1
|
Panda B, Tripathy A, Patra S, Kullu B, Tabrez S, Jena M. Imperative connotation of SODs in cancer: Emerging targets and multifactorial role of action. IUBMB Life 2024; 76:592-613. [PMID: 38600696 DOI: 10.1002/iub.2821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Superoxide dismutase (SOD) is a crucial enzyme responsible for the redox homeostasis inside the cell. As a part of the antioxidant defense system, it plays a pivotal role in the dismutation of the superoxide radicals (O 2 - ) generated mainly by the oxidative phosphorylation, which would otherwise bring out the redox dysregulation, leading to higher reactive oxygen species (ROS) generation and, ultimately, cell transformation, and malignancy. Several studies have shown the involvement of ROS in a wide range of human cancers. As SOD is the key enzyme in regulating ROS, any change, such as a transcriptional change, epigenetic remodeling, functional alteration, and so forth, either activates the proto-oncogenes or aberrant signaling cascades, which results in cancer. Interestingly, in some cases, SODs act as tumor promoters instead of suppressors. Furthermore, SODs have also been known to switch their role during tumor progression. In this review, we have tried to give a comprehensive account of SODs multifactorial role in various human cancers so that SODs-based therapeutic strategies could be made to thwart cancers.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ankita Tripathy
- Post Graduate Department of Botany, Utkal University, Bhubaneswar, India
| | - Srimanta Patra
- Post Graduate Department of Botany, Berhampur University, Berhampur, India
| | - Bandana Kullu
- Post Graduate Department of Botany, Utkal University, Bhubaneswar, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mrutyunjay Jena
- Post Graduate Department of Botany, Berhampur University, Berhampur, India
| |
Collapse
|
2
|
Ananthamohan K, Brady TM, Arif M, Daniels S, Falkner B, Ferguson M, Flynn JT, Hanevold C, Hooper SR, Ingelfinger J, Lande M, Martin LJ, Meyers KE, Mitsnefes M, Rosner B, Samuels JA, Kuffel G, Zilliox MJ, Becker RC, Urbina EM, Sadayappan S. A Multi-Omics Approach to Defining Target Organ Injury in Youth with Primary Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599125. [PMID: 38948714 PMCID: PMC11212900 DOI: 10.1101/2024.06.17.599125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
BACKGROUND Primary hypertension in childhood tracks into adulthood and may be associated with increased cardiovascular risk. Studies conducted in children and adolescents provide an opportunity to explore the early cardiovascular target organ injury (CV-TOI) in a population free from many of the comorbid cardiovascular disease risk factors that confound studies in adults. METHODS Youths (n=132, mean age 15.8 years) were stratified by blood pressure (BP) as low, elevated, and high-BP and by left ventricular mass index (LVMI) as low- and high-LVMI. Systemic circulating RNA, miRNA, and methylation profiles in peripheral blood mononuclear cells and deep proteome profiles in serum were determined using high-throughput sequencing techniques. RESULTS VASH1 gene expression was elevated in youths with high-BP with and without high-LVMI. VASH1 expression levels positively correlated with systolic BP (r=0.3143, p=0.0034). The expression of hsa-miR-335-5p, one of the VASH1-predicted miRNAs, was downregulated in high-BP with high-LVMI youths and was inversely correlated with systolic BP (r=-0.1891, p=0.0489). GSE1 hypermethylation, circulating PROZ upregulation (log2FC=0.61, p=0.0049 and log2FC=0.62, p=0.0064), and SOD3 downregulation (log2FC=-0.70, p=0.0042 and log2FC=-0.64, p=0.010) were observed in youths with elevated BP and high-BP with high-LVMI. Comparing the transcriptomic and proteomic profiles revealed elevated HYAL1 levels in youths displaying high-BP and high-LVMI. CONCLUSIONS The findings are compatible with a novel blood pressure-associated mechanism that may occur through impaired angiogenesis and extracellular matrix degradation through dysregulation of Vasohibin-1 and Hyaluronidase1 was identified as a possible mediator of CV-TOI in youth with high-BP and suggests strategies for ameliorating TOI in adult-onset primary hypertension.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Diseases, Center for Cardiovascular Research, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Tammy M. Brady
- Division of Pediatric Nephrology, Johns Hopkins University, Baltimore, MD
| | - Mohammed Arif
- Department of Internal Medicine, Division of Cardiovascular Health and Diseases, Center for Cardiovascular Research, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Stephen Daniels
- Department of Pediatrics, Denver Children’s Hospital, Aurora, CO
| | - Bonita Falkner
- Departments of Medicine and Pediatrics, Thomas Jefferson University, Philadelphia, PA
| | | | - Joseph T. Flynn
- Department of Pediatrics, University of Washington School of Medicine, Division of Nephrology, Seattle Children’s Hospital, Seattle, WA
| | - Coral Hanevold
- Department of Pediatrics, University of Washington School of Medicine, Division of Nephrology, Seattle Children’s Hospital, Seattle, WA
| | - Stephen R. Hooper
- School of Medicine, Department of Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Julie Ingelfinger
- Department of Pediatrics, Harvard Medical School, Mass General Hospital for Children at Massachusetts General Brigham, Boston, MA
| | - Marc Lande
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| | - Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kevin E. Meyers
- Division of Nephrology and Hypertension, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Mark Mitsnefes
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Bernard Rosner
- Channing Division of Network Medicine, Harvard University, Cambridge, MA
| | - Joshua A. Samuels
- Pediatric Nephrology & Hypertension, McGovern Medical School, University of Texas, Houston, TX
| | - Gina Kuffel
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL
| | - Michael J. Zilliox
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL
| | - Richard C. Becker
- Department of Internal Medicine, Division of Cardiovascular Health and Diseases, Center for Cardiovascular Research, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Elaine M. Urbina
- Division of Cardiology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Diseases, Center for Cardiovascular Research, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
3
|
Lu L, Jang S, Zhu J, Qin Q, Sun L, Sun J. Nur77 mitigates endothelial dysfunction through activation of both nitric oxide production and anti-oxidant pathways. Redox Biol 2024; 70:103056. [PMID: 38290383 PMCID: PMC10844745 DOI: 10.1016/j.redox.2024.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Nur77 belongs to the member of orphan nuclear receptor 4A family that plays critical roles in maintaining vascular homeostasis. This study aims to determine whether Nur77 plays a role in attenuating vascular dysfunction, and if so, to determine the molecular mechanisms involved. METHODS Both Nur77 knockout (Nur77 KO) and Nur77 endothelial specific transgenic mice (Nur77-Tg) were employed to examine the functional significance of Nur77 in vascular endothelium in vivo. Endothelium-dependent vasodilatation to acetylcholine (Ach) and reactive oxygen species (ROS) production was determined under inflammatory and high glucose conditions. Expression of genes was determined by real-time PCR and western blot analysis. RESULTS In response to tumor necrosis factor alpha (TNF-α) treatment and diabetes, the endothelium-dependent vasodilatation to Ach was significantly impaired in aorta from Nur77 KO as compared with those from the wild-type (WT) mice. Endothelial specific overexpression of Nur77 markedly prevented both TNF-α- and high glucose-induced endothelial dysfunction. Compared with WT mice, after TNF-α and high glucose treatment, ROS production in aorta was significantly increased in Nur77 KO mice, but it was inhibited in Nur77-Tg mice, as determined by dihydroethidium (DHE) staining. Furthermore, we demonstrated that Nur77 overexpression substantially increased the expression of several key enzymes involved in nitric oxide (NO) production and ROS scavenging, including endothelial nitric oxide synthase (eNOS), guanosine triphosphate cyclohydrolase 1 (GCH-1), glutathione peroxidase-1 (GPx-1), and superoxide dismutases (SODs). Mechanistically, we found that Nur77 increased GCH1 mRNA stability by inhibiting the expression of microRNA-133a, while Nur77 upregulated SOD1 expression through directly binding to the human SOD1 promoter in vascular endothelial cells. CONCLUSION Our results suggest that Nur77 plays an essential role in attenuating endothelial dysfunction through activating NO production and anti-oxidant pathways in vascular endothelium. Targeted activation of Nur77 may provide a novel therapeutic approach for the treatment of cardiovascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Soohwa Jang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jiaqi Zhu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Qing Qin
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lijun Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
4
|
Zhao J, Fu J, Jia F, Li J, Yu B, Huang Y, Ren K, Ji J, Fu G. Precise Regulation of Inflammation and Oxidative Stress by ROS‐Responsive Prodrug Coated Balloon for Preventing Vascular Restenosis. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202213993] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 09/09/2024]
Abstract
AbstractVascular restenosis after balloon dilation is largely caused by the over‐proliferation of smooth muscle cells, which is triggered and exacerbated by local excessive inflammation and oxidative stress. The excessive inflammatory and oxidative stress cause tissue/cell damage, hamper endothelial functions, and worsen intimal hyperplasia and restenosis. A high level of reactive oxygen species (ROS) overproduction is regarded as the main culprit. Therefore, efficiently inhibiting ROS over‐production or weightily depleting them is of great significance. Herein, a “ROS‐responsive/scavenging prodrug” is introduced into balloon coating for the treatment of vascular restenosis. A reversible phenylboronic ester‐bearing caffeic acid (CA) macromolecular prodrug (PBC) is designed for the controlled and on‐demand dual‐drug release triggered by the local high ROS level; the released CA and 4‐hydroxybenzyl alcohol exhibit efficient antioxidant and anti‐inflammatory effects by scavenging ROS, thereby regulating vascular microenvironment and protecting endothelium functions. To accelerate endothelium regeneration, pro‐endothelial microRNA‐126 is further introduced. The ROS‐responsive/scavenging prodrug/miRNA balloon coating efficiently prevents intimal hyperplasia, alleviates local inflammation, and improves endothelium healing in a rat abdominal aorta restenosis model, which may provide applicative perspectives for next‐generation drug‐coated balloons and other cardiovascular diseases treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
| | - Jia‐yin Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
| | - Jian Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Ke‐feng Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Jian Ji
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Guo‐sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
| |
Collapse
|
5
|
Monavari M, Homaeigohar S, Medhekar R, Nawaz Q, Monavari M, Zheng K, Boccaccini AR. A 3D-Printed Wound-Healing Material Composed of Alginate Dialdehyde-Gelatin Incorporating Astaxanthin and Borate Bioactive Glass Microparticles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37155412 DOI: 10.1021/acsami.2c23252] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, a wound dressing composed of an alginate dialdehyde-gelatin (ADA-GEL) hydrogel incorporated by astaxanthin (ASX) and 70B (70:30 B2O3/CaO in mol %) borate bioactive glass (BBG) microparticles was developed through 3D printing. ASX and BBG particles stiffened the composite hydrogel construct and delayed its in vitro degradation compared to the pristine hydrogel construct, mainly due to their cross-linking role, likely arising from hydrogen bonding between the ASX/BBG particles and ADA-GEL chains. Additionally, the composite hydrogel construct could hold and deliver ASX steadily. The composite hydrogel constructs codelivered biologically active ions (Ca and B) and ASX, which should lead to a faster, more effective wound-healing process. As shown through in vitro tests, the ASX-containing composite hydrogel promoted fibroblast (NIH 3T3) cell adhesion, proliferation, and vascular endothelial growth factor expression, as well as keratinocyte (HaCaT) migration, thanks to the antioxidant activity of ASX, the release of cell-supportive Ca2+ and B3+ ions, and the biocompatibility of ADA-GEL. Taken together, the results show that the ADA-GEL/BBG/ASX composite is an attractive biomaterial to develop multipurposed wound-healing constructs through 3D printing.
