1
|
Chen X, Luo Y, Zhu Q, Zhang J, Huang H, Kan Y, Li D, Xu M, Liu S, Li J, Pan J, Zhang L, Guo Y, Wang B, Qi G, Zhou Z, Zhang CY, Fang L, Wang Y, Chen X. Small extracellular vesicles from young plasma reverse age-related functional declines by improving mitochondrial energy metabolism. NATURE AGING 2024; 4:814-838. [PMID: 38627524 PMCID: PMC11186790 DOI: 10.1038/s43587-024-00612-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/15/2024] [Indexed: 05/31/2024]
Abstract
Recent investigations into heterochronic parabiosis have unveiled robust rejuvenating effects of young blood on aged tissues. However, the specific rejuvenating mechanisms remain incompletely elucidated. Here we demonstrate that small extracellular vesicles (sEVs) from the plasma of young mice counteract pre-existing aging at molecular, mitochondrial, cellular and physiological levels. Intravenous injection of young sEVs into aged mice extends their lifespan, mitigates senescent phenotypes and ameliorates age-associated functional declines in multiple tissues. Quantitative proteomic analyses identified substantial alterations in the proteomes of aged tissues after young sEV treatment, and these changes are closely associated with metabolic processes. Mechanistic investigations reveal that young sEVs stimulate PGC-1α expression in vitro and in vivo through their miRNA cargoes, thereby improving mitochondrial functions and mitigating mitochondrial deficits in aged tissues. Overall, this study demonstrates that young sEVs reverse degenerative changes and age-related dysfunction, at least in part, by stimulating PGC-1α expression and enhancing mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Xiaorui Chen
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Luo
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing Zhu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Huan Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansheng Kan
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Dian Li
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Ming Xu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Shuohan Liu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianxiao Li
- Institute of Systems, Molecular and Integrative Biology, School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Jinmeng Pan
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Zhang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Binghao Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Guantong Qi
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhen Zhou
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Yanbo Wang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Xi Chen
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Czibik G, Mezdari Z, Murat Altintas D, Bréhat J, Pini M, d'Humières T, Delmont T, Radu C, Breau M, Liang H, Martel C, Abatan A, Sarwar R, Marion O, Naushad S, Zhang Y, Halfaoui M, Suffee N, Morin D, Adnot S, Hatem S, Yavari A, Sawaki D, Derumeaux G. Dysregulated Phenylalanine Catabolism Plays a Key Role in the Trajectory of Cardiac Aging. Circulation 2021; 144:559-574. [PMID: 34162223 DOI: 10.1161/circulationaha.121.054204] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aging myocardium undergoes progressive cardiac hypertrophy and interstitial fibrosis with diastolic and systolic dysfunction. Recent metabolomics studies shed light on amino acids in aging. The present study aimed to dissect how aging leads to elevated plasma levels of the essential amino acid phenylalanine and how it may promote age-related cardiac dysfunction. METHODS We studied cardiac structure and function, together with phenylalanine catabolism in wild-type (WT) and p21-/- mice (male; 2-24 months), with the latter known to be protected from cellular senescence. To explore phenylalanine's effects on cellular senescence and ectopic phenylalanine catabolism, we treated cardiomyocytes (primary adult rat or human AC-16) with phenylalanine. To establish a role for phenylalanine in driving cardiac aging, WT male mice were treated twice a day with phenylalanine (200 mg/kg) for a month. We also treated aged WT mice with tetrahydrobiopterin (10 mg/kg), the essential cofactor for the phenylalanine-degrading enzyme PAH (phenylalanine hydroxylase), or restricted dietary phenylalanine intake. The impact of senescence on hepatic phenylalanine catabolism was explored in vitro in AML12 hepatocytes treated with Nutlin3a (a p53 activator), with or without p21-targeting small interfering RNA or tetrahydrobiopterin, with quantification of PAH and tyrosine levels. RESULTS Natural aging is associated with a progressive increase in plasma phenylalanine levels concomitant with cardiac dysfunction, whereas p21 deletion delayed these changes. Phenylalanine treatment induced premature cardiac deterioration in young WT mice, strikingly akin to that occurring with aging, while triggering cellular senescence, redox, and epigenetic changes. Pharmacological restoration of phenylalanine catabolism with tetrahydrobiopterin administration or dietary phenylalanine restriction abrogated the rise in plasma phenylalanine and reversed cardiac senescent alterations in aged WT mice. Observations from aged mice and human samples implicated age-related decline in hepatic phenylalanine catabolism as a key driver of elevated plasma phenylalanine levels and showed increased myocardial PAH-mediated phenylalanine catabolism, a novel signature of cardiac aging. CONCLUSIONS Our findings establish a pathogenic role for increased phenylalanine levels in cardiac aging, linking plasma phenylalanine levels to cardiac senescence via dysregulated phenylalanine catabolism along a hepatic-cardiac axis. They highlight phenylalanine/PAH modulation as a potential therapeutic strategy for age-associated cardiac impairment.
Collapse
Affiliation(s)
- Gabor Czibik
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
- Department of Physiology (G.C., T.d'H., S.A., G.D.), AP-HP, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| | - Zaineb Mezdari
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Dogus Murat Altintas
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Juliette Bréhat
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Maria Pini
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Thomas d'Humières
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
- Department of Physiology (G.C., T.d'H., S.A., G.D.), AP-HP, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| | - Thaïs Delmont
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Costin Radu
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
- Department of Cardiac Surgery (C.R.), AP-HP, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| | - Marielle Breau
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Hao Liang
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Cecile Martel
- Mitologics SAS (C.M.), Université Paris-Est Créteil, France
| | - Azania Abatan
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Rizwan Sarwar
- Experimental Therapeutics, Radcliffe Department of Medicine (R.S., A.Y.), University of Oxford, United Kingdom
| | - Ophélie Marion
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Suzain Naushad
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Yanyan Zhang
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Maissa Halfaoui
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Nadine Suffee
- Sorbonne Universités, INSERM UMR_S1166, Faculté de Médecine UPMC, Paris, France (N.S., S.H.)
- Institute of Cardiometabolism and Nutrition, ICAN, Paris, France (N.S., S.H.)
| | - Didier Morin
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Serge Adnot
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
- Department of Physiology (G.C., T.d'H., S.A., G.D.), AP-HP, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| | - Stéphane Hatem
- Sorbonne Universités, INSERM UMR_S1166, Faculté de Médecine UPMC, Paris, France (N.S., S.H.)
- Institute of Cardiometabolism and Nutrition, ICAN, Paris, France (N.S., S.H.)
| | - Arash Yavari
- Experimental Therapeutics, Radcliffe Department of Medicine (R.S., A.Y.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (A.Y.), University of Oxford, United Kingdom
| | - Daigo Sawaki
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
| | - Geneviève Derumeaux
- INSERM (L'Institut National de la Santé et de la Recherche Médicale) U955 (G.C., Z.M., D.M.A., J.B., M.P., T.d'H., T.D., C.R., M.B., H.L., A.A., O.M., S.N., Y.Z., M.H., D.M., S.A., D.S., G.D.), Université Paris-Est Créteil, France
- Department of Physiology (G.C., T.d'H., S.A., G.D.), AP-HP, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| |
Collapse
|
3
|
Pini M, Czibik G, Sawaki D, Mezdari Z, Braud L, Delmont T, Mercedes R, Martel C, Buron N, Marcelin G, Borgne‐Sanchez A, Foresti R, Motterlini R, Henegar C, Derumeaux G. Adipose tissue senescence is mediated by increased ATP content after a short-term high-fat diet exposure. Aging Cell 2021; 20:e13421. [PMID: 34278707 PMCID: PMC8373332 DOI: 10.1111/acel.13421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 04/07/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
In the context of obesity, senescent cells accumulate in white adipose tissue (WAT). The cellular underpinnings of WAT senescence leading to insulin resistance are not fully elucidated. The objective of the current study was to evaluate the presence of WAT senescence early after initiation of high‐fat diet (HFD, 1–10 weeks) in 5‐month‐old male C57BL/6J mice and the potential role of energy metabolism. We first showed that WAT senescence occurred 2 weeks after HFD as evidenced in whole WAT by increased senescence‐associated ß‐galactosidase activity and cyclin‐dependent kinase inhibitor 1A and 2A expression. WAT senescence affected various WAT cell populations, including preadipocytes, adipose tissue progenitors, and immune cells, together with adipocytes. WAT senescence was associated with higher glycolytic and mitochondrial activity leading to enhanced ATP content in HFD‐derived preadipocytes, as compared with chow diet‐derived preadipocytes. One‐month daily exercise, introduced 5 weeks after HFD, was an effective senostatic strategy, since it reversed WAT cellular senescence, while reducing glycolysis and production of ATP. Interestingly, the beneficial effect of exercise was independent of body weight and fat mass loss. We demonstrated that WAT cellular senescence is one of the earliest events occurring after HFD initiation and is intimately linked to the metabolic state of the cells. Our data uncover a critical role for HFD‐induced elevated ATP as a local danger signal inducing WAT senescence. Exercise exerts beneficial effects on adipose tissue bioenergetics in obesity, reversing cellular senescence, and metabolic abnormalities.
