arrhythm 2020; 36:553-607. [PMID: 32782627 PMCID: PMC7411224 DOI: 10.1002/joa3.12338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany
| | - Alberto Alfie
- Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina
| | - Serge Boveda
- Department of Cardiology Clinique Pasteur Toulouse France
| | - Nikolaos Dagres
- Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany
| | - Dario Di Toro
- Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina
| | - Lee L Eckhardt
- Department of Medicine University of Wisconsin-Madison Madison WI USA
| | - Kenneth Ellenbogen
- Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA
| | - Carina Hardy
- Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil
| | - Takanori Ikeda
- Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA
| | - Andrew Krahn
- Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada
| | - Kengo Kusano
- Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Valentina Kutyifa
- University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary
| | - Han S Lim
- Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico
| | - Hui-Nam Pak
- Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico
| | - William Sauer
- Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA
| | - Anil Saxena
- Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands
| | | | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA
| | - Arthur Wilde
- Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - T Jared Bunch
- Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Alfred E Buxton
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gonzalo Calvimontes
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Tze-Fan Chao
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Lars Eckardt
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Heidi Estner
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Anne M Gillis
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Rodrigo Isa
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Josef Kautzner
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Philippe Maury
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Joshua D Moss
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gi-Byung Nam
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Brian Olshansky
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Luis Fernando Pava Molano
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Mauricio Pimentel
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Mukund Prabhu
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Wendy S Tzou
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Philipp Sommer
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Janice Swampillai
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Alejandro Vidal
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Thomas Deneke
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gerhard Hindricks
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Christophe Leclercq
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| |
Collapse
|
30
|
Kodama S, Kato S, Hayakawa K, Azuma M, Kagimoto M, Iguchi K, Fukuoka M, Fukui K, Iwasawa T, Utsunomiya D, Kosuge M, Kimura K, Tamura K. Combination of extracellular volume fraction by cardiac magnetic resonance imaging and QRS duration for the risk stratification for patients with non-ischemic dilated cardiomyopathy. Heart Vessels 2020; 35:1439-1445. [PMID: 32417957 DOI: 10.1007/s00380-020-01618-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
The extracellular volume fraction (ECV) by T1 mapping can quantify diffuse myocardial fibrosis, and useful as a non-invasive marker for risk stratification for patients with non-ischemic dilated cardiomyopathy (NIDCM). Prolonged QRS interval on electrocardiogram is related to worse clinical outcome for heart failure patients. The purpose of this study was to evaluate the prognostic value of the combination of ECV and QRS duration for NIDCM patients. A total of 60 NIDCM patients (mean age 61 ± 12 years, mean left ventricular ejection fraction 37 ± 10%, mean QRS duration 110 ± 19 ms) were enrolled. Using a 1.5-T MR scanner and 32-channel cardiac coils, the mean ECV value of six myocardial segments at the mid-ventricular level was measured by the modified look-locker inversion recovery method. Adverse events were defined as follows: cardiac death; recurrent hospitalization due to heart failure. Patients were allocated into three groups based on ECV value and QRS duration (group 1: ECV ≦ 0.30 and QRS ≦ 120 ms; group 2: ECV > 0.30 or QRS > 120 ms; group 3: ECV > 0.30 and QRS > 120 ms). During a median follow-up duration of 370 days, 7 of 60 (12%) NIDCM patients experienced adverse events. NIDCM patients with events had longer QRS duration (134 ± 31 ms vs. 106 ± 14 ms, p = 0.01) and higher ECV (0.34 ± 0.07 vs 0.29 ± 0.05, p = 0.026) compared with those without events. On Kaplan-Meier curve analysis, significant difference was found between group 1 and group 3 (p < 0.001, log-rank test). No significant difference was found between group 1 and group 2 (p = 0.053), group 2 and group 3 (p = 0.115). The area under the receiver operating characteristic curve (AUC) for predicting adverse events was 0.778 (95% confidence interval CI 0.612-0.939) for ECV, 0.792 (95% CI 0.539-0.924) for QRS duration, 0.822 (95% CI 0.688-0.966) for combination of ECV and QRS duration. NIDCM patients with high ECV and prolonged QRS duration had significantly worse prognosis compared to those with normal ECV and normal QRS duration. The combination of ECV and QRS duration could be useful as a non-invasive method for better risk stratification for patients with NIDCM.