Collapse
Affiliation(s)
- Mahshid Monavari
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Rucha Medhekar
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Institute of Biomaterials and Advanced Materials and Processes Master Programme, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Qaisar Nawaz
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Mehran Monavari
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translation Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
6
|
HuMSC-EV induce monocyte/macrophage mobilization to orchestrate neovascularization in wound healing process following radiation injury. Cell Death Dis 2023; 9:38. [PMID: 36725841 PMCID: PMC9892506 DOI: 10.1038/s41420-023-01335-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
This study aims to investigate the mechanisms of human mesenchymal stem cell-derived extracellular vesicles (HuMSC-EV)-induced proangiogenic paracrine effects after radiation injury. HuMSC-EV were locally administered in mice hindlimb following 80-Gy X-ray irradiation and animals were monitored at different time points. HuMSC-EV improved neovascularization of the irradiated tissue, by stimulating angiogenesis, normalizing cutaneous blood perfusion, and increasing capillary density and production of proangiogenic factors. HuMSC-EV also stimulated vasculogenesis by promoting the recruitment and differentiation of bone marrow progenitors. Moreover, HuMSC-EV improved arteriogenesis by increasing the mobilization of monocytes from the spleen and the bone marrow and their recruitment into the muscle, with a pro-inflammatory potential. Importantly, monocyte depletion by clodronate treatment abolished the proangiogenic effect of HuMSC-EV. The critical role of Ly6C(hi) monocyte subset in HuMSC-EV-induced neovascularization process was further confirmed using Ccr2-/- mice. This study demonstrates that HuMSC-derived EV enhances the neovascularization process in the irradiated tissue by increasing the production of proangiogenic factors, promoting the recruitment of vascular progenitor cells, and the mobilization of innate cells to the injured site. These results support the concept that HuMSC-EV might represent a suitable alternative to stem cells for therapeutic neovascularization in tissue repair.
Collapse
|
7
|
Abdelsaid K, Sudhahar V, Harris RA, Das A, Youn SW, Liu Y, McMenamin M, Hou Y, Fulton D, Hamrick MW, Tang Y, Fukai T, Ushio-Fukai M. Exercise improves angiogenic function of circulating exosomes in type 2 diabetes: Role of exosomal SOD3. FASEB J 2022; 36:e22177. [PMID: 35142393 PMCID: PMC8880294 DOI: 10.1096/fj.202101323r] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 01/31/2023]
Abstract
Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) exhibit detrimental effects. Exercise improves endothelial function in part via the secretion of exosomes into circulation. Extracellular superoxide dismutase (SOD3) is a major secretory copper (Cu) antioxidant enzyme that catalyzes the dismutation of O2•- to H2 O2 whose activity requires the Cu transporter ATP7A. However, the role of SOD3 in exercise-induced angiogenic effects of circulating plasma exosomes on endothelial cells (ECs) in T2DM remains unknown. Here, we show that both SOD3 and ATP7A proteins were present in plasma exosomes in mice, which was significantly increased after two weeks of volunteer wheel exercise. A single bout of exercise in humans also showed a significant increase in SOD3 and ATP7A protein expression in plasma exosomes. Plasma exosomes from T2DM mice significantly reduced angiogenic responses in human ECs or mouse skin wound healing models, which was associated with a decrease in ATP7A, but not SOD3 expression in exosomes. Exercise training in T2DM mice restored the angiogenic effects of T2DM exosomes in ECs by increasing ATP7A in exosomes, which was not observed in exercised T2DM/SOD3-/- mice. Furthermore, exosomes overexpressing SOD3 significantly enhanced angiogenesis in ECs by increasing local H2 O2 levels in a heparin-binding domain-dependent manner as well as restored defective wound healing and angiogenesis in T2DM or SOD3-/- mice. In conclusion, exercise improves the angiogenic potential of circulating exosomes in T2DM in a SOD3-dependent manner. Exosomal SOD3 may provide an exercise mimetic therapy that supports neovascularization and wound repair in cardiometabolic disease.
Collapse
Affiliation(s)
- Kareem Abdelsaid
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA
| | - Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA
| | | | - Archita Das
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA
| | - Seock-Won Youn
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA,Department of Physiology and Biophysics, University of Illinois, Chicago, IL
| | - Yutao Liu
- Department of cell biology, Medical College of Georgia at Augusta University, Augusta, GA
| | - Maggie McMenamin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA
| | - Yali Hou
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA
| | - Mark W. Hamrick
- Department of cell biology, Medical College of Georgia at Augusta University, Augusta, GA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA,Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, GA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA,Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, GA
| |
Collapse
|
8
|
Salvo J, Sandoval C. Role of copper nanoparticles in wound healing for chronic wounds: literature review. BURNS & TRAUMA 2022; 10:tkab047. [PMID: 35071652 PMCID: PMC8778594 DOI: 10.1093/burnst/tkab047] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Chronic wounds are defined as wounds that fail to proceed through the normal phases of wound healing in an orderly and timely manner. The most common and inevitable impairment to wound healing is the installation of an infection, usually in the case of chronic wounds. Therefore, the objective of the present review was to identify the importance of copper nanoparticles in dressings for wound healing. Nanoparticles such as silver, gold and copper combat infectious processes through the inhibition of protein synthesis, peroxidation of the cell membrane and destroying the nucleic acids of bacteria and viruses. Among bioactive nanoparticles, copper plays a complex role in various cells, it modulates several cytokines and growth factor mechanisms of action and is essentially involved in all stages of the wound healing process. More importantly, copper plays a key role in skin regeneration and angiogenesis and accelerates the healing process through induction of vascular endothelial growth factor (VEGF) and angiogenesis by hypoxia-induced factor-1-alpha (HIF-1α) action where copper enhances HIF-1α expression and HIF-1α binding to the critical motifs in the promoter and putative enhancer regions of HIF-1-regulated genes.
Collapse
Affiliation(s)
- Jessica Salvo
- Escuela de Enfermería, Facultad de Ciencias, Universidad Mayor, Chile
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, 5310431, Osorno, Chile
| |
Collapse
|
9
|
Guo J, Qin Z, He Q, Fong TL, Lau NC, Cho WCS, Zhang H, Meng P, Xing X, Li M, Zhang ZJ, Chen H. Shexiang Baoxin Pill for Acute Myocardial Infarction: Clinical Evidence and Molecular Mechanism of Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7644648. [PMID: 34900089 PMCID: PMC8652282 DOI: 10.1155/2021/7644648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Acute myocardial infarction (AMI) has been a preclinical and clinical concern due to high hospitalization rate and mortality. This study was aimed at evaluating the effectiveness and safety of Shexiang Baoxin Pill (SBP) for AMI and exploring the possible mechanism of oxidative stress. Six databases were searched on March 26, 2021. Twenty-four studies were included and accessed by the RoB 2.0 or SYRCLE tool. Compared with routine treatment (RT), SBP showed the effectiveness in the clinical efficacy (RR = 1.15, 95% CI [1.06, 1.25]), left ventricular ejection fraction (LVEF) (SMD = 0.73, 95% CI [0.62, 0.95]), glutathione (GSH) (SMD = 2.07, 95% CI [1.51, 2.64]), superoxide dismutase (SOD) (SMD = 0.92, 95% CI [0.58, 1.26]), malondialdehyde (MDA) (SMD = -4.23, 95% CI [-5.80, -2.66]), creatine kinase-myocardial band (CK-MB) (SMD = -4.98, 95% CI [-5.64, -4.33]), cardiac troponin I (cTnI) (SMD = -2.17, 95% CI [-2.57, -1.76]), high-sensitivity C-reactive protein (Hs-CRP) (SMD = -1.34, 95% CI [-1.56, -1.12]), interleukin-6 (IL-6) (SMD = -0.99, 95% CI [-1.26, -0.71]), triglycerides (TG) (SMD = -0.52, 95% CI [-0.83, -0.22]), flow-mediated dilation (FMD) (SMD = 1.39, 95% CI [1.06, 1.72]), von Willebrand Factor (vWF) (SMD = -1.77, 95% CI [-2.39, -1.15]), nitric oxide (NO) (SMD = 0.89, 95% CI [0.65, 1.13]), and recurrent rate (RR = 0.30, 95% CI [0.15, 0.59]). But SBP adjunctive to RT plus PCI had no improvements in almost pooled outcomes except for the Hs-CRP (SMD = -1.19, 95% CI [-1.44, -0.94]) and TG (SMD = -0.25, 95% CI [-0.48, -0.02]). Laboratory findings showed that SBP enhanced the endothelial nitric oxide synthase (eNOS) activity and regulated laboratory indexes especially for homocysteine. In conclusion, SBP has adjunctive effects on AMI via the mechanism of antioxidative stress. The current evidence supports the use of SBP for mild and moderate AMI patients.
Collapse
Affiliation(s)
- Jianbo Guo
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zongshi Qin
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingyong He
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tung Leong Fong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ngai Chung Lau
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Hui Zhang
- Henan University of Chinese Medicine, Henan, China
| | - Peipei Meng
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Haiyong Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
10
|
Neonatal Extracellular Superoxide Dismutase Knockout Mice Increase Total Superoxide Dismutase Activity and VEGF Expression after Chronic Hyperoxia. Antioxidants (Basel) 2021; 10:antiox10081236. [PMID: 34439484 PMCID: PMC8388997 DOI: 10.3390/antiox10081236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common lung disease affecting premature infants that develops after exposure to supplemental oxygen and reactive oxygen intermediates. Extracellular superoxide dismutase (SOD3) is an enzyme that processes superoxide radicals and has been shown to facilitate vascular endothelial growth factor (VEGF) and nitric oxide (NO) signaling in vascular endothelium. We utilized a mouse model of neonatal hyperoxic lung injury and SOD3 knockout (KO) mice to evaluate its function during chronic hyperoxia exposure. Wild-type age-matched neonatal C57Bl/6 (WT) and SOD3−/− (KO) mice were placed in normoxia (21% FiO2, RA) or chronic hyperoxia (75% FiO2, O2) within 24 h of birth for 14 days continuously and then euthanized. Lungs were harvested for histologic evaluation, as well as comparison of antioxidant enzyme expression, SOD activity, VEGF expression, and portions of the NO signaling pathway. Surprisingly, KO-O2 mice survived without additional alveolar simplification, microvascular remodeling, or nuclear oxidation when compared to WT-O2 mice. KO-O2 mice had increased total SOD activity and increased VEGF expression when compared to WT-O2 mice. No genotype differences were noted in intracellular antioxidant enzyme expression or the NO signaling pathway. These results demonstrate that SOD3 KO mice can survive prolonged hyperoxia without exacerbation of alveolar or vascular phenotype.