Collapse
Affiliation(s)
- Maria Pini
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Gabor Czibik
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Daigo Sawaki
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Zaineb Mezdari
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Laura Braud
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Thaïs Delmont
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- AP‐HP Department of Cardiology Henri Mondor Hospital, FHU SENEC Créteil France
| | - Raquel Mercedes
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Cécile Martel
- Mitologics S.A.S. Université Paris‐Est Créteil (UPEC) Créteil France
| | - Nelly Buron
- Mitologics S.A.S. Université Paris‐Est Créteil (UPEC) Créteil France
| | | | | | - Roberta Foresti
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Roberto Motterlini
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Corneliu Henegar
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Geneviève Derumeaux
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| |
Collapse
|
4
|
Wang X, Li X, Ong H, Tan T, Park KH, Bian Z, Zou X, Haggard E, Janssen PM, Merritt RE, Pawlik TM, Whitson BA, Mokadam NA, Cao L, Zhu H, Cai C, Ma J. MG53 suppresses NFκB activation to mitigate age-related heart failure. JCI Insight 2021; 6:e148375. [PMID: 34292883 PMCID: PMC8492351 DOI: 10.1172/jci.insight.148375] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is associated with chronic oxidative stress and inflammation that impact the tissue repair and regeneration capacity. MG53 is a TRIM family protein that facilitates repair of cell membrane injury in a redox-dependent manner. Here we demonstrate that the expression of MG53 is reduced in failing human heart and aging mouse heart, concomitant with elevated NFκB activation. We evaluate the safety and efficacy of longitudinal, systemic administration of recombinant human MG53 (rhMG53) protein in aged mice. Echocardiography and pressure-volume loop measurements reveal beneficial effects of rhMG53 treatment in improving heart function of aging mice. Biochemical and histological studies demonstrate the cardioprotective effects of rhMG53 are linked to suppression of NFκB-mediated inflammation, reducing apoptotic cell death and oxidative stress in the aged heart. Repetitive administrations of rhMG53 in aged mice do not have adverse effects on major vital organ functions. These findings support the therapeutic value of rhMG53 in treating age-related decline in cardiac function.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Xiuchun Li
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Hannah Ong
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Tao Tan
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Ki Ho Park
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Zehua Bian
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Xunchang Zou
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, United States of America
| | - Erin Haggard
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Paul M Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States of America
| | - Robert E Merritt
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Bryan A Whitson
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Nahush A Mokadam
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Lei Cao
- The Ohio State University, Columbus, United States of America
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Chuanxi Cai
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, United States of America
| |
Collapse
|
5
|
Prola A, Blondelle J, Vandestienne A, Piquereau J, Denis RGP, Guyot S, Chauvin H, Mourier A, Maurer M, Henry C, Khadhraoui N, Gallerne C, Molinié T, Courtin G, Guillaud L, Gressette M, Solgadi A, Dumont F, Castel J, Ternacle J, Demarquoy J, Malgoyre A, Koulmann N, Derumeaux G, Giraud MF, Joubert F, Veksler V, Luquet S, Relaix F, Tiret L, Pilot-Storck F. Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle. SCIENCE ADVANCES 2021; 7:7/1/eabd6322. [PMID: 33523852 PMCID: PMC7775760 DOI: 10.1126/sciadv.abd6322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/04/2020] [Indexed: 05/11/2023]
Abstract
Unbalanced energy partitioning participates in the rise of obesity, a major public health concern in many countries. Increasing basal energy expenditure has been proposed as a strategy to fight obesity yet raises efficiency and safety concerns. Here, we show that mice deficient for a muscle-specific enzyme of very-long-chain fatty acid synthesis display increased basal energy expenditure and protection against high-fat diet-induced obesity. Mechanistically, muscle-specific modulation of the very-long-chain fatty acid pathway was associated with a reduced content of the inner mitochondrial membrane phospholipid cardiolipin and a blunted coupling efficiency between the respiratory chain and adenosine 5'-triphosphate (ATP) synthase, which was restored by cardiolipin enrichment. Our study reveals that selective increase of lipid oxidative capacities in skeletal muscle, through the cardiolipin-dependent lowering of mitochondrial ATP production, provides an effective option against obesity at the whole-body level.
Collapse
Affiliation(s)
- Alexandre Prola
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Jordan Blondelle
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Aymeline Vandestienne
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Jérôme Piquereau
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | | | - Stéphane Guyot
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Hadrien Chauvin
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Arnaud Mourier
- Université Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Marie Maurer
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Céline Henry
- PAPPSO, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350 Jouy-en-Josas, France
| | - Nahed Khadhraoui
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Cindy Gallerne
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Thibaut Molinié
- Université Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Guillaume Courtin
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Laurent Guillaud
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Mélanie Gressette
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- UMS IPSIT, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Florent Dumont
- UMS IPSIT, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Julien Castel
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Julien Ternacle
- Université Paris-Est Créteil, INSERM, IMRB, Team Derumeaux, F-94010 Creteil, France
| | - Jean Demarquoy
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Alexandra Malgoyre
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-Sur-Orge, France
- LBEPS, Université Evry, IRBA, Université Paris-Saclay, F-91025 Evry, France
| | - Nathalie Koulmann
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-Sur-Orge, France
- LBEPS, Université Evry, IRBA, Université Paris-Saclay, F-91025 Evry, France
- École du Val de Grâce, Place Alphonse Laveran, F-75005 Paris, France
| | - Geneviève Derumeaux
- Université Paris-Est Créteil, INSERM, IMRB, Team Derumeaux, F-94010 Creteil, France
| | | | - Frédéric Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, F-75005, France
| | - Vladimir Veksler
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Frédéric Relaix
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France.
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Laurent Tiret
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France.
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Fanny Pilot-Storck
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France.
