1
|
Kitano T, Bartoš F, Nabeshima Y, Sayour AA, Kovacs A, Takeuchi M. Impact of Cardiac Magnetic Resonance-Derived Right Ventricular Ejection Fraction on Adverse Outcomes: A Robust Bayesian Model-Averaged Meta-Analysis. J Cardiovasc Magn Reson 2024:101118. [PMID: 39471912 DOI: 10.1016/j.jocmr.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND There are few meta-analyses examining the prognostic value of right ventricular ejection fraction (RVEF) for a specific type of cardiovascular disease (CVD). The aim of this study was to compare the association of cardiac magnetic resonance (CMR)-derived RVEF with adverse outcomes for several specific types of CVD, using a robust Bayesian model-averaged meta-analysis. METHODS Three databases were searched for CMR articles reporting hazard ratios (HRs) of RVEF restricted to a specific type of CVD. For each specific type of CVD, Bayesian model-averaged meta-analyses with and without publication bias adjustments were conducted to evaluate the strength of evidence for RVEF according to the Bayes Factor (BF). RESULTS Among 108 articles (21,166 patients) analyzing 11 CVD types, pooled HR for 5% reduction in RVEF assessed by publication bias-unadjusted, Bayesian model-averaged meta-analysis offered moderate or strong evidence of an association with outcomes for all types of CVD (HR: 1.07-1.37, BF10: 4.3-9.6*107). In contrast, a robust Bayesian model-averaged meta-analysis, adjusted for publication bias, found moderate or strong evidence in favor of an association of RVEF with outcomes only in hypertrophic cardiomyopathy (HR: 1.19, 95% CrI: 0.98-1.42, BF10: 5.0), dilated cardiomyopathy (HR: 1.16, 95% CrI: 1-1.22, BF10: 23.3), pulmonary hypertension (HR: 1.05, 95% CrI: 1-1.12, BF10: 3.0), and aortic stenosis (HR: 1.15, 95% CrI: 0.97-1.34, BF10: 4.2). There was weak evidence for an association of RVEF with adverse outcomes in seven other CVDs. CONCLUSIONS In a Bayesian meta-analysis adjusted for publication bias, there was moderate or strong evidence for an association of RVEF with outcomes for only four CVDs. Additional data may strengthen evidence regarding other CVDs.
Collapse
Affiliation(s)
- Tetsuji Kitano
- Second Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.
| | - František Bartoš
- Department of Psychological Methods, University of Amsterdam, Amsterdam, Netherlands
| | - Yosuke Nabeshima
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Alex Ali Sayour
- The Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Kovacs
- The Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Masaaki Takeuchi
- Department of Laboratory and Transfusion Medicine, University of Occupational and Environmental Health Hospital, Kitakyushu, Japan
| |
Collapse
|
2
|
Aradhyula V, Vyas R, Dube P, Haller ST, Gupta R, Maddipati KR, Kennedy DJ, Khouri SJ. Novel insights into the pathobiology of pulmonary hypertension in heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2024; 326:H1498-H1514. [PMID: 38639739 PMCID: PMC11380948 DOI: 10.1152/ajpheart.00068.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is the most common cause of pulmonary hypertension (PH) worldwide and is strongly associated with adverse clinical outcomes. The American Heart Association recently highlighted a call to action regarding the distinct lack of evidence-based treatments for PH due to poorly understood pathophysiology of PH attributable to HFpEF (PH-HFpEF). Prior studies have described cardiophysiological mechanisms to explain the development of isolated postcapillary PH (ipc-PH); however, the consequent increase in pulmonary vascular (PV) resistance (PVR) may lead to the less understood and more fatal combined pre- and postcapillary PH (cpc-PH). Metabolic disease and inflammatory dysregulation have been suggested to predispose PH, yet the molecular mechanisms are unknown. Although PH-HFpEF has been studied to partly share vasoactive neurohormonal mediators with primary pulmonary arterial hypertension (PAH), clinical trials that have targeted these pathways have been unsuccessful. The increased mortality of patients with PH-HFpEF necessitates further study into viable mechanistic targets involved in disease progression. We aim to summarize the current pathophysiological and clinical understanding of PH-HFpEF, highlight the role of known molecular mechanisms in the progression of PV disease, and introduce a novel concept that lipid metabolism may be attenuating and propagating PH-HFpEF.NEW & NOTEWORTHY Our review addresses pulmonary hypertension (PH) attributable to heart failure (HF) with preserved ejection fraction (HFpEF; PH-HFpEF). Current knowledge gaps in PH-HFpEF pathophysiology have led to a lack of therapeutic targets. Thus, we address identified knowledge gaps in a comprehensive review, focusing on current clinical epidemiology, known pathophysiology, and previously studied molecular mechanisms. We also introduce a comprehensive review of polyunsaturated fatty acid (PUFA) lipid inflammatory mediators in PH-HFpEF.
Collapse
Affiliation(s)
- Vaishnavi Aradhyula
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Rohit Vyas
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Rajesh Gupta
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, Michigan, United States
| | - David J Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Samer J Khouri
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| |
Collapse
|
3
|
Kirschfink A, Frick M, Al Ateah G, Kneizeh K, Alnaimi A, Dettori R, Schuett K, Marx N, Altiok E. Evaluation of the Truncated Cone-Rhomboid Pyramid Formula for Simplified Right Ventricular Quantification: A Cardiac Magnetic Resonance Study. J Clin Med 2024; 13:2850. [PMID: 38792392 PMCID: PMC11121834 DOI: 10.3390/jcm13102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objective: Cardiac magnetic resonance (CMR) is the reference method for right ventricular (RV) volume and function analysis, but time-consuming manual segmentation and corrections of imperfect automatic segmentations are needed. This study sought to evaluate the applicability of an echocardiographically established truncated cone-rhomboid pyramid formula (CPF) for simplified RV quantification using CMR. Methods: A total of 70 consecutive patients assigned to RV analysis using CMR were included. As standard method, the manual contouring of RV-short axis planes was performed for the measurement of end-diastolic volume (EDV) and end-systolic volume (ESV). Additionally, two linear measurements in four-chamber views were obtained in systole and diastole: basal diameters at the level of tricuspid valve (Dd and Ds) and baso-apical lengths from the center of tricuspid valve to the RV apex (Ld and Ls) were measured for the calculation of RV-EDV = 1.21 × Dd2 × Ld and RV-ESV = 1.21 × Ds 2 × Ls using CPF. Results: RV volumes using CPF were slightly higher than those using standard CMR analysis (RV-EDV index: 86.2 ± 29.4 mL/m2 and RV-ESV index: 51.5 ± 22.5 mL/m2 vs. RV-EDV index: 81.7 ± 24.1 mL/m2 and RV-ESV index: 44.5 ± 23.2 mL/m2) and RV-EF was lower (RV-EF: 41.1 ± 13.5% vs. 48.4 ± 13.7%). Both methods had a strong correlation of RV volumes (ΔRV-EDV index = -4.5 ± 19.0 mL/m2; r = 0.765, p < 0.0001; ΔRV-ESV index = -7.0 ± 14.4 mL/m2; r = 0.801, p < 0.0001). Conclusions: Calculations of RV volumes and function using CPF assuming the geometrical model of a truncated cone-rhomboid pyramid anatomy of RV is feasible, with a strong correlation to measurements using standard CMR analysis, and only two systolic and diastolic linear measurements in four-chamber views are needed.
Collapse
Affiliation(s)
- Annemarie Kirschfink
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Michael Frick
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ghazi Al Ateah
- Department of Cardiology, Nephrology and Internal Intensive Care Medicine, Rhein-Maas Klinikum, Mauerfeldchen 25, 52146 Wuerselen, Germany
| | - Kinan Kneizeh
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Anas Alnaimi
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Rosalia Dettori
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Katharina Schuett
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Nikolaus Marx
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ertunc Altiok
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
4
|
Wang Y, Zhao S, Lu M. State-of-the Art Cardiac Magnetic Resonance in Pulmonary Hypertension - An Update on Diagnosis, Risk Stratification and Treatment. Trends Cardiovasc Med 2024; 34:161-171. [PMID: 36574866 DOI: 10.1016/j.tcm.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Pulmonary hypertension (PH) is a globally under-recognized but life-shortening disease with a poor prognosis if untreated, delayed or inappropriately treated. One of the most important issues for PH is to improve patient quality of life and survival through timely and accurate diagnosis, precise risk stratification and prognosis prediction. Cardiac magnetic resonance (CMR), a non-radioactive, non-invasive image-based examination with excellent tissue characterization, provides a comprehensive assessment of not only the disease severity but also secondary changes in cardiac structure, function and tissue characteristics. The purpose of this review is to illustrate an updated status of CMR for PH assessment, focusing on the application of both conventional and emerging technologies as well as the latest clinical trials.
Collapse
Affiliation(s)
- Yining Wang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China; Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Duong SQ, Vaid A, My VTH, Butler LR, Lampert J, Pass RH, Charney AW, Narula J, Khera R, Sakhuja A, Greenspan H, Gelb BD, Do R, Nadkarni GN. Quantitative Prediction of Right Ventricular Size and Function From the ECG. J Am Heart Assoc 2024; 13:e031671. [PMID: 38156471 PMCID: PMC10863807 DOI: 10.1161/jaha.123.031671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Right ventricular ejection fraction (RVEF) and end-diastolic volume (RVEDV) are not readily assessed through traditional modalities. Deep learning-enabled ECG analysis for estimation of right ventricular (RV) size or function is unexplored. METHODS AND RESULTS We trained a deep learning-ECG model to predict RV dilation (RVEDV >120 mL/m2), RV dysfunction (RVEF ≤40%), and numerical RVEDV and RVEF from a 12-lead ECG paired with reference-standard cardiac magnetic resonance imaging volumetric measurements in UK Biobank (UKBB; n=42 938). We fine-tuned in a multicenter health system (MSHoriginal [Mount Sinai Hospital]; n=3019) with prospective validation over 4 months (MSHvalidation; n=115). We evaluated performance with area under the receiver operating characteristic curve for categorical and mean absolute error for continuous measures overall and in key subgroups. We assessed the association of RVEF prediction with transplant-free survival with Cox proportional hazards models. The prevalence of RV dysfunction for UKBB/MSHoriginal/MSHvalidation cohorts was 1.0%/18.0%/15.7%, respectively. RV dysfunction model area under the receiver operating characteristic curve for UKBB/MSHoriginal/MSHvalidation cohorts was 0.86/0.81/0.77, respectively. The prevalence of RV dilation for UKBB/MSHoriginal/MSHvalidation cohorts was 1.6%/10.6%/4.3%. RV dilation model area under the receiver operating characteristic curve for UKBB/MSHoriginal/MSHvalidation cohorts was 0.91/0.81/0.92, respectively. MSHoriginal mean absolute error was RVEF=7.8% and RVEDV=17.6 mL/m2. The performance of the RVEF model was similar in key subgroups including with and without left ventricular dysfunction. Over a median follow-up of 2.3 years, predicted RVEF was associated with adjusted transplant-free survival (hazard ratio, 1.40 for each 10% decrease; P=0.031). CONCLUSIONS Deep learning-ECG analysis can identify significant cardiac magnetic resonance imaging RV dysfunction and dilation with good performance. Predicted RVEF is associated with clinical outcome.