Collapse
Affiliation(s)
- Sho Kodama
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Shingo Kato
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan.
| | - Keigo Hayakawa
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Mai Azuma
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Minako Kagimoto
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Kohei Iguchi
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Masahiro Fukuoka
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Kazuki Fukui
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Tae Iwasawa
- Department of Radiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Daisuke Utsunomiya
- Department of Radiology, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Masami Kosuge
- Department of Cardiology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Kazuo Kimura
- Department of Cardiology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
31
|
Centurión OA, Alderete JF, Torales JM, García LB, Scavenius KE, Miño LM. Myocardial Fibrosis as a Pathway of Prediction of Ventricular Arrhythmias and Sudden Cardiac Death in Patients With Nonischemic Dilated Cardiomyopathy. Crit Pathw Cardiol 2020; 18:89-97. [PMID: 31094736 DOI: 10.1097/hpc.0000000000000171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mechanism of sudden cardiac death (SCD) in patients with nonischemic dilated cardiomyopathy (NIDCM) is mostly due to sustained ventricular tachycardia and ventricular fibrillation. The clinical guidelines for the therapeutic management of this set of patients are mostly based on left ventricular ejection fraction value which has a low specificity to differentiate the risk of SCD from the risk of mortality associated with heart failure or other comorbidities. Moreover, since SCD can occur in patients with normal or mildly depressed ejection fraction, it is necessary to identify new markers to improve the prognostic stratification of SCD. Several studies that analyzed the ventricular arrhythmia substrate found that myocardial fibrosis plays an important role in the genesis of ventricular arrhythmias in patients with NIDCM. The surrounding zone of the area of fibrosis is a heterogeneous medium, where tissue with different levels of fibrosis coexists, resulting in both viable and nonviable myocardium. This myocardial fibrosis may constitute a substrate for ventricular arrhythmias, where slow and heterogeneous conduction may favor the genesis of reentry mechanism increasing the chance to develop sustained ventricular tachycardia or ventricular fibrillation. Therefore, the evaluation of ventricular fibrosis by late gadolinium enhancement (LGE) cardiac magnetic resonance imaging has been suggested as an indicator for SCD risk stratification. Indeed, LGE in patients with NIDCM is associated with increased risk of all-cause mortality, heart failure hospitalization, and SCD. Detection of myocardial fibrosis as LGE by cardiac magnetic resonance imaging can be considered as a useful pathway of prediction of malignant ventricular arrhythmias since it has excellent prognostic characteristics and may help guide risk stratification and management in patients with NIDCM.
