1
|
Gomez-Arroyo J, Houweling AC, Bogaard HJ, Aman J, Kitzmiller JA, Porollo A, Dooijes D, Meijboom LJ, Hale P, Pauciulo MW, Hong J, Zhu N, Welch C, Shen Y, Zacharias WJ, McCormack FX, Aldred MA, Weirauch MT, Graf S, Rhodes C, Chung WK, Whitsett JA, Martin LJ, Kalinichenko VV, Nichols WC. Role of Forkhead box F1 in the Pathobiology of Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.611448. [PMID: 39345371 PMCID: PMC11429893 DOI: 10.1101/2024.09.18.611448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rationale Approximately 80% of patients with non-familial pulmonary arterial hypertension (PAH) lack identifiable pathogenic genetic variants. While most genetic studies of PAH have focused on predicted loss-of-function variants, recent approaches have identified ultra-rare missense variants associated with the disease. FOXF1 encodes a highly conserved transcription factor, essential for angiogenesis and vasculogenesis in human and mouse lungs. Objectives We identified a rare FOXF1 missense coding variant in two unrelated probands with PAH. FOXF1 is an evolutionarily conserved transcription factor required for lung vascular development and vascular integrity. Our aims were to determine the frequency of FOXF1 variants in larger PAH cohorts compared to the general population, study FOXF1 expression in explanted lung tissue from PAH patients versus control (failed-donor) lungs, and define potential downstream targets linked to PAH development. Methods Three independent, international, multicenter cohorts were analyzed to evaluate the frequency of FOXF1 rare variants. Various composite prediction models assessed the deleteriousness of individual variants. Bulk RNA sequencing datasets from human explanted lung tissues were compared to failed-donor controls to determine FOXF1 expression. Bioinformatic tools identified putative FOXF1 binding targets, which were orthogonally validated using mouse ChIP-seq datasets. Measurements and Main Results Seven novel or ultra-rare missense coding variants were identified across three patient cohorts in different regions of the FOXF1 gene, including the DNA binding domain. FOXF1 expression was dysregulated in PAH lungs, correlating with disease severity. Histological analysis showed heterogeneous FOXF1 expression, with the lowest levels in phenotypically abnormal endothelial cells within complex vascular lesions in PAH samples. A hybrid bioinformatic approach identified FOXF1 downstream targets potentially involved in PAH pathogenesis, including BMPR2 . Conclusions Large genomic and transcriptomic datasets suggest that decreased FOXF1 expression or predicted dysfunction is associated with PAH.
Collapse
|
2
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
3
|
Correale M, Chirivì F, Bevere EML, Tricarico L, D’Alto M, Badagliacca R, Brunetti ND, Vizza CD, Ghio S. Endothelial Function in Pulmonary Arterial Hypertension: From Bench to Bedside. J Clin Med 2024; 13:2444. [PMID: 38673717 PMCID: PMC11051060 DOI: 10.3390/jcm13082444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pulmonary arterial hypertension is a complex pathology whose etiology is still not completely well clarified. The pathogenesis of pulmonary arterial hypertension involves different molecular mechanisms, with endothelial dysfunction playing a central role in disease progression. Both individual genetic predispositions and environmental factors seem to contribute to its onset. To further understand the complex relationship between endothelial and pulmonary hypertension and try to contribute to the development of future therapies, we report a comprehensive and updated review on endothelial function in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Lucia Tricarico
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Michele D’Alto
- Department of Cardiology, A.O.R.N. dei Colli, Monaldi Hospital, University of Campania L. ‘Vanvitelli’, 80133 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Natale D. Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Carmine Dario Vizza
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
4
|
Tomita S, Nakanishi N, Ogata T, Higuchi Y, Sakamoto A, Tsuji Y, Suga T, Matoba S. The Cavin-1/Caveolin-1 interaction attenuates BMP/Smad signaling in pulmonary hypertension by interfering with BMPR2/Caveolin-1 binding. Commun Biol 2024; 7:40. [PMID: 38182755 PMCID: PMC10770141 DOI: 10.1038/s42003-023-05693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
Caveolin-1 (CAV1) and Cavin-1 are components of caveolae, both of which interact with and influence the composition and stabilization of caveolae. CAV1 is associated with pulmonary arterial hypertension (PAH). Bone morphogenetic protein (BMP) type 2 receptor (BMPR2) is localized in caveolae associated with CAV1 and is commonly mutated in PAH. Here, we show that BMP/Smad signaling is suppressed in pulmonary microvascular endothelial cells of CAV1 knockout mice. Moreover, hypoxia enhances the CAV1/Cavin-1 interaction but attenuates the CAV1/BMPR2 interaction and BMPR2 membrane localization in pulmonary artery endothelial cells (PAECs). Both Cavin-1 and BMPR2 are associated with the CAV1 scaffolding domain. Cavin-1 decreases BMPR2 membrane localization by inhibiting the interaction of BMPR2 with CAV1 and reduces Smad signal transduction in PAECs. Furthermore, Cavin-1 knockdown is resistant to CAV1-induced pulmonary hypertension in vivo. We demonstrate that the Cavin-1/Caveolin-1 interaction attenuates BMP/Smad signaling and is a promising target for the treatment of PAH.
Collapse
Affiliation(s)
- Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takaomi Suga
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
5
|
D’Alessio A. Unraveling the Cave: A Seventy-Year Journey into the Caveolar Network, Cellular Signaling, and Human Disease. Cells 2023; 12:2680. [PMID: 38067108 PMCID: PMC10705299 DOI: 10.3390/cells12232680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In the mid-1950s, a groundbreaking discovery revealed the fascinating presence of caveolae, referred to as flask-shaped invaginations of the plasma membrane, sparking renewed excitement in the field of cell biology. Caveolae are small, flask-shaped invaginations in the cell membrane that play crucial roles in diverse cellular processes, including endocytosis, lipid homeostasis, and signal transduction. The structural stability and functionality of these specialized membrane microdomains are attributed to the coordinated activity of scaffolding proteins, including caveolins and cavins. While caveolae and caveolins have been long appreciated for their integral roles in cellular physiology, the accumulating scientific evidence throughout the years reaffirms their association with a broad spectrum of human disorders. This review article aims to offer a thorough account of the historical advancements in caveolae research, spanning from their initial discovery to the recognition of caveolin family proteins and their intricate contributions to cellular functions. Furthermore, it will examine the consequences of a dysfunctional caveolar network in the development of human diseases.
Collapse
Affiliation(s)
- Alessio D’Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Montani D, Eichstaedt CA, Belge C, Chung WK, Gräf S, Grünig E, Humbert M, Quarck R, Tenorio-Castano JA, Soubrier F, Trembath RC, Morrell NW. [Genetic counselling and testing in pulmonary arterial hypertension - A consensus statement on behalf of the International Consortium for Genetic Studies in PAH - French version]. Rev Mal Respir 2023; 40:838-852. [PMID: 37923650 DOI: 10.1016/j.rmr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/11/2023] [Indexed: 11/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.
Collapse
Affiliation(s)
- D Montani
- French Referral Center for Pulmonary Hypertension, Pulmonary Department, hôpital de Bicêtre, AP-HP, université Paris-Saclay, Le Kremlin-Bicêtre, France; Inserm UMR_S999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France.