Collapse
Affiliation(s)
- Son Q. Duong
- Division of Pediatric Cardiology, Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNY
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkNY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew YorkNY
| | - Akhil Vaid
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkNY
| | - Vy Thi Ha My
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkNY
| | - Liam R. Butler
- Division of Pediatric Cardiology, Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Joshua Lampert
- Helmsley Center for Electrophysiology at The Mount Sinai HospitalNew YorkNY
| | - Robert H. Pass
- Division of Pediatric Cardiology, Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Alexander W. Charney
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkNY
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount SinaiNew YorkNY
| | - Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal MedicineYale School of MedicineNew HavenCT
- Section of Health Informatics, Department of BiostatisticsYale School of Public HealthNew HavenCT
- Biomedical Informatics and Data Science, Yale School of MedicineNew HavenCT
- Center for Outcomes Research and Evaluation, Yale‐New Haven HospitalNew HavenCT
| | - Ankit Sakhuja
- Division of Cardiovascular Critical Care, Department of Cardiac and Thoracic SurgeryWest Virginia UniversityMorgantownWV
| | - Hayit Greenspan
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount SinaiNew YorkNY
| | - Bruce D. Gelb
- Division of Pediatric Cardiology, Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew YorkNY
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Ron Do
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkNY
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Girish N. Nadkarni
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkNY
- The Division of Data Driven and Digital Medicine (D3M), Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| |
Collapse
|
6
|
Nizhnikava V, Reiter U, Kovacs G, Reiter C, Kräuter C, Olschewski H, Fuchsjäger M, Reiter G. Myocardial strain parameters in pulmonary hypertension are determined by changes in volumetric function rather than by hemodynamic alterations. Eur J Radiol 2024; 170:111187. [PMID: 37995513 DOI: 10.1016/j.ejrad.2023.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE To investigate associations of cardiac magnetic resonance feature-tracking-derived left (LV) and right ventricular (RV) global myocardial peak strains and strain rates with volumetric function and hemodynamic parameters to identify the major determinants of myocardial strain alterations in pulmonary hypertension (PH). METHODS Sixty-seven patients with PH or at risk of developing PH underwent right heart catheterization (RHC) and cine realtime imaging at 3 T. RHC parameters included mean pulmonary arterial pressure (mPAP), which was used for the diagnosis of PH. LV and RV volumetric function and feature-tracking-derived global radial, circumferential, and longitudinal (GLS) peak strains, together with their strain rates, were evaluated from cine images using routine software. Furthermore, myocardial strain parameters of 24 healthy subjects were evaluated as controls. Means were compared by t-test; relationships between parameters were investigated by correlation and regression analysis. RESULTS Compared to controls, RV-GLS, all RV systolic strain rates and the LV systolic longitudinal strain rate showed lower magnitudes in PH (RV-GLS: -21 ± 4% vs. -16 ± 5%, p < 0.0001); the strongest univariate correlate to mPAP was the RV-GLS (r = 0.59). All LV and RV strain parameters yielded stronger correlations with their respective ejection fractions. In bi-linear models using mPAP and ejection fraction as predictors, mPAP remained significant only for diastolic LV radial and circumferential strain rates. CONCLUSION Impairment of myocardial strains is more strongly associated with alterations in LV and RV volumetric function parameters than elevated mPAP, therefore limiting diagnostic information of myocardial strain parameters in PH.
Collapse
Affiliation(s)
- Volha Nizhnikava
- Department of Radiology, Medical University of Graz, Austria; Department of Radiology, Kantonsspital Graubuenden, Chur, Switzerland.
| | - Ursula Reiter
- Department of Radiology, Medical University of Graz, Austria.
| | - Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria & LBI for Lung Vascular Research Graz, Austria.
| | - Clemens Reiter
- Department of Radiology, Medical University of Graz, Austria.
| | - Corina Kräuter
- Department of Radiology, Medical University of Graz, Austria.
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria & LBI for Lung Vascular Research Graz, Austria.
| | | | - Gert Reiter
- Department of Radiology, Medical University of Graz, Austria; Research & Development, Siemens Healthcare Diagnostics GmbH, Graz, Austria.
| |
Collapse
|
7
|
Kakaletsis S, Malinowski M, Snider JC, Mathur M, Sugerman GP, Luci JJ, Kostelnik CJ, Jazwiec T, Bersi MR, Timek TA, Rausch MK. Untangling the mechanisms of pulmonary arterial hypertension-induced right ventricular stiffening in a large animal model. Acta Biomater 2023; 171:155-165. [PMID: 37797706 PMCID: PMC11048731 DOI: 10.1016/j.actbio.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Pulmonary hypertension (PHT) is a devastating disease with low survival rates. In PHT, chronic pressure overload leads to right ventricle (RV) stiffening; thus, impeding diastolic filling. Multiple mechanisms may contribute to RV stiffening, including wall thickening, microstructural disorganization, and myocardial stiffening. The relative importance of each mechanism is unclear. Our objective is to use a large animal model to untangle these mechanisms. Thus, we induced pulmonary arterial hypertension (PAH) in sheep via pulmonary artery banding. After eight weeks, the hearts underwent anatomic and diffusion tensor MRI to characterize wall thickening and microstructural disorganization. Additionally, myocardial samples underwent histological and gene expression analyses to quantify compositional changes and mechanical testing to quantify myocardial stiffening. Finally, we used finite element modeling to disentangle the relative importance of each stiffening mechanism. We found that the RVs of PAH animals thickened most at the base and the free wall and that PAH induced excessive collagen synthesis, increased cardiomyocyte cross-sectional area, and led to microstructural disorganization, consistent with increased expression of fibrotic genes. We also found that the myocardium itself stiffened significantly. Importantly, myocardial stiffening correlated significantly with collagen synthesis. Finally, our computational models predicted that myocardial stiffness contributes to RV stiffening significantly more than other mechanisms. Thus, myocardial stiffening may be the most important predictor for PAH progression. Given the correlation between myocardial stiffness and collagen synthesis, collagen-sensitive imaging modalities may be useful for estimating myocardial stiffness and predicting PAH outcomes. STATEMENT OF SIGNIFICANCE: Ventricular stiffening is a significant contributor to pulmonary hypertension-induced right heart failure. However, the mechanisms that lead to ventricular stiffening are not fully understood. The novelty of our work lies in answering this question through the use of a large animal model in combination with spatially- and directionally sensitive experimental techniques. We find that myocardial stiffness is the primary mechanism that leads to ventricular stiffening. Clinically, this knowledge may be used to improve diagnostic, prognostic, and therapeutic strategies for patients with pulmonary hypertension.
Collapse
Affiliation(s)
- Sotirios Kakaletsis
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA; Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
| | - J Caleb Snider
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO, USA
| | - Mrudang Mathur
- Department of Mechanical Engineering, The University of Texas at Austin, TX, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, TX, USA
| | - Jeffrey J Luci
- Center for Advanced Human Brain Imaging Research, Rutgers University, Piscataway, NJ, USA; Scully Neuroimaging Center, Princeton University, Princeton, NJ, USA
| | - Colton J Kostelnik
- Department of Mechanical Engineering, The University of Texas at Austin, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, TX, USA
| | - Tomasz Jazwiec
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA; Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Matthew R Bersi
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO, USA
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA
| | - Manuel K Rausch
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA; Department of Mechanical Engineering, The University of Texas at Austin, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, TX, USA.
| |
Collapse
|
8
|
Xu Z, Dou R, Zhou Z, Zhang H, Zhang C, Li Q, Xu L, Gu H. Differential biventricular adaption to pulmonary vascular disease in patients with idiopathic/heritable and congenital heart disease: a prospective cardiac magnetic resonance and invasive study. Eur Heart J Cardiovasc Imaging 2023; 24:1528-1535. [PMID: 37201191 DOI: 10.1093/ehjci/jead106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
AIMS Despite shared pathophysiological mechanisms, patients with idiopathic/heritable pulmonary arterial hypertension (IPAH/HPAH) have a poorer prognosis than those with PAH after congenital heart defect repair. Ventricular adaption remains unclear and could provide a basis for explaining differences in clinical outcomes. The aim of this prospective study was to assess clinical status, haemodynamic profile, and biventricular adaptation to PAH in children with various forms of PAH. METHODS AND RESULTS Consecutive patients with IPAH/HPAH or post-operative PAH were prospectively recruited (n = 64). All patients underwent a comprehensive, protocolized assessment including functional assessment, measurement of brain natriuretic peptide (BNP) levels, invasive measurements, and a cardiac magnetic resonance (CMR) assessment. A cohort of age- and sex-matched healthy subjects served as controls. Patients with post-operative PAH had a better functional class (61.5 vs. 26.3% in Class I/II, P = 0.02) and a longer 6-min walk distance (320 ± 193 vs. 239 ± 156 m, P = 0.008) than IPAH/HPAH. While haemodynamic parameters were not significantly different between IPAH/HPAH and post-operative patients, post-operative patients with PAH presented with higher left ventricular volumes and better right ventricular function compared with patients with IPAH/HPAH (P < 0.05). On correlation analyses, left ventricular volumetric parameters were highly correlated with BNP and 6-min walk test distance in this population. CONCLUSION Despite comparable haemodynamic profiles, patients with post-operative PAH had less functional limitation than their IPAH/HPAH counterparts. This is potentially related to the differential biventricular adaptation pattern evident on CMR with better myocardial contractility and higher left ventricular volumes in post-operative patients with PAH, highlighting the importance of ventriculo-ventricular interaction in the setting of PAH.