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| |
Collapse
|
6
|
Mougenot N, Mika D, Czibik G, Marcos E, Abid S, Houssaini A, Vallin B, Guellich A, Mehel H, Sawaki D, Vandecasteele G, Fischmeister R, Hajjar RJ, Dubois-Randé JL, Limon I, Adnot S, Derumeaux G, Lipskaia L. Cardiac adenylyl cyclase overexpression precipitates and aggravates age-related myocardial dysfunction. Cardiovasc Res 2020; 115:1778-1790. [PMID: 30605506 DOI: 10.1093/cvr/cvy306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
AIMS Increase of cardiac cAMP bioavailability and PKA activity through adenylyl-cyclase 8 (AC8) overexpression enhances contractile function in young transgenic mice (AC8TG). Ageing is associated with decline of cardiac contraction partly by the desensitization of β-adrenergic/cAMP signalling. Our objective was to evaluate cardiac cAMP signalling as age increases between 2 months and 12 months and to explore whether increasing the bioavailability of cAMP by overexpression of AC8 could prevent cardiac dysfunction related to age. METHODS AND RESULTS Cardiac cAMP pathway and contractile function were evaluated in AC8TG and their non-transgenic littermates (NTG) at 2- and 12 months old. AC8TG demonstrated increased AC8, PDE1, 3B and 4D expression at both ages, resulting in increased phosphodiesterase and PKA activity, and increased phosphorylation of several PKA targets including sarco(endo)plasmic-reticulum-calcium-ATPase (SERCA2a) cofactor phospholamban (PLN) and GSK3α/β a main regulator of hypertrophic growth and ageing. Confocal immunofluorescence revealed that the major phospho-PKA substrates were co-localized with Z-line in 2-month-old NTG but with Z-line interspace in AC8TG, confirming the increase of PKA activity in the compartment of PLN/SERCA2a. In both 12-month-old NTG and AC8TG, PLN and GSK3α/β phosphorylation was increased together with main localization of phospho-PKA substrates in Z-line interspaces. Haemodynamics demonstrated an increased contractile function in 2- and 12-month-old AC8TG, but not in NTG. In contrast, echocardiography and tissue Doppler imaging (TDI) performed in conscious mice unmasked myocardial dysfunction with a decrease of systolic strain rate in both old AC8TG and NTG. In AC8TG TDI showed a reduced strain rate even in 2-month-old animals. Development of age-related cardiac dysfunction was accelerated in AC8TG, leading to heart failure (HF) and premature death. Histological analysis confirmed early cardiomyocyte hypertrophy and interstitial fibrosis in AC8TG when compared with NTG. CONCLUSION Our data demonstrated an early and accelerated cardiac remodelling in AC8TG mice, leading to the development of HF and reduced lifespan. Age-related reorganization of cAMP/PKA signalling can accelerate cardiac ageing, partly through GSK3α/β phosphorylation.
Collapse
Affiliation(s)
| | - Delphine Mika
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gabor Czibik
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Elizabeth Marcos
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Shariq Abid
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Amal Houssaini
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Benjamin Vallin
- Sorbonne Université Institute of Biology Paris-Seine, B2A, UMR8256, Paris, France
| | - Aziz Guellich
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Hind Mehel
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Daigo Sawaki
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France
| | | | - Rodolphe Fischmeister
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Luc Dubois-Randé
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Isabelle Limon
- Sorbonne Université Institute of Biology Paris-Seine, B2A, UMR8256, Paris, France
| | - Serge Adnot
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Geneviève Derumeaux
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Larissa Lipskaia
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France.,Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Heidel JS, Fischer AG, Tang XL, Sadri G, Wu WJ, Moisa CR, Stowers H, Sandella N, Wysoczynski M, Uchida S, Moore IV JB. The Effect of Cardiogenic Factors on Cardiac Mesenchymal Cell Anti-Fibrogenic Paracrine Signaling and Therapeutic Performance. Am J Cancer Res 2020; 10:1514-1530. [PMID: 32042319 PMCID: PMC6993223 DOI: 10.7150/thno.41000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Intrinsic cardiogenic factor expression, a proxy for cardiomyogenic lineage commitment, may be an important determinant of donor cell cardiac reparative capacity in cell therapy applications; however, whether and how this contributes to their salutary effects remain largely ambiguous. Methods: The current study examined the consequences of enhanced cardiogenic factor expression, via lentiviral delivery of GMT (GATA4, MEF2C, and TBX5), on cardiac mesenchymal cell (CMC) anti-fibrogenic paracrine signaling dynamics, in vitro, and cardiac reparative capacity, in vivo. Proteome cytokine array analyses and in vitro cardiac fibroblast activation assays were performed using conditioned medium derived from either GMT- or GFP control-transduced CMCs, to respectively assess cardiotrophic factor secretion and anti-fibrogenic paracrine signaling aptitude. Results: Relative to GFP controls, GMT CMCs exhibited enhanced secretion of cytokines implicated to function in pathways associated with matrix remodeling and collagen catabolism, and more ably impeded activated cardiac fibroblast Col1A1 synthesis in vitro. Following their delivery in a rat model of chronic ischemic cardiomyopathy, conventional echocardiography was unable to detect a therapeutic advantage with either CMC population; however, hemodynamic analyses identified a modest, yet calculable supplemental benefit in surrogate measures of global left ventricular contractility with GMT CMCs relative to GFP controls. This phenomenon was neither associated with a decrease in infarct size nor an increase in viable myocardium, but with only a marginal decrease in regional myocardial collagen deposition. Conclusion: Overall, these results suggest that CMC cardiomyogenic lineage commitment biases cardiac repair and, further, that enhanced anti-fibrogenic paracrine signaling potency may underlie, in part, their improved therapeutic utility.
Collapse
|
8
|
de Lucia C, Wallner M, Eaton DM, Zhao H, Houser SR, Koch WJ. Echocardiographic Strain Analysis for the Early Detection of Left Ventricular Systolic/Diastolic Dysfunction and Dyssynchrony in a Mouse Model of Physiological Aging. J Gerontol A Biol Sci Med Sci 2019; 74:455-461. [PMID: 29917053 PMCID: PMC6417453 DOI: 10.1093/gerona/gly139] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 01/31/2023] Open
Abstract
Heart disease is the leading cause of hospitalization and death worldwide, severely affecting health care costs. Aging is a significant risk factor for heart disease, and the senescent heart is characterized by structural and functional changes including diastolic and systolic dysfunction as well as left ventricular (LV) dyssynchrony. Speckle tracking-based strain echocardiography (STE) has been shown as a noninvasive, reproducible, and highly sensitive methodology to evaluate LV function in both animal models and humans. Herein, we describe the efficiency of this technique as a comprehensive and sensitive method for the detection of age-related cardiac dysfunction in mice. Compared with conventional echocardiographic measurements, radial and longitudinal strain, and reverse longitudinal strain were able to detect subtle changes in systolic and diastolic cardiac function in mice at an earlier time point during aging. Additionally, the data show a gradual and consistent decrease with age in regional contractility throughout the entire LV, in both radial and longitudinal axes. Furthermore, we observed that LV segmental dyssynchrony in longitudinal axis reliably differentiated between aged and young mice. Therefore, we propose the use of echocardiographic strain as a highly sensitive and accurate technology enabling and evaluating the effect of new treatments to fight age-induced cardiac disease.
Collapse
Affiliation(s)
- Claudio de Lucia
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Markus Wallner
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Deborah M Eaton
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Steven R Houser
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Sawaki D, Czibik G, Pini M, Ternacle J, Suffee N, Mercedes R, Marcelin G, Surenaud M, Marcos E, Gual P, Clément K, Hue S, Adnot S, Hatem SN, Tsuchimochi I, Yoshimitsu T, Hénégar C, Derumeaux G. Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production. Circulation 2019; 138:809-822. [PMID: 29500246 DOI: 10.1161/circulationaha.117.031358] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aging induces cardiac structural and functional changes linked to the increased deposition of extracellular matrix proteins, including OPN (osteopontin), conducing to progressive interstitial fibrosis. Although OPN is involved in various pathological conditions, its role in myocardial aging remains unknown. METHODS OPN deficient mice (OPN-/-) with their wild-type (WT) littermates were evaluated at 2 and 14 months of age in terms of cardiac structure, function, histology and key molecular markers. OPN expression was determined by reverse-transcription polymerase chain reaction, immunoblot and immunofluorescence. Luminex assays were performed to screen plasma samples for various cytokines/adipokines in addition to OPN. Similar explorations were conducted in aged WT mice after surgical removal of visceral adipose tissue (VAT) or treatment with a small-molecule OPN inhibitor agelastatin A. Primary WT fibroblasts were incubated with plasma from aged WT and OPN-/- mice, and evaluated for senescence (senescence-associated β-galactosidase and p16), as well as fibroblast activation markers (Acta2 and Fn1). RESULTS Plasma OPN levels increased in WT mice during aging, with VAT showing the strongest OPN induction contrasting with myocardium that did not express OPN. VAT removal in aged WT mice restored cardiac function and decreased myocardial fibrosis in addition to a substantial reduction of circulating OPN and transforming growth factor β levels. OPN deficiency provided a comparable protection against age-related cardiac fibrosis and dysfunction. Intriguingly, a strong induction of senescence in cardiac fibroblasts was observed in both VAT removal and OPN-/- mice. The addition of plasma from aged OPN-/- mice to cultures of primary cardiac fibroblasts induced senescence and reduced their activation (compared to aged WT plasma). Finally, Agelastatin A treatment of aged WT mice fully reversed age-related myocardial fibrosis and dysfunction. CONCLUSIONS During aging, VAT represents the main source of OPN and alters heart structure and function via its profibrotic secretome. As a proof-of-concept, interventions targeting OPN, such as VAT removal and OPN deficiency, rescued the heart and induced a selective modulation of fibroblast senescence. Our work uncovers OPN's role in the context of myocardial aging and proposes OPN as a potential new therapeutic target for a healthy cardiac aging.