Collapse
Affiliation(s)
- Osmar Antonio Centurión
- From the Division of Cardiovascular Medicine, Clinic Hospital, Asuncion National University (UNA), San Lorenzo, Paraguay.,Department of Health Sciences Investigation, Sanatorio Metropolitano, Fernando de la Mora, Paraguay
| | - José Fernando Alderete
- From the Division of Cardiovascular Medicine, Clinic Hospital, Asuncion National University (UNA), San Lorenzo, Paraguay
| | - Judith María Torales
- From the Division of Cardiovascular Medicine, Clinic Hospital, Asuncion National University (UNA), San Lorenzo, Paraguay.,Department of Health Sciences Investigation, Sanatorio Metropolitano, Fernando de la Mora, Paraguay
| | - Laura Beatriz García
- From the Division of Cardiovascular Medicine, Clinic Hospital, Asuncion National University (UNA), San Lorenzo, Paraguay.,Department of Health Sciences Investigation, Sanatorio Metropolitano, Fernando de la Mora, Paraguay
| | - Karina Elizabeth Scavenius
- From the Division of Cardiovascular Medicine, Clinic Hospital, Asuncion National University (UNA), San Lorenzo, Paraguay
| | - Luis Marcelo Miño
- From the Division of Cardiovascular Medicine, Clinic Hospital, Asuncion National University (UNA), San Lorenzo, Paraguay
| |
Collapse
|
32
|
Correlation between septal midwall late gadolinium enhancement on CMR and conduction delay on ECG in patients with nonischemic dilated cardiomyopathy. IJC HEART & VASCULATURE 2020; 26:100474. [PMID: 32021905 PMCID: PMC6994302 DOI: 10.1016/j.ijcha.2020.100474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
Background Septal midwall late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging (CMR) is a characteristic finding in nonischemic dilated cardiomyopathy (DCM) and is associated with adverse cardiac events. QRS-prolongation in DCM is also frequently present and a predictor of arrhythmic events and mortality. Since the His-Purkinje fibres are located in the interventricular septum, QRS-prolongation may directly result from septal fibrosis, visualized by LGE. Our aim was to study the correlation of the presence and extent of septal midwall LGE and QRS-duration. Methods DCM-patients with left ventricular (LV) dysfunction (LVEF < 50%) were included. LV volumes, systolic function and nonischemic septal midwall LGE, defined as patchy or stripe-like LGE in the septal segments, were quantified. QRS-duration on standard 12-lead ECG was measured. Results 165 DCM-patients were included (62% male, mean age 59 ± 15 years) with a median LVEF of 36% [24–44]. Fifty-one patients (31%) demonstrated septal midwall LGE with a median extent of 8.1 gram [4.3–16.8]. Patients with midwall LGE had increased LV end-diastolic volumes (EDV) 248 mL [193–301] vs. 193 mL [160–239], p < 0.001) and lower LVEF (26% [18–35] vs. 40% [32–45], p < 0.001). Median QRS-duration was 110 ms [95–146] without a correlation to the presence nor extent of midwall LGE. QRS-duration was moderately correlated with LV-dilation and mass (respectively r = 0.35, p < 0.001 and r = 0.30, p < 0.001). Conclusion In DCM-patients, QRS-prolongation and septal midwall LGE are frequently present and often co-exist. However, they are not correlated. This suggests that the assessment of LGE-CMR has complementary value to ECG evaluation in the clinical assessment and risk stratification of DCM-patients.
Collapse
|
33
|
Quantitative mechanical dyssynchrony in dilated cardiomyopathy measured by deformable registration algorithm. Eur Radiol 2020; 30:2010-2020. [PMID: 31953665 DOI: 10.1007/s00330-019-06578-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the diagnostic value and reproducibility of deformable registration algorithm (DRA)-derived mechanical dyssynchrony parameters in dilated cardiomyopathy (DCM) patients. METHODS The present study included 80 DCM patients (40 with normal QRS duration (NQRS-DCM); 40 with left bundle branch block (LBBB-DCM)) and 20 healthy volunteers. The balanced steady-state free-precession (bSSFP) cine images were acquired using a 3.0T scanner. Mechanical dyssynchrony parameters were calculated based on DRA-derived segmental strain, including uniformity ratio estimate (URE) and standard derivation of time-to-peak (T2Psd) parameters in circumferential, radial, and longitudinal orientations. RESULTS DCM patients showed significant mechanical dyssynchrony reflected by both URE and T2Psd parameters compared with controls. Among