Collapse
|
11
|
Ash D, Sudhahar V, Youn SW, Okur MN, Das A, O'Bryan JP, McMenamin M, Hou Y, Kaplan JH, Fukai T, Ushio-Fukai M. The P-type ATPase transporter ATP7A promotes angiogenesis by limiting autophagic degradation of VEGFR2. Nat Commun 2021; 12:3091. [PMID: 34035268 PMCID: PMC8149886 DOI: 10.1038/s41467-021-23408-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
VEGFR2 (KDR/Flk1) signaling in endothelial cells (ECs) plays a central role in angiogenesis. The P-type ATPase transporter ATP7A regulates copper homeostasis, and its role in VEGFR2 signaling and angiogenesis is entirely unknown. Here, we describe the unexpected crosstalk between the Copper transporter ATP7A, autophagy, and VEGFR2 degradation. The functional significance of this Copper transporter was demonstrated by the finding that inducible EC-specific ATP7A deficient mice or ATP7A-dysfunctional ATP7Amut mice showed impaired post-ischemic neovascularization. In ECs, loss of ATP7A inhibited VEGF-induced VEGFR2 signaling and angiogenic responses, in part by promoting ligand-induced VEGFR2 protein degradation. Mechanistically, VEGF stimulated ATP7A translocation from the trans-Golgi network to the plasma membrane where it bound to VEGFR2, which prevented autophagy-mediated lysosomal VEGFR2 degradation by inhibiting autophagic cargo/adapter p62/SQSTM1 binding to ubiquitinated VEGFR2. Enhanced autophagy flux due to ATP7A dysfunction in vivo was confirmed by autophagy reporter CAG-ATP7Amut -RFP-EGFP-LC3 transgenic mice. In summary, our study uncovers a novel function of ATP7A to limit autophagy-mediated degradation of VEGFR2, thereby promoting VEGFR2 signaling and angiogenesis, which restores perfusion recovery and neovascularization. Thus, endothelial ATP7A is identified as a potential therapeutic target for treatment of ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Dipankar Ash
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Seock-Won Youn
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mustafa Nazir Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Archita Das
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Maggie McMenamin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Yali Hou
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
- Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
12
|
Singh P, O'Toole TE, Conklin DJ, Hill BG, Haberzettl P. Endothelial progenitor cells as critical mediators of environmental air pollution-induced cardiovascular toxicity. Am J Physiol Heart Circ Physiol 2021; 320:H1440-H1455. [PMID: 33606580 PMCID: PMC8260385 DOI: 10.1152/ajpheart.00804.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 01/15/2023]
Abstract
Environmental air pollution exposure is a leading cause of death worldwide, and with increasing industrialization and urbanization, its disease burden is expected to rise even further. The majority of air pollution exposure-associated deaths are linked to cardiovascular disease (CVD). Although ample research demonstrates a strong correlation between air pollution exposure and CVD risk, the mechanisms by which inhalation of polluted air affects cardiovascular health are not completely understood. Inhalation of environmental air pollution has been associated with endothelial dysfunction, which suggests that air pollution exposure impacts CVD health by inducing endothelial injury. Interestingly, recent studies demonstrate that air pollution exposure affects the number and function of endothelial progenitor cells (EPCs), subpopulations of bone marrow-derived proangiogenic cells that have been shown to play an essential role in maintaining cardiovascular health. In line with their beneficial function, chronically low levels of circulating EPCs and EPC dysfunction (e.g., in diabetic patients) have been associated with vascular dysfunction, poor cardiovascular health, and increases in the severity of cardiovascular outcomes. In contrast, treatments that improve EPC number and function (e.g., exercise) have been found to attenuate cardiovascular dysfunction. Considering the critical, nonredundant role of EPCs in maintaining vascular health, air pollution exposure-induced impairments in EPC number and function could lead to endothelial dysfunction, consequently increasing the risk for CVD. This review article covers novel aspects and new mechanistic insights of the adverse effects of air pollution exposure on cardiovascular health associated with changes in EPC number and function.
Collapse
Affiliation(s)
- Parul Singh
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Timothy E O'Toole
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Daniel J Conklin
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Bradford G Hill
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Petra Haberzettl
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
13
|
Chen YF, Feng DD, Wu SH, Lu HY, Banu Pasha A, Permall DL, Chen JH, Sun ZY, Li BJ, Zhou H, Yang Y, Zhang XJ, Chen XQ. Promotion of Bronchopulmonary Dysplasia Progression Using Circular RNA circabcc4 via Facilitating PLA2G6 Expression by Sequestering miR-663a. Front Cell Dev Biol 2020; 8:585541. [PMID: 33195232 PMCID: PMC7654334 DOI: 10.3389/fcell.2020.585541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/08/2020] [Indexed: 12/04/2022] Open
Abstract
Circular RNA (circRNA) has been increasingly proven as a new type of promising therapeutic RNA molecule in a variety of human diseases. However, the role of circRNA in bronchopulmonary dysplasia (BPD) has not yet been elucidated. Here, a new circRNA circABCC4 was identified from the Agilent circRNA chip as a differentially expressed circRNA in BPD. The relationship between circABCC4 level and BPD clinicopathological characteristics was analyzed. The function of circABCC4 was evaluated by performing CCK-8 and apoptosis analysis in vitro and BPD model analysis in vivo. RNA immunoprecipitation (RIP), luciferase reporter and rescue experiments were used to elucidate the interaction between circABCC4 and miR-663a. Luciferase reporter assay and rescue experiments were used to elucidate the interaction between PLA2G6 and miR-663a. CircABCC4 and PLA2G6 levels were increased, while miR-663a levels were decreased in the BPD group, compared to the control group. MiR-663a inhibited apoptosis by repressing PLA2G6 expression, while circABCC4 enhanced the apoptosis and inhibited the proliferation of A549 cells by sponging miR-663a and increasing PLA2G6 expression. In conclusion, circABCC4 promotes the evolving of BPD by spongening miR-663a and up-regulating PLA2G6 expression, which makes circABCC4 an ideal molecular target for early diagnosis and intervention of BPD.
Collapse
Affiliation(s)
- Yu-Fei Chen
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Dan Feng
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng-Hua Wu
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Asfia Banu Pasha
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dhivya Lakshmi Permall
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-He Chen
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhong-Yi Sun
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing-Jie Li
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan Zhou
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Neonatology, Nanjing Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Jie Zhang
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Duan J, Chen Z, Liang X, Chen Y, Li H, Tian X, Zhang M, Wang X, Sun H, Kong D, Li Y, Yang J. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials 2020; 255:120199. [DOI: 10.1016/j.biomaterials.2020.120199] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023]
|
15
|
Bonham CA, Kuehlmann B, Gurtner GC. Impaired Neovascularization in Aging. Adv Wound Care (New Rochelle) 2020; 9:111-126. [PMID: 31993253 DOI: 10.1089/wound.2018.0912] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Significance: The skin undergoes an inevitable degeneration as an individual ages. As intrinsic and extrinsic factors degrade the structural integrity of the skin, it experiences a critical loss of function and homeostatic stability. Thus, aged skin becomes increasingly susceptible to injury and displays a prolonged healing process. Recent Advances: Several studies have found significant differences during wound healing between younger and older individuals. The hypoxia-inducible factor 1-alpha (HIF-1α) signaling pathway has recently been identified as a major player in wound healing. Hypoxia-inducible factors (HIFs) are pleiotropic key regulators of oxygen homeostasis. HIF-1α is essential to neovascularization through its regulation of cytokines, such as SDF-1α (stromal cell-derived factor 1-alpha) and has been shown to upregulate the expression of genes important for a hypoxic response. Prolyl hydroxylase domain proteins (PHDs) and factor inhibiting HIF effectively block HIF-1α signaling in normoxia through hydroxylation, preventing the signaling cascade from activating, leading to impaired tissue survival. Critical Issues: Aged wounds are a major clinical burden, resisting modern treatment and costing millions in health care each year. At the molecular level, aging has been shown to interfere with PHD regulation, which in turn prevents HIF-1α from activating gene expression, ultimately leading to impaired healing. Other studies have identified loss of function in cells during aging, impeding processes such as angiogenesis. Future Directions: An improved understanding of the regulation of molecular mediators, such as HIF-1α and PHD, will allow for manipulation of the various factors underlying delayed wound healing in the aged. The findings highlighted in this may facilitate the development of potential therapeutic approaches involved in the alteration of cellular dynamics and aging.
Collapse
Affiliation(s)
- Clark A. Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Britta Kuehlmann
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
- Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, Regensburg, Germany
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| |
Collapse
|
16
|
Lin S, Zhang Q, Li S, Zhang T, Wang L, Qin X, Zhang M, Shi S, Cai X. Antioxidative and Angiogenesis-Promoting Effects of Tetrahedral Framework Nucleic Acids in Diabetic Wound Healing with Activation of the Akt/Nrf2/HO-1 Pathway. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11397-11408. [PMID: 32083455 DOI: 10.1021/acsami.0c00874] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Lang Wang
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
17
|
Liu K, Guo C, Lao Y, Yang J, Chen F, Zhao Y, Yang Y, Yang J, Yi J. A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3. Autophagy 2019; 16:975-990. [PMID: 31373534 DOI: 10.1080/15548627.2019.1647944] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The roles of SUMOylation and the related enzymes in autophagic regulation are unclear. Based on our previous studies that identified the SUMO2/3-specific peptidase SENP3 as an oxidative stress-responsive molecule, we investigated the correlation between SUMOylation and macroautophagy/autophagy. We found that Senp3± mice showed increased autophagy in the liver under basal and fasting conditions, compared to Senp3+/+ mice. We constructed a liver-specific senp3 knockout mouse; these Senp3-deficient liver tissues showed increased autophagy as well. Autophagic flux was accelerated in hepatic and other cell lines following knockdown of SENP3, both before and after the cells underwent starvation in the form of the serum and amino acid deprivation. We demonstrated that BECN1/beclin 1, the core molecule of the BECN1-PIK3C3 complex, could be SUMO3-conjugated by PIAS3 predominantly at K380 and deSUMOylated by SENP3. The basal SUMOylation of BECN1 was increased upon cellular starvation, which enhanced autophagosome formation by facilitating BECN1 interaction with other complex components UVRAG, PIK3C3 and ATG14, thus promoting PIK3C3 activity. In contrast, SENP3 deSUMOylated BECN1, which impaired BECN1-PIK3C3 complex formation or stability to suppress the PIK3C3 activity. DeSUMOylation of BECN1 restrained autophagy induction under basal conditions and especially upon starvation when SENP3 had accumulated in response to the increased generation of reactive oxygen species. Thus, while reversible SUMOylation regulated the degree of autophagy, SENP3 provided an intrinsic overflow valve for fine-tuning autophagy induction. ABBREVIATIONS AL: autolysosome; AP: autophagosome; ATG: autophagy related; ATG14: autophagy related 14; BECN1: beclin 1, autophagy related; cKO: conditional knockout; co-IP: co-immunoprecipitation; CQ: chloroquine; EBSS: Earle's balanced salt solution; GFP: green fluorescent protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NAC: N-acetyl-L-cysteine; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PTM: post-translational modification; RFP: red fluorescent protein; ROS: reactive oxygen species; RUBCN/rubicon: RUN domain and cysteine-rich domain containing, BECN1-interacting protein; SENP3: SUMO specific peptidase 3; shRNA: small hairpin RNA; siRNA: small interfering RNA; SQSTM1: sequestosome 1; SUMO: small ubiquitin-like modifier; UVRAG: UV radiation resistance associated gene.