Collapse
Affiliation(s)
- Daigo Sawaki
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Gabor Czibik
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Maria Pini
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Julien Ternacle
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
- AP-HP, Department of Cardiology, Henri Mondor Hospital, DHU-ATVB (J.T., G.D.)
| | - Nadine Suffee
- Sorbonne Université, INSERM UMRS 1166, Institute of Cardiometabolism and Nutrition ICAN (N.S., S.H.)
| | - Raquel Mercedes
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Geneviève Marcelin
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital (G.M., K.C.)
- Sorbonne Universities, Université Pierre et Marie Curie, University of Paris 06, INSERM UMR_S 1166, Nutriomics Team 6 (G.M., K.C.)
| | - Mathieu Surenaud
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
- AP-HP Vaccine Research Institute (VRI) (M.S., S.H.)
| | - Elisabeth Marcos
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Philippe Gual
- INSERM, U1065, C3M, Team 8 "hepatic complications in obesity" (P.G.)
- Université Côte d'Azur (P.G.)
| | - Karine Clément
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital (G.M., K.C.)
- Sorbonne Universities, Université Pierre et Marie Curie, University of Paris 06, INSERM UMR_S 1166, Nutriomics Team 6 (G.M., K.C.)
- Assistance Publique Hopitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department and Hepato-biliary and Digestive Surgery Department (K.C.)
| | - Sophie Hue
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
- Sorbonne Université, INSERM UMRS 1166, Institute of Cardiometabolism and Nutrition ICAN (N.S., S.H.)
- AP-HP Vaccine Research Institute (VRI) (M.S., S.H.)
| | - Serge Adnot
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
- AP-HP, Department of Physiology, Henri Mondor Hospital, DHU-ATVB (S.A.)
| | - Stéphane N Hatem
- Institut de Cardiologie, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (S.H.)
| | - Izuru Tsuchimochi
- Laboratory of Synthetic Organic and Medicinal Chemistry, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University (I.T., T.Y.)
| | - Takehiko Yoshimitsu
- Laboratory of Synthetic Organic and Medicinal Chemistry, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University (I.T., T.Y.)
| | - Corneliu Hénégar
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Geneviève Derumeaux
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
- AP-HP, Department of Cardiology, Henri Mondor Hospital, DHU-ATVB (J.T., G.D.)
| |
Collapse
|
10
|
Farré N, Otero J, Falcones B, Torres M, Jorba I, Gozal D, Almendros I, Farré R, Navajas D. Intermittent Hypoxia Mimicking Sleep Apnea Increases Passive Stiffness of Myocardial Extracellular Matrix. A Multiscale Study. Front Physiol 2018; 9:1143. [PMID: 30158879 PMCID: PMC6104184 DOI: 10.3389/fphys.2018.01143] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Tissue hypoxia-reoxygenation characterizes obstructive sleep apnea (OSA), a very prevalent respiratory disease associated with increased cardiovascular morbidity and mortality. Experimental studies indicate that intermittent hypoxia (IH) mimicking OSA induces oxidative stress and inflammation in heart tissue at the cell and molecular levels. However, it remains unclear whether IH modifies the passive stiffness of the cardiac tissue extracellular matrix (ECM). Aim: To investigate multiscale changes of stiffness induced by chronic IH in the ECM of left ventricular (LV) myocardium in a murine model of OSA. Methods: Two-month and 18-month old mice (N = 10 each) were subjected to IH (20% O2 40 s-6% O2 20 s) for 6 weeks (6 h/day). Corresponding control groups for each age were kept under normoxia. Fresh LV myocardial strips (∼7 mm × 1 mm × 1 mm) were prepared, and their ECM was obtained by decellularization. Myocardium ECM macroscale mechanics were measured by performing uniaxial stress-strain tensile tests. Strip macroscale stiffness was assessed as the stress value (σ) measured at 0.2 strain and Young's modulus (EM) computed at 0.2 strain by fitting Fung's constitutive model to the stress-strain relationship. ECM stiffness was characterized at the microscale as the Young's modulus (Em) measured in decellularized tissue slices (∼12 μm tick) by atomic force microscopy. Results: Intermittent hypoxia induced a ∼1.5-fold increase in σ (p < 0.001) and a ∼2.5-fold increase in EM (p < 0.001) of young mice as compared with normoxic controls. In contrast, no significant differences emerged in Em among IH-exposed and normoxic mice. Moreover, the mechanical effects of IH on myocardial ECM were similar in young and aged mice. Conclusion: The marked IH-induced increases in macroscale stiffness of LV myocardium ECM suggests that the ECM plays a role in the cardiac dysfunction induced by OSA. Furthermore, absence of any significant effects of IH on the microscale ECM stiffness suggests that the significant increases in macroscale stiffening are primarily mediated by 3D structural ECM remodeling.
Collapse
Affiliation(s)
- Núria Farré
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain.,Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Bryan Falcones
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Marta Torres
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Sleep Lab, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ignasi Jorba
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, United States
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
11
|
Ternacle J, Wan F, Sawaki D, Surenaud M, Pini M, Mercedes R, Ernande L, Audureau E, Dubois-Rande JL, Adnot S, Hue S, Czibik G, Derumeaux G. Short-term high-fat diet compromises myocardial function: a radial strain rate imaging study. Eur Heart J Cardiovasc Imaging 2018; 18:1283-1291. [PMID: 28062567 DOI: 10.1093/ehjci/jew316] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 11/13/2022] Open
Abstract
Aim Long-term high-fat diet (HFD) induces both cardiac remodelling and myocardial dysfunction in murine models. The aim was to assess the time course and mechanisms of metabolic and cardiac modifications induced by short-term HFD in wild-type (WT) mice. Methods and results Thirty-three WT mice were subjected to HFD (60% fat, n = 16) and chow diet (CD, 13% fat, n = 17). Metabolic and echocardiographic data were collected at baseline and every 5 weeks for 20 weeks. Invasive haemodynamic data and myocardial samples were collected at 5 and 20 weeks. Echocardiographic data included left ventricular (LV) diameters and thickness, and systolic function using radial strain rate (SR). Histological assessment of cardiomyocyte and adipocyte sizes, interstitial fibrosis, and apoptosis index were performed. During follow-up, body weight, and glycaemia levels were higher in HFD than in CD mice, in association with an early adipose tissue remodelling. Despite no difference between both groups in blood pressure and LV mass at 5 weeks, an early LV dysfunction was observed in HFD mice as assessed by radial SR (21 ± 0.8 vs. 27 ± 0.8 unit/s, P < 0.001) and haemodynamic assessment. During follow-up, both groups demonstrated a progressive systolic and diastolic LV dysfunction and remodelling including dilatation and hypertrophy, which were more severe in HFD mice. Compared with CD mice, the early LV impairment in HFD mice was coupled with a higher cardiomyocyte apoptosis level (0.95 vs. 0.02%, P < 0.05) associated with an interstitial fibrosis process (2.3 vs. 0.2%, P < 0.05), which worsen during follow-up. Conclusion The HFD promoted early metabolic and cardiac dysfunctions, and adipose and myocardial tissues remodelling.