Collapse
Affiliation(s)
- Zhuoyuan Xu
- Department of Paediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, China 100029
| | - Ruiyu Dou
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, China 100029
| | - Zhen Zhou
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, China 100029
| | - Hongsheng Zhang
- Department of Paediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, China 100029
| | - Chen Zhang
- Department of Paediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, China 100029
| | - Qiangqiang Li
- Department of Paediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, China 100029
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, China 100029
| | - Hong Gu
- Department of Paediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, China 100029
| |
Collapse
|
9
|
Orji R, Markson F, Ilelaboye A, Okoronkwo E, Shaka H, Ayinde H, Teme T. Pulmonary Hypertension Is Associated with Worse Outcomes in Patients Hospitalized for Sick Sinus Syndrome. J Innov Card Rhythm Manag 2023; 14:5622-5628. [PMID: 37927394 PMCID: PMC10621623 DOI: 10.19102/icrm.2023.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/31/2023] [Indexed: 11/07/2023] Open
Abstract
Sick sinus syndrome (SSS) is a condition of the sinoatrial node that arises from a constellation of aberrant rhythms, resulting in reduced pacemaker activity and impulse transmission. According to the World Health Organization, pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure of >25 mmHg at rest, measured during right heart catheterization. It can result in right atrial remodeling, which may predispose the patient to sinus node dysfunction. This study sought to estimate the impact of PH on clinical outcomes of hospitalizations with SSS. The U.S. National Inpatient Sample database from 2016-2019 was searched for hospitalized adult patients with SSS as a principal diagnosis with and without PH as a secondary diagnosis using the International Classification of Diseases, Tenth Revision, codes. The primary outcome was inpatient mortality. The secondary outcomes were acute kidney injury (AKI), cardiogenic shock (CS), cardiac arrest, rates of pacemaker insertion, total hospital charges (THCs), and length of stay (LOS). Multivariate regression analysis was used to adjust for confounders. A total of 181,230 patients were admitted for SSS; 8.3% (14,990) had underlying PH. Compared to patients without PH, patients admitted with coexisting PH had a statistically significant increase in mortality (95% confidence interval, 1.21-2.32; P = .002), AKI (P < .001), CS (P = .004), THC (P = .037), and LOS (P < .001). In conclusion, patients admitted primarily for SSS with coexisting PH had a statistically significant increase in mortality, AKI, CS, THC, and LOS. Additional studies geared at identifying and addressing the underlying etiologies for PH in this population may be beneficial in the management of this patient group.
Collapse
Affiliation(s)
- Richard Orji
- Department of Medicine, Rosalind Franklin University of Medicine & Science, North Chicago, IL, USA
- Department of Medicine, Northwestern Medicine McHenry Hospital, McHenry, IL, USA
- Department of Management, University of Massachusetts Amherst, Amherst, MA, USA
| | - Favour Markson
- Department of Medicine, Lincoln Medical Center, New York, NY, USA
| | - Ayodeji Ilelaboye
- Department of Medicine, Lautech Teaching Hospital, Ogbomoso, Oyo, Nigeria
| | - Emeka Okoronkwo
- Department of Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Hafeez Shaka
- Department of Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Hakeem Ayinde
- Division of Cardiology, Novant Health Heart & Vascular Institute Charlotte, Charlotte, NC, USA
| | - Tonye Teme
- Division of Cardiology, Northwestern Medicine, McHenry Hospital, McHenry, IL, USA
| |
Collapse
|
10
|
Qi L, Zhi B, Zhang J, Zhang L, Luo S, Zhang L. Defining Biventricular Abnormalities by Cardiac Magnetic Resonance in Pre-Dialysis Patients with Chronic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:277-284. [PMID: 37900003 PMCID: PMC10601957 DOI: 10.1159/000529526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/30/2023] [Indexed: 10/31/2023]
Abstract
Introduction The aim of the study was to investigate biventricular structural and functional abnormalities in pre-dialysis patients across stages of chronic kidney disease (CKD) by cardiac magnetic resonance (CMR). Methods Fifty-one CKD patients with CMR exams were retrospectively analyzed. Patients were divided into three groups according to estimated glomerular filtration rate (eGFR): CKD 1 group (patients with normal eGFR≥90 mL/min/1.73 m2, n = 20), CKD 2-3 group (patients with eGFR< 90 to ≥30 mL/min/1.73 m2, n = 14), and CKD 4-5 group (patients with eGFR<30 mL/min/1.73 m2, n = 17). Twenty-one age- and sex-matched healthy controls (HC) were recruited. CMR-derived left ventricular (LV) and right ventricular (RV) structural and functional measures were compared. Association between CMR parameters and clinical measures was assessed. Results There was an increasing trend in RV mass index (RVMi) and LV mass index (LVMi) with the occurrence and development of CKD from HC group to CKD 4-5 group although no significant difference was observed between CKD 1 group and HC group. LV global radial strain and LV global circumferential strain dropped and native T1 value elevated significantly in CKD 4-5 group compared with the other three groups (all p < 0.05), while RV strain measures, RV ejection fraction, and LV ejection fraction showed no significant difference among 4 groups (all p > 0.05). Elevated LV end-diastolic volume index (β = 0.356, p = 0.016) and RV end-systolic volume index (β = 0.488, p = 0.001) were independently associated with RVMi. Increased systolic blood pressure (β = 0.309, p = 0.004), LV end-systolic volume index (β = 0.633, p < 0.001), and uric acid (β = 0.261, p = 0.013) were independently associated with LVMi. Meanwhile, serum phosphorus (β = 0.519, p = 0.001) was independently associated with native T1 value. Conclusion In pre-dialysis CKD patients, left and right ventricular remolding has occurred. RVMi and LVMi were the first changed CMR indexes in the development of CKD when eGFR began to drop. Because fluid volume overload was the independent risk factor for RVMi and LVMi increase, reasonable controlling fluid volume overload may slow down the progression of biventricular remolding and may reduce related cardiovascular disease risk.
Collapse
Affiliation(s)
- Li Qi
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Beibei Zhi
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Zhang
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Lingyan Zhang
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Song Luo
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Kitano T, Nabeshima Y, Nagata Y, Takeuchi M. Prognostic value of the right ventricular ejection fraction using three-dimensional echocardiography: Systematic review and meta-analysis. PLoS One 2023; 18:e0287924. [PMID: 37418388 PMCID: PMC10328342 DOI: 10.1371/journal.pone.0287924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
AIMS Three-dimensional echocardiography (3DE) is a robust method for measuring the right ventricular (RV) ejection fraction (EF), which is closely associated with outcomes. We performed a systematic review and meta-analysis (1) to examine the prognostic value of RVEF and (2) to compare its prognostic value with that of left ventricular (LV) EF and LV global longitudinal strain (GLS). We also performed individual patient data analysis to validate the results. METHODS AND RESULTS We searched articles reporting the prognostic value of RVEF. Hazard ratios (HR) were re-scaled using the within-study standard deviation (SD). To compare predictive values of RVEF and LVEF or LVGLS, the ratio of HR related to a 1-SD reduction of RVEF versus LVEF or LVGLS was calculated. Pooled HR of RVEF and pooled ratio of HR were analyzed in a random-effects model. Fifteen articles with 3,228 subjects were included. Pooled HR of a 1-SD reduction of RVEF was 2.54 (95% confidence interval (CI): 2.15-3.00). In subgroup analysis, RVEF was significantly associated with outcome in pulmonary arterial hypertension (PAH) (HR: 2.79, 95% CI: 2.04-3.82) and cardiovascular (CV) diseases (HR: 2.23, 95%CI: 1.76-2.83). In studies reporting HRs for both RVEF and LVEF or RVEF and LVGLS in the same cohort, RVEF had 1.8-fold greater prognostic power per 1-SD reduction than LVEF (ratio of HR: 1.81, 95%CI: 1.20-2.71), but had predictive value similar to that of LVGLS (ratio of HR: 1.10, 95%CI: 0.91-1.31) and to LVEF in patients with reduced LVEF (ratio of HR: 1.34, 95%CI: 0.94-1.91). In individual patient data analysis (n = 1,142), RVEF < 45% was significantly associated with worse CV outcome (HR: 4.95, 95% CI: 3.66-6.70), even in patients with reduced or preserved LVEF. CONCLUSIONS The findings of this meta-analysis highlight and support the use of RVEF assessed by 3DE to predict CV outcomes in routine clinical practice in patients with CV diseases and in those with PAH.
Collapse
Affiliation(s)
- Tetsuji Kitano
- Second Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Yosuke Nabeshima
- Second Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Yasufumi Nagata
- Second Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Masaaki Takeuchi
- Department of Laboratory and Transfusion Medicine, University of Occupational and Environmental Health Hospital, Kitakyushu, Japan
| |
Collapse
|
12
|
Hahn RT, Lerakis S, Delgado V, Addetia K, Burkhoff D, Muraru D, Pinney S, Friedberg MK. Multimodality Imaging of Right Heart Function: JACC Scientific Statement. J Am Coll Cardiol 2023; 81:1954-1973. [PMID: 37164529 DOI: 10.1016/j.jacc.2023.03.392] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/12/2023]
Abstract
Right ventricular (RV) size and function assessed by multimodality imaging are associated with outcomes in a variety of cardiovascular diseases. Understanding RV anatomy and physiology is essential in appreciating the strengths and weaknesses of current imaging methods and gives these measurements greater context. The adaptation of the right ventricle to different types and severity of stress, particularly over time, is specific to the cardiovascular disease process. Multimodality imaging parameters, which determine outcomes, reflect the ability to image the initial and longitudinal RV response to stress. This paper will review the standard and novel imaging methods for assessing RV function and the impact of these parameters on outcomes in specific disease states.