Collapse
Affiliation(s)
- Kejia Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Chu Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yimin Lao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jie Yang
- Electron Microscopy Core Facilities, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Fei Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology , Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology , Shanghai, China.,CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jie Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jing Yi
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
18
|
Hermes TDA, Mâncio RD, Macedo AB, Mizobuti DS, da Rocha GL, Cagnon VHA, Minatel E. Tempol treatment shows phenotype improvement in mdx mice. PLoS One 2019; 14:e0215590. [PMID: 31009514 PMCID: PMC6476507 DOI: 10.1371/journal.pone.0215590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/04/2019] [Indexed: 01/04/2023] Open
Abstract
Considering potential Tempol effects on mdx muscle fibers, in this study we evaluated its effects on relevant dystrophic phenotypic characteristics, such as muscle degeneration, inflammatory process and angiogenesis, which as yet have not been investigated. Mdx mice were randomly assigned into three groups: mdxS, the control group receiving intraperitoneal (i.p.) injections of saline solution (100μL); mdxP, positive control group receiving prednisolone (1mg/kg) by oral gavage; and mdxT, treated group receiving i.p. injections of tempol (100 mg/kg). C57BL/10 mice were also used as controls. Tempol treatment promoted gain in muscle strength and reduced myonecrosis and inflammatory response in the dystrophic diaphragm (DIA) and biceps brachii (BB) muscles. No evidence of Tempol's beneficial performance on angiogenesis in DIA and BB mdx muscles was found. The findings presented here show that Tempol treatment improves dystrophic phenotype, supporting its use as a potential therapeutic strategy in DMD.
Collapse
MESH Headings
- Animals
- Antioxidants/administration & dosage
- Antioxidants/pharmacology
- Cyclic N-Oxides/administration & dosage
- Cyclic N-Oxides/pharmacology
- Diaphragm/metabolism
- Diaphragm/physiopathology
- Disease Models, Animal
- Humans
- Injections, Intraperitoneal
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/physiology
- Muscle Strength/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophies/genetics
- Muscular Dystrophies/pathology
- Muscular Dystrophies/physiopathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Phenotype
- Spin Labels
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Dias Mâncio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline Barbosa Macedo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Liu L, Cui Y, Li X, Que X, Xiao Y, Yang C, Zhang J, Xie X, Cowan PJ, Tian J, Hao H, Liu Z. Concomitant overexpression of triple antioxidant enzymes selectively increases circulating endothelial progenitor cells in mice with limb ischaemia. J Cell Mol Med 2019; 23:4019-4029. [PMID: 30973215 PMCID: PMC6533526 DOI: 10.1111/jcmm.14287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a group of heterogeneous cells in bone marrow (BM) and blood. Ischaemia increases reactive oxygen species (ROS) production that regulates EPC number and function. The present study was conducted to determine if ischaemia‐induced ROS differentially regulated individual EPC subpopulations using a mouse model concomitantly overexpressing superoxide dismutase (SOD)1, SOD3 and glutathione peroxidase. Limb ischaemia was induced by femoral artery ligation in male transgenic mice with their wild‐type littermate as control. BM and blood cells were collected for EPCs analysis and mononuclear cell intracellular ROS production, apoptosis and proliferation at baseline, day 3 and day 21 after ischaemia. Cells positive for c‐Kit+/CD31+ or Sca‐1+/Flk‐1+ or CD34+/CD133+ or CD34+/Flk‐1+ were identified as EPCs. ischaemia significantly increased ROS production and cell apoptosis and decreased proliferation of circulating and BM mononuclear cells and increased BM and circulating EPCs levels. Overexpression of triple antioxidant enzymes effectively prevented ischaemia‐induced ROS production with significantly decreased cell apoptosis and preserved proliferation and significantly increased circulating EPCs level without significant changes in BM EPC populations, associated with enhanced recovery of blood flow and function of the ischemic limb. These data suggested that ischaemia‐induced ROS was differentially involved in the regulation of circulating EPC population.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Cardiology, Children's hospital of Chongqing Medical University, Chongqing, China.,Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xin Li
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xingyi Que
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Yuan Xiao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Chunlin Yang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Jia Zhang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xiaoyun Xie
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Peter J Cowan
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Immunology Research Centre, St. Vincent's Hospital, Melbourne, Australia
| | - Jie Tian
- Department of Cardiology, Children's hospital of Chongqing Medical University, Chongqing, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
20
|
Fu J, Zou J, Chen C, Li H, Wang L, Zhou Y. Hydrogen molecules (H2) improve perfusion recovery via antioxidant effects in experimental peripheral arterial disease. Mol Med Rep 2018; 18:5009-5015. [PMID: 30320393 PMCID: PMC6236306 DOI: 10.3892/mmr.2018.9546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/03/2018] [Indexed: 11/24/2022] Open
Abstract
Reactive oxygen species (ROS) impair neovascularization and perfusion recovery following limb ischemia in patients with peripheral arterial disease (PAD). Hydrogen molecules (H2) comprise an antioxidant gas that has been reported to neutralize cytotoxic ROS. The present study investigated whether H2 may serve as a novel therapeutic strategy for PAD. H2-saturated water or dehydrogenized water was supplied to mice with experimental PAD. Laser Doppler perfusion imaging demonstrated that H2-saturated water improved perfusion recovery, decreased the rate of necrosis, increased the capillary density in the gastrocnemius muscle and increased the artery density in the abductor muscle in the ischemic limbs, at 14 and 21 days post-hindlimb ischemia. Ischemic muscle tissue was harvested 7 days after experimental PAD for biochemical testing and H2 was observed to reduce the levels of malondialdehyde and increase the levels of cyclic guanine monophosphate (cGMP). In cultured endothelial cells, H2-saturated culture medium resulted in reduced ROS levels, increased tube formation and increased cGMP levels. In macrophages, H2 decreased cellular ROS levels and promoted M2 polarization. H2-saturated water increases angiogenesis and arteriogenesis and subsequently improves perfusion recovery in a mouse PAD model via reduction of ROS levels.
Collapse
Affiliation(s)
- Jinrong Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jinjing Zou
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongying Li
- Department of Gynecology, Hubei Maternal and Child Hospital, Wuhan, Hubei 430070, P.R. China
| | - Lei Wang
- Department of Cardiology, Hubei University of Chinese Medicine, Wuhan, Hubei 430060, P.R. China
| | - Yanli Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
21
|
Jung E, Noh J, Kang C, Yoo D, Song C, Lee D. Ultrasound imaging and on-demand therapy of peripheral arterial diseases using H 2O 2-Activated bubble generating anti-inflammatory polymer particles. Biomaterials 2018; 179:175-185. [PMID: 29990676 DOI: 10.1016/j.biomaterials.2018.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/23/2018] [Accepted: 07/01/2018] [Indexed: 12/31/2022]
Abstract
Muscles of peripheral artery disease (PAD) patients are under oxidative stress associated with a significantly elevated level of reactive oxygen species (ROS) including hydrogen peroxide (H2O2). Curcumin is a major active constituent of turmeric and is well known for its highly potent antioxidant, anti-inflammatory and angiogenic effects. We previously reported antioxidant vanillyl alcohol-incorporated copolyoxalate (PVAX) which is designed to rapidly scavenge H2O2 and release bioactive vanillyl alcohol and CO2 in a H2O2-triggered manner. In this work, we developed curcumin-loaded PVAX (CUR-PVAX) nanoparticles as contrast-enhanced ultrasound imaging agents as well as on-demand therapeutic agents for ischemic injuries based on the hypothesis that PVAX nanoparticles generate echogenic CO2 bubbles through H2O2-triggered oxidation of peroxalate esters and the merger of curcumin and PVAX exerts H2O2-activatable synergistic therapeutic actions. CUR-PVAX nanoparticles also displayed the drastic ultrasound signal in ischemic areas by generating CO2 bubbles. CUR-PVAX nanoparticles exhibited significantly higher antioxidant and anti-inflammatory activities than empty PVAX nanoparticles and equivalent curcumin in vascular endothelial cells. A mouse model of ischemic injury was used to evaluate the potential of CUR-PVAX nanoparticles as ultrasound imaging agents and on-demand therapeutic agents. CUR-PVAX nanoparticles significantly suppressed the expression of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). Moreover, CUR-PVAX nanoparticles significantly enhanced the level of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (PECAM-1, also known as CD31), leading to blood perfusion into ischemic tissues. We, therefore, believe that CUR-PVAX nanoparticles hold great translational potential as novel theranostic agents for ischemic diseases such as PAD.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of BIN Convergence Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Joungyoun Noh
- Department of Polymer⋅Nano Science and Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Changsun Kang
- Department of BIN Convergence Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Donghyuck Yoo
- Department of BIN Convergence Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Chulgyu Song
- Department of Electronics Engineering, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Dongwon Lee
- Department of BIN Convergence Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea; Department of Polymer⋅Nano Science and Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea.
| |
Collapse
|
22
|
Fukai T, Ushio-Fukai M, Kaplan JH. Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. Am J Physiol Cell Physiol 2018; 315:C186-C201. [PMID: 29874110 DOI: 10.1152/ajpcell.00132.2018] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper (Cu) is an essential micronutrient but excess Cu is potentially toxic. Its important propensity to cycle between two oxidation states accounts for its frequent presence as a cofactor in many physiological processes through Cu-containing enzymes, including mitochondrial energy production (via cytochrome c-oxidase), protection against oxidative stress (via superoxide dismutase), and extracellular matrix stability (via lysyl oxidase). Since free Cu is potentially toxic, the bioavailability of intracellular Cu is tightly controlled by Cu transporters and Cu chaperones. Recent evidence reveals that these Cu transport systems play an essential role in the physiological responses of cardiovascular cells, including cell growth, migration, angiogenesis and wound repair. In response to growth factors, cytokines, and hypoxia, their expression, subcellular localization, and function are tightly regulated. Cu transport systems and their regulators have also been linked to various cardiovascular pathophysiologies such as hypertension, inflammation, atherosclerosis, diabetes, cardiac hypertrophy, and cardiomyopathy. A greater appreciation of the central importance of Cu transporters and Cu chaperones in cell signaling and gene expression in cardiovascular biology offers the possibility of identifying new therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia.,Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University , Augusta, Georgia.,Charlie Norwood Veterans Affairs Medical Center , Augusta Georgia
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia.,Department of Medicine (Cardiology), Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine , Chicago, Illinois
| |
Collapse
|
23
|
O’Grady KP, Kavanaugh TE, Cho H, Ye H, Gupta MK, Madonna MC, Lee J, O’Brien CM, Skala MC, Hasty KA, Duvall CL. Drug-Free ROS Sponge Polymeric Microspheres Reduce Tissue Damage from Ischemic and Mechanical Injury. ACS Biomater Sci Eng 2018; 4:1251-1264. [PMID: 30349873 PMCID: PMC6195321 DOI: 10.1021/acsbiomaterials.6b00804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The inherent antioxidant function of poly(propylene sulfide) (PPS) microspheres (MS) was dissected for different reactive oxygen species (ROS), and therapeutic benefits of PPS-MS were explored in models of diabetic peripheral arterial disease (PAD) and mechanically induced post-traumatic osteoarthritis (PTOA). PPS-MS (∼1 μm diameter) significantly scavenged hydrogen peroxide (H2O2), hypochlorite, and peroxynitrite but not superoxide in vitro in cell-free and cell-based assays. Elevated ROS levels (specifically H2O2) were confirmed in both a mouse model of diabetic PAD and in a mouse model of PTOA, with greater than 5- and 2-fold increases in H2O2, respectively. PPS-MS treatment functionally improved recovery from hind limb ischemia based on ∼15-25% increases in hemoglobin saturation and perfusion in the footpads as well as earlier remodeling of vessels in the proximal limb. In the PTOA model, PPS-MS reduced matrix metalloproteinase (MMP) activity by 30% and mitigated the resultant articular cartilage damage. These results suggest that local delivery of PPS-MS at sites of injury-induced inflammation improves the vascular response to ischemic injury in the setting of chronic hyperglycemia and reduces articular cartilage destruction following joint trauma. These results motivate further exploration of PPS as a stand-alone, locally sustained antioxidant therapy and as a material for microsphere-based, sustained local drug delivery to inflamed tissues at risk of ROS damage.