| | - C A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Allemagne; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Allemagne; Laboratory for Molecular Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Allemagne
| | - C Belge
- Department of Chronic Diseases & Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), University of Leuven, 3000 Leuven, Belgique
| | - W K Chung
- Department of Pediatrics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, États-Unis
| | - S Gräf
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0BB, Royaume-Uni; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, Royaume-Uni; NIHR BioResource, for Translational Research - Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, Royaume-Uni
| | - E Grünig
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Allemagne; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Allemagne
| | - M Humbert
- French Referral Center for Pulmonary Hypertension, Pulmonary Department, hôpital de Bicêtre, AP-HP, université Paris-Saclay, Le Kremlin-Bicêtre, France; Inserm UMR_S999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - R Quarck
- Department of Chronic Diseases & Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), University of Leuven, 3000 Leuven, Belgique
| | - J A Tenorio-Castano
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ, Hospital Universitario La Paz, Madrid, Espagne; CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Espagne; ITHACA, European Reference Network, Brussels, Belgique
| | - F Soubrier
- Département de génétique, Inserm UMR_S1166, AP-HP, hôpital Pitié-Salpêtrière, Institute for Cardio-metabolism and Nutrition (ICAN), Sorbonne université, Paris, France
| | - R C Trembath
- Department of Medical & Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, Royaume-Uni
| | - N W Morrell
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0BB, Royaume-Uni; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, Royaume-Uni
| |
Collapse
|
7
|
Welch CL, Aldred MA, Balachandar S, Dooijes D, Eichstaedt CA, Gräf S, Houweling AC, Machado RD, Pandya D, Prapa M, Shaukat M, Southgate L, Tenorio-Castano J, Chung WK. Defining the clinical validity of genes reported to cause pulmonary arterial hypertension. Genet Med 2023; 25:100925. [PMID: 37422716 PMCID: PMC10766870 DOI: 10.1016/j.gim.2023.100925] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Department of Haemotology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rajiv D Machado
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Divya Pandya
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matina Prapa
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Jair Tenorio-Castano
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IDiPAZ, Universidad Autonoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; ITHACA, European Reference Network, Brussels, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
8
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
9
|
Pokharel MD, Marciano DP, Fu P, Franco MC, Unwalla H, Tieu K, Fineman JR, Wang T, Black SM. Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol 2023; 64:102797. [PMID: 37392518 PMCID: PMC10363484 DOI: 10.1016/j.redox.2023.102797] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria are highly dynamic organelles essential for cell metabolism, growth, and function. It is becoming increasingly clear that endothelial cell dysfunction significantly contributes to the pathogenesis and vascular remodeling of various lung diseases, including pulmonary arterial hypertension (PAH), and that mitochondria are at the center of this dysfunction. The more we uncover the role mitochondria play in pulmonary vascular disease, the more apparent it becomes that multiple pathways are involved. To achieve effective treatments, we must understand how these pathways are dysregulated to be able to intervene therapeutically. We know that nitric oxide signaling, glucose metabolism, fatty acid oxidation, and the TCA cycle are abnormal in PAH, along with alterations in the mitochondrial membrane potential, proliferation, and apoptosis. However, these pathways are incompletely characterized in PAH, especially in endothelial cells, highlighting the urgent need for further research. This review summarizes what is currently known about how mitochondrial metabolism facilitates a metabolic shift in endothelial cells that induces vascular remodeling during PAH.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - David P Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Maria Clara Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, The University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
10
|
Tan Y, Song Q. Research trends and hotspots on the links between caveolin and cancer: bibliometric and visual analysis from 2003 to 2022. Front Pharmacol 2023; 14:1237456. [PMID: 37576808 PMCID: PMC10416243 DOI: 10.3389/fphar.2023.1237456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Extensive studies indicated that caveolin is a key regulator in multiple cellular processes. Recently, growing evidence demonstrated that caveolin is critically involved in tumor progression. Since no relevant bibliometric study has been published, we performed a bibliometric and visual analysis to depict the knowledge framework of research related to the involvement of caveolin in cancer. Methods: Relevant studies published in English during 2003-2022 were obtained from the Web of Science Core Collection database. Three programs (VOSviewer, CiteSpace, and R-bibliometrix) and the website of bibliometrics (http://bibliometric.com/) were applied to construct networks based on the analysis of countries, institutions, authors, journals, references, and keywords. Results: A total of 2,463 documents were extracted and identified. The United States had the greatest number of publications and total citations, and Thomas Jefferson University was the most productive institution. Michael P. Lisanti was the most influential scholar in this research domain. Cell Cycle was the journal with the most publications on this subject. The most local-cited document was the article titled "Caveolin-1 in oncogenic transformation, cancer, and metastasis." A comprehensive analysis has been conducted based on keywords and cited references. Initially, the research frontiers were predominantly "signal transduction", "human breast cancer," "oncogenically transformed cells," "tumor suppressor gene," and "fibroblasts." While in recent years, the research emphasis has shifted to "tumor microenvironment," "epithelial mesenchymal transition," "nanoparticles," and "stem cells." Conclusion: Taken together, our bibliometric analysis shows that caveolin continues to be of interest in cancer research. The hotspots and research frontiers have evolved from the regulation of cancer signaling, to potential targets of cancer therapy and novel techniques. These results can provide a data-based reference for the guidance of future research.
Collapse
Affiliation(s)
- Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Song
- Department of Pharmacy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant 2023; 42:544-552. [PMID: 36604291 PMCID: PMC10121751 DOI: 10.1016/j.healun.2022.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-β and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Aglaia Ntokou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Jui M Dave
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel G Jovin
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Fatima Z Saddouk
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel M Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut.
| |
Collapse
|
13
|
Kenworthy AK. The building blocks of caveolae revealed: caveolins finally take center stage. Biochem Soc Trans 2023; 51:855-869. [PMID: 37082988 PMCID: PMC10212548 DOI: 10.1042/bst20221298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The ability of cells to divide, migrate, relay signals, sense mechanical stimuli, and respond to stress all rely on nanoscale invaginations of the plasma membrane known as caveolae. The caveolins, a family of monotopic membrane proteins, form the inner layer of the caveolar coat. Caveolins have long been implicated in the generation of membrane curvature, in addition to serving as scaffolds for signaling proteins. Until recently, however, the molecular architecture of caveolins was unknown, making it impossible to understand how they operate at a mechanistic level. Over the past year, two independent lines of evidence - experimental and computational - have now converged to provide the first-ever glimpse into the structure of the oligomeric caveolin complexes that function as the building blocks of caveolae. Here, we summarize how these discoveries are transforming our understanding of this long-enigmatic protein family and their role in caveolae assembly and function. We present new models inspired by the structure for how caveolins oligomerize, remodel membranes, interact with their binding partners, and reorganize when mutated. Finally, we discuss emerging insights into structural differences among caveolin family members that enable them to support the proper functions of diverse tissues and organisms.
Collapse
Affiliation(s)
- Anne K. Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, U.S.A
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, U.S.A
| |
Collapse
|
14
|
Benincasa G, Napoli C, Loscalzo J, Maron BA. Pursuing functional biomarkers in complex disease: Focus on pulmonary arterial hypertension. Am Heart J 2023; 258:96-113. [PMID: 36565787 DOI: 10.1016/j.ahj.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 05/11/2023]
Abstract
A major gap in diagnosis, classification, risk stratification, and prediction of therapeutic response exists in pulmonary arterial hypertension (PAH), driven in part by a lack of functional biomarkers that are also disease-specific. In this regard, leveraging big data-omics analyses using innovative approaches that integrate network medicine and machine learning correlated with clinically useful indices or risk stratification scores is an approach well-positioned to advance PAH precision medicine. For example, machine learning applied to a panel of 48 cytokines, chemokines, and growth factors could prognosticate PAH patients with immune-dominant subphenotypes at elevated or low-risk for mortality. Here, we discuss strengths and weaknesses of the most current studies evaluating omics-derived biomarkers in PAH. Progress in this field is offset by studies with small sample size, pervasive limitations in bioinformatics, and lack of standardized methods for data processing and interpretation. Future success in this field, in turn, is likely to hinge on mechanistic validation of data outputs in order to couple functional biomarker data with target-specific therapeutics in clinical practice.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
15
|
Han B, Gulsevin A, Connolly S, Wang T, Meyer B, Porta J, Tiwari A, Deng A, Chang L, Peskova Y, Mchaourab HS, Karakas E, Ohi MD, Meiler J, Kenworthy AK. Structural analysis of the P132L disease mutation in caveolin-1 reveals its role in the assembly of oligomeric complexes. J Biol Chem 2023; 299:104574. [PMID: 36870682 PMCID: PMC10124911 DOI: 10.1016/j.jbc.2023.104574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Caveolin-1 (CAV1) is a membrane-sculpting protein that oligomerizes to generate flask-shaped invaginations of the plasma membrane known as caveolae. Mutations in CAV1 have been linked to multiple diseases in humans. Such mutations often interfere with oligomerization and the intracellular trafficking processes required for successful caveolae assembly, but the molecular mechanisms underlying these defects have not been structurally explained. Here, we investigate how a disease-associated mutation in one of the most highly conserved residues in CAV1, P132L, affects CAV1 structure and oligomerization. We show that P132 is positioned at a major site of protomer-protomer interactions within the CAV1 complex, providing a structural explanation for why the mutant protein fails to homo-oligomerize correctly. Using a combination of computational, structural, biochemical, and cell biological approaches, we find that despite its homo-oligomerization defects P132L is capable of forming mixed hetero-oligomeric complexes with WT CAV1 and that these complexes can be incorporated into caveolae. These findings provide insights into the fundamental mechanisms that control the formation of homo- and hetero-oligomers of caveolins that are essential for caveolae biogenesis, as well as how these processes are disrupted in human disease.