Collapse
Affiliation(s)
- Rebecca T Hahn
- Department of Medicine, Columbia University Medical Center/NewYork-Presbyterian Hospital, New York, New York, USA.
| | | | - Victoria Delgado
- Hospital University Germans Trias i Pujol Hospital, Badalona, Barcelona, Spain
| | - Karima Addetia
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Denisa Muraru
- Department of Cardiology, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sean Pinney
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
13
|
Xu W, Deng M, Zhang L, Zhang P, Gao Q, Tao X, Zhen Y, Liu X, Jin N, Chen W, Xie W, Liu M. Qualification of Ventricular Flow in Patients With Precapillary Pulmonary Hypertension With 4-dimensional Flow Magnetic Resonance Imaging. J Thorac Imaging 2023; 38:00005382-990000000-00068. [PMID: 37199439 PMCID: PMC10597405 DOI: 10.1097/rti.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
PURPOSE Our goal was to study both right and left ventricular blood flow in patients with precapillary pulmonary hypertension (pre-PH) with 4-dimensional (4D) flow magnetic resonance imaging (MRI) and to analyze their correlation with cardiac functional metrics on cardiovascular magnetic resonance (CMR) and hemodynamics from right heart catheterization (RHC). MATERIALS AND METHODS 129 patients (64 females, mean age 47 ± 13 y) including 105 patients with pre-PH (54 females, mean age 49 ± 13 y) and 24 patients without PH (10 females, mean age 40 ± 12 y) were retrospectively included. All patients underwent CMR and RHC within 48 hours. 4D flow MRI was acquired using a 3-dimensional retrospectively electrocardiograph-triggered, navigator-gated phase contrast sequence. Right and left ventricular flow components including the percentages of direct flow (PDF), retained inflow (PRI), delayed ejection flow (PDE), and residual volume (PRVo) were respectively quantified. The ventricular flow components between patients with pre-PH and non-PH were compared and correlations of flow components with CMR functional metrics and hemodynamics measured with RHC were analyzed. Biventricular flow components were compared between survivors and deceased patients during the perioperative period. RESULTS Right ventricular (RV) PDF and PDE significantly correlated with RVEDV and RV ejection fraction. RV PDF negatively correlated with pulmonary arterial pressure (PAP) and pulmonary vascular resistance. When the RV PDF was <11%, the sensitivity and specificity of RV PDF for predicting mean PAP ≥25 mm Hg were 88.6% and 98.7%, respectively, with an area under the curve value of 0.95 ± 0.02. When RV PRVo was more than 42%, the sensitivity and specificity of RV PRVo for predicting mean PAP ≥25 mm Hg were 85.7% and 98.5%, respectively, with an area under the curve value of 0.95 ± 0.01. Nine patients died during the perioperative period. Biventricular PDF, RV PDE, and PRI of survivors were higher than nonsurvivors whereas RV PRVo increased in deceased patients. CONCLUSIONS Biventricular flow analysis with 4D flow MRI provides comprehensive information about the severity and cardiac remodeling of PH and may be a predictor of perioperative death of patients with pre-PH.
Collapse
Affiliation(s)
- Wenqing Xu
- Peking University China-Japan Friendship School of Clinical Medicine
| | - Mei Deng
- Chinese Academy of Medical Sciences and Peking Union Medical College
| | | | | | - Qian Gao
- Department of Pulmonary and Critical Care Medicine
| | - Xincao Tao
- Department of Pulmonary and Critical Care Medicine
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ning Jin
- Siemens Medical Solution, Chicago, IL, USA
| | - Wenhui Chen
- Department of Pulmonary and Critical Care Medicine
| | - Wanmu Xie
- Department of Pulmonary and Critical Care Medicine
| | | |
Collapse
|
14
|
Duong SQ, Vaid A, Vy HMT, Butler LR, Lampert J, Pass RH, Charney AW, Narula J, Khera R, Greenspan H, Gelb BD, Do R, Nadkarni G. Quantitative prediction of right ventricular and size and function from the electrocardiogram. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.25.23289130. [PMID: 37162979 PMCID: PMC10168487 DOI: 10.1101/2023.04.25.23289130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Right ventricular ejection fraction (RVEF) and end-diastolic volume (RVEDV) are not readily assessed through traditional modalities. Deep-learning enabled 12-lead electrocardiogram analysis (DL-ECG) for estimation of RV size or function is unexplored. Methods We trained a DL-ECG model to predict RV dilation (RVEDV>120 mL/m2), RV dysfunction (RVEF≤40%), and numerical RVEDV/RVEF from 12-lead ECG paired with reference-standard cardiac MRI (cMRI) volumetric measurements in UK biobank (UKBB; n=42,938). We fine-tuned in a multi-center health system (MSHoriginal; n=3,019) with prospective validation over 4 months (MSHvalidation; n=115). We evaluated performance using area under the receiver operating curve (AUROC) for categorical and mean absolute error (MAE) for continuous measures overall and in key subgroups. We assessed association of RVEF prediction with transplant-free survival with Cox proportional hazards models. Results Prevalence of RV dysfunction for UKBB/MSHoriginal/MSHvalidation cohorts was 1.0%/18.0%/15.7%, respectively. RV dysfunction model AUROC for UKBB/MSHoriginal/MSHvalidation cohorts was 0.86/0.81/0.77, respectively. Prevalence of RV dilation for UKBB/MSHoriginal/MSHvalidation cohorts was 1.6%/10.6%/4.3%. RV dilation model AUROC for UKBB/MSHoriginal/MSHvalidation cohorts 0.91/0.81/0.92, respectively. MSHoriginal MAE was RVEF=7.8% and RVEDV=17.6 ml/m2. Performance was similar in key subgroups including with and without left ventricular dysfunction. Over median follow-up of 2.3 years, predicted RVEF was independently associated with composite outcome (HR 1.37 for each 10% decrease, p=0.046). Conclusions DL-ECG analysis can accurately identify significant RV dysfunction and dilation both overall and in key subgroups. Predicted RVEF is independently associated with clinical outcome.
Collapse
Affiliation(s)
- Son Q Duong
- Division of Pediatric Cardiology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Akhil Vaid
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ha My Thi Vy
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liam R Butler
- Division of Pediatric Cardiology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joshua Lampert
- Helmsley Center for Electrophysiology at The Mount Sinai Hospital, New York, NY
| | - Robert H Pass
- Division of Pediatric Cardiology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander W Charney
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT
- Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT
| | - Hayit Greenspan
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bruce D Gelb
- Division of Pediatric Cardiology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ron Do
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Girish Nadkarni
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine (D3M), Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
15
|
Kakaletsis S, Malinowski M, Mathur M, Sugerman GP, Lucy JJ, Snider C, Jazwiec T, Bersi M, Timek TA, Rausch MK. Untangling the mechanisms of pulmonary hypertension-induced right ventricular stiffening in a large animal model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535491. [PMID: 37066294 PMCID: PMC10104078 DOI: 10.1101/2023.04.03.535491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Pulmonary arterial hypertension (PHT) is a devastating disease with low survival rates. In PHT, chronic pressure overload leads to right ventricle (RV) remodeling and stiffening; thus, impeding diastolic filling and ventricular function. Multiple mechanisms contribute to RV stiffening, including wall thickening, microstructural disorganization, and myocardial stiffening. The relative importance of each mechanism is unclear. Our objective is to use a large animal model as well as imaging, experimental, and computational approaches to untangle these mechanisms. Methods We induced PHT in eight sheep via pulmonary artery banding. After eight weeks, the hearts underwent anatomic and diffusion tensor MRI to characterize wall thickening and microstructural disorganization. Additionally, myocardial samples underwent histological and gene expression analyses to quantify compositional changes and mechanical testing to quantify myocardial stiffening. All findings were compared to 12 control animals. Finally, we used computational modeling to disentangle the relative importance of each stiffening mechanism. Results First, we found that the RVs of PHT animals thickened most at the base and the free wall. Additionally, we found that PHT induced excessive collagen synthesis and microstructural disorganization, consistent with increased expression of fibrotic genes. We also found that the myocardium itself stiffened significantly. Importantly, myocardial stiffening correlated significantly with excess collagen synthesis. Finally, our model of normalized RV pressure-volume relationships predicted that myocardial stiffness contributes to RV stiffening significantly more than other mechanisms. Conclusions In summary, we found that PHT induces wall thickening, microstructural disorganization, and myocardial stiffening. These remodeling mechanisms were both spatially and directionally dependent. Using modeling, we show that myocardial stiffness is the primary contributor to RV stiffening. Thus, myocardial stiffening may be an important predictor for PHT progression. Given the significant correlation between myocardial stiffness and collagen synthesis, collagen-sensitive imaging modalities may be useful for non-invasively estimating myocardial stiffness and predicting PHT outcomes.
Collapse
Affiliation(s)
- Sotirios Kakaletsis
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI
- Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
| | - Mrudang Mathur
- Department of Mechanical Engineering, The University of Texas at Austin, TX
| | | | - Jeff J. Lucy
- Center for Advanced Brain Imaging Research, Rutgers University, New Brunswick, NJ
| | - Caleb Snider
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO
| | - Tomasz Jazwiec
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Matthew Bersi
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO
| | - Tomasz A. Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI
| | - Manuel K. Rausch
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX
- Department of Biomedical Engineering, The University of Texas at Austin, TX
| |
Collapse
|
16
|
Tang L, Diao K, Deng Q, Wu X, Peng P, Yue X, Wu T, Cheng W, Li Y, Zhou X, Wetzl J, Chen Y, Yue W, Sun J. Comparison between pre- and post-contrast cardiac MRI cine images: the impact on ventricular volume and strain measurement. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:1055-1064. [PMID: 36840896 DOI: 10.1007/s10554-023-02809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
To explore whether contrast agent administration will affect ventricular volume and strain parameters measured on cardiac magnetic resonance cine images. This prospective study enrolled 88 patients, including 32 patients with cardiac amyloidosis (CA), 32 patients with hypertrophic cardiomyopathy (HCM), and 24 control participants, to perform steady-state free precession (SSFP)-cine imaging twice, respectively before and after contrast agent injection. Indexed left and right ventricular (LV and RV) volume and LV strain parameters (peak radial strain [PRS], peak circumferential strain [PCS], peak longitudinal strain [PLS]) were analyzed and compared between the pre- and post-contrast cine groups. Compared to the group of pre-contrast cine, the end-diastolic volume index (EDVi) and end-systolic volume index (ESVi) significantly increased in the group using post-contrast cine images (all p < 0.05), especially in the right ventricle. After contrast injection, the right ventricular ejection fraction (RVEF) decreased significantly (p < 0.05), while the left ventricular ejection fraction (LVEF) only reduced for patients with HCM (p < 0.05). The PRS (37.1 ± 15.2 vs. 32.0 ± 15.4, p < 0.001) and PCS (- 14.9 ± 4.3 vs. - 14.0 ± 4.1, p < 0.001) derived from post-contrast cine images reduced significantly in all patients and this tendency remained in subgroup analysis except for PCS in the control group. The administration of a contrast agent may influence the measurements of ventricular volume and strain. Acquiring pre-contrast cine images were suggested for patients who required more accurate right ventricle evaluation or precise strain assessment.