Collapse
Affiliation(s)
- Kristin P. O’Grady
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Taylor E. Kavanaugh
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Hongsik Cho
- Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Research Service 151, VA Medical Center, 1030 Jefferson Avenue, Memphis, Tennessee 38104, United States
| | - Hanrong Ye
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Mukesh K. Gupta
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Megan C. Madonna
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Jinjoo Lee
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Christine M. O’Brien
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Melissa C. Skala
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Karen A. Hasty
- Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Research Service 151, VA Medical Center, 1030 Jefferson Avenue, Memphis, Tennessee 38104, United States
| | - Craig L. Duvall
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
24
|
In silico prediction of targets for anti-angiogenesis and their in vitro evaluation confirm the involvement of SOD3 in angiogenesis. Oncotarget 2018; 9:17349-17367. [PMID: 29707113 PMCID: PMC5915121 DOI: 10.18632/oncotarget.24693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/24/2018] [Indexed: 01/09/2023] Open
Abstract
Biocomputational network approaches are being successfully applied to predict and extract previously unknown information of novel molecular components of biological systems. In the present work, we have used this approach to predict new potential targets of anti-angiogenic therapies. For experimental validation of predictions, we made use of two in vitro assays related to two key steps of the angiogenic process, namely, endothelial cell migration and formation of "tubular-like" structures on Matrigel. From 7 predicted candidates, experimental tests clearly show that superoxide dismutase 3 silencing or blocking with specific antibodies inhibit both key steps of angiogenesis. This experimental validation was further confirmed with additional in vitro assays showing that superoxide dismutase 3 blocking produces inhibitory effects on the capacity of endothelial cells to form "tubular-like" structure within type I collagen matrix, to adhere to elastin-coated plates and to invade a Matrigel layer. Furthermore, angiogenesis was also inhibited in the en vivo aortic ring assay and in the in vivo mouse Matrigel plug assay. Therefore, superoxide dismutase 3 is confirmed as a putative target for anti-angiogenic therapy.
Collapse
|
25
|
Sudhahar V, Okur MN, Bagi Z, O'Bryan JP, Hay N, Makino A, Patel VS, Phillips SA, Stepp D, Ushio-Fukai M, Fukai T. Akt2 (Protein Kinase B Beta) Stabilizes ATP7A, a Copper Transporter for Extracellular Superoxide Dismutase, in Vascular Smooth Muscle: Novel Mechanism to Limit Endothelial Dysfunction in Type 2 Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2018; 38:529-541. [PMID: 29301787 DOI: 10.1161/atvbaha.117.309819] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Copper transporter ATP7A (copper-transporting/ATPase) is required for full activation of SOD3 (extracellular superoxide dismutase), which is secreted from vascular smooth muscle cells (VSMCs) and anchors to endothelial cell surface to preserve endothelial function by scavenging extracellular superoxide. We reported that ATP7A protein expression and SOD3 activity are decreased in insulin-deficient type 1 diabetes mellitus vessels, thereby, inducing superoxide-mediated endothelial dysfunction, which are rescued by insulin treatment. However, it is unknown regarding the mechanism by which insulin increases ATP7A expression in VSMCs and whether ATP7A downregulation is observed in T2DM (type2 diabetes mellitus) mice and human in which insulin-Akt (protein kinase B) pathway is selectively impaired. APPROACH AND RESULTS Here we show that ATP7A protein is markedly downregulated in vessels isolated from T2DM patients, as well as those from high-fat diet-induced or db/db T2DM mice. Akt2 (protein kinase B beta) activated by insulin promotes ATP7A stabilization via preventing ubiquitination/degradation as well as translocation to plasma membrane in VSMCs, which contributes to activation of SOD3 that protects against T2DM-induced endothelial dysfunction. Downregulation of ATP7A in T2DM vessels is restored by constitutive active Akt or PTP1B-/- (protein-tyrosine phosphatase 1B-deficient) T2DM mice, which enhance insulin-Akt signaling. Immunoprecipitation, in vitro kinase assay, and mass spectrometry analysis reveal that insulin stimulates Akt2 binding to ATP7A to induce phosphorylation at Ser1424/1463/1466. Furthermore, SOD3 activity is reduced in Akt2-/- vessels or VSMCs, which is rescued by ATP7A overexpression. CONCLUSION Akt2 plays a critical role in ATP7A protein stabilization and translocation to plasma membrane in VSMCs, which contributes to full activation of vascular SOD3 that protects against endothelial dysfunction in T2DM.
Collapse
Affiliation(s)
- Varadarajan Sudhahar
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Mustafa Nazir Okur
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Zsolt Bagi
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - John P O'Bryan
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Nissim Hay
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Ayako Makino
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Vijay S Patel
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Shane A Phillips
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - David Stepp
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Masuko Ushio-Fukai
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Tohru Fukai
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.).
| |
Collapse
|
26
|
Redox regulation of ischemic limb neovascularization - What we have learned from animal studies. Redox Biol 2017; 12:1011-1019. [PMID: 28505880 PMCID: PMC5430575 DOI: 10.1016/j.redox.2017.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/08/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral artery occlusion, although mice with diabetes or atherosclerosis may have higher deleterious levels of oxidants. Therefore, fine control of oxidants is required to stimulate vascularization in the limb muscle. Oxidants transduce cellular signaling through oxidative modifications of redox sensitive cysteine thiols. Of particular importance, the reversible modification with abundant glutathione, called S-glutathionylation (or GSH adducts), is relatively stable and alters protein function including signaling, transcription, and cytoskeletal arrangement. Glutaredoxin-1 (Glrx) is an enzyme which catalyzes reversal of GSH adducts, and does not scavenge oxidants itself. Glrx may control redox signaling under fluctuation of oxidants levels. In ischemic muscle increased GSH adducts through Glrx deletion improves in vivo limb revascularization, indicating endogenous Glrx has anti-angiogenic roles. In accordance, Glrx overexpression attenuates VEGF signaling in vitro and ischemic vascularization in vivo. There are several Glrx targets including HIF-1α which may contribute to inhibition of vascularization by reducing GSH adducts. These animal studies provide a caution that excess antioxidants may be counter-productive for treatment of ischemic limbs, and highlights Glrx as a potential therapeutic target to improve ischemic limb vascularization.
Collapse
|
27
|
Endothelial Antioxidant-1: a Key Mediator of Copper-dependent Wound Healing in vivo. Sci Rep 2016; 6:33783. [PMID: 27666810 PMCID: PMC5036036 DOI: 10.1038/srep33783] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
Abstract
Copper (Cu), an essential nutrient, promotes wound healing, however, target of Cu action and underlying mechanisms remain elusive. Cu chaperone Antioxidant-1 (Atox1) in the cytosol supplies Cu to the secretory enzymes such as lysyl oxidase (LOX), while Atox1 in the nucleus functions as a Cu-dependent transcription factor. Using mouse cutaneous wound healing model, here we show that Cu content (by X-ray Fluorescence Microscopy) and nuclear Atox1 are increased after wounding, and that wound healing with and without Cu treatment is impaired in Atox1-/- mice. Endothelial cell (EC)-specific Atox1-/- mice and gene transfer of nuclear-target Atox1 in Atox1-/- mice reveal that Atox1 in ECs as well as transcription factor function of Atox1 are required for wound healing. Mechanistically, Atox1-/- mice show reduced Atox1 target proteins such as p47phox NADPH oxidase and cyclin D1 as well as extracellular matrix Cu enzyme LOX activity in wound tissues. This in turn results in reducing O2- production in ECs, NFkB activity, cell proliferation and collagen formation, thereby inhibiting angiogenesis, macrophage recruitment and extracellular matrix maturation. Our findings suggest that Cu-dependent transcription factor/Cu chaperone Atox1 in ECs plays an important role to sense Cu to accelerate wound angiogenesis and healing.
Collapse
|
28
|
H2O2-responsive antioxidant polymeric nanoparticles as therapeutic agents for peripheral arterial disease. Int J Pharm 2016; 511:1022-32. [PMID: 27521705 DOI: 10.1016/j.ijpharm.2016.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022]
Abstract
Peripheral artery disease (PAD) is a common circulatory disorder in which narrowed arteries limit blood flow to the lower extremity and affect millions of people worldwide. Therapeutic angiogenesis has emerged as a promising strategy to treat PAD patients because surgical intervention has been showing limited success. Leg muscles of PAD patients have significantly high level of ROS (reactive oxygen species) and the increased production of ROS is a key mechanism of initiation and progression of PAD. We have recently developed H2O2-responsive polymer PVAX, which is designed to rapidly scavenge H2O2 and release vanillyl alcohol with antioxidant and anti-inflammatory activity. In this study, we investigated the therapeutic efficacy of PVAX nanoparticles for PAD using a cell culture model and a mouse model of hindlimb ischemia. PVAX nanoparticles significantly enhanced the expression of angiogenic inducers such as vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule (PECAM)-1 in human umbilical vein endothelial cells (HUVEC). PVAX nanoparticles promoted revascularization and restoration of blood perfusion into ischemic tissues by upregulating angiogenic VEGF and PECAM-1. This work demonstrates that H2O2-responsive PVAX nanoparticles facilitate therapeutic angiogenesis and hold tremendous translational potential as therapeutic systems for ischemic diseases such as PAD.