Collapse
Affiliation(s)
- Bing Han
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Sarah Connolly
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ting Wang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Brigitte Meyer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jason Porta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ajit Tiwari
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Angie Deng
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yelena Peskova
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Sotodosos-Alonso L, Pulgarín-Alfaro M, Del Pozo MA. Caveolae Mechanotransduction at the Interface between Cytoskeleton and Extracellular Matrix. Cells 2023; 12:cells12060942. [PMID: 36980283 PMCID: PMC10047380 DOI: 10.3390/cells12060942] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The plasma membrane (PM) is subjected to multiple mechanical forces, and it must adapt and respond to them. PM invaginations named caveolae, with a specific protein and lipid composition, play a crucial role in this mechanosensing and mechanotransduction process. They respond to PM tension changes by flattening, contributing to the buffering of high-range increases in mechanical tension, while novel structures termed dolines, sharing Caveolin1 as the main component, gradually respond to low and medium forces. Caveolae are associated with different types of cytoskeletal filaments, which regulate membrane tension and also initiate multiple mechanotransduction pathways. Caveolar components sense the mechanical properties of the substrate and orchestrate responses that modify the extracellular matrix (ECM) according to these stimuli. They perform this function through both physical remodeling of ECM, where the actin cytoskeleton is a central player, and via the chemical alteration of the ECM composition by exosome deposition. Here, we review mechanotransduction regulation mediated by caveolae and caveolar components, focusing on how mechanical cues are transmitted through the cellular cytoskeleton and how caveolae respond and remodel the ECM.
Collapse
Affiliation(s)
- Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Marta Pulgarín-Alfaro
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| |
Collapse
|
17
|
Upton PD, Dunmore BJ, Li W, Morrell NW. An emerging class of new therapeutics targeting TGF, Activin, and BMP ligands in pulmonary arterial hypertension. Dev Dyn 2023; 252:327-342. [PMID: 35434863 PMCID: PMC10952790 DOI: 10.1002/dvdy.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal condition, the primary pathology of which involves loss of pulmonary vascular perfusion due to progressive aberrant vessel remodeling. The reduced capacity of the pulmonary circulation places increasing strain on the right ventricle of the heart, leading to death by heart failure. Currently, licensed therapies are primarily vasodilators, which have increased the median post-diagnosis life expectancy from 2.8 to 7 years. Although this represents a substantial improvement, the search continues for transformative therapeutics that reverse established disease. The genetics of human PAH heavily implicates reduced endothelial bone morphogenetic protein (BMP) signaling as a causal role for the disease pathobiology. Recent approaches have focused on directly enhancing BMP signaling or removing the inhibitory influence of pathways that repress BMP signaling. In this critical commentary, we review the evidence underpinning the development of two approaches: BMP-based agonists and inhibition of activin/GDF signaling. We also address the key considerations and questions that remain regarding these approaches.
Collapse
Affiliation(s)
- Paul D. Upton
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Benjamin J. Dunmore
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Wei Li
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Nicholas W. Morrell
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| |
Collapse
|
18
|
Eichstaedt CA, Belge C, Chung WK, Gräf S, Grünig E, Montani D, Quarck R, Tenorio-Castano JA, Soubrier F, Trembath RC, Morrell NW. Genetic counselling and testing in pulmonary arterial hypertension: a consensus statement on behalf of the International Consortium for Genetic Studies in PAH. Eur Respir J 2023; 61:2201471. [PMID: 36302552 PMCID: PMC9947314 DOI: 10.1183/13993003.01471-2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Catharina Belge
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, University of Leuven, Leuven, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefan Gräf
- Department of Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NIHR BioResource for Translational Research - Rare Diseases, University of Cambridge, Cambridge, UK
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - David Montani
- Université Paris-Saclay, AP-HP, French Referral Center for Pulmonary Hypertension, Pulmonary Department, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
- INSERM UMR_S999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Rozenn Quarck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, University of Leuven, Leuven, Belgium
| | - Jair A Tenorio-Castano
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Florent Soubrier
- Sorbonne Université, AP-HP, Département de Génétique, INSERM UMR_S1166, Sorbonne Université, Institute for Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Richard C Trembath
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nicholas W Morrell
- Department of Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Bousseau S, Sobrano Fais R, Gu S, Frump A, Lahm T. Pathophysiology and new advances in pulmonary hypertension. BMJ MEDICINE 2023; 2:e000137. [PMID: 37051026 PMCID: PMC10083754 DOI: 10.1136/bmjmed-2022-000137] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 04/14/2023]
Abstract
Pulmonary hypertension is a progressive and often fatal cardiopulmonary condition characterised by increased pulmonary arterial pressure, structural changes in the pulmonary circulation, and the formation of vaso-occlusive lesions. These changes lead to increased right ventricular afterload, which often progresses to maladaptive right ventricular remodelling and eventually death. Pulmonary arterial hypertension represents one of the most severe and best studied types of pulmonary hypertension and is consistently targeted by drug treatments. The underlying molecular pathogenesis of pulmonary hypertension is a complex and multifactorial process, but can be characterised by several hallmarks: inflammation, impaired angiogenesis, metabolic alterations, genetic or epigenetic abnormalities, influence of sex and sex hormones, and abnormalities in the right ventricle. Current treatments for pulmonary arterial hypertension and some other types of pulmonary hypertension target pathways involved in the control of pulmonary vascular tone and proliferation; however, these treatments have limited efficacy on patient outcomes. This review describes key features of pulmonary hypertension, discusses current and emerging therapeutic interventions, and points to future directions for research and patient care. Because most progress in the specialty has been made in pulmonary arterial hypertension, this review focuses on this type of pulmonary hypertension. The review highlights key pathophysiological concepts and emerging therapeutic directions, targeting inflammation, cellular metabolism, genetics and epigenetics, sex hormone signalling, bone morphogenetic protein signalling, and inhibition of tyrosine kinase receptors.
Collapse
Affiliation(s)
- Simon Bousseau
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Rafael Sobrano Fais
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Sue Gu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrea Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tim Lahm
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, CO, USA
| |
Collapse
|
20
|
Swisher JW, Weaver E. The Evolving Management and Treatment Options for Patients with Pulmonary Hypertension: Current Evidence and Challenges. Vasc Health Risk Manag 2023; 19:103-126. [PMID: 36895278 PMCID: PMC9990521 DOI: 10.2147/vhrm.s321025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary hypertension may develop as a disease process specific to pulmonary arteries with no identifiable cause or may occur in relation to other cardiopulmonary and systemic illnesses. The World Health Organization (WHO) classifies pulmonary hypertensive diseases on the basis of primary mechanisms causing increased pulmonary vascular resistance. Effective management of pulmonary hypertension begins with accurately diagnosing and classifying the disease in order to determine appropriate treatment. Pulmonary arterial hypertension (PAH) is a particularly challenging form of pulmonary hypertension as it involves a progressive, hyperproliferative arterial process that leads to right heart failure and death if untreated. Over the last two decades, our understanding of the pathobiology and genetics behind PAH has evolved and led to the development of several targeted disease modifiers that ameliorate hemodynamics and quality of life. Effective risk management strategies and more aggressive treatment protocols have also allowed better outcomes for patients with PAH. For those patients who experience progressive PAH with medical therapy, lung transplantation remains a life-saving option. More recent work has been directed at developing effective treatment strategies for other forms of pulmonary hypertension, such as chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary hypertension due to other lung or heart diseases. The discovery of new disease pathways and modifiers affecting the pulmonary circulation is an ongoing area of intense investigation.
Collapse
Affiliation(s)
- John W Swisher
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| | - Eric Weaver
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| |
Collapse
|
21
|
Liu B, Peng Y, Yi D, Machireddy N, Dong D, Ramirez K, Dai J, Vanderpool R, Zhu MM, Dai Z, Zhao YY. Endothelial PHD2 deficiency induces nitrative stress via suppression of caveolin-1 in pulmonary hypertension. Eur Respir J 2022; 60:2102643. [PMID: 35798360 PMCID: PMC9791795 DOI: 10.1183/13993003.02643-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nitrative stress is a characteristic feature of the pathology of human pulmonary arterial hypertension. However, the role of nitrative stress in the pathogenesis of obliterative vascular remodelling and severe pulmonary arterial hypertension remains largely unclear. METHOD Our recently identified novel mouse model (Egln1Tie2Cre, Egln1 encoding prolyl hydroxylase 2 (PHD2)) has obliterative vascular remodelling and right heart failure, making it an excellent model to use in this study to examine the role of nitrative stress in obliterative vascular remodelling. RESULTS Nitrative stress was markedly elevated whereas endothelial caveolin-1 (Cav1) expression was suppressed in the lungs of Egln1Tie2Cre mice. Treatment with a superoxide dismutase mimetic, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride or endothelial Nos3 knockdown using endothelial cell-targeted nanoparticle delivery of CRISPR-Cas9/guide RNA plasmid DNA inhibited obliterative pulmonary vascular remodelling and attenuated severe pulmonary hypertension in Egln1Tie2Cre mice. Genetic restoration of Cav1 expression in Egln1Tie2Cre mice normalised nitrative stress, reduced pulmonary hypertension and improved right heart function. CONCLUSION These data suggest that suppression of Cav1 expression secondary to PHD2 deficiency augments nitrative stress through endothelial nitric oxide synthase activation, which contributes to obliterative vascular remodelling and severe pulmonary hypertension. Thus, a reactive oxygen/nitrogen species scavenger might have therapeutic potential for the inhibition of obliterative vascular remodelling and severe pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Bin Liu
- Division of Pulmonary, Critical Care and Sleep, Dept of Internal Medicine, University of Arizona, Phoenix, AZ, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Yi Peng
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dan Yi
- Division of Pulmonary, Critical Care and Sleep, Dept of Internal Medicine, University of Arizona, Phoenix, AZ, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Narsa Machireddy
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daoyin Dong
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karina Ramirez
- Division of Pulmonary, Critical Care and Sleep, Dept of Internal Medicine, University of Arizona, Phoenix, AZ, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Jingbo Dai
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rebecca Vanderpool
- College of Medicine Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Maggie M Zhu
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, Dept of Internal Medicine, University of Arizona, Phoenix, AZ, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Zhiyu Dai and You-Yang Zhao contributed equally to this article as lead authors and supervised the work
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Dept of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Dept of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Zhiyu Dai and You-Yang Zhao contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
22
|
Devendran A, Kar S, Bailey R, Trivieri MG. The Role of Bone Morphogenetic Protein Receptor Type 2 ( BMPR2) and the Prospects of Utilizing Induced Pluripotent Stem Cells (iPSCs) in Pulmonary Arterial Hypertension Disease Modeling. Cells 2022; 11:3823. [PMID: 36497082 PMCID: PMC9741276 DOI: 10.3390/cells11233823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.