Collapse
Affiliation(s)
- Julien Ternacle
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP, Department of Cardiology, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| | - Feng Wan
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France
| | - Daigo Sawaki
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France
| | - Mathieu Surenaud
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP Vaccine Research Institute (VRI), Créteil F-94010, France
| | - Maria Pini
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France
| | - Raquel Mercedes
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France
| | - Laura Ernande
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP, Department of Physiology, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| | - Etienne Audureau
- AP-HP, Public Health Department, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| | - Jean-Luc Dubois-Rande
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP, Department of Cardiology, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| | - Serge Adnot
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP, Department of Physiology, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| | - Sophie Hue
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP Vaccine Research Institute (VRI), Créteil F-94010, France
| | - Gabor Czibik
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France
| | - Genevieve Derumeaux
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP, Department of Cardiology, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| |
Collapse
|
12
|
HOWDEN ERINJ, CARRICK-RANSON GRAEME, SARMA SATYAM, HIEDA MICHINARI, FUJIMOTO NAOKI, LEVINE BENJAMIND. Effects of Sedentary Aging and Lifelong Exercise on Left Ventricular Systolic Function. Med Sci Sports Exerc 2018; 50:494-501. [DOI: 10.1249/mss.0000000000001464] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ernande L, Audureau E, Jellis CL, Bergerot C, Henegar C, Sawaki D, Czibik G, Volpi C, Canoui-Poitrine F, Thibault H, Ternacle J, Moulin P, Marwick TH, Derumeaux G. Clinical Implications of Echocardiographic Phenotypes of Patients With Diabetes Mellitus. J Am Coll Cardiol 2017; 70:1704-1716. [PMID: 28958326 DOI: 10.1016/j.jacc.2017.07.792] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/31/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) may alter cardiac structure and function, but obesity, hypertension (HTN), or aging can induce similar abnormalities. OBJECTIVES This study sought to link cardiac phenotypes in T2DM patients with clinical profiles and outcomes using cluster analysis. METHODS Baseline echocardiography and a composite endpoint (cardiovascular mortality and hospitalization) were evaluated in 842 T2DM patients from 2 prospective cohorts. A cluster analysis was performed on echocardiographic variables, and the association between clusters and clinical profiles and outcomes was assessed. RESULTS Three clusters were identified. Cluster 1 patients had the lowest left ventricular (LV) mass index and ratio between early mitral inflow velocity and mitral annular early diastolic velocity (E/e') ratio, had the highest left ventricular ejection fraction (LVEF), and were predominantly male with the lowest rate of obesity or HTN. Cluster 2 patients had the highest strain and highest E/e' ratio, were the oldest, were predominantly female, and had the lowest rate of isolated T2DM (without HTN or obesity). Cluster 3 patients had the highest LV mass index and volumes and the lowest LVEF and strain, were predominantly male, and shared similar age and rate of obesity and HTN as cluster 1 patients. After follow-up of 67 months (interquartile range: 40 to 87), the composite endpoint occurred in 56 of 521 patients (10.8%). Clusters 2 (hazard ratio: 2.37; 95% confidence interval: 1.15 to 4.88) and 3 (hazard ratio: 2.19; 95% confidence interval: 1.00 to 4.82) had a similar outcome, which was worse than cluster 1. CONCLUSIONS Cluster analysis of echocardiographic variables identified 3 different echocardiographic phenotypes of T2DM patients that were associated with distinct clinical profiles and highlighted the prognostic value of LV remodeling and subclinical dysfunction.
Collapse
Affiliation(s)
- Laura Ernande
- Physiology Department, DHU Ageing-Thorax-Vessel-Blood, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, Créteil, France; INSERM U955, Team08, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Etienne Audureau
- Biostatistics Department, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, Créteil, France; CEpiA EA7376, DHU Ageing-Thorax-Vessel-Blood, Université Paris Est (UPEC), Créteil, France
| | | | - Cyrille Bergerot
- Centre d'Investigation Clinique INSERM 1407 Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Corneliu Henegar
- INSERM U955, Team08, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Daigo Sawaki
- INSERM U955, Team08, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Gabor Czibik
- INSERM U955, Team08, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Chiara Volpi
- Physiology Department, DHU Ageing-Thorax-Vessel-Blood, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Florence Canoui-Poitrine
- Biostatistics Department, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, Créteil, France; CEpiA EA7376, DHU Ageing-Thorax-Vessel-Blood, Université Paris Est (UPEC), Créteil, France
| | - Hélène Thibault
- Service d'Explorations Fonctionnelles Cardiovasculaires, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France; INSERM UMR-1060, CarMeN Laboratory, Université Claude Bernard Lyon, Lyon, France
| | - Julien Ternacle
- Physiology Department, DHU Ageing-Thorax-Vessel-Blood, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, Créteil, France; INSERM U955, Team08, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Philippe Moulin
- INSERM UMR-1060, CarMeN Laboratory, Université Claude Bernard Lyon, Lyon, France; Fédération d'endocrinologie, Hospices Civils de Lyon, Bron, France
| | | | - Geneviève Derumeaux
- Physiology Department, DHU Ageing-Thorax-Vessel-Blood, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, Créteil, France; INSERM U955, Team08, Université Paris-Est Créteil (UPEC), Créteil, France.
| |
Collapse
|
14
|
Meyer MR, Fredette NC, Daniel C, Sharma G, Amann K, Arterburn JB, Barton M, Prossnitz ER. Obligatory role for GPER in cardiovascular aging and disease. Sci Signal 2016; 9:ra105. [PMID: 27803283 DOI: 10.1126/scisignal.aag0240] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pharmacological activation of the heptahelical G protein-coupled estrogen receptor (GPER) by selective ligands counteracts multiple aspects of cardiovascular disease. We thus expected that genetic deletion or pharmacological inhibition of GPER would further aggravate such disease states, particularly with age. To the contrary, we found that genetic ablation of Gper in mice prevented cardiovascular pathologies associated with aging by reducing superoxide (⋅O2-) formation by NADPH oxidase (Nox) specifically through reducing the expression of the Nox isoform Nox1 Blocking GPER activity pharmacologically with G36, a synthetic, small-molecule, GPER-selective blocker (GRB), decreased Nox1 abundance and ⋅O2- production to basal amounts in cells exposed to angiotensin II and in mice chronically infused with angiotensin II, reducing arterial hypertension. Thus, this study revealed a role for GPER activity in regulating Nox1 abundance and associated ⋅O2--mediated structural and functional damage that contributes to disease pathology. Our results indicated that GRBs represent a new class of drugs that can reduce Nox abundance and activity and could be used for the treatment of chronic disease processes involving excessive ⋅O2- formation, including arterial hypertension and heart failure.
Collapse
Affiliation(s)
- Matthias R Meyer
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Natalie C Fredette
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Christoph Daniel
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Nephropathology, 91054 Erlangen, Germany
| | - Geetanjali Sharma
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Kerstin Amann
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Nephropathology, 91054 Erlangen, Germany
| | - Jeffrey B Arterburn
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, NM 88003, USA
| | - Matthias Barton
- University of Zürich, Molecular Internal Medicine, 8057 Zürich, Switzerland
| | - Eric R Prossnitz
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
15
|
Roh J, Rhee J, Chaudhari V, Rosenzweig A. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms. Circ Res 2016; 118:279-95. [PMID: 26838314 DOI: 10.1161/circresaha.115.305250] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population.