Collapse
|
29
|
Watanabe Y, Cohen RA, Matsui R. Redox Regulation of Ischemic Angiogenesis - Another Aspect of Reactive Oxygen Species. Circ J 2016; 80:1278-84. [PMID: 27151566 DOI: 10.1253/circj.cj-16-0317] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antioxidants are expected to improve cardiovascular disease (CVD) by eliminating oxidative stress, but clinical trials have not shown promising results in chronic CVD. Animal studies have revealed that reactive oxygen species (ROS) exacerbate acute CVDs in which high levels of ROS are observed. However, ROS are also necessary for angiogenesis after ischemia, because ROS not only damage cells but also stimulate the cell signaling required for angiogenesis. ROS affect signaling by protein modifications, especially of cysteine amino acid thiols. Although there are several cysteine modifications, S-glutathionylation (GSH adducts; -SSG), a reversible cysteine modification by glutathione (GSH), plays an important role in angiogenic signal transduction by ROS. Glutaredoxin-1 (Glrx) is an enzyme that specifically removes GSH adducts in vivo. Overexpression of Glrx inhibits, whereas deletion of Glrx improves revascularization after mouse hindlimb ischemia. These studies indicate that increased levels of GSH adducts in ischemic muscle are beneficial in promoting angiogenesis. The underlying mechanism can be explained by multiple targets of S-gluathionylation, which mediate the angiogenic effects in ischemia. Increments in the master angiogenic transcriptional factor, HIF-1α, reduction of the anti-angiogenic factor sFlt1, activation of the endoplasmic reticulum Ca(2+)pump, SERCA, and inhibition of phosphatases may occur as a consequence of enhanced S-glutathionylation in ischemic tissue. In summary, inducing S-glutathionylation by inhibiting Glrx may be a therapeutic strategy to improve ischemic angiogenesis in CVD. (Circ J 2016; 80: 1278-1284).
Collapse
Affiliation(s)
- Yosuke Watanabe
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine
| | | | | |
Collapse
|
30
|
Radomska-Leśniewska DM, Hevelke A, Skopiński P, Bałan B, Jóźwiak J, Rokicki D, Skopińska-Różewska E, Białoszewska A. Reactive oxygen species and synthetic antioxidants as angiogenesis modulators: Clinical implications. Pharmacol Rep 2016; 68:462-71. [DOI: 10.1016/j.pharep.2015.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 01/11/2023]
|
31
|
Bach1 Induces Endothelial Cell Apoptosis and Cell-Cycle Arrest through ROS Generation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6234043. [PMID: 27057283 PMCID: PMC4789484 DOI: 10.1155/2016/6234043] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 12/29/2022]
Abstract
The transcription factor BTB and CNC homology 1 (Bach1) regulates genes involved in the oxidative stress response and cell-cycle progression. We have recently shown that Bach1 impairs cell proliferation and promotes apoptosis in cultured endothelial cells (ECs), but the underlying mechanisms are largely uncharacterized. Here we demonstrate that Bach1 upregulation impaired the blood flow recovery from hindlimb ischemia and this effect was accompanied both by increases in reactive oxygen species (ROS) and cleaved caspase 3 levels and by declines in the expression of cyclin D1 in the injured tissues. We found that Bach1 overexpression induced mitochondrial ROS production and caspase 3-dependent apoptosis and its depletion attenuated H2O2-induced apoptosis in cultured human microvascular endothelial cells (HMVECs). Bach1-induced apoptosis was largely abolished when the cells were cultured with N-acetyl-l-cysteine (NAC), a ROS scavenger. Exogenous expression of Bach1 inhibited the cell proliferation and the expression of cyclin D1, induced an S-phase arrest, and increased the expression of cyclin E2, which were partially blocked by NAC. Taken together, our results suggest that Bach1 suppresses cell proliferation and induces cell-cycle arrest and apoptosis by increasing mitochondrial ROS production, suggesting that Bach1 may be a promising treatment target for the treatment of vascular diseases.
Collapse
|
32
|
Fujiwara T, Duscher D, Rustad KC, Kosaraju R, Rodrigues M, Whittam AJ, Januszyk M, Maan ZN, Gurtner GC. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function. Exp Dermatol 2016; 25:206-11. [PMID: 26663425 DOI: 10.1111/exd.12909] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-β1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing.
Collapse
Affiliation(s)
- Toshihiro Fujiwara
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dominik Duscher
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristine C Rustad
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Revanth Kosaraju
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie Rodrigues
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander J Whittam
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
33
|
Xiao L, Yan K, Yang Y, Chen N, Li Y, Deng X, Wang L, Liu Y, Mu L, Li R, Luo M, Ren M, Wu J. Anti-vascular endothelial growth factor treatment induces blood flow recovery through vascular remodeling in high-fat diet induced diabetic mice. Microvasc Res 2016; 105:70-6. [PMID: 26808210 DOI: 10.1016/j.mvr.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 01/30/2023]
Abstract
Diabetes mellitus (DM) leads to the development of microvascular diseases and is associated with impaired angiogenesis. The presence of vascular endothelial growth factor (VEGF) can block PDGF-BB dependent regulation of neovascularization and vessel normalization. We tested the hypothesis that the inhibition of VEGF improves blood flow in a mouse hindlimb ischemia model produced by femoral artery ligation. In this study, we examined the effect of bevacizumab, a humanized monoclonal antibody against VEGF-A, on blood perfusion and angiogenesis after hindlimb ischemia. We showed that bevacizumab induces functional blood flow in high fat chow (HFC)-fed diabetic mice. Treatment with bevacizumab increased the expression of platelet derived growth factor-BB (PDGF-BB) in ischemic muscle, and led to vascular normalization. It also blocked vascular leakage by improving the recruitment of pericytes associated with nascent blood vessels, but it did not affect capillary formation. Furthermore, treatment with an anti-PDGF drug significantly inhibited blood flow perfusion in diabetic mice treated with bevacizumab. These results indicate that bevacizumab improves blood flow recovery through the induction of PDGF-BB in a diabetic mouse hindlimb ischemia model, and that vessel normalization may represent a useful strategy for the prevention and treatment of diabetic peripheral arterial disease.
Collapse
Affiliation(s)
- Lamei Xiao
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Kai Yan
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Yan Yang
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Ni Chen
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Yongjie Li
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Xin Deng
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Liqun Wang
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Yan Liu
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Lin Mu
- Affiliated TCM Hospital, Sichuan Medical University, People's Republic of China
| | - Rong Li
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Mao Luo
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Meiping Ren
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China
| | - Jianbo Wu
- Drug Discovery Research Center, Luzhou, Sichuan, Sichuan Medical University, People's Republic of China; Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
34
|
Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil 2016; 36:377-93. [PMID: 26728750 PMCID: PMC4762917 DOI: 10.1007/s10974-015-9438-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are generated in skeletal muscle both during the rest and contractile activity. Myogenic cells are equipped with antioxidant enzymes, like superoxide dismutase, catalase, glutathione peroxidase, γ-glutamylcysteine synthetase and heme oxygenase-1. These enzymes not only neutralise excessive ROS, but also affect myogenic regeneration at several stages: influence post-injury inflammatory reaction, enhance viability and proliferation of muscle satellite cells and myoblasts and affect their differentiation. Finally, antioxidant enzymes regulate also processes accompanying muscle regeneration-induce angiogenesis and reduce fibrosis. Elevated ROS production was also observed in Duchenne muscular dystrophy (DMD), a disease characterised by degeneration of muscle tissue and therefore-increased rate of myogenic regeneration. Antioxidant enzymes are consequently considered as target for therapies counteracting dystrophic symptoms. In this review we present current knowledge regarding the role of oxidative stress and systems of enzymatic antioxidant defence in muscular regeneration after both acute injury and persistent muscular degeneration.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Pietraszek-Gremplewicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland. .,Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
35
|
Chen GF, Sudhahar V, Youn SW, Das A, Cho J, Kamiya T, Urao N, McKinney RD, Surenkhuu B, Hamakubo T, Iwanari H, Li S, Christman JW, Shantikumar S, Angelini GD, Emanueli C, Ushio-Fukai M, Fukai T. Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function. Sci Rep 2015; 5:14780. [PMID: 26437801 PMCID: PMC4594038 DOI: 10.1038/srep14780] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023] Open
Abstract
Copper (Cu), an essential micronutrient, plays a fundamental role in inflammation and angiogenesis; however, its precise mechanism remains undefined. Here we uncover a novel role of Cu transport protein Antioxidant-1 (Atox1), which is originally appreciated as a Cu chaperone and recently discovered as a Cu-dependent transcription factor, in inflammatory neovascularization. Atox1 expression is upregulated in patients and mice with critical limb ischemia. Atox1-deficient mice show impaired limb perfusion recovery with reduced arteriogenesis, angiogenesis, and recruitment of inflammatory cells. In vivo intravital microscopy, bone marrow reconstitution, and Atox1 gene transfer in Atox1−/− mice show that Atox1 in endothelial cells (ECs) is essential for neovascularization and recruitment of inflammatory cells which release VEGF and TNFα. Mechanistically, Atox1-depleted ECs demonstrate that Cu chaperone function of Atox1 mediated through Cu transporter ATP7A is required for VEGF-induced angiogenesis via activation of Cu enzyme lysyl oxidase. Moreover, Atox1 functions as a Cu-dependent transcription factor for NADPH oxidase organizer p47phox, thereby increasing ROS-NFκB-VCAM-1/ICAM-1 expression and monocyte adhesion in ECs inflamed with TNFα in an ATP7A-independent manner. These findings demonstrate a novel linkage between Atox1 and NADPH oxidase involved in inflammatory neovascularization and suggest Atox1 as a potential therapeutic target for treatment of ischemic disease.
Collapse
Affiliation(s)
- Gin-Fu Chen
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Varadarajan Sudhahar
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Seock-Won Youn
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL
| | - Archita Das
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Tetsuro Kamiya
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL
| | - Norifumi Urao
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Ronald D McKinney
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Bayasgalan Surenkhuu
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Senlin Li
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - John W Christman
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine The Ohio State University Wexner Medical Center, OH
| | - Saran Shantikumar
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol
| | - Gianni D Angelini
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol.,National Heart and Lung Institute, Imperial College of London, London, UK
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol.,National Heart and Lung Institute, Imperial College of London, London, UK
| | - Masuko Ushio-Fukai
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL
| | - Tohru Fukai
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| |
Collapse
|
36
|
Rashdan NA, Lloyd PG. Fluid shear stress upregulates placental growth factor in the vessel wall via NADPH oxidase 4. Am J Physiol Heart Circ Physiol 2015; 309:H1655-66. [PMID: 26408539 DOI: 10.1152/ajpheart.00408.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/22/2015] [Indexed: 01/02/2023]
Abstract
Placental growth factor (PLGF), a potent stimulator of arteriogenesis, is upregulated during outward arterial remodeling. Increased fluid shear stress (FSS) is a key physiological stimulus for arteriogenesis. However, the role of FSS in regulating PLGF expression is unknown. To test the hypothesis that FSS regulates PLGF expression in vascular cells and to identify the signaling pathways involved, human coronary artery endothelial cells (HCAEC) and human coronary artery smooth muscle cells were cultured on either side of porous Transwell inserts. HCAEC were then exposed to pulsatile FSS of 0.07 Pa ("normal," mimicking flow through quiescent collaterals), 1.24 Pa ("high," mimicking increased flow in remodeling collaterals), or 0.00 Pa ("static") for 2 h. High FSS increased secreted PLGF protein ∼1.4-fold compared with static control (n = 5, P < 0.01), while normal FSS had no significant effect on PLGF. Similarly, high flow stimulated PLGF mRNA expression nearly twofold in isolated mouse mesenteric arterioles. PLGF knockdown using siRNA revealed that HCAEC were the primary source of PLGF in cocultures (n = 5, P < 0.01). Both H2O2 and nitric oxide production were increased by FSS compared with static control (n = 5, P < 0.05). N(G)-nitro-l-arginine methyl ester (100 μM) had no significant effect on the FSS-induced increase in PLGF. In contrast, both catalase (500 U/ml) and diphenyleneiodonium (5 μM) attenuated the effects of FSS on PLGF protein in cocultures. Diphenyleneiodonium also blocked the effect of high flow to upregulate PLGF mRNA in isolated arterioles. Further studies identified NADPH oxidase 4 as a source of reactive oxygen species for this pathway. We conclude that FSS regulates PLGF expression via NADPH oxidase 4 and reactive oxygen species signaling.