Collapse
Affiliation(s)
- Anichavezhi Devendran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumanta Kar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasheed Bailey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Cardiology Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Al Madhoun A, Hebbar P, Nizam R, Haddad D, Melhem M, Abu-Farha M, Thanaraj TA, Al-Mulla F. Caveolin-1 rs1997623 variant and adult metabolic syndrome—Assessing the association in three ethnic cohorts of Arabs, South Asians and South East Asians. Front Genet 2022; 13:1034892. [PMID: 36338969 PMCID: PMC9634410 DOI: 10.3389/fgene.2022.1034892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Animal and cell model studies have implicated CAV1 in the pathophysiology of metabolic disorders. Our previous studies demonstrated a potential association of CAV1 rs1997623 C/A variant with pediatric metabolic syndrome (MetS) in Arab children. In the present study, we evaluate whether the CAV1 variant associates with MetS Arab adults as well. The association signal is further examined for ancestry-specific variation by considering cohorts of other ethnicities. Method: The CAV1 rs1997623 was genotyped in three cohorts of Arab (n = 479), South Asian (n = 660), and South East Asian (n = 362) ethnic adults from Kuwait. MetS status of the individuals was diagnosed using the IDF criteria (presence of central obesity and at least two abnormalities out of: elevated TG, low HDL, hypertension, or T2D). The quantitative measure of MetS was calculated as siMS = 2 × WC/Height + FBG/5.6 + TG/1.7 + SBP/130–HDL/1.02 for males or HDL/1.28 for females. Allelic associations with quantitative and dichotomous MetS traits were assessed using linear and logistic regression models adjusted for age and sex. In addition, empirical p-values (Pemp) were generated using max(T) permutation procedure based on 10,000 permutations. Results: The CAV1 variant was significantly associated with MetS status (OR = 1.811 [1.25–2.61]; p-value = 0.0015; Pemp = 0.0013) and with siMS (Effect size = 0.206; p-value = 0.0035; Pemp = 0.0028) in the cohort of Arab individuals. The association was weak and insignificant in the South Asian and South East Asian cohorts (OR = 1.19 and 1.11; p-values = 0.25 and 0.67, respectively). Conclusion: The reported association of CAV1 rs1997623 C/A with MetS in Arab pediatric population is now demonstrated in an adult Arab cohort as well. The weak association signal seen in the Asian cohorts lead us to propose a certain extent of ethnic-specificity in CAV1 rs1997623 association with MetS.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Prashantha Hebbar
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dania Haddad
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Motasem Melhem
- Special Services Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Special Services Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
24
|
Otani N, Tomoe T, Kawabe A, Sugiyama T, Horie Y, Sugimura H, Yasu T, Nakamoto T. Recent Advances in the Treatment of Pulmonary Arterial Hypertension. Pharmaceuticals (Basel) 2022; 15:1277. [PMID: 36297387 PMCID: PMC9609229 DOI: 10.3390/ph15101277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease in which stenosis or obstruction of the pulmonary arteries (PAs) causes an increase in PA pressure, leading to right-sided heart failure and death. Basic research has revealed a decrease in the levels of endogenous vasodilators, such as prostacyclin, and an increase in the levels of endogenous vasoconstrictors, such as endothelin, in patients with PAH, leading to the development of therapeutic agents. Currently, therapeutic agents for PAH target three pathways that are selective for PAs: the prostacyclin, endothelin, and nitric oxide pathways. These treatments improve the prognosis of PAH patients. In this review, we introduce new drug therapies and provide an overview of the current therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Takaaki Nakamoto
- Department of Cardiology, Dokkyo Medical University Nikkyo Medical Center, 632 Takatoku, Nikko 321-2593, Japan
| |
Collapse
|
25
|
Molecular Pathways in Pulmonary Arterial Hypertension. Int J Mol Sci 2022; 23:ijms231710001. [PMID: 36077398 PMCID: PMC9456336 DOI: 10.3390/ijms231710001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension is a multifactorial, chronic disease process that leads to pulmonary arterial endothelial dysfunction and smooth muscular hypertrophy, resulting in impaired pliability and hemodynamics of the pulmonary vascular system, and consequent right ventricular dysfunction. Existing treatments target limited pathways with only modest improvement in disease morbidity, and little or no improvement in mortality. Ongoing research has focused on the molecular basis of pulmonary arterial hypertension and is going to be important in the discovery of new treatments and genetic pathways involved. This review focuses on the molecular pathogenesis of pulmonary arterial hypertension.
Collapse
|
26
|
New progress in diagnosis and treatment of pulmonary arterial hypertension. J Cardiothorac Surg 2022; 17:216. [PMID: 36038916 PMCID: PMC9422157 DOI: 10.1186/s13019-022-01947-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease. Although great progress has been made in its diagnosis and treatment in recent years, its mortality rate is still very significant. The pathophysiology and pathogenesis of PAH are complex and involve endothelial dysfunction, chronic inflammation, smooth muscle cell proliferation, pulmonary arteriole occlusion, antiapoptosis and pulmonary vascular remodeling. These factors will accelerate the progression of the disease, leading to poor prognosis. Therefore, accurate etiological diagnosis, treatment and prognosis judgment are particularly important. Here, we systematically review the pathophysiology, diagnosis, genetics, prognosis and treatment of PAH.
Collapse
|
27
|
Farrell R, Colglazier E, Parker C, Stevens L, Austin ED, Fineman JR. Caveolin-1 associated with severe (pediatric-onset) presentation of pulmonary arterial hypertension. Pulm Circ 2022; 12:e12100. [PMID: 35864912 PMCID: PMC9294289 DOI: 10.1002/pul2.12100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
There has been a growing interest in the role that genetic factors influence pediatric pulmonary vascular disease. In fact, data suggests that genetic factors contribute to ~42% of pediatric-onset pulmonary hypertension. Although animal and human studies suggest that aberrations in Caveolin1 (CAV1) signaling participate in the development of pulmonary vascular disorders, limited reports of CAV1-associated heritable pulmonary arterial hypertension (HPAH) exist. This is a case report of a 2-year-old female with late recognition of HPAH due to a CAV1 pathogenic variant: c.474del, (p.Leu159Serfs*22)(NM_001753.5). The pedigree demonstrates autosomal dominant transmission with reduced penetrance of PAH, suggestive that additional genetic or environmental factors modify PAH development. Genetic testing and the discovery of rare genetic alterations in PAH during infancy and childhood may aid in identifying disease etiologies, guide therapeutic decisions, and ultimately identify novel therapeutic targets. Moreover, CAV1 genetics implicate variable expressivity and incomplete penetrance for HPAH and underscores the utility of predictive genetic testing for unaffected family members no matter their age.