Collapse
Affiliation(s)
- Lu Tang
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Kaiyue Diao
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Qiao Deng
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Xi Wu
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Pengfei Peng
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Xun Yue
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Tao Wu
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Wei Cheng
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yangjie Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Jens Wetzl
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjun Yue
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Sayour AA, Tokodi M, Celeng C, Takx RAP, Fábián A, Lakatos BK, Friebel R, Surkova E, Merkely B, Kovács A. Association of Right Ventricular Functional Parameters With Adverse Cardiopulmonary Outcomes: A Meta-analysis. J Am Soc Echocardiogr 2023:S0894-7317(23)00074-3. [PMID: 36773817 DOI: 10.1016/j.echo.2023.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
AIMS We aimed to confirm that three-dimensional echocardiography-derived right ventricular ejection fraction (RVEF) is better associated with adverse cardiopulmonary outcomes than the conventional echocardiographic parameters. METHODS We performed a meta-analysis of studies reporting the impact of unit change of RVEF, tricuspid annular plane systolic excursion (TAPSE), fractional area change (FAC), and free-wall longitudinal strain (FWLS) on clinical outcomes (all-cause mortality and/or adverse cardiopulmonary outcomes). Hazard ratios (HRs) were rescaled by the within-study SDs to represent standardized changes. Within each study, we calculated the ratio of HRs related to a 1 SD reduction in RVEF versus TAPSE, or FAC, or FWLS, to quantify the association of RVEF with adverse outcomes relative to the other metrics. These ratios of HRs were pooled using random-effects models. RESULTS Ten independent studies were identified as suitable, including data on 1,928 patients with various cardiopulmonary conditions. Overall, a 1 SD reduction in RVEF was robustly associated with adverse outcomes (HR = 2.64 [95% CI, 2.18-3.20], P < .001; heterogeneity: I2 = 65%, P = .002). In studies reporting HRs for RVEF and TAPSE, or RVEF and FAC, or RVEF and FWLS in the same cohort, head-to-head comparison revealed that RVEF showed significantly stronger association with adverse outcomes per SD reduction versus the other 3 parameters (vs TAPSE, HR = 1.54 [95% CI, 1.04-2.28], P = .031; vs FAC, HR = 1.45 [95% CI, 1.15-1.81], P = .001; vs FWLS, HR = 1.44 [95% CI, 1.07-1.95], P = .018). CONCLUSION Reduction in three-dimensional echocardiography-derived RVEF shows stronger association with adverse clinical outcomes than conventional right ventricular functional indices; therefore, it might further refine the risk stratification of patients with cardiopulmonary diseases.
Collapse
Affiliation(s)
- Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Tokodi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Csilla Celeng
- Department of Radiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Richard A P Takx
- Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexandra Fábián
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bálint K Lakatos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Rocco Friebel
- Department of Health Policy, London School of Economics and Political Science, London, United Kingdom
| | - Elena Surkova
- Harefield Hospital, Royal Brompton and Harefield Hospitals, Part of Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Kovács
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
18
|
Pola K, Bergström E, Töger J, Rådegran G, Arvidsson PM, Carlsson M, Arheden H, Ostenfeld E. Increased biventricular hemodynamic forces in precapillary pulmonary hypertension. Sci Rep 2022; 12:19933. [PMID: 36402861 PMCID: PMC9675772 DOI: 10.1038/s41598-022-24267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Precapillary pulmonary hypertension (PHprecap) is a condition with elevated pulmonary vascular pressure and resistance. Patients have a poor prognosis and understanding the underlying pathophysiological mechanisms is crucial to guide and improve treatment. Ventricular hemodynamic forces (HDF) are a potential early marker of cardiac dysfunction, which may improve evaluation of treatment effect. Therefore, we aimed to investigate if HDF differ in patients with PHprecap compared to healthy controls. Patients with PHprecap (n = 20) and age- and sex-matched healthy controls (n = 12) underwent cardiac magnetic resonance imaging including 4D flow. Biventricular HDF were computed in three spatial directions throughout the cardiac cycle using the Navier-Stokes equations. Biventricular HDF (N) indexed to stroke volume (l) were larger in patients than controls in all three directions. Data is presented as median N/l for patients vs controls. In the RV, systolic HDF diaphragm-outflow tract were 2.1 vs 1.4 (p = 0.003), and septum-free wall 0.64 vs 0.42 (p = 0.007). Diastolic RV HDF apex-base were 1.4 vs 0.87 (p < 0.0001), diaphragm-outflow tract 0.80 vs 0.47 (p = 0.005), and septum-free wall 0.60 vs 0.38 (p = 0.003). In the LV, systolic HDF apex-base were 2.1 vs 1.5 (p = 0.005), and lateral wall-septum 1.5 vs 1.2 (p = 0.02). Diastolic LV HDF apex-base were 1.6 vs 1.2 (p = 0.008), and inferior-anterior 0.46 vs 0.24 (p = 0.02). Hemodynamic force analysis conveys information of pathological cardiac pumping mechanisms complementary to more established volumetric and functional parameters in precapillary pulmonary hypertension. The right ventricle compensates for the increased afterload in part by augmenting transverse forces, and left ventricular hemodynamic abnormalities are mainly a result of underfilling rather than intrinsic ventricular dysfunction.
Collapse
Affiliation(s)
- Karin Pola
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Elsa Bergström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johannes Töger
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, and Skåne University Hospital, Section of Heart Failure and Valvular Disease, Lund University, Lund, Sweden
| | - Per M Arvidsson
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Marcus Carlsson
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ellen Ostenfeld
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
19
|
Guo J, Wang L, Wang J, Wan K, Gong C, Chen X, Guo J, Xu Y, He J, Yin L, Pu S, Wen B, Chen C, Han Y, Chen Y. Prognostic Value of Hepatic Native T1 and Extracellular Volume Fraction in Patients with Pulmonary Arterial Hypertension. J Am Heart Assoc 2022; 11:e026254. [DOI: 10.1161/jaha.122.026254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background
Right heart failure may lead to impaired liver perfusion and venous congestion, resulting in different extents of liver fibrosis. However, whether hepatic tissue deterioration determined by native T1 mapping and extracellular volume fraction using cardiac magnetic resonance imaging is associated with poor outcomes in patients with pulmonary arterial hypertension remains unclear.
Methods and Results
A total of 131 participants with pulmonary arterial hypertension (mean age, 36±13 years) and 64 healthy controls (mean age, 44±18) between October 2013 and December 2019 were prospectively enrolled. Hepatic native T1 and extracellular volume fraction values were measured using modified Look–Locker inversion recovery T1 mapping sequences. The primary end point was all‐cause mortality; the secondary end point was all‐cause mortality and repeat hospitalization attributable to heart failure. Cox regression models and Kaplan–Meier survival analysis were used to identify the association between variables and clinical outcome. During a median follow‐up of 34.5 months (interquartile range: 25.3–50.8), hepatic native T1 (hazard ratio per 30‐ms increase, 1.22 [95% CI, 1.07–1.39];
P
=0.003) and extracellular volume fraction (hazard ratio per 3% increase, 1.18 [95% CI, 1.04–1.34];
P
=0.010) values were associated with a higher risk of death. In the multivariate Cox model, hepatic native T1 value (hazard ratio per 30‐ms increase, 1.15 [95% CI, 1.04–1.27];
P
=0.009) remained as an independent prognostic factor for the secondary end point.
Conclusions
Hepatic T1 mapping values were predictors of adverse cardiovascular events in participants with pulmonary arterial hypertension and could be novel imaging biomarkers for poor prognosis recognition.
Collapse
Affiliation(s)
- Jiajun Guo
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Lili Wang
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jiaqi Wang
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Ke Wan
- Department of Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Chao Gong
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Xiaoling Chen
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Jinghua Guo
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Juan He
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Lidan Yin
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Shoufang Pu
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Bi Wen
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Chen Chen
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| | - Yuchi Han
- Cardiovascular Medicine, Wexner Medical Center, College of Medicine The Ohio State University Columbus Ohio
| | - Yucheng Chen
- Department of Cardiology, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
20
|
Meng T, Wang P, Ding J, Du R, Gao J, Li A, Yu S, Liu J, Lu X, He Q. Global Research Trends on Ventricular Remodeling: A Bibliometric Analysis From 2012 to 2022. Curr Probl Cardiol 2022; 47:101332. [PMID: 35870550 DOI: 10.1016/j.cpcardiol.2022.101332] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
Ventricular remodeling is the progressive pathologic change of the original substance and morphology of the ventricle caused by various injuries and has attracted increasing attention in the past decade. This study aims to conduct a bibliometric analysis of articles on ventricular remodeling published in the Web of Science Core Collection database from 2012 to 2022 to understand the current research state in the field of ventricular remodeling and provide insights for clinicians and researchers. As a result, a total of 1710 articles on ventricular remodeling were included. Annual publications have been gradually increasing and have remained at a high level over the past 10 years. The United States of America contributed the most publications, followed by China. Circulation was the most mainstream and authoritative journal focusing on ventricular remodeling. Research hotspot analysis suggested that myocardial infarction was the primary risk factor for ventricular remodeling, and emerging risk factor studies have focused on pulmonary hypertension, aortic stenosis, and diabetes. The mechanisms in the pathogenesis of ventricular remodeling were mainly closely associated with inflammation, apoptosis, oxidative stress, and myocardial fibrosis. Intensive investigation of the interactions between different mechanisms might be a future research direction. In terms of treatment, cardiac resynchronization therapy was a hot topic of research. These findings can help researchers grasp the research status of ventricular remodeling and determine future research directions.