DCM patients, LBBB-DCM showed decreased CURE (0.78 ± 0.21 vs. 0.93 ± 0.05, p < 0.001) and RURE (0.69 ± 0.14 vs. 0.83 ± 0.15, p = 0.001), and increased T2Psd-Ecc (median with interquartile range, 94.1 (54.4-123.2) ms vs. 63.7 (44.9-80.4) ms, p = 0.003) and T2Psd-Err (91.1 (61.1-103.2) ms vs. 62.3 (46.3-104.5) ms, p = 0.041) compared with NQRS-DCM patients. CURE showed a strong correlation with QRS duration (r = - 0.54, p < 0.001), with maximum AUC (0.791) to differentiate LBBB-DCM from NQRS-DCM patients. Improved intra- and inter-observer reproducibility was found using URE indices (coefficient of variation (CoV), 1.20-3.17%) than T2Psd parameters (CoV, 15.28-41.18%). CONCLUSIONS The DRA-based CURE showed significant correlation with QRS duration and the highest discriminatory value between LBBB-DCM and NQRS-DCM patients. URE indices showed greater reproducibility compared with T2Psd parameters for assessing myocardial dyssynchrony in DCM patients. KEY POINTS • The strain analyses based on DRA suggested that DCM patients have varying degrees of mechanical dyssynchrony and there is a significant difference from normal controls. • CURE showed the strongest correlation with QRS duration and was the best parameter for differentiating DCM patients with normal QRS duration from patients with LBBB, and with normal controls. • URE indices showed improved reproducibility compared with T2Psd parameters in all three orientations (circumferential, radial, and longitudinal).
Collapse
|
34
|
Abstract
Purpose of Review Non-ischaemic dilated cardiomyopathy (DCM) occurs in 1 in 2500 individuals in the general population and is associated with considerable morbidity and mortality. Studies involving large numbers of unselected DCM patients have led to consensus guidelines recommending implantable cardioverter-defibrillator (ICD) implantation for protection against sudden cardiac death (SCD) in those with LVEF ≤35%. The purpose of this article is to review the literature for other potential markers including serological, electrocardiographic, echocardiographic, cardiac magnetic resonance, ambulatory ECG and genetic data, to highlight other potential markers that may optimise risk stratification for SCD in this cohort and thereby allow a more personalized approach to ICD-implantation. Recent Findings Recent studies including the Danish study to assess the efficacy of ICDs in patients with non-ischemic systolic heart failure on mortality (DANISH) trial have questioned the benefits of ICD implantation in this group of patients with no changes in all-cause mortality. Recent pooled cohorts of patients with genetic DCM and in particular in those with Lamin A/C (LMNA) mutations have identified patients at increased risk of SCD and allowed the creation of algorithms to prognosticate SCD risk in mutation carriers. Furthermore, genetic testing has identified other DCM-causing genes including filamin C (FLNC) and RBM20 which may be associated with higher rates of ventricular arrhythmia. Summary To date, risk-stratification for SCD has been hampered by the utilisation of heterogenous subsets of idiopathic DCM patients and by use of static risk models where predictions are based on a single time point with a lack of consideration of disease progression. The current focus of personalised risk-stratification for SCD is shifting towards better characterisation of underlying DCM aetiology and the development of multi-parametric risk-stratification models that incorporate time-dependent disease characteristics and novel biomarkers.
Collapse
|
35
|
Risk Stratification of Sudden Cardiac Death in Patients with Heart Failure: An update. J Clin Med 2018; 7:jcm7110436. [PMID: 30423853 PMCID: PMC6262425 DOI: 10.3390/jcm7110436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome in which structural/functional myocardial abnormalities result in symptoms and signs of hypoperfusion and/or pulmonary or systemic congestion at rest or during exercise. More than 80% of deaths in patients with HF recognize a cardiovascular cause, with most being either sudden cardiac death (SCD) or death caused by progressive pump failure. Risk stratification of SCD in patients with HF and preserved (HFpEF) or reduced ejection fraction (HFrEF) represents a clinical challenge. This review will give an update of current strategies for SCD risk stratification in both HFrEF and HFpEF.
Collapse
|