Collapse
Affiliation(s)
- Rachel Farrell
- Department of PediatricsUCSF Benioff Children's HospitalSan FranciscoCaliforniaUSA
| | - Elizabeth Colglazier
- Department of PediatricsUCSF Benioff Children's HospitalSan FranciscoCaliforniaUSA
| | - Claire Parker
- Department of PediatricsUCSF Benioff Children's HospitalSan FranciscoCaliforniaUSA
| | - Leah Stevens
- Department of PediatricsUCSF Benioff Children's HospitalSan FranciscoCaliforniaUSA
| | - Eric D. Austin
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jeffrey R. Fineman
- Department of PediatricsUCSF Benioff Children's HospitalSan FranciscoCaliforniaUSA
| |
Collapse
|
28
|
Porta JC, Han B, Gulsevin A, Chung JM, Peskova Y, Connolly S, Mchaourab HS, Meiler J, Karakas E, Kenworthy AK, Ohi MD. Molecular architecture of the human caveolin-1 complex. SCIENCE ADVANCES 2022; 8:eabn7232. [PMID: 35544577 PMCID: PMC9094659 DOI: 10.1126/sciadv.abn7232] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Membrane-sculpting proteins shape the morphology of cell membranes and facilitate remodeling in response to physiological and environmental cues. Complexes of the monotopic membrane protein caveolin function as essential curvature-generating components of caveolae, flask-shaped invaginations that sense and respond to plasma membrane tension. However, the structural basis for caveolin's membrane remodeling activity is currently unknown. Here, we show that, using cryo-electron microscopy, the human caveolin-1 complex is composed of 11 protomers organized into a tightly packed disc with a flat membrane-embedded surface. The structural insights suggest a previously unrecognized mechanism for how membrane-sculpting proteins interact with membranes and reveal how key regions of caveolin-1, including its scaffolding, oligomerization, and intramembrane domains, contribute to its function.
Collapse
Affiliation(s)
- Jason C. Porta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Bing Han
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alican Gulsevin
- Department of Chemistry, Vanderbilt University Nashville, TN, USA
| | - Jeong Min Chung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yelena Peskova
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah Connolly
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University, Germany
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Corresponding author. (E.K.); (A.K.K.); (M.D.O.)
| | - Anne K. Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Corresponding author. (E.K.); (A.K.K.); (M.D.O.)
| | - Melanie D. Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Corresponding author. (E.K.); (A.K.K.); (M.D.O.)
| |
Collapse
|
29
|
Aldred MA, Morrell NW, Guignabert C. New Mutations and Pathogenesis of Pulmonary Hypertension: Progress and Puzzles in Disease Pathogenesis. Circ Res 2022; 130:1365-1381. [PMID: 35482831 PMCID: PMC9897592 DOI: 10.1161/circresaha.122.320084] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex multifactorial disease with poor prognosis characterized by functional and structural alterations of the pulmonary circulation causing marked increase in pulmonary vascular resistance, ultimately leading to right heart failure and death. Mutations in the gene encoding BMPRII-a receptor for the TGF-β (transforming growth factor-beta) superfamily-account for over 70% of families with PAH and ≈20% of sporadic cases. In recent years, however, less common or rare mutations in other genes have been identified. This review will consider how these newly discovered PAH genes could help to provide a better understanding of the molecular and cellular bases of the maintenance of the pulmonary vascular integrity, as well as their role in the PAH pathogenesis underlying occlusion of arterioles in the lung. We will also discuss how insights into the genetic contributions of these new PAH-related genes may open up new therapeutic targets for this, currently incurable, cardiopulmonary disorder.
Collapse
Affiliation(s)
- Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas W Morrell
- University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - Christophe Guignabert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France,Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
30
|
Assaggaf H, Yoo C, Lucchini RG, Black SM, Hamed M, Minshawi F, Felty Q. Polychlorinated Biphenyls and Pulmonary Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4705. [PMID: 35457576 PMCID: PMC9029704 DOI: 10.3390/ijerph19084705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that were banned because of their potential carcinogenicity. Population studies have shown that PCBs are associated with lung toxicity and hypertension. The objective of this study was to evaluate whether higher exposure to PCB congeners is associated with the risk of pulmonary hypertension. Serum levels of PCBs in 284 subjects with combined risk factors for pulmonary arterial hypertension (PAH) were compared to 4210 subjects with no risk for PAH using the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2004. The major findings from this study include significantly higher PCB levels in PAH subjects compared to non-PAH subjects; for example, the geometric mean (GM) of PCB74 was 15.91 (ng/g) (14.45-17.53) vs. 11.48 (ng/g) (10.84-12.16), respectively. Serum levels of PCB congeners showed an increasing trend in the age group 20-59 years as PCB180 GM was 19.45 (ng/g) in PAH vs. 12.75 (ng/g) in the control. A higher body burden of PCB153 followed by PCB138, PCB180, and PCB118 was observed. Estimated age, race, BMI, and gender-adjusted ORs for PCB congener levels in subjects with the combined risk factors for PAH compared to controls was significant; for example, PCB99 (OR: 1.5 (CI: 1.49-1.50). In summary, these findings indicate that exposure, as well as body burden estimated based on lipid adjustment of PCBs, were higher in people with risk factors for PAH, and PCB congeners accumulated with age. These findings should be interpreted with caution because of the use of cross-sectional self-reported data and a small sample size of subjects with combined risk factors for pulmonary arterial hypertension. Nonetheless, our finding emphasizes a need for a comprehensive environmental molecular epidemiologic study to determine the potential role of environmental exposures to PCBs in the development of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (F.M.)
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA;
| | - Roberto G. Lucchini
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA;
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Steven M. Black
- FIU-Center for Translational Science, Port St. Lucie, FL 34987, USA;
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (F.M.)
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
31
|
Gomes MT, Bai Y, Potje SR, Zhang L, Lockett AD, Machado RF. Signal Transduction during Metabolic and Inflammatory Reprogramming in Pulmonary Vascular Remodeling. Int J Mol Sci 2022; 23:2410. [PMID: 35269553 PMCID: PMC8910500 DOI: 10.3390/ijms23052410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by (mal)adaptive remodeling of the pulmonary vasculature, which is associated with inflammation, fibrosis, thrombosis, and neovascularization. Vascular remodeling in PAH is associated with cellular metabolic and inflammatory reprogramming that induce profound endothelial and smooth muscle cell phenotypic changes. Multiple signaling pathways and regulatory loops act on metabolic and inflammatory mediators which influence cellular behavior and trigger pulmonary vascular remodeling in vivo. This review discusses the role of bioenergetic and inflammatory impairments in PAH development.
Collapse
Affiliation(s)
- Marta T. Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Simone R. Potje
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
- Department of Biological Science, Minas Gerais State University (UEMG), Passos 37900-106, Brazil
| | - Lu Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Angelia D. Lockett
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| |
Collapse
|
32
|
Patni N, Hegele RA, Garg A. Caveolar dysfunction and lipodystrophies. Eur J Endocrinol 2022; 186:C1-C4. [PMID: 34935636 PMCID: PMC9285858 DOI: 10.1530/eje-21-1243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 01/30/2023]
Affiliation(s)
- Nivedita Patni
- Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Western University, London, Ontario, Canada
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and the Center for Human Nutrition, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
33
|
Andre P, Joshi SR, Briscoe SD, Alexander MJ, Li G, Kumar R. Therapeutic Approaches for Treating Pulmonary Arterial Hypertension by Correcting Imbalanced TGF-β Superfamily Signaling. Front Med (Lausanne) 2022; 8:814222. [PMID: 35141256 PMCID: PMC8818880 DOI: 10.3389/fmed.2021.814222] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by high blood pressure in the pulmonary circulation driven by pathological remodeling of distal pulmonary arteries, leading typically to death by right ventricular failure. Available treatments improve physical activity and slow disease progression, but they act primarily as vasodilators and have limited effects on the biological cause of the disease—the uncontrolled proliferation of vascular endothelial and smooth muscle cells. Imbalanced signaling by the transforming growth factor-β (TGF-β) superfamily contributes extensively to dysregulated vascular cell proliferation in PAH, with overactive pro-proliferative SMAD2/3 signaling occurring alongside deficient anti-proliferative SMAD1/5/8 signaling. We review the TGF-β superfamily mechanisms underlying PAH pathogenesis, superfamily interactions with inflammation and mechanobiological forces, and therapeutic strategies under development that aim to restore SMAD signaling balance in the diseased pulmonary arterial vessels. These strategies could potentially reverse pulmonary arterial remodeling in PAH by targeting causative mechanisms and therefore hold significant promise for the PAH patient population.