Collapse
Affiliation(s)
- Nabil A Rashdan
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Pamela G Lloyd
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
37
|
Angiomodulatory properties of Rhodiola spp. and other natural antioxidants. Cent Eur J Immunol 2015; 40:249-62. [PMID: 26557041 PMCID: PMC4637400 DOI: 10.5114/ceji.2015.52839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/01/2023] Open
Abstract
Disturbances of angiogenesis and oxidative stress can lead to many serious diseases such as cancer, diabetes or ischemic heart disease. Substances neutralizing oxidative stress are known as antioxidants. They can affect angiogenesis process also, and thus, they modulate therapy results. Antioxidants become more and more frequently used in order to maintain homeostasis of the organism and diminish the risk of disease. Herein, we introduce some antioxidant preparations of natural plant origin (Rhodiola, Aloe vera, Resveratrol, Echinacea, Plumbagin) and antioxidant supplements (Padma 28, Reumaherb, Resvega). Analyses of their angiogenic properties, their multidirectional molecular effect on angiogenesis as well as medical application are within the scope of this review. Most of presented preparations down regulate neovascularization. They can be safely administered to patients with abnormally high angiogenesis. Rhodiola modulates, and Echinacea, Aloe vera and Plumbagin inhibit tumour-related angiogenesis in vitro and in vivo (animal models). Resveratrol and Resvega reduce neovascularization in the eye and may be applicable in eye disorders. Padma 28 preparation exhibits angioregulatory activity, decreasing high angiogenesis of cancer cells and increasing physiological angiogenesis, therefore can be used in therapy of patients with various disturbances of angiogenesis. Antioxidant application in the case of angiogenesis-related diseases should take into consideration angiogenic status of the patient.
Collapse
|
38
|
Jiang L, Yin M, Wei X, Liu J, Wang X, Niu C, Kang X, Xu J, Zhou Z, Sun S, Wang X, Zheng X, Duan S, Yao K, Qian R, Sun N, Chen A, Wang R, Zhang J, Chen S, Meng D. Bach1 Represses Wnt/β-Catenin Signaling and Angiogenesis. Circ Res 2015; 117:364-375. [PMID: 26123998 PMCID: PMC4676728 DOI: 10.1161/circresaha.115.306829] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/29/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Wnt/β-catenin signaling has an important role in the angiogenic activity of endothelial cells (ECs). Bach1 is a transcription factor and is expressed in ECs, but whether Bach1 regulates angiogenesis is unknown. OBJECTIVE This study evaluated the role of Bach1 in angiogenesis and Wnt/β-catenin signaling. METHODS AND RESULTS Hind-limb ischemia was surgically induced in Bach1(-/-) mice and their wild-type littermates and in C57BL/6J mice treated with adenoviruses coding for Bach1 or GFP. Lack of Bach1 expression was associated with significant increases in perfusion and vascular density and in the expression of proangiogenic cytokines in the ischemic hindlimb of mice, with enhancement of the angiogenic activity of ECs (eg, tube formation, migration, and proliferation). Bach1 overexpression impaired angiogenesis in mice with hind-limb ischemia and inhibited Wnt3a-stimulated angiogenic response and the expression of Wnt/β-catenin target genes, such as interleukin-8 and vascular endothelial growth factor, in human umbilical vein ECs. Interleukin-8 and vascular endothelial growth factor were responsible for the antiangiogenic response of Bach1. Immunoprecipitation and GST pull-down assessments indicated that Bach1 binds directly to TCF4 and reduces the interaction of β-catenin with TCF4. Bach1 overexpression reduces the interaction between p300/CBP and β-catenin, as well as β-catenin acetylation, and chromatin immunoprecipitation experiments confirmed that Bach1 occupies the TCF4-binding site of the interleukin-8 promoter and recruits histone deacetylase 1 to the interleukin-8 promoter in human umbilical vein ECs. CONCLUSIONS Bach1 suppresses angiogenesis after ischemic injury and impairs Wnt/β-catenin signaling by disrupting the interaction between β-catenin and TCF4 and by recruiting histone deacetylase 1 to the promoter of TCF4-targeted genes.
Collapse
Affiliation(s)
- Li Jiang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Meng Yin
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Junxu Liu
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Xinhong Wang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Cong Niu
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Xueling Kang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Jie Xu
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Zhongwei Zhou
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Shaoyang Sun
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Xu Wang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Xiaojun Zheng
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Shengzhong Duan
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Kang Yao
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Ning Sun
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Alex Chen
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Rui Wang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Jianyi Zhang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Sifeng Chen
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Dan Meng
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| |
Collapse
|
39
|
Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 2015; 116:531-49. [PMID: 25634975 DOI: 10.1161/circresaha.116.303584] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress.
Collapse
Affiliation(s)
- David I Brown
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA.
| |
Collapse
|
40
|
Poole KM, Nelson CE, Joshi RV, Martin JR, Gupta MK, Haws SC, Kavanaugh TE, Skala MC, Duvall CL. ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials 2015; 41:166-75. [PMID: 25522975 PMCID: PMC4274772 DOI: 10.1016/j.biomaterials.2014.11.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
A new microparticle-based delivery system was synthesized from reactive oxygen species (ROS)-responsive poly(propylene sulfide) (PPS) and tested for "on demand" antioxidant therapy. PPS is hydrophobic but undergoes a phase change to become hydrophilic upon oxidation and thus provides a useful platform for ROS-demanded drug release. This platform was tested for delivery of the promising anti-inflammatory and antioxidant therapeutic molecule curcumin, which is currently limited in use in its free form due to poor pharmacokinetic properties. PPS microspheres efficiently encapsulated curcumin through oil-in-water emulsion and provided sustained, on demand release that was modulated in vitro by hydrogen peroxide concentration. The cytocompatible, curcumin-loaded microspheres preferentially targeted and scavenged intracellular ROS in activated macrophages, reduced in vitro cell death in the presence of cytotoxic levels of ROS, and decreased tissue-level ROS in vivo in the diabetic mouse hind limb ischemia model of peripheral arterial disease. Interestingly, due to the ROS scavenging behavior of PPS, the blank microparticles also showed inherent therapeutic properties that were synergistic with the effects of curcumin in these assays. Functionally, local delivery of curcumin-PPS microspheres accelerated recovery from hind limb ischemia in diabetic mice, as demonstrated using non-invasive imaging techniques. This work demonstrates the potential for PPS microspheres as a generalizable vehicle for ROS-demanded drug release and establishes the utility of this platform for improving local curcumin bioavailability for treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kristin M Poole
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA
| | - Christopher E Nelson
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA
| | - Rucha V Joshi
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA
| | - John R Martin
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA
| | - Mukesh K Gupta
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA
| | - Skylar C Haws
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA
| | - Taylor E Kavanaugh
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA
| | - Melissa C Skala
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA
| | - Craig L Duvall
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA.
| |
Collapse
|
41
|
Iacobazzi D, Mangialardi G, Gubernator M, Hofner M, Wielscher M, Vierlinger K, Reni C, Oikawa A, Spinetti G, Vono R, Sangalli E, Montagnani M, Madeddu P. Increased antioxidant defense mechanism in human adventitia-derived progenitor cells is associated with therapeutic benefit in ischemia. Antioxid Redox Signal 2014; 21:1591-604. [PMID: 24512058 PMCID: PMC4174427 DOI: 10.1089/ars.2013.5404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AIMS Vascular wall-resident progenitor cells hold great promise for cardiovascular regenerative therapy. This study evaluates the impact of oxidative stress on the viability and functionality of adventitia-derived progenitor cells (APCs) from vein remnants of coronary artery bypass graft (CABG) surgery. We also investigated the antioxidant enzymes implicated in the resistance of APCs to oxidative stress-induced damage and the effect of interfering with one of them, the extracellular superoxide dismutase (EC-SOD/SOD3), on APC therapeutic action in a model of peripheral ischemia. RESULTS After exposure to hydrogen peroxide, APCs undergo apoptosis to a smaller extent than endothelial cells (ECs). This was attributed to up-regulation of antioxidant enzymes, especially SODs and catalase. Pharmacological inhibition of SODs increases reactive oxygen species (ROS) levels in APCs and impairs their survival. Likewise, APC differentiation results in SOD down-regulation and ROS-induced apoptosis. Oxidative stress increases APC migratory activity, while being inhibitory for ECs. In addition, oxidative stress does not impair APC capacity to promote angiogenesis in vitro. In a mouse limb ischemia model, an injection of naïve APCs, but not SOD3-silenced APCs, helps perfusion recovery and neovascularization, thus underlining the importance of this soluble isoform in protection from ischemia. INNOVATION This study newly demonstrates that APCs are endowed with enhanced detoxifier and antioxidant systems and that SOD3 plays an important role in their therapeutic activity in ischemia. CONCLUSIONS APCs from vein remnants of CABG patients express antioxidant defense mechanisms, which enable them to resist stress. These properties highlight the potential of APCs in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Dominga Iacobazzi
- 1 Expermental Cardiovascular Medicine, School of Clinical Sciences, University of Bristol , Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kanazashi M, Tanaka M, Murakami S, Kondo H, Nagatomo F, Ishihara A, Roy RR, Fujino H. Amelioration of capillary regression and atrophy of the soleus muscle in hindlimb-unloaded rats by astaxanthin supplementation and intermittent loading. Exp Physiol 2014; 99:1065-77. [DOI: 10.1113/expphysiol.2014.079988] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miho Kanazashi
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe Japan
| | | | - Hiroyo Kondo
- Department of Food Science and Nutrition; Nagoya Women's University; Nagoya Japan
| | - Fumiko Nagatomo
- Laboratory of Cell Biology and Life Science; Graduate School of Human and Environmental Studies; Kyoto University; Kyoto Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science; Graduate School of Human and Environmental Studies; Kyoto University; Kyoto Japan
| | - Roland R. Roy
- Brain Research Institute and Department of Integrative Biology and Physiology; University of California; Los Angeles CA USA
| | - Hidemi Fujino
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe Japan
| |
Collapse
|
43
|
Konkalmatt PR, Beyers RJ, O'Connor DM, Xu Y, Seaman ME, French BA. Cardiac-selective expression of extracellular superoxide dismutase after systemic injection of adeno-associated virus 9 protects the heart against post-myocardial infarction left ventricular remodeling. Circ Cardiovasc Imaging 2013; 6:478-86. [PMID: 23536266 DOI: 10.1161/circimaging.112.000320] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac magnetic resonance imaging has not been used previously to document the attenuation of left ventricular (LV) remodeling after systemic gene delivery. We hypothesized that targeted expression of extracellular superoxide dismutase (EcSOD) via the cardiac troponin-T promoter would protect the mouse heart against both myocardial infarction (MI) and subsequent LV remodeling. METHODS AND RESULTS Using reporter genes, we first compared the specificity, time course, magnitude, and distribution of gene expression from adeno-associated virus (AAV) 1, 2, 6, 8, and 9 after intravenous injection. The troponin-T promoter restricted gene expression largely to the heart for all AAV serotypes tested. AAV1, 6, 8, and 9 provided early-onset gene expression that approached steady-state levels within 2 weeks. Gene expression was highest with AAV9, which required only 3.15×10(11) viral genomes per mouse to achieve an 84% transduction rate. AAV9-mediated, cardiac-selective gene expression elevated EcSOD enzyme activity in heart by 5.6-fold (P=0.015), which helped protect the heart against both acute MI and subsequent LV remodeling. In acute MI, infarct size in EcSOD-treated mice was reduced by 40% compared with controls (P=0.035). In addition, we found that cardiac-selective expression of EcSOD increased myocardial capillary fractional area and decreased neutrophil infiltration after MI. In a separate study of LV remodeling, after a 60-minute coronary occlusion, cardiac magnetic resonance imaging revealed that LV volumes at days 7 and 28 post-MI were significantly lower in the EcSOD group compared with controls. CONCLUSIONS Cardiac-selective expression of EcSOD from the cardiac troponin-T promoter after systemic administration of AAV9 provides significant protection against both acute MI and LV remodeling.