Collapse
Affiliation(s)
- Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Wang
- Department of Traditional Chinese Medicine, Beijing Jiangong Hospital, Beijing, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruolin Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anqi Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Yu
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jin Liu
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinyu Lu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Lindholm A, Kjellström B, Seemann F, Carlsson M, Hesselstrand R, Rådegran G, Arheden H, Ostenfeld E. Atrioventricular plane displacement and regional function to predict outcome in pulmonary arterial hypertension. Int J Cardiovasc Imaging 2022; 38:2235-2248. [PMID: 37726454 PMCID: PMC10509124 DOI: 10.1007/s10554-022-02616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
To investigate if left and right atrioventricular plane displacement (AVPD) or regional contributions to SV are prognostic for outcome in patients with pulmonary arterial hypertension (PAH). Seventy-one patients with PAH and 20 sex- and age-matched healthy controls underwent CMR. Myocardial borders and RV insertion points were defined at end diastole and end systole in cine short-axis stacks to compute biventricular volumes, lateral (SVlat%) and septal (SVsept%) contribution to stroke volume. Eight atrioventricular points were defined at end diastole and end systole in 2-, 3- and 4-chamber cine long-axis views for computation of AVPD and longitudinal contribution to stroke volume (SVlong%). Cut-off values for survival analysis were defined as two standard deviations above or below the mean of the controls. Outcome was defined as death or lung transplantation. Median follow-up time was 3.6 [IQR 3.7] years. Patients were 57 ± 19 years (65% women) and controls 58 ± 15 years (70% women). Biventricular AVPD, SVlong% and ejection fraction (EF) were lower and SVlat% was higher, while SVsept% was lower in PAH compared with controls. In PAH, transplantation-free survival was lower below cut-off for LV-AVPD (hazard ratio [HR] = 2.1, 95%CI 1.2-3.9, p = 0.02) and RV-AVPD (HR = 9.8, 95%CI 4.6-21.1, p = 0.005). In Cox regression analysis, lower LV-AVPD and RV-AVPD inferred lower transplantation-free survival (LV: HR = 1.16, p = 0.007; RV: HR = 1.11, p = 0.01; per mm decrease). LV-SVlong%, RV-SVlong%, LV-SVlat%, RV-SVlat%, SVsept% and LV- and RVEF did not affect outcome. Low left and right AVPD were associated with outcome in PAH, but regional contributions to stroke volume and EF were not.
Collapse
Affiliation(s)
- Anthony Lindholm
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, 221 85 Lund, Sweden
| | - Barbro Kjellström
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, 221 85 Lund, Sweden
- Cardiology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Felicia Seemann
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, 221 85 Lund, Sweden
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, 221 85 Lund, Sweden
| | - Roger Hesselstrand
- Department of Clinical Sciences Lund, Rheumatology, and the Clinic for Rheumatology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, and the Section for Heart Failure and Valvular Disease, Skåne University Hospital, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, 221 85 Lund, Sweden
| | - Ellen Ostenfeld
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, 221 85 Lund, Sweden
| |
Collapse
|
22
|
Brittain EL, Thenappan T, Huston JH, Agrawal V, Lai YC, Dixon D, Ryan JJ, Lewis EF, Redfield MM, Shah SJ, Maron BA. Elucidating the Clinical Implications and Pathophysiology of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction: A Call to Action: A Science Advisory From the American Heart Association. Circulation 2022; 146:e73-e88. [PMID: 35862198 PMCID: PMC9901193 DOI: 10.1161/cir.0000000000001079] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This science advisory focuses on the need to better understand the epidemiology, pathophysiology, and treatment of pulmonary hypertension in patients with heart failure with preserved ejection fraction. This clinical phenotype is important because it is common, is strongly associated with adverse outcomes, and lacks evidence-based therapies. Our goal is to clarify key knowledge gaps in pulmonary hypertension attributable to heart failure with preserved ejection fraction and to suggest specific, actionable scientific directions for addressing such gaps. Areas in need of additional investigation include refined disease definitions and interpretation of hemodynamics, as well as greater insights into noncardiac contributors to pulmonary hypertension risk, optimized animal models, and further molecular studies in patients with combined precapillary and postcapillary pulmonary hypertension. We highlight translational approaches that may provide important biological insight into pathophysiology and reveal new therapeutic targets. Last, we discuss the current and future landscape of potential therapies for patients with heart failure with preserved ejection fraction and pulmonary vascular dysfunction, including considerations of precision medicine, novel trial design, and device-based therapies, among other considerations. This science advisory provides a synthesis of important knowledge gaps, culminating in a collection of specific research priorities that we argue warrant investment from the scientific community.
Collapse
|
23
|
Xu W, Sun X, Tao X, Wang D, Zhen Y, Liu X, An J, Xie W, Liu M. Characteristics of Right Ventricular Blood Flow in Patients With Chronic Thromboembolic Pulmonary Hypertension: An Analysis With 4-Dimensional Flow Cardiovascular Magnetic Resonance Imaging. Front Cardiovasc Med 2022; 9:900301. [PMID: 35783864 PMCID: PMC9240307 DOI: 10.3389/fcvm.2022.900301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBlood flow is closely related to function, but currently, the relationship of right ventricular (RV) blood flow components with RV function and hemodynamics in patients with chronic thromboembolic pulmonary hypertension (CTEPH) remains unclear. Our objective is to qualify RV function with 4-dimensional flow cardiovascular magnetic resonance (4D-Flow CMR) imaging and to investigate the correlation between RV flow and hemodynamics in patients with CTEPH.MethodsRetrospective enrollment included 67 patients with CTEPH (mean age 47.8±14.2 years, 47 men) who underwent CMR and right heart catheterization (RHC) within 2 days. RHC was used to evaluate hemodynamics. RV flow components including the percentages of direct flow (PDF), retained inflow (PRI), delayed ejection flow (PDEF), and residual volume (PRVo) were quantified on 4D-Flow sequence. RV functional metrics were determined with the CINE balanced steady-state free precession sequence. The sum of PDF and PDEF was compared with RV eject fraction (RVEF). The correlation among RV flow components, RV functional metrics and hemodynamics was analyzed with spearman correlation analysis.ResultsThe median (interquartile range) of RVEF, PDF, PDEF, PRI, and PRVo, respectively was 35.5% (18.2, 45.6%), 18% (8.4, 21.4%), 15.1% (13.5, 19.0%), 15.9% (13.8, 20.8%), and 50.6% (35.6, 60.4%). The sum of PDF and PDEF is 35.1% (24.8, 46.6%), which was similar to RVEF (z = 0.58, p = 0.561). PDF negatively correlated with right ventricular end-systolic volume index (RVESVI), right ventricular myocardial mass index (RVMI) and right ventricular global longitudinal strain (r = −0.61, −0.65, −0.64, p < 0.001). PRVo positively correlated with RVESVI and RVMI (r = 0.50, 0.58, p < 0.001). PDF negatively correlated with pulmonary vascular resistance (PVR) (r = −0.72, p < 0.001) while it positively correlated with cardiac output (CO) and cardiac index (CI) (r = 0.64 & 0.52, p < 0.001). PRVo positively correlated with mean pulmonary pressure and PVR (r = 0.57&0.54, p < 0.001). Total five patients died in the perioperative period. RVEF in the deceased patients was similar to survivors (z = −1.163, p = 0.092). In comparison with the survivors, RVPDF in the deceased patients significantly reduced (z = −2.158, p = 0.029) while RVPDEF, RVPRI, and RVPRVo in deceased patients were similar to survivors.Conclusion4D-Flow CMR can provide simultaneous quantification of RV function and hemodynamics in the assessment of CTEPH without breath-holding. The reduced PDF and increased PRVo were the main characteristics of RV flow in CTEPH.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xuebiao Sun
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xincao Tao
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Dingyi Wang
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shanghai, China
| | - Wanmu Xie
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Min Liu
| |
Collapse
|
24
|
Jiang R, Wang L, Yuan P, Zhao QH, Gong SG, He J, Qiu HL, Luo CJ, Zhang R, Shen T, Zhan MY, Jiang YM, Chen FD, Liu JM, Shen YQ. A Study of the Efficacy and Safety of Aerobic Exercise Training in Pulmonary Arterial Hypertension (the Saturday Study): Protocol for a Prospective, Randomized, and Controlled Trial. Front Med (Lausanne) 2022; 9:835272. [PMID: 35449803 PMCID: PMC9016180 DOI: 10.3389/fmed.2022.835272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patients with pulmonary arterial hypertension (PAH) have reduced exercise capacity and poor quality of life. Exercise-based rehabilitation in PAH results in clinically relevant improvements in exercise capacity and hemodynamics. To clarify the mechanism, we will evaluate the effect of aerobic exercise training rehabilitation on right ventricular (RV) remodeling and function as determined measured by cardiac magnetic resonance imaging (CMR). Methods We will conduct a 26-week multicenter randomized controlled trial. Patients on stable and unchanged PAH-targeted medication are randomly assigned (1:1) to the control and training groups. The primary endpoint is the RV stroke volume (RVSV) change from baseline to Week 26, determined by CMR. Comprehensive RV function is also performed using CMR. Other characteristics of the RV and left ventricle, World Health Organization functional class, 6-min walk distance, and N-terminal pro-B-type natriuretic peptide are included in secondary endpoints. We also investigate the proteomic, metabolomic, and transcriptomic changes after exercise training as exploratory endpoints. Ethics and Dissemination The study and protocol were approved by the Ethics Committee of Shanghai Pulmonary Hospital (Approved No. of ethics committee: L20-17). The results will be disseminated at medical conferences and in journal publications. All participants will sign written informed consent. Trial Registration Number ChiCTR2000031650.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Su-Gang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Ling Qiu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ci-Jun Luo
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Zhang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ting Shen
- Department of Cardiac Rehabilitation, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meng-Yi Zhan
- Department of Cardiac Rehabilitation, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Mei Jiang
- Department of Cardiac Rehabilitation, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fa-Dong Chen
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Ming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Qin Shen
- Department of Cardiac Rehabilitation, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Ota H, Kamada H, Higuchi S, Takase K. Clinical Application of 4D Flow MR Imaging to Pulmonary Hypertension. Magn Reson Med Sci 2022; 21:309-318. [PMID: 35185084 PMCID: PMC9680544 DOI: 10.2463/mrms.rev.2021-0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/19/2021] [Indexed: 10/14/2023] Open
Abstract
Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure (PAP). Although right-heart catheterization is the gold standard method for the diagnosis of PH by definition, various less-invasive imaging tests have been used for screening, detection of underlying diseases-causing PH, and monitoring of diseases. Among them, 4D flow MRI is an emerging and unique imaging test that allows for comprehensive visualization of blood flow in the right heart and proximal pulmonary arteries. The characteristic blood flow pattern observed in patients with PH is vortical flow formation in the main pulmonary artery. Recent studies have proposed the use of these findings to determine not only the presence of PH but also estimate the mean PAP. Other applications of 4D flow MRI for PH include measurement of wall shear stress, helicity, and 3D flow balance in the pulmonary arteries. It is worth noting that 4D flow has also the potential for longitudinal follow-ups. In this review, the clinical definition of PH, summary of conventional imaging tests, characteristics of pulmonary arterial flow as shown by 4D flow MRI, and clinical application of 4D flow MRI in the management of patients with PH will be discussed.