Collapse
|
34
|
Yu Z, Xiao J, Chen X, Ruan Y, Chen Y, Zheng X, Wang Q. Bioactivities and mechanisms of natural medicines in the management of pulmonary arterial hypertension. Chin Med 2022; 17:13. [PMID: 35033157 PMCID: PMC8760698 DOI: 10.1186/s13020-022-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rare disease without obvious clinical symptoms that shares characteristics with pulmonary vascular remodeling. Right heart failure in the terminal phase of PAH seriously threatens the lives of patients. This review attempts to comprehensively outline the current state of knowledge on PAH its pathology, pathogenesis, natural medicines therapy, mechanisms and clinical studies to provide potential treatment strategies. Although PAH and pulmonary hypertension have similar pathological features, PAH exhibits significantly elevated pulmonary vascular resistance caused by vascular stenosis and occlusion. Currently, the pathogenesis of PAH is thought to involve multiple factors, primarily including genetic/epigenetic factors, vascular cellular dysregulation, metabolic dysfunction, even inflammation and immunization. Yet many issues regarding PAH need to be clarified, such as the "oestrogen paradox". About 25 kinds monomers derived from natural medicine have been verified to protect against to PAH via modulating BMPR2/Smad, HIF-1α, PI3K/Akt/mTOR and eNOS/NO/cGMP signalling pathways. Yet limited and single PAH animal models may not corroborate the efficacy of natural medicines, and those natural compounds how to regulate crucial genes, proteins and even microRNA and lncRNA still need to put great attention. Additionally, pharmacokinetic studies and safety evaluation of natural medicines for the treatment of PAH should be undertaken in future studies. Meanwhile, methods for validating the efficacy of natural drugs in multiple PAH animal models and precise clinical design are also urgently needed to promote advances in PAH.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yang Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Qiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
35
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
36
|
Affiliation(s)
- Paul M Hassoun
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
37
|
Gene Mutation Annotation and Pedigree for Pulmonary Arterial Hypertension Patients in Han Chinese Patients. Glob Heart 2021; 16:70. [PMID: 34900561 PMCID: PMC8533654 DOI: 10.5334/gh.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Background: The etiology of pulmonary arterial hypertension (PAH) in the Han Chinese population is poorly understood. Objectives: The aim of this study was to assess gene variants and associated functional annotations for PAH in Han Chinese patients. Methods: This is an ethnicity-based multi-centre study. Blood samples were collected from 20 PAH patients who volunteered for the study, and genetic tests were performed. The DAVID database was used to functionally annotate the genes BMPR2, ALK1, KCNK3, CAV1, and ENG. Associated diseases, functional categories, gene ontology, and protein interactions were analysed using the Functional Annotation Tool in the DAVID database. GEO and ClinVar databases were also used for further comparison with gene mutations in our study. Results: PAH patient with gene mutations were female predominant except for a single male with a BMPR2 mutation. Locus variants in our study included ‘G410DfsX1’ in BMPR2, ‘ex7 L300P,’ ‘ex4 S110PfsX40,’ and ‘ex7 E295Afs96X’ in ALK1, ‘c.-2C>A (IVS1–2 C>A)’ in CAV1, and ‘ex8 D366Q’ in ENG were not found in the ClinVar database associated with PAH. In addition to BMP and TGF-β pathways, gene ontology of input genes in the DAVID database also included pathways associated with nitric oxide signaling and regulation. Conclusions: This Multi-centre study indicated that ‘G410DfsX1’ in BMPR2, ‘ex7 L300P,’ ‘ex4 S110PfsX40,’ ‘ex7 E295Afs96X’ in ALK1, ‘c.-2C>A (IVS1–2 C>A)’ in CAV1, and ‘ex8 D366Q’ in ENG were identified in Han Chinese patients with PAH. Females were more susceptible to PAH, and a relatively young age distribution was observed for patients with BMPR2 mutations.
Collapse
|
38
|
Ayagama T, Bose SJ, Capel RA, Priestman DA, Berridge G, Fischer R, Galione A, Platt FM, Kramer H, Burton RA. A modified density gradient proteomic-based method to analyze endolysosomal proteins in cardiac tissue. iScience 2021; 24:102949. [PMID: 34466782 PMCID: PMC8384914 DOI: 10.1016/j.isci.2021.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/04/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
The importance of lysosomes in cardiac physiology and pathology is well established, and evidence for roles in calcium signaling is emerging. We describe a label-free proteomics method suitable for small cardiac tissue biopsies based on density-separated fractionation, which allows study of endolysosomal (EL) proteins. Density gradient fractions corresponding to tissue lysate; sarcoplasmic reticulum (SR), mitochondria (Mito) (1.3 g/mL); and EL with negligible contamination from SR or Mito (1.04 g/mL) were analyzed using Western blot, enzyme activity assay, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis (adapted discontinuous Percoll and sucrose differential density gradient). Kyoto Encyclopedia of Genes and Genomes, Reactome, Panther, and Gene Ontology pathway analysis showed good coverage of RAB proteins and lysosomal cathepsins (including cardiac-specific cathepsin D) in the purified EL fraction. Significant EL proteins recovered included catalytic activity proteins. We thus present a comprehensive protocol and data set of guinea pig atrial EL organelle proteomics using techniques also applicable for non-cardiac tissue.
Collapse
Affiliation(s)
- Thamali Ayagama
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Samuel J. Bose
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Rebecca A. Capel
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | | | - Georgina Berridge
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Antony Galione
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Frances M. Platt
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN UK
| | | |
Collapse
|
39
|
Mathew R. Critical Role of Caveolin-1 Loss/Dysfunction in Pulmonary Hypertension. Med Sci (Basel) 2021; 9:medsci9040058. [PMID: 34698188 PMCID: PMC8544475 DOI: 10.3390/medsci9040058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a rare disease with a high morbidity and mortality rate. A number of systemic diseases and genetic mutations are known to lead to PH. The main features of PH are altered vascular relaxation responses and the activation of proliferative and anti-apoptotic pathways, resulting in pulmonary vascular remodeling, elevated pulmonary artery pressure, and right ventricular hypertrophy, ultimately leading to right heart failure and premature death. Important advances have been made in the field of pulmonary pathobiology, and several deregulated signaling pathways have been shown to be associated with PH. Clinical and experimental studies suggest that, irrespective of the underlying disease, endothelial cell disruption and/or dysfunction play a key role in the pathogenesis of PH. Endothelial caveolin-1, a cell membrane protein, interacts with and regulates several transcription factors and maintains homeostasis. Disruption of endothelial cells leads to the loss or dysfunction of endothelial caveolin-1, resulting in reciprocal activation of proliferative and inflammatory pathways, leading to cell proliferation, medial hypertrophy, and PH, which initiates PH and facilitates its progression. The disruption of endothelial cells, accompanied by the loss of endothelial caveolin-1, is accompanied by enhanced expression of caveolin-1 in smooth muscle cells (SMCs) that leads to pro-proliferative and pro-migratory responses, subsequently leading to neointima formation. The neointimal cells have low caveolin-1 and normal eNOS expression that may be responsible for promoting nitrosative and oxidative stress, furthering cell proliferation and metabolic alterations. These changes have been observed in human PH lungs and in experimental models of PH. In hypoxia-induced PH, there is no endothelial disruption, loss of endothelial caveolin-1, or enhanced expression of caveolin-1 in SMCs. Hypoxia induces alterations in membrane composition without caveolin-1 or any other membrane protein loss. However, caveolin-1 is dysfunctional, resulting in cell proliferation, medial hypertrophy, and PH. These alterations are reversible upon removal of hypoxia, provided there is no associated EC disruption. This review examined the role of caveolin-1 disruption and dysfunction in PH.
Collapse
Affiliation(s)
- Rajamma Mathew
- Section of Pediatric Cardiology, Departments of Pediatrics and Physiology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
40
|
Evans CE, Cober ND, Dai Z, Stewart DJ, Zhao YY. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.03957-2020. [PMID: 33509961 DOI: 10.1183/13993003.03957-2020] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that involves pulmonary vasoconstriction, small vessel obliteration, large vessel thickening and obstruction, and development of plexiform lesions. PAH vasculopathy leads to progressive increases in pulmonary vascular resistance, right heart failure and, ultimately, premature death. Besides other cell types that are known to be involved in PAH pathogenesis (e.g. smooth muscle cells, fibroblasts and leukocytes), recent studies have demonstrated that endothelial cells (ECs) have a crucial role in the initiation and progression of PAH. The EC-specific role in PAH is multi-faceted and affects numerous pathophysiological processes, including vasoconstriction, inflammation, coagulation, metabolism and oxidative/nitrative stress, as well as cell viability, growth and differentiation. In this review, we describe how EC dysfunction and cell signalling regulate the pathogenesis of PAH. We also highlight areas of research that warrant attention in future studies, and discuss potential molecular signalling pathways in ECs that could be targeted therapeutically in the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Colin E Evans
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicholas D Cober
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Dept of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Zhiyu Dai
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Dept of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA .,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
41
|
Abaj F, Saeedy SAG, Mirzaei K. Mediation role of body fat distribution (FD) on the relationship between CAV1 rs3807992 polymorphism and metabolic syndrome in overweight and obese women. BMC Med Genomics 2021; 14:202. [PMID: 34384444 PMCID: PMC8359537 DOI: 10.1186/s12920-021-01050-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is associated with an increased risk of morbidity and mortality in almost all chronic diseases. The most frequent methods for the calculation of a continuous MetS (cMetS) score have used the standardized residuals in linear regression (z-score). Recently, emerging data suggest that one of the main genetic targets is the CAV1, which plays a crucial role in regulating body fat distribution. This study is designed to investigate the relationship between CAV1 rs3807992 genotypes and cMetS, and to determine whether body fat distribution plays a mediating role in this regard. METHODS The current cross-sectional study was conducted on 386 overweight and obese females. The CAV1 rs3807992 and body composition were measured by the PCR-RFLP method and bioelectrical impedance analysis, respectively. Serum profile of HDL-C, TGs, FPG, and Insulin were measured by standard protocols. RESULTS GG allele carriers had significantly lowered Z-MAP (p = 0.02), total cMetS (p = 0.03) and higher Z-HDL (p = 0.001) compared with (A) allele carriers. There was a significant specific indirect effect (standardized coefficient = 0.19; 95% CI 0.01-0.4) of Visceral fat level (VFL). Although, total body fat was significantly associated with CAV1 rs3807992 and cMetS, the specific indirect effect was not significant (standardized coefficient = 0.21; 95% CI - 0.006, 0.44). VFL contributed to significant indirect effects of 35% on the relationship between CAV1 and cMetS. CONCLUSION Higher visceral adipose tissue may affect the relationship between CAV1 and cMetS. Although CAV1 rs3807992 is linked to VFL in our study, the influence of this polymorphism on MetS is not via total fat.