Collapse
Affiliation(s)
- Prasad R Konkalmatt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | | | | | |
Collapse
|
44
|
Critical role of endothelial hydrogen peroxide in post-ischemic neovascularization. PLoS One 2013; 8:e57618. [PMID: 23472092 PMCID: PMC3589391 DOI: 10.1371/journal.pone.0057618] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/23/2013] [Indexed: 11/19/2022] Open
Abstract
Background Reactive oxygen species (ROS) play an important role in angiogenesis in endothelial cells (ECs) in vitro and neovascularization in vivo. However, little is known about the role of endogenous vascular hydrogen peroxide (H2O2) in postnatal neovascularization. Methodology/Principal Findings We used Tie2-driven endothelial specific catalase transgenic mice (Cat-Tg mice) and hindlimb ischemia model to address the role of endogenous H2O2 in ECs in post-ischemic neovascularization in vivo. Here we show that Cat-Tg mice exhibit significant reduction in intracellular H2O2 in ECs, blood flow recovery, capillary formation, collateral remodeling with larger extent of tissue damage after hindlimb ischemia, as compared to wild-type (WT) littermates. In the early stage of ischemia-induced angiogenesis, Cat-Tg mice show a morphologically disorganized microvasculature. Vascular sprouting and tube elongation are significantly impaired in isolated aorta from Cat-Tg mice. Furthermore, Cat-Tg mice show a decrease in myeloid cell recruitment after hindlimb ischemia. Mechanistically, Cat-Tg mice show significant decrease in eNOS phosphorylation at Ser1177 as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemotactic protein-1 (MCP-1) in ischemic muscles, which is required for inflammatory cell recruitment to the ischemic tissues. We also observed impaired endothelium-dependent relaxation in resistant vessels from Cat-Tg mice. Conclusions/Significance Endogenous ECs-derived H2O2 plays a critical role in reparative neovascularization in response to ischemia by upregulating adhesion molecules and activating eNOS in ECs. Redox-regulation in ECs is a potential therapeutic strategy for angiogenesis-dependent cardiovascular diseases.
Collapse
|
45
|
Kanazashi M, Okumura Y, Al-Nassan S, Murakami S, Kondo H, Nagatomo F, Fujita N, Ishihara A, Roy RR, Fujino H. Protective effects of astaxanthin on capillary regression in atrophied soleus muscle of rats. Acta Physiol (Oxf) 2013; 207:405-15. [PMID: 23088455 DOI: 10.1111/apha.12018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022]
Abstract
AIM The capillary regression in skeletal muscles associated with a chronic decrease in activity is related to a dysfunction of endocapillary cells induced by over-expression of oxidative stress. We hypothesized that treatment with astaxanthin, an antioxidant, would attenuate the oxidative stress induced by decreased skeletal muscle use, and that this attenuation would prevent the associated capillary regression. The purpose of the present study was to investigate the antioxidant and preventive effects of astaxanthin on capillary regression in the soleus muscle during hindlimb unloading. METHODS Twenty-four adult male Wistar rats were assigned randomly either to a control, control plus astaxanthin treatment, hindlimb unloaded or hindlimb unloaded plus astaxanthin treatment group for 7 days. RESULTS Hindlimb unloading resulted in a decrease in mean soleus absolute weight, capillary number, volume and luminal diameter. The accumulation of reactive oxygen species and the over-expression of superoxide dismutase (SOD-1), a decrease in the levels of vascular endothelial growth factor (VEGF) and its receptors, an inhibition of the angiopoietin pathway and an increase of thrombospondin-1 (TSP-1), as an anti-angiogenic factor were showed. Administration of astaxanthin attenuated the changes in SOD-1 and VEGF, up-regulated the angiogenic factors and reduced the capillary regression in the soleus of hindlimb unloaded rats. In addition, the VEGF-to-TSP1 ratio was higher in the astaxanthin treated groups than in the control and HU groups. CONCLUSION These results suggest that astaxanthin may be an effective treatment to counter the detrimental effects of a chronic decrease in skeletal muscle use on the capillary network and associated angiogenic pathways.
Collapse
Affiliation(s)
- M. Kanazashi
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe; Japan
| | - Y. Okumura
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe; Japan
| | - S. Al-Nassan
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe; Japan
| | | | - H. Kondo
- Department of Food Sciences and Nutrition; Nagoya Women's University; Nagoya; Japan
| | - F. Nagatomo
- Laboratory of Cell Biology and Life Science; Graduate School of Human and Environmental Studies, Kyoto University; Kyoto; Japan
| | - N. Fujita
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe; Japan
| | - A. Ishihara
- Laboratory of Cell Biology and Life Science; Graduate School of Human and Environmental Studies, Kyoto University; Kyoto; Japan
| | - R. R. Roy
- Brain Research Institute and Department of Integrative Biology and Physiology; University of California; Los Angeles; CA; USA
| | - H. Fujino
- Department of Rehabilitation Science; Kobe University Graduate School of Health Sciences; Kobe; Japan
| |
Collapse
|
46
|
Role of EC-SOD overexpression in preserving pulmonary angiogenesis inhibited by oxidative stress. PLoS One 2012; 7:e51945. [PMID: 23284826 PMCID: PMC3527376 DOI: 10.1371/journal.pone.0051945] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/13/2012] [Indexed: 01/21/2023] Open
Abstract
Angiogenesis is one of the most important processes for normal lung development. Oxidative stress can impair the pulmonary angiogenesis, leading to chronic lung disease or Bronchopulmonary dysplasia (BPD).
Collapse
|
47
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
48
|
Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds. Inflammation 2012; 35:167-75. [PMID: 21336677 DOI: 10.1007/s10753-011-9302-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.
Collapse
|
49
|
Li R, Ren M, Chen N, Luo M, Zhang Z, Wu J. Vitronectin increases vascular permeability by promoting VE-cadherin internalization at cell junctions. PLoS One 2012; 7:e37195. [PMID: 22606350 PMCID: PMC3350505 DOI: 10.1371/journal.pone.0037195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/17/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cross-talk between integrins and cadherins regulates cell function. We tested the hypothesis that vitronectin (VN), a multi-functional adhesion molecule present in the extracellular matrix and plasma, regulates vascular permeability via effects on VE-cadherin, a critical regulator of endothelial cell (EC) adhesion. METHODOLOGY/PRINCIPAL FINDINGS Addition of multimeric VN (mult VN) significantly increased VE-cadherin internalization in human umbilical vein EC (HUVEC) monolayers. This effect was blocked by the anti-α(V)β(3) antibody, pharmacological inhibition and knockdown of Src kinase. In contrast to mult VN, monomeric VN did not trigger VE-cadherin internalization. In a modified Miles assay, VN deficiency impaired vascular endothelial growth factor-induced permeability. Furthermore, ischemia-induced enhancement of vascular permeability, expressed as the ratio of FITC-dextran leakage from the circulation into the ischemic and non-ischemic hindlimb muscle, was significantly greater in the WT mice than in the Vn(-/-) mice. Similarly, ischemia-mediated macrophage infiltration was significantly reduced in the Vn(-/-) mice vs. the WT controls. We evaluated changes in the multimerization of VN in ischemic tissue in a mouse hindlimb ischemia model. VN plays a previously unrecognized role in regulating endothelial permeability via conformational- and integrin-dependent effects on VE-cadherin trafficking. CONCLUSION/SIGNIFICANCE These results have important implications for the regulation of endothelial function and angiogenesis by VN under normal and pathological conditions.
Collapse
Affiliation(s)
- Rong Li
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Meiping Ren
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Ni Chen
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Mao Luo
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Zhuo Zhang
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Jianbo Wu
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
50
|
Bir SC, Xiong Y, Kevil CG, Luo J. Emerging role of PKA/eNOS pathway in therapeutic angiogenesis for ischaemic tissue diseases. Cardiovasc Res 2012; 95:7-18. [PMID: 22492672 DOI: 10.1093/cvr/cvs143] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although an abundant amount of research has been devoted to the study of angiogenesis, its precise mechanisms are incompletely understood. Numerous clinical trials focused on therapeutic angiogenesis for the treatment of tissue ischaemia have not been as successful as those of preclinical studies. Thus, additional studies are needed to better understand critical molecular mechanisms regulating ischaemic neovascularization to identify novel therapeutic agents. Nitric oxide (NO) plays a central role in ischaemic neovascularization through the generation of cyclic guanosine monophosphate (cGMP) and the activation of several other signalling responses. Accumulated evidence suggests that endothelial protein kinase A/endothelial NO synthase (PKA/eNOS) signalling may play an important role in ischaemic disorders by promoting neovascularization. This review highlights recent advances in the role of the PKA/eNOS and NO-cGMP-kinase cascade pathway in ischaemic neovascularization. We also discuss molecular relationships of PKA/eNOS with other angiogenic pathways and explore the possibility of activation of the NO/nitrite endocrine system as potential therapeutic targets for ischaemic angiogenesis.
Collapse
Affiliation(s)
- Shyamal C Bir
- Department of Pathology, LSU Health Sciences Center-Shreveport, LA, USA
| | | | | | | |
Collapse
|