Collapse
Affiliation(s)
- Hideki Ota
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
- Department of Advanced MRI Collaboration Research, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroki Kamada
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Satoshi Higuchi
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
- Department of Advanced MRI Collaboration Research, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
26
|
Simpson CE, Kolb TM, Hsu S, Zimmerman SL, Corona‐Villalobos CP, Mathai SC, Damico RL, Hassoun PM. Ventricular mass discriminates pulmonary arterial hypertension as redefined at the Sixth World Symposium on Pulmonary Hypertension. Pulm Circ 2022; 12:e12005. [PMID: 35506079 PMCID: PMC9052971 DOI: 10.1002/pul2.12005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/09/2022] Open
Abstract
Cardiac magnetic resonance (CMR) measures of right ventricular (RV) mass, volumes, and function have diagnostic and prognostic value in pulmonary arterial hypertension (PAH). We hypothesized that RV mass-based metrics would discriminate incident PAH as redefined by the lower mean pulmonary arterial pressure (mPAP) threshold of >20 mmHg at the Sixth World Symposium on Pulmonary Hypertension (6th WSPH). Eighty-nine subjects with suspected PAH underwent CMR imaging, including 64 subjects with systemic sclerosis (SSc). CMR metrics, including RV and left ventricular (LV) mass, were measured. All subjects underwent right heart catheterization (RHC) for assessment of hemodynamics within 48 h of CMR. Using generalized linear models, associations between CMR metrics and PAH were assessed, the best subset of CMR variables for predicting PAH were identified, and relationships between mass-based metrics, hemodynamics, and other predictive CMR metrics were examined. Fifty-nine subjects met 6th WSPH criteria for PAH. RV mass metrics, including ventricular mass index (VMI), demonstrated the greatest magnitude difference between subjects with versus without PAH. Overall and in SSc, VMI and RV mass measured by CMR were among the most predictive variables discriminating PAH at RHC, with areas under the receiver operating characteristic curve 0.86 and 0.83. respectively. VMI increased linearly with pulmonary vascular resistance and with mPAP in PAH, including in lower ranges of mPAP associated with mild PAH. VMI ≥ 0.37 yielded a positive predictive value of 90% for discriminating PAH. RV mass metrics measured by CMR, including VMI, discriminate incident, treatment-naïve PAH as defined by 6th WSPH criteria.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Todd M. Kolb
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Steven Hsu
- Department of Medicine, Division of CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Stefan L. Zimmerman
- Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Stephen C. Mathai
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rachel L. Damico
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Paul M. Hassoun
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
27
|
Clinical Significance of Right Ventricular Function in Pulmonary Hypertension. Keio J Med 2021; 70:60-67. [PMID: 33456013 DOI: 10.2302/kjm.2020-0015-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pulmonary hypertension (PH) is a progressive disease characterized by increased pulmonary vascular resistance that leads to right ventricular (RV) failure, a condition that determines its prognosis. This review focuses on the clinical value of the evaluation of RV function in PH. First, the pathophysiology of PH, including hemodynamics, RV function, and their interaction (known as ventriculoarterial coupling), are summarized. Next, non-invasive imaging modalities and the parameters of RV function, mainly assessed by echocardiography, are reviewed. Finally, the clinical impacts of RV function in PH are described. This review will compare the techniques that yield comprehensive information on RV function and their roles in the assessment of PH.
Collapse
|
28
|
Rossi R, Talarico M, Schepis F, Coppi F, Sgura FA, Monopoli DE, Minici R, Boriani G. Effects of sildenafil on right ventricle remodelling in Portopulmonary hypertension. Pulm Pharmacol Ther 2021; 70:102071. [PMID: 34428597 DOI: 10.1016/j.pupt.2021.102071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Portopulmonary hypertension (PoPH) is a clinical condition associated with end-stage liver disease, described by the coexistence of pulmonary arterial hypertension (PAH) and portal hypertension. In PoPH patients, there is a right ventricle (RV) remodeling to compensate for the increased resistance in the lung circulation. There are no studies on the effects of the PAH-targeted pharmacological treatment on the RV dimension and function. The present study summarizes our experience in patients with PoPH treated with sildenafil in a period of 6 years (from 2013 to 2019). We enrolled 64 consecutive patients identified as PoPH, all treated with sildenafil (57.6% in monotherapy; in the other cases in association with macitentan; in 19.0% with initial combination therapy). A hemodynamic invasive cardiopulmonary study was performed at baseline and after 6 months of sildenafil treatment. In our population we showed a significative improvement in RV performance, with a significant increase in RV stroke volume (+33%), RV ejection fraction (+31%) and RV stroke work index (+17.5%). We registered the reduction of the RV cavity dimension over time in all patients treated with sildenafil (RV end diastolic diameter decreased by 15% after 6 months of follow-up). Regarding diastolic function, we highlighted a very significant reduction in RV end-diastolic pressure (-50% concerning baseline). Sildenafil was effective both when used as monotherapy and in combination with macitentan. In conclusion, Sildenafil had a positive impact on RV systolic and diastolic function in patients with PoPH and was able to conditionate the reverse remodeling of the RV.
Collapse
Affiliation(s)
- Rosario Rossi
- Cardiology Division. Pulmonary Hypertension Program, University of Modena and Reggio Emilia, Policlinico di Modena Hospital, Via del Pozzo, 71 - 41124, Modena, Italy
| | - Marisa Talarico
- Cardiology Division. Pulmonary Hypertension Program, University of Modena and Reggio Emilia, Policlinico di Modena Hospital, Via del Pozzo, 71 - 41124, Modena, Italy.
| | - Filippo Schepis
- Gastroenterology Division, Hepatic Hemodynamic Laboratory, University of Modena and Reggio Emilia, Policlinico of Modena Hospital, Via del Pozzo, 71 - 41124, Modena, Italy
| | - Francesca Coppi
- Cardiology Division. Pulmonary Hypertension Program, University of Modena and Reggio Emilia, Policlinico di Modena Hospital, Via del Pozzo, 71 - 41124, Modena, Italy
| | - Fabio Alfredo Sgura
- Cardiology Division. Pulmonary Hypertension Program, University of Modena and Reggio Emilia, Policlinico di Modena Hospital, Via del Pozzo, 71 - 41124, Modena, Italy
| | - Daniel Enrique Monopoli
- Cardiology Division. Pulmonary Hypertension Program, University of Modena and Reggio Emilia, Policlinico di Modena Hospital, Via del Pozzo, 71 - 41124, Modena, Italy
| | - Roberto Minici
- Radiology Division, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Giuseppe Boriani
- Cardiology Division. Pulmonary Hypertension Program, University of Modena and Reggio Emilia, Policlinico di Modena Hospital, Via del Pozzo, 71 - 41124, Modena, Italy
| |
Collapse
|
29
|
Ancona F, Melillo F, Calvo F, Attalla El Halabieh N, Stella S, Capogrosso C, Ingallina G, Tafciu E, Pascaretta A, Ancona MB, De Bonis M, Castiglioni A, Denti P, Montorfano M, Latib A, Colombo A, Alfieri O, Agricola E. Right ventricular systolic function in severe tricuspid regurgitation: prognostic relevance of longitudinal strain. Eur Heart J Cardiovasc Imaging 2021; 22:868-875. [PMID: 33623973 DOI: 10.1093/ehjci/jeab030] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/05/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS The aim of this study is to analyse the prognostic implications of right ventricular (RV) dysfunction as detected by strain analysis in patients with severe tricuspid regurgitation (TR). The evaluation of RV systolic function in presence of severe TR is of paramount importance for operative risk stratification; however, it remains challenging, as conventional echocardiographic indexes usually lead to overestimation. METHODS AND RESULTS We enrolled 250 consecutive patients with severe TR referred to our centre. Baseline clinical and echocardiographic data and follow-up outcomes were collected. Patients were predominantly female, with multiple cardiovascular risk factors and comorbidities, history of heart failure, and atrial fibrillation. Most of them had presented with clinical signs of RV heart failure (RVHF) and advanced New York Heart Association class. The RV strain analysis [both RV free wall longitudinal strain (RVFWLS) and RV global longitudinal strain (RVGLS)] reclassified ∼42-56% of patients with normal RV systolic function according to conventional parameters in patients with impaired RV systolic function. RVFWLS ≤17% (absolute values, AUC: 0.66, P = 0.002) predicted the presence of RVHF [odds ratio (OR) 0.93, P = 0.01]. At follow-up, patients with RVFWLS >14% (absolute values, AUC: 0.70, P = 0.001, sensitivity 72%, specificity 54%) showed a better survival (P = 0.01). CONCLUSION Different ranges of RVFWLS have different implications in patients with severe TR, allowing to identify a preclinical and a clinical window, with correlations to RVHF and survival.
Collapse
Affiliation(s)
- Francesco Ancona
- Echocardiography Laboratory, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesco Melillo
- Echocardiography Laboratory, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesco Calvo
- Echocardiography Laboratory, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Nadia Attalla El Halabieh
- Echocardiography Laboratory, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Stefano Stella
- Echocardiography Laboratory, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Cristina Capogrosso
- Echocardiography Laboratory, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Giacomo Ingallina
- Echocardiography Laboratory, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Elvin Tafciu
- Echocardiography Laboratory, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Antonia Pascaretta
- Echocardiography Laboratory, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Marco Bruno Ancona
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele De Bonis
- Cardiac Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Castiglioni
- Cardiac Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Denti
- Cardiac Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Montorfano
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Azeem Latib
- Department of Cardiology, Montefiore Medical Center, New York, NY, USA
| | - Antonio Colombo
- Interventional Cardiology Unit, EMO-GVM Centro Cuore Columbus, Milan, Italy
| | - Ottavio Alfieri
- Cardiac Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Eustachio Agricola
- Echocardiography Laboratory, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
30
|
Echocardiography in Pulmonary Arterial Hypertension: Is It Time to Reconsider Its Prognostic Utility? J Clin Med 2021; 10:jcm10132826. [PMID: 34206876 PMCID: PMC8268493 DOI: 10.3390/jcm10132826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by an insult in the pulmonary vasculature, with subsequent right ventricular (RV) adaptation to the increased afterload that ultimately leads to RV failure. The awareness of the importance of RV function in PAH has increased considerably because right heart failure is the predominant cause of death in PAH patients. Given its wide availability and reduced cost, echocardiography is of paramount importance in the evaluation of the right heart in PAH. Several echocardiographic parameters have been shown to have prognostic implications in PAH; however, the role of echocardiography in the risk assessment of the PAH patient is limited under the current guidelines. This review discusses the echocardiographic evaluation of the RV in PAH and during therapy, and its prognostic implications, as well as the potential significant role of repeated echocardiographic assessment in the follow-up of patients with PAH.