Collapse
Affiliation(s)
- Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
| | | | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
| |
Collapse
|
42
|
Ion channels as convergence points in the pathology of pulmonary arterial hypertension. Biochem Soc Trans 2021; 49:1855-1865. [PMID: 34346486 PMCID: PMC8421048 DOI: 10.1042/bst20210538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease of the cardiopulmonary system that lacks curative treatments. The main pathological event in PAH is elevated vascular resistance in the pulmonary circulation, caused by abnormal vasoconstriction and vascular remodelling. Ion channels are key determinants of vascular smooth muscle tone and homeostasis, and four PAH channelopathies (KCNK3, ABCC8, KCNA5, TRPC6) have been identified so far. However, the contribution of ion channels in other forms of PAH, which account for the majority of PAH patients, has been less well characterised. Here we reason that a variety of triggers of PAH (e.g. BMPR2 mutations, hypoxia, anorectic drugs) that impact channel function may contribute to the onset of the disease. We review the molecular mechanisms by which these ‘extrinsic’ factors converge on ion channels and provoke their dysregulation to promote the development of PAH. Ion channels of the pulmonary vasculature are therefore promising therapeutic targets because of the modulation they provide to both vasomotor tone and proliferation of arterial smooth muscle cells.
Collapse
|
43
|
Pyrrolizidine alkaloid-induced transcriptomic changes in rat lungs in a 28-day subacute feeding study. Arch Toxicol 2021; 95:2785-2796. [PMID: 34185104 PMCID: PMC8298252 DOI: 10.1007/s00204-021-03108-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are secondary plant metabolites synthesized by a wide range of plants as protection against herbivores. These toxins are found worldwide and pose a threat to human health. PAs induce acute effects like hepatic sinusoidal obstruction syndrome and pulmonary arterial hypertension. Moreover, chronic exposure to low doses can induce cancer and liver cirrhosis in laboratory animals. The mechanisms causing hepatotoxicity have been investigated previously. However, toxic effects in the lung are less well understood, and especially data on the correlation effects with individual chemical structures of different PAs are lacking. The present study focuses on the identification of gene expression changes in vivo in rat lungs after exposure to six structurally different PAs (echimidine, heliotrine, lasiocarpine, senecionine, senkirkine, and platyphylline). Rats were treated by gavage with daily doses of 3.3 mg PA/kg bodyweight for 28 days and transcriptional changes in the lung and kidney were investigated by whole-genome microarray analysis. The results were compared with recently published data on gene regulation in the liver. Using bioinformatics data mining, we identified inflammatory responses as a predominant feature in rat lungs. By comparison, in liver, early molecular consequences to PAs were characterized by alterations in cell-cycle regulation and DNA damage response. Our results provide, for the first time, information about early molecular effects in lung tissue after subacute exposure to PAs, and demonstrates tissue-specificity of PA-induced molecular effects.
Collapse
|
44
|
Kostyunina DS, McLoughlin P. Sex Dimorphism in Pulmonary Hypertension: The Role of the Sex Chromosomes. Antioxidants (Basel) 2021; 10:779. [PMID: 34068984 PMCID: PMC8156365 DOI: 10.3390/antiox10050779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition characterised by an abnormal elevation of pulmonary artery pressure caused by an increased pulmonary vascular resistance, frequently leading to right ventricular failure and reduced survival. Marked sexual dimorphism is observed in patients with pulmonary arterial hypertension, a form of pulmonary hypertension with a particularly severe clinical course. The incidence in females is 2-4 times greater than in males, although the disease is less severe in females. We review the contribution of the sex chromosomes to this sex dimorphism highlighting the impact of proteins, microRNAs and long non-coding RNAs encoded on the X and Y chromosomes. These genes are centrally involved in the cellular pathways that cause increased pulmonary vascular resistance including the production of reactive oxygen species, altered metabolism, apoptosis, inflammation, vasoconstriction and vascular remodelling. The interaction with genetic mutations on autosomal genes that cause heritable pulmonary arterial hypertension such as bone morphogenetic protein 2 (BMPR2) are examined. The mechanisms that can lead to differences in the expression of genes located on the X chromosomes between females and males are also reviewed. A better understanding of the mechanisms of sex dimorphism in this disease will contribute to the development of more effective therapies for both women and men.
Collapse
Affiliation(s)
| | - Paul McLoughlin
- Conway Institute, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland;
| |
Collapse
|
45
|
Zhu N, Swietlik EM, Welch CL, Pauciulo MW, Hagen JJ, Zhou X, Guo Y, Karten J, Pandya D, Tilly T, Lutz KA, Martin JM, Treacy CM, Rosenzweig EB, Krishnan U, Coleman AW, Gonzaga-Jauregui C, Lawrie A, Trembath RC, Wilkins MR, Morrell NW, Shen Y, Gräf S, Nichols WC, Chung WK. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Med 2021; 13:80. [PMID: 33971972 PMCID: PMC8112021 DOI: 10.1186/s13073-021-00891-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a lethal vasculopathy characterized by pathogenic remodeling of pulmonary arterioles leading to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. PAH can be associated with other diseases (APAH: connective tissue diseases, congenital heart disease, and others) but often the etiology is idiopathic (IPAH). Mutations in bone morphogenetic protein receptor 2 (BMPR2) are the cause of most heritable cases but the vast majority of other cases are genetically undefined. METHODS To identify new risk genes, we utilized an international consortium of 4241 PAH cases with exome or genome sequencing data from the National Biological Sample and Data Repository for PAH, Columbia University Irving Medical Center, and the UK NIHR BioResource - Rare Diseases Study. The strength of this combined cohort is a doubling of the number of IPAH cases compared to either national cohort alone. We identified protein-coding variants and performed rare variant association analyses in unrelated participants of European ancestry, including 1647 IPAH cases and 18,819 controls. We also analyzed de novo variants in 124 pediatric trios enriched for IPAH and APAH-CHD. RESULTS Seven genes with rare deleterious variants were associated with IPAH with false discovery rate smaller than 0.1: three known genes (BMPR2, GDF2, and TBX4), two recently identified candidate genes (SOX17, KDR), and two new candidate genes (fibulin 2, FBLN2; platelet-derived growth factor D, PDGFD). The new genes were identified based solely on rare deleterious missense variants, a variant type that could not be adequately assessed in either cohort alone. The candidate genes exhibit expression patterns in lung and heart similar to that of known PAH risk genes, and most variants occur in conserved protein domains. For pediatric PAH, predicted deleterious de novo variants exhibited a significant burden compared to the background mutation rate (2.45×, p = 2.5e-5). At least eight novel pediatric candidate genes carrying de novo variants have plausible roles in lung/heart development. CONCLUSIONS Rare variant analysis of a large international consortium identified two new candidate genes-FBLN2 and PDGFD. The new genes have known functions in vasculogenesis and remodeling. Trio analysis predicted that ~ 15% of pediatric IPAH may be explained by de novo variants.