Collapse
Affiliation(s)
- Jason Roh
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - James Rhee
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Vinita Chaudhari
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Anthony Rosenzweig
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston.
| |
Collapse
|
16
|
Remodeling of the intercalated disc related to aging in the mouse heart. J Cardiol 2015; 68:261-8. [PMID: 26584974 DOI: 10.1016/j.jjcc.2015.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/10/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aging is related to declined cardiac hemodynamic function. As pumping performance may be significantly related to slowed ventricular depolarization and non-synchronous contraction, we hypothesized that aging may cause dysfunction of intercalated disc (ID), which is the structure responsible for intercellular electrical communication between cardiomyocytes. METHODS Male C57BL/6J mice were used for the study at two ages: 4 and 24 months. Electrocardiographic recording was made to analyze the time of ventricular depolarization. Then mice were killed, and the hearts were harvested for examination in transmission electron microscopy (TEM) and immunofluorescence imaging. The expression of connexin 43 (Cx43), N-cadherin, and β-catenin in the myocardium of the left ventricle was evaluated using Western blotting. RESULTS In senescent mice, analysis of averaged QRS complex showed its significant prolongation. At the ultrastructural level, we found frequent disruptions of the ID (affecting 29±5% of them), mainly at the site of adherens junction, with relatively preserved desmosomal intercellular connections and diminished number of gap junctions. Western blotting revealed significantly decreased abundance of Cx43 protein in aged animals, which may cause slowed impulse propagation through the gap junctions and contribute to the observed electrocardiographic alterations. The level of RNA for Cx43 is similar between young and old animals, which suggests a post-transcriptional mechanism of Cx43 protein downregulation. CONCLUSIONS Our study shows age-related disorganization of ID, which may be responsible for slowed conduction of the depolarization wave within the heart, and supports the hypothesis of cardiac dysfunction in senescence.
Collapse
|
17
|
Zheng L, Feng Y, Wen DT, Wang H, Wu XS. Fatiguing exercise initiated later in life reduces incidence of fibrillation and improves sleep quality in Drosophila. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9816. [PMID: 26206392 PMCID: PMC4512962 DOI: 10.1007/s11357-015-9816-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/07/2015] [Indexed: 05/27/2023]
Abstract
As the human body ages, the risk of heart disease and stroke greatly increases. While there is evidence that lifelong exercise is beneficial to the heart's health, the effects of beginning exercise later in life remain unclear. This study aimed to investigate whether exercise training started later in life is beneficial to cardiac aging in Drosophila. We examined 4-week-old wild-type virgin female flies that were exposed to exercise periods of either 1.5, 2.0, or 2.5 h per day, 5 days a week for 2 weeks. Using M-mode traces to analyze cardiac function by looking at parameters including heart rate, rhythmicity, systolic and diastolic diameter, and interval and fractional shortening, we found that cardiac function declined with age, shown by an increase in the number of fibrillation events and a decrease in fractional shortening. About 2.0 and 2.5 h of exercise per day displayed a reduced incidence of fibrillation events, and only physical exercise lasting 2.5-h period increased fractional shortening and total sleep time in Drosophila. These data suggested that training exercise needs to be performed for longer duration to exert physiological benefits for the aging heart. Additionally, climbing ability to assess the exercise-induced muscle fatigue was also measured. We found that 2.0 and 2.5 h of exercise caused exercise-induced fatigue, and fatiguing exercise is beneficial for cardiac and healthy aging overall. This study provides a basis for further study in humans on the impact of beginning an exercise regimen later in life on cardiac health.
Collapse
Affiliation(s)
- Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China,
| | | | | | | | | |
Collapse
|
18
|
Stevens ALM, Ferferieva V, Bito V, Wens I, Verboven K, Deluyker D, Voet A, Vanhoof J, Dendale P, Eijnde BO. Exercise improves cardiac function and attenuates insulin resistance in Dahl salt-sensitive rats. Int J Cardiol 2015; 186:154-60. [PMID: 25828108 DOI: 10.1016/j.ijcard.2015.03.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/07/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND The development of heart failure (HF) secondary to hypertension is a complex process related to a series of physiological and molecular factors including glucose dysregulation. The overall objective of this study was to investigate whether exercise training could improve cardiac function and insulin resistance in a rat model of hypertensive HF. METHODS Seven week old Dahl salt-sensitive rats received either 8% NaCl (n = 30) or 0.3% NaCl (n = 18) diet. After a 5-week diet, animals were randomly assigned to exercise training (treadmill running at 18 m/min, 5% inclination for 60 min, 5 days/week) or kept sedentary for 6 additional weeks. 2D echocardiography was used to calculate left ventricular (LV) dimensions, volumes and global functional parameters. LV global deformation parameters were measured with speckle tracking echocardiography. Insulin resistance was assessed using 1h oral glucose tolerance testing. RESULTS High salt diet led to cardiac hypertrophy and HF, characterized by increased wall thicknesses and LV volumes as well as reduced deformation parameters. In addition, high salt diet was associated with the development of insulin resistance. Exercise training improved cardiac function, reduced the extent of interstitial fibrosis and reduced insulin levels 60 min post-glucose administration. CONCLUSIONS Even if not fully reversed, exercise training in HF animals improved cardiac function and insulin resistance. Adjusted modalities of exercise training might offer new insights not only as a preventive strategy, but also as a treatment for HF patients.
Collapse
Affiliation(s)
- An L M Stevens
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium.
| | - Vesselina Ferferieva
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium
| | - Virginie Bito
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium
| | - Inez Wens
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium
| | - Kenneth Verboven
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium
| | - Dorien Deluyker
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium
| | | | - Joke Vanhoof
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium
| | - Paul Dendale
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium; Jessa Hospital, Heart Center Hasselt, Belgium
| | - Bert O Eijnde
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium
| |
Collapse
|
19
|
Wright KJ, Thomas MM, Betik AC, Belke D, Hepple RT. Exercise training initiated in late middle age attenuates cardiac fibrosis and advanced glycation end-product accumulation in senescent rats. Exp Gerontol 2014; 50:9-18. [DOI: 10.1016/j.exger.2013.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/12/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
|
20
|
Andrews TG, Lindsey ML, Lange RA, Aune GJ. Cardiac assessment in pediatric mice: strain analysis as a diagnostic measurement. Echocardiography 2013; 31:375-84. [PMID: 24103064 DOI: 10.1111/echo.12351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Echocardiography is a robust tool for assessing cardiac function in both humans and laboratory animals. Conventional echocardiographic measurements, including chamber dimensions, wall thickness, and ejection fraction are routinely obtained to assess cardiac function in mice. Recently, myocardial strain and strain rate measurements have been added to functional assessments to provide additional details on regional abnormalities that are not evident using conventional measurements. To date, all studies of strain and strain rate in mice or rats have involved adult animals. This study serves to outline methods for acquiring echocardiographic images in pediatric mice and to provide myocardial strain and strain rate values for healthy C57BL/6J mice between 3 and 11 weeks old. Between weeks 3 and 11, left ventricular radial strain ranged from 32 to 43% and longitudinal strain ranged from -15 to -19%, with analysis over time showing no significant changes with aging (radial strain, P = 0.192 and longitudinal strain, P = 0.264; n = 4 for each time point evaluated). In conclusion, myocardial strain analysis in pediatric mice is technically feasible and has potential application in studying the pathophysiology of pediatric cardiovascular disease.