Collapse
|
31
|
Gong C, He S, Chen X, Wang L, Guo J, He J, Yin L, Chen C, Han Y, Chen Y. Diverse Right Ventricular Remodeling Evaluated by MRI and Prognosis in Eisenmenger Syndrome With Different Shunt Locations. J Magn Reson Imaging 2021; 55:1478-1488. [PMID: 34152058 DOI: 10.1002/jmri.27791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Congenital shunt location is related to Eisenmenger syndrome (ES) survival. Moreover, right ventricular (RV) remodeling is associated with poor survival in pulmonary hypertension. PURPOSE To investigate RV remodeling using comprehensive magnetic resonance imaging (MRI) techniques and identify its relationship with prognosis in ES subgroups classified by shunt location. STUDY TYPE Prospective observational study. POPULATION Fifty-four adults with ES (16 with pre-tricuspid shunt and 38 with post-tricuspid shunt). FIELD STRENGTH/SEQUENCE 3.0 T/cine MRI with balanced steady-state free precession sequence, late gadolinium enhancement with inversion recovery segmented gradient echo sequence and phase-sensitive reconstruction, and T1 mapping with modified Look-Locker inversion recovery sequence. ASSESSMENT Demographics, clinical characteristics, hemodynamics, RV remodeling features (morphology, systolic function, RV-pulmonary artery (PA) coupling and myocardial fibrosis), and prognosis were compared between ES subgroups. The adverse endpoint was all-cause mortality or readmission for heart failure. STATISTICAL TESTS The independent samples t-test, Fisher's exact test or Chi-squared test, and the Kaplan-Meier method were used. P < 0.05 was considered significant. RESULTS Compared to patients with post-tricuspid shunt, patients with pre-tricuspid shunt were significantly older and had higher N-terminal pro-B-type natriuretic peptide concentrations and poorer exercise tolerance. Pre-tricuspid shunt showed significantly larger RV dimensions (end-diastolic volume index: 185.81 ± 37.49 vs. 98.20 ± 36.26 mL/m2 ), worse RV ejection fraction (23.54% ± 12.35% vs. 40.82% ± 10.77%), and RV-PA decoupling (0.35 ± 0.31 vs. 0.72 ± 0.29). Biventricular myocardial fibrosis was significantly more severe in pre-tricuspid shunt than post-tricuspid shunt (extracellular volume, left ventricle: 35.85% ± 2.58% vs. 29.10% ± 5.20%; RV free wall: 30.93% ± 5.65% vs. 26.75% ± 5.15%). In addition, pre-tricuspid shunt demonstrated a significantly increased risk of adverse endpoint (hazard ratio: 2.938, 95% confidence interval: 1.204-7.172). DATA CONCLUSION ES with pre-tricuspid shunt might be a unique subtype with worse clinically decompensated RV remodeling and poor prognosis. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 5.
Collapse
Affiliation(s)
- Chao Gong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Shuai He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaoling Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lili Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiajuan Guo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Juan He
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lidan Yin
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Chen Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuchi Han
- Department of Medicine (Cardiovascular Division), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
32
|
Tadic M, Nita N, Schneider L, Kersten J, Buckert D, Gonska B, Scharnbeck D, Reichart C, Belyavskiy E, Cuspidi C, Rottbauer W. The Predictive Value of Right Ventricular Longitudinal Strain in Pulmonary Hypertension, Heart Failure, and Valvular Diseases. Front Cardiovasc Med 2021; 8:698158. [PMID: 34222387 PMCID: PMC8247437 DOI: 10.3389/fcvm.2021.698158] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Right ventricular (RV) systolic function has an important role in the prediction of adverse outcomes, including mortality, in a wide range of cardiovascular (CV) conditions. Because of complex RV geometry and load dependency of the RV functional parameters, conventional echocardiographic parameters such as RV fractional area change (FAC) and tricuspid annular plane systolic excursion (TAPSE), have limited prognostic power in a large number of patients. RV longitudinal strain overcame the majority of these limitations, as it is angle-independent, less load-dependent, highly reproducible, and measure regional myocardial deformation. It has a high predictive value in patients with pulmonary hypertension, heart failure, congenital heart disease, ischemic heart disease, pulmonary embolism, cardiomyopathies, and valvular disease. It enables detection of subclinical RV damage even when conventional parameters of RV systolic function are in the normal range. Even though cardiac magnetic resonance-derived RV longitudinal strain showed excellent predictive value, echocardiography-derived RV strain remains the method of choice for evaluation of RV mechanics primarily due to high availability. Despite a constantly growing body of evidence that support RV longitudinal strain evaluation in the majority of CV patients, its assessment has not become the part of the routine echocardiographic examination in the majority of echocardiographic laboratories. The aim of this clinical review was to summarize the current data about the predictive value of RV longitudinal strain in patients with pulmonary hypertension, heart failure and valvular heart diseases.
Collapse
Affiliation(s)
- Marijana Tadic
- Klinik für Innere Medizin II, Universitätsklinikum Ulm, Ulm, Germany
| | - Nicoleta Nita
- Klinik für Innere Medizin II, Universitätsklinikum Ulm, Ulm, Germany
| | | | - Johannes Kersten
- Klinik für Innere Medizin II, Universitätsklinikum Ulm, Ulm, Germany
| | - Dominik Buckert
- Klinik für Innere Medizin II, Universitätsklinikum Ulm, Ulm, Germany
| | - Birgid Gonska
- Klinik für Innere Medizin II, Universitätsklinikum Ulm, Ulm, Germany
| | | | | | - Evgeny Belyavskiy
- Department of Cardiology, Charité-University-Medicine (Campus Virchow - Klinikum), Berlin, Germany
| | - Cesare Cuspidi
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Wolfang Rottbauer
- Klinik für Innere Medizin II, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
33
|
Abstract
Purpose of Review Pulmonary arterial hypertension (PAH) is a progressive disease with high mortality. A greater understanding of the physiology and function of the cardiovascular system in PAH will help improve survival. This review covers the latest advances within cardiovascular magnetic resonance imaging (CMR) regarding diagnosis, evaluation of treatment, and prognostication of patients with PAH. Recent Findings New CMR measures that have been proven relevant in PAH include measures of ventricular and atrial volumes and function, tissue characterization, pulmonary artery velocities, and arterio-ventricular coupling. Summary CMR markers carry prognostic information relevant for clinical care such as treatment response and thereby can affect survival. Future research should investigate if CMR, as a non-invasive method, can improve existing measures or even provide new and better measures in the diagnosis, evaluation of treatment, and determination of prognosis of PAH.
Collapse
|
34
|
Richter MJ, Yogeswaran A, Husain-Syed F, Vadász I, Rako Z, Mohajerani E, Ghofrani HA, Naeije R, Seeger W, Herberg U, Rieth A, Tedford RJ, Grimminger F, Gall H, Tello K. A novel non-invasive and echocardiography-derived method for quantification of right ventricular pressure-volume loops. Eur Heart J Cardiovasc Imaging 2021; 23:498-507. [PMID: 33668064 DOI: 10.1093/ehjci/jeab038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS We sought to assess the feasibility of constructing right ventricular (RV) pressure-volume (PV) loops solely by echocardiography. METHODS AND RESULTS We performed RV conductance and pressure wire (PW) catheterization with simultaneous echocardiography in 35 patients with pulmonary hypertension. To generate echocardiographic PV loops, a reference RV pressure curve was constructed using pooled PW data from the first 20 patients (initial cohort). Individual pressure curves were then generated by adjusting the reference curve according to RV isovolumic and ejection phase duration and estimated RV systolic pressure. The pressure curves were synchronized with echocardiographic volume curves. We validated the reference curve in the remaining 15 patients (validation cohort). Methods were compared with correlation and Bland-Altman analysis. In the initial cohort, echocardiographic and conductance-derived PV loop parameters were significantly correlated {rho = 0.8053 [end-systolic elastance (Ees)], 0.8261 [Ees/arterial elastance (Ea)], and 0.697 (stroke work); all P < 0.001}, with low bias [-0.016 mmHg/mL (Ees), 0.1225 (Ees/Ea), and -39.0 mmHg mL (stroke work)] and acceptable limits of agreement. Echocardiographic and PW-derived Ees were also tightly correlated, with low bias (-0.009 mmHg/mL) and small limits of agreement. Echocardiographic and conductance-derived Ees, Ees/Ea, and stroke work were also tightly correlated in the validation cohort (rho = 0.9014, 0.9812, and 0.9491, respectively; all P < 0.001), with low bias (0.0173 mmHg/mL, 0.0153, and 255.1 mmHg mL, respectively) and acceptable limits. CONCLUSION The novel echocardiographic method is an acceptable alternative to invasively measured PV loops to assess contractility, RV-arterial coupling, and RV myocardial work. Further validation is warranted.
Collapse
Affiliation(s)
- Manuel J Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany
| | - Athiththan Yogeswaran
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany
| | - Faeq Husain-Syed
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany
| | - István Vadász
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany
| | - Zvonimir Rako
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany
| | - Emad Mohajerani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany
| | - Hossein A Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.,Department of Pneumology, Kerckhoff Heart, Rheuma and Thoracic Center, Benekestr. 2-8, Bad Nauheim 61231, Germany.,Department of Medicine, Imperial College London, Level 2, Faculty Building, South Kensington Campus, London SW7 2AZ, UK
| | - Robert Naeije
- Erasme University Hospital, Route de Lennik 808, Brussels 1070, Belgium
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.,Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University Giessen, Aulweg 130, Giessen 35392, Germany
| | - Ulrike Herberg
- Department of Pediatric Cardiology, University of Bonn, Building 30, Venusberg-Campus 1, Bonn 53127, Germany
| | - Andreas Rieth
- Department of Thoracic Surgery, Kerckhoff Heart, Rheuma and Thoracic Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Friedrich Grimminger
- Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University Giessen, Aulweg 130, Giessen 35392, Germany.,Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany
| | - Henning Gall
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany
| |
Collapse
|
35
|
Ostenfeld E, Kjellström B. The Conundrum of Right Ventricular Remodeling and Outcome in Pulmonary Hypertension. Circ Cardiovasc Imaging 2020; 13:e011208. [PMID: 32673507 DOI: 10.1161/circimaging.120.011208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ellen Ostenfeld
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, Sweden (E.O., B.K.)
| | - Barbro Kjellström
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, Sweden (E.O., B.K.).,Swedish Pulmonary Arterial Hypertension Registry, Uppsala Clinical Research Centre, Uppsala University, Sweden (B.K.)
| |
Collapse
|