Collapse
Affiliation(s)
- Na Zhu
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Emilia M Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jacob J Hagen
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xueya Zhou
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yicheng Guo
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Tilly
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Katie A Lutz
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer M Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
| | - Carmen M Treacy
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Erika B Rosenzweig
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Usha Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Anna W Coleman
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Richard C Trembath
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Martin R Wilkins
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
- Addenbrooke's Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
46
|
Pienkos S, Gallego N, Condon DF, Cruz-Utrilla A, Ochoa N, Nevado J, Arias P, Agarwal S, Patel H, Chakraborty A, Lapunzina P, Escribano P, Tenorio-Castaño J, de Jesús Pérez VA. Novel TNIP2 and TRAF2 Variants Are Implicated in the Pathogenesis of Pulmonary Arterial Hypertension. Front Med (Lausanne) 2021; 8:625763. [PMID: 33996849 PMCID: PMC8119639 DOI: 10.3389/fmed.2021.625763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a rare disease characterized by pulmonary vascular remodeling and right heart failure. Specific genetic variants increase the incidence of PAH in carriers with a family history of PAH, those who suffer from certain medical conditions, and even those with no apparent risk factors. Inflammation and immune dysregulation are related to vascular remodeling in PAH, but whether genetic susceptibility modifies the PAH immune response is unclear. TNIP2 and TRAF2 encode for immunomodulatory proteins that regulate NF-κB activation, a transcription factor complex associated with inflammation and vascular remodeling in PAH. Methods: Two unrelated families with PAH cases underwent whole-exome sequencing (WES). A custom pipeline for variant prioritization was carried out to obtain candidate variants. To determine the impact of TNIP2 and TRAF2 in cell proliferation, we performed an MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay on healthy lung pericytes transfected with siRNA specific for each gene. To measure the effect of loss of TNIP2 and TRAF2 on NF-kappa-beta (NF-κB) activity, we measured levels of Phospho-p65-NF-κB in siRNA-transfected pericytes using western immunoblotting. Results: We discovered a novel missense variant in the TNIP2 gene in two affected individuals from the same family. The two patients had a complex form of PAH with interatrial communication and scleroderma. In the second family, WES of the proband with PAH and primary biliary cirrhosis revealed a de novo protein-truncating variant in the TRAF2. The knockdown of TNIP2 and TRAF2 increased NF-κB activity in healthy lung pericytes, which correlated with a significant increase in proliferation over 24 h. Conclusions: We have identified two rare novel variants in TNIP2 and TRAF2 using WES. We speculate that loss of function in these genes promotes pulmonary vascular remodeling by allowing overactivation of the NF-κB signaling activity. Our findings support a role for WES in helping identify novel genetic variants associated with dysfunctional immune response in PAH.
Collapse
Affiliation(s)
- Shaun Pienkos
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Natalia Gallego
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Alejandro Cruz-Utrilla
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Nuria Ochoa
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Julián Nevado
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Pedro Arias
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Pablo Lapunzina
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Pilar Escribano
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Jair Tenorio-Castaño
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Vinicio A. de Jesús Pérez
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
47
|
Liu J, Ke X, Wang L, Zhang Y, Yang J. Deficiency of cold-inducible RNA-binding protein exacerbated monocrotaline-induced pulmonary artery hypertension through Caveolin1 and CAVIN1. J Cell Mol Med 2021; 25:4732-4743. [PMID: 33755319 PMCID: PMC8107102 DOI: 10.1111/jcmm.16437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Cold‐inducible RNA‐binding protein (CIRP) was a crucial regulator in multiple diseases. However, its role in pulmonary artery hypertension (PAH) is still unknown. Here, we first established monocrotaline (MCT)‐induced rat PAH model and discovered that CIRP was down‐regulated predominantly in the endothelium of pulmonary artery after MCT injection. We then generated Cirp‐knockout (Cirp‐KO) rats, which manifested severer PAH with exacerbated endothelium damage in response to MCT. Subsequently, Caveolin1 (Cav1) and Cavin1 were identified as downstream targets of CIRP in MCT‐induced PAH, and the decreased expression of these two genes aggravated the injury and apoptosis of pulmonary artery endothelium. Moreover, CIRP deficiency intensified monocrotaline pyrrole (MCTP)‐induced rat pulmonary artery endothelial cells (rPAECs) injuries both in vivo and in vitro, which was counteracted by Cav1 or Cavin1 overexpression. In addition, CIRP regulated the proliferative effect of conditioned media from MCTP‐treated rPAECs on rat pulmonary artery smooth muscle cells, which partially explained the exceedingly thickened pulmonary artery intimal media in Cirp‐KO rats after MCT treatment. These results demonstrated that CIRP acts as a critical protective factor in MCT‐induced rat PAH by directly regulating CAV1 and CAVIN1 expression, which may facilitate the development of new therapeutic targets for the intervention of PAH.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Xianting Ke
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Luxin Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Yangyang Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Yang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Egom EEA, Moyou-Somo R, Essame Oyono JL, Kamgang R. Identifying Potential Mutations Responsible for Cases of Pulmonary Arterial Hypertension. APPLICATION OF CLINICAL GENETICS 2021; 14:113-124. [PMID: 33732008 PMCID: PMC7958998 DOI: 10.2147/tacg.s260755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is a progressive and devastating disease for which there is an escalating body of genetic and related pathophysiological information on disease pathobiology. Nevertheless, the success to date in identifying susceptibility genes, genetic variants and epigenetic processes has been limited due to PAH clinical multi-faceted variations. A number of germline gene candidates have been proposed but demonstrating consistently the association with PAH has been problematic, at least partly due to the reduced penetrance and variable expressivity. Although the data for bone morphogenetic protein receptor type 2 (BMPR2) and related genes remains undoubtedly the most extensive, recent advanced gene sequencing technologies have facilitated the discovery of further gene candidates with mutations among those with and without familial forms of PAH. An in depth understanding of the multitude of biologic variations associated with PAH may provide novel opportunities for therapeutic intervention in the coming years. This knowledge will irrevocably provide the opportunity for improved patient and family counseling as well as improved PAH diagnosis, risk assessment, and personalized treatment.
Collapse
Affiliation(s)
- Emmanuel Eroume-A Egom
- Institut du Savoir Montfort (ISM), Hôpital Montfort, Ottawa, ON, Canada.,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.,Reflex Medical Centre Cardiac Diagnostics, Reflex Medical Centre, Mississauga, ON, Canada
| | - Roger Moyou-Somo
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Jean Louis Essame Oyono
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Rene Kamgang
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| |
Collapse
|
49
|
Mondéjar-Parreño G, Cogolludo A, Perez-Vizcaino F. Potassium (K +) channels in the pulmonary vasculature: Implications in pulmonary hypertension Physiological, pathophysiological and pharmacological regulation. Pharmacol Ther 2021; 225:107835. [PMID: 33744261 DOI: 10.1016/j.pharmthera.2021.107835] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
The large K+ channel functional diversity in the pulmonary vasculature results from the multitude of genes expressed encoding K+ channels, alternative RNA splicing, the post-transcriptional modifications, the presence of homomeric or heteromeric assemblies of the pore-forming α-subunits and the existence of accessory β-subunits modulating the functional properties of the channel. K+ channels can also be regulated at multiple levels by different factors controlling channel activity, trafficking, recycling and degradation. The activity of these channels is the primary determinant of membrane potential (Em) in pulmonary artery smooth muscle cells (PASMC), providing an essential regulatory mechanism to dilate or contract pulmonary arteries (PA). K+ channels are also expressed in pulmonary artery endothelial cells (PAEC) where they control resting Em, Ca2+ entry and the production of different vasoactive factors. The activity of K+ channels is also important in regulating the population and phenotype of PASMC in the pulmonary vasculature, since they are involved in cell apoptosis, survival and proliferation. Notably, K+ channels play a major role in the development of pulmonary hypertension (PH). Impaired K+ channel activity in PH results from: 1) loss of function mutations, 2) downregulation of its expression, which involves transcription factors and microRNAs, or 3) decreased channel current as a result of increased vasoactive factors (e.g., hypoxia, 5-HT, endothelin-1 or thromboxane), exposure to drugs with channel-blocking properties, or by a reduction in factors that positively regulate K+ channel activity (e.g., NO and prostacyclin). Restoring K+ channel expression, its intracellular trafficking and the channel activity is an attractive therapeutic strategy in PH.
Collapse
Affiliation(s)
- Gema Mondéjar-Parreño
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain.
| |
Collapse
|
50
|
Fazal S, Bisserier M, Hadri L. Molecular and Genetic Profiling for Precision Medicines in Pulmonary Arterial Hypertension. Cells 2021; 10:cells10030638. [PMID: 33805595 PMCID: PMC7999465 DOI: 10.3390/cells10030638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and chronic lung disease characterized by progressive occlusion of the small pulmonary arteries, which is associated with structural and functional alteration of the smooth muscle cells and endothelial cells within the pulmonary vasculature. Excessive vascular remodeling is, in part, responsible for high pulmonary vascular resistance and the mean pulmonary arterial pressure, increasing the transpulmonary gradient and the right ventricular “pressure overload”, which may result in right ventricular (RV) dysfunction and failure. Current technological advances in multi-omics approaches, high-throughput sequencing, and computational methods have provided valuable tools in molecular profiling and led to the identification of numerous genetic variants in PAH patients. In this review, we summarized the pathogenesis, classification, and current treatments of the PAH disease. Additionally, we outlined the latest next-generation sequencing technologies and the consequences of common genetic variants underlying PAH susceptibility and disease progression. Finally, we discuss the importance of molecular genetic testing for precision medicine in PAH and the future of genomic medicines, including gene-editing technologies and gene therapies, as emerging alternative approaches to overcome genetic disorders in PAH.
Collapse
|