Collapse
Affiliation(s)
- Thomas G Andrews
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | | | |
Collapse
|
21
|
Neilan TG, Coelho-Filho OR, Shah RV, Abbasi SA, Heydari B, Watanabe E, Chen Y, Mandry D, Pierre-Mongeon F, Blankstein R, Kwong RY, Jerosch-Herold M. Myocardial extracellular volume fraction from T1 measurements in healthy volunteers and mice: relationship to aging and cardiac dimensions. JACC Cardiovasc Imaging 2013; 6:672-83. [PMID: 23643283 DOI: 10.1016/j.jcmg.2012.09.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 01/19/2023]
Abstract
OBJECTIVES This study aimed to test the characteristics of the myocardial extracellular volume fraction (ECV) derived from pre- and post-contrast T1 measurements among healthy volunteers. BACKGROUND Cardiac magnetic resonance (CMR) T1 measurements of myocardium and blood before and after contrast allow quantification of the ECV, a tissue parameter that has been shown to change in proportion to the connective tissue fraction. METHODS Healthy volunteers underwent standard CMR imaging with administration of gadolinium. T1 measurements were performed with a Look-Locker sequence followed by gradient-echo acquisition. We tested the segmental, interslice, inter-, intra-, and test-retest characteristics of the ECV, as well as the association of the ECV with other variables. Juvenile and aged mice underwent a similar protocol, and cardiac sections were harvested for measurement of fibrosis. RESULTS In healthy volunteers (N = 32, 56% female; age 21 to 72 years), the ECV averaged 0.28 ± 0.03 (range 0.23 to 0.33). The intraclass coefficients for the intraobserver, interobserver, and test-retest absolute agreements of the ECV were 0.94 (95% confidence interval: 0.84 to 0.98), 0.93 (95% confidence interval: 0.80 to 0.98), and 0.95 (95% confidence interval: 0.52 to 0.99), respectively. In volunteers, the ECV was associated with age (r = 0.74, p < 0.001), maximal left atrial volume index (r = 0.67, p < 0.001), and indexed left ventricular mass. There were no differences in the ECV between segments in a slice or between slices. In mice (N = 12), the myocardial ECV ranged from 0.20 to 0.32 and increased with age (0.22 ± 0.02 vs. 0.30 ± 0.02, juvenile vs. aged mice, p < 0.001). In mice, the ECV correlated with the extent of myocardial fibrosis (r = 0.94, p < 0.001). CONCLUSIONS In healthy volunteers, the myocardial ECV ranges from 0.23 to 0.33, has acceptable test characteristics, and is associated with age, left atrial volume, and left ventricular mass. In mice, the ECV also increases with age and strongly correlates with the extent of myocardial fibrosis.
Collapse
Affiliation(s)
- Tomas G Neilan
- Noninvasive Cardiovascular Imaging, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ferferieva V, Van den Bergh A, Claus P, Jasaityte R, La Gerche A, Rademakers F, Herijgers P, D'hooge J. Assessment of strain and strain rate by two-dimensional speckle tracking in mice: comparison with tissue Doppler echocardiography and conductance catheter measurements. Eur Heart J Cardiovasc Imaging 2012; 14:765-73. [PMID: 23209279 DOI: 10.1093/ehjci/jes274] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS This study was designed in order to compare the strain and strain rate deformation parameters assessed by speckle tracking imaging (STI) with those of tissue Doppler imaging (TDI) and conductance catheter measurements in chronic murine models of left ventricular (LV) dysfunction. METHODS AND RESULTS Twenty-four male C57BL/6J mice were assigned to wild-type (n = 8), myocardial infarction (n = 8) and transaortic constriction (n = 8) groups. Echocardiographic and conductance measurements were simultaneously performed at rest and during dobutamine infusion (5 µg/kg/min) in all animals 10 weeks post-surgery. The LV circumferential strain (Scirc) and the strain rate (SRcirc) were derived from grey scale and tissue Doppler data at frame rates of 224 and 375 Hz, respectively. Scirc and SRcirc by TDI/STI correlated well with the preload recruitable stroke work (PRSW) (r = -0.64 and -0.71 for TDI; r = -0.46 and -0.50 for STI, P < 0.05). Both modalities showed a good agreement with respect to Scirc and SRcirc (r = 0.60 and r = 0.63, P < 0.05). During stress, however, TDI-estimated Scirc and SRcirc values were predominantly higher than those measured by STI (P < 0.05). The similarity of Scirc and SRcirc measurements with respect to the STI/TDI data was examined by the Bland-Altman analysis. CONCLUSION In mice, the STI- and TDI-derived strain and strain rate deformation parameters relate closely to intrinsic myocardial function. At low heart rate-to-frame rate ratios (HR/FR), both STI and TDI are equally acceptable for assessing the LV function non-invasively in these animals. At HR/FR (e.g. dobutamine challenge), however, these methods cannot be used interchangeably as STI underestimates S and SR at high values.
Collapse
Affiliation(s)
- V Ferferieva
- Cardiovascular Imaging and Dynamics, Catholic University Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ferferieva V, Van den Bergh A, Claus P, Jasaityte R, Veulemans P, Pellens M, La Gerche A, Rademakers F, Herijgers P, D'hooge J. The relative value of strain and strain rate for defining intrinsic myocardial function. Am J Physiol Heart Circ Physiol 2012; 302:H188-95. [DOI: 10.1152/ajpheart.00429.2011] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well accepted that strain and strain rate deformation parameters are not only a measure of intrinsic myocardial contractility but are also influenced by changes in cardiac load and structure. To date, no information is available on the relative importance of these confounders. This study was designed to investigate how strain and strain rate, measured by Doppler echocardiography, relate to the individual factors that determine cardiac performance. Echocardiographic and conductance measurements were simultaneously performed in mice in which individual determinants of cardiac performance were mechanically and/or pharmacologically modulated. A multivariable analysis was performed with radial and circumferential strains and peak systolic radial and circumferential strain rates as dependent parameters and preload recruitable stroke work (PRSW), arterial elastance ( Ea), end-diastolic pressure, and left ventricular myocardial volume (LVMV) as independent factors representing myocardial contractility, afterload, preload, and myocardial volume, respectively. Radial strain was most influenced by Ea (β = −0.58, R2 = 0.34), whereas circumferential strain was strongly associated with Ea and moderately with LVMV (β = 0.79 and −0.52, respectively, R2 = 0.54). Radial strain rate was related to both PRSW and LVMV ( β = 0.79 and −0.62, respectively, R2 = 0.50), whereas circumferential strain rate showed a prominent correlation only with PRSW (β = −0.61, R2 = 0.51). In conclusion, strain (both radial and circumferential) is not a good surrogate measure of intrinsic myocardial contractility unless the strong confounding influence of afterload is considered. Strain rate is a more robust measure of contractility that is less influenced by changes in cardiac load and structure. Thus, peak systolic strain rate is the more relevant parameter to assess myocardial contractile function noninvasively.
Collapse
Affiliation(s)
| | - A. Van den Bergh
- Experimental Cardiac Surgery, Department of Cardiovascular Diseases, Catholic University Leuven, Leuven, Belgium
| | - P. Claus
- Cardiovascular Imaging and Dynamics,
| | | | | | - M. Pellens
- Experimental Cardiac Surgery, Department of Cardiovascular Diseases, Catholic University Leuven, Leuven, Belgium
| | | | | | - P. Herijgers
- Experimental Cardiac Surgery, Department of Cardiovascular Diseases, Catholic University Leuven, Leuven, Belgium
| | | |
Collapse
|
24
|
Thibault H, Gomez L, Bergerot C, Augeul L, Scherrer-Crosbie M, Ovize M, Derumeaux G. Strain-Rate Imaging Predicts the Attenuation of Left Ventricular Remodeling Induced by Ischemic Postconditioning After Myocardial Infarction in Mice. Circ Cardiovasc Imaging 2011; 4:550-7. [DOI: 10.1161/circimaging.110.962282] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hélène Thibault
- From Université Claude Bernard Lyon I, France, U1060-CARMEN, Cardioprotection, Lyon, France (H.T., L.G., L.A., M.O., G.D.); Service des Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France (H.T., C.B., M.O., G.D.); and Massachusetts General Hospital, Boston, MA (M.S.C.)
| | - Ludovic Gomez
- From Université Claude Bernard Lyon I, France, U1060-CARMEN, Cardioprotection, Lyon, France (H.T., L.G., L.A., M.O., G.D.); Service des Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France (H.T., C.B., M.O., G.D.); and Massachusetts General Hospital, Boston, MA (M.S.C.)
| | - Cyrille Bergerot
- From Université Claude Bernard Lyon I, France, U1060-CARMEN, Cardioprotection, Lyon, France (H.T., L.G., L.A., M.O., G.D.); Service des Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France (H.T., C.B., M.O., G.D.); and Massachusetts General Hospital, Boston, MA (M.S.C.)
| | - Lionel Augeul
- From Université Claude Bernard Lyon I, France, U1060-CARMEN, Cardioprotection, Lyon, France (H.T., L.G., L.A., M.O., G.D.); Service des Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France (H.T., C.B., M.O., G.D.); and Massachusetts General Hospital, Boston, MA (M.S.C.)
| | - Marielle Scherrer-Crosbie
- From Université Claude Bernard Lyon I, France, U1060-CARMEN, Cardioprotection, Lyon, France (H.T., L.G., L.A., M.O., G.D.); Service des Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France (H.T., C.B., M.O., G.D.); and Massachusetts General Hospital, Boston, MA (M.S.C.)
| | - Michel Ovize
- From Université Claude Bernard Lyon I, France, U1060-CARMEN, Cardioprotection, Lyon, France (H.T., L.G., L.A., M.O., G.D.); Service des Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France (H.T., C.B., M.O., G.D.); and Massachusetts General Hospital, Boston, MA (M.S.C.)
| | - Geneviève Derumeaux
- From Université Claude Bernard Lyon I, France, U1060-CARMEN, Cardioprotection, Lyon, France (H.T., L.G., L.A., M.O., G.D.); Service des Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France (H.T., C.B., M.O., G.D.); and Massachusetts General Hospital, Boston, MA (M.S.C.)
| |
Collapse
|
25
|
Luo J, Konofagou EE. Imaging of wall motion coupled with blood flow velocity in the heart and vessels in vivo: a feasibility study. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:980-95. [PMID: 21546155 PMCID: PMC4009734 DOI: 10.1016/j.ultrasmedbio.2011.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/22/2011] [Accepted: 03/03/2011] [Indexed: 05/20/2023]
Abstract
The mechanical property and geometry changes as a result of cardiovascular disease affect both the wall motion and blood flow in the heart and vessels, whereas the latter two are also coupled and therefore continuously influence one another. Simultaneous and registered imaging of both cardiovascular wall motion and blood velocity may thus contribute to more complete computational models of cardiovascular mechanical and fluid dynamics as well as provide additional diagnostic information. The objective of this paper was to determine the feasibility of imaging cardiovascular wall motion coupled with blood flow in vivo. Normal (n = 6) and infarcted (n = 5) murine left ventricles, and normal (n = 5) and aneurysmal (n = 4) murine abdominal aortas, were imaged in longitudinal views with a 30-MHz ultrasound probe. Using electrocardiogram (ECG) gating, 2-D radio-frequency (RF) data were acquired at a frame rate of 8 kHz. The axial wall velocity and blood velocity were estimated using a speckle-tracking technique. Spatially and temporally registered imaging of both cardiovascular wall motion and blood flow was shown to be feasible. Reduced wall motion was detected in the infarcted region, whereas vortex flow patterns were imaged in diastolic phases of both normal and infarcted left ventricles. The myocardial wall motion and blood flow were found to be more synchronous in the normal heart, where the blood moves toward the anteroseptal wall after the mitral valve opens (i.e., rapid filling phase), and the anteroseptal wall simultaneously undergoes outward motion. In the infarcted heart, however, in the rapid filling phase, the basal anteroseptal wall starts moving about 20 ms before the mitral valve opens and the blood enters the left ventricle. In the normal aorta, the wall motion and blood velocity were uniform and synchronous. In the aneurysmal aorta, reduced and spatially varied wall motion and vortex flow patterns in the aneurysmal sac were found. The wall motion and blood velocity were thus less synchronous in the aneurysmal aorta. Cardiovascular wall motion and blood flow were both imaged in mice in vivo. This dual information may provide important insights for the diagnosis of cardiovascular disease as well as essential parameters for its biomechanical modeling.
Collapse
Affiliation(s)
- Jianwen Luo
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY
- Department of Radiology, Columbia University, New York, NY
| |
Collapse
|
26
|
Abstract
Murine models have been utilized with increasing frequency mainly due to availability of genetically engineered models. With advancement in high spatial and temporal resolution, echocardiography is used extensively for the evaluation of cardiovascular function in murine models of cardiovascular disease. This review summarizes the general applications and methods involved in echocardiography used to study mouse models for cardiovascular research, based on 20 years of experience in our laboratory. The goal of this article is to provide a practical guide to the use of echo techniques in mice to evaluate cardiac systolic and diastolic function.
Collapse
Affiliation(s)
- Shumin Gao
- Department of Cell Biology & Molecular Medicine and The Cardiovascular Research Institute at the University of Medicine & Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G609, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
27
|
Piazza N, Wessells RJ. Drosophila models of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:155-210. [PMID: 21377627 PMCID: PMC3551295 DOI: 10.1016/b978-0-12-384878-9.00005-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance.
Collapse
Affiliation(s)
- Nicole Piazza
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
28
|
Pieper GM, Shah A, Harmann L, Cooley BC, Ionova IA, Migrino RQ. Speckle-tracking 2-dimensional strain echocardiography: a new noninvasive imaging tool to evaluate acute rejection in cardiac transplantation. J Heart Lung Transplant 2010; 29:1039-46. [PMID: 20488730 DOI: 10.1016/j.healun.2010.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/03/2010] [Accepted: 04/07/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND There remains no reliable non-invasive method to detect cardiac transplant rejection. Recently, speckle-tracking 2-dimensional strain echocardiography (2DSE) was shown to be sensitive in the early detection of myocardial dysfunction in various models of cardiomyopathy. We aim to determine if 2DSE-derived functional indices can detect cardiac transplant rejection. METHODS Heterotopic rat cardiac transplantation was performed in histocompatible isografts or histoincompatible allografts. Histologic rejection scores were determined. Short-axis, mid-left ventricular (LV) echocardiography was performed on Day 6 after transplantation. Conventional measures of function were measured, (including LV fractional shortening and ejection fraction) as well as 2DSE parameters. RESULTS Despite class IIIB rejection in allografts and no rejection in isografts, there was no difference between isografts vs allografts in fractional shortening (15% +/- 3% vs 12% +/- 3%) or ejection fraction (36% +/- 5% vs 26% +/- 6%; both not significant). In contrast, 2DSE revealed decreases between isografts and allografts in global radial strain (12.6% +/- 5.6% vs 1.1% +/- 0.2%, p < 0.05), peak radial systolic strain rate (3.10 +/- 0.74/s vs 0.54 +/- 0.13/s, p < 0.001), and peak circumferential systolic strain rate (-1.99 +/- 0.55 vs -0.43 +/- 0.11/s; p < 0.01). CONCLUSIONS Systolic strain imaging using 2DSE differentiates myocardial function between experimental cardiac transplant rejection in allografts and non-rejection in isografts. Therefore, 2DSE may be useful in early non-invasive detection of transplant rejection.
Collapse
Affiliation(s)
- Galen M Pieper
- Department of Surgery (Transplant Surgery), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Scherrer-Crosbie M, Kurtz B. Ventricular remodeling and function: insights using murine echocardiography. J Mol Cell Cardiol 2009; 48:512-7. [PMID: 19615377 DOI: 10.1016/j.yjmcc.2009.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 06/19/2009] [Accepted: 07/07/2009] [Indexed: 12/31/2022]
Abstract
Extracellular matrix disturbances play an important role in the development of ventricular remodeling and failure. Genetically modified mice with abnormalities in the synthesis and degradation of extracellular matrix have been generated, in particular mice with deletion or overexpression of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs). Echocardiography is ideally suited to serially evaluate left ventricular (LV) size and function, thus defining the progression of LV remodeling and failure. This Review describes the echocardiographic parameters that may provide insights into the development of ventricular remodeling and heart failure. The application of echocardiography to study LV remodeling and function after myocardial infarction and LV pressure-overload in wild-type mice and mice deficient or overexpressing MMPs or TIMPs is then detailed. Finally, using the example of mice deficient in nitric oxide synthase 3, a cautionary example is given illustrating discrepancies between the cardiac echocardiographic phenotype and modifications of the extracellular matrix.
Collapse
Affiliation(s)
- Marielle Scherrer-Crosbie
- Cardiac Ultrasound Laboratory, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
30
|
Regional Myocardial Function After Myocardial Infarction in Mice: A Follow-Up Study by Strain Rate Imaging. J Am Soc Echocardiogr 2009; 22:198-205. [DOI: 10.1016/j.echo.2008.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Indexed: 11/21/2022]
|