1
|
Marzęta-Assas P, Jacenik D, Zasłona Z. Pathophysiology of Arginases in Cancer and Efforts in Their Pharmacological Inhibition. Int J Mol Sci 2024; 25:9782. [PMID: 39337272 PMCID: PMC11431790 DOI: 10.3390/ijms25189782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Arginases are key enzymes that hydrolyze L-arginine to urea and L-ornithine in the urea cycle. The two arginase isoforms, arginase 1 (ARG1) and arginase 2 (ARG2), regulate the proliferation of cancer cells, migration, and apoptosis; affect immunosuppression; and promote the synthesis of polyamines, leading to the development of cancer. Arginases also compete with nitric oxide synthase (NOS) for L-arginine, and their participation has also been confirmed in cardiovascular diseases, stroke, and inflammation. Due to the fact that arginases play a crucial role in the development of various types of diseases, finding an appropriate candidate to inhibit the activity of these enzymes would be beneficial for the therapy of many human diseases. In this review, based on numerous experimental, preclinical, and clinical studies, we provide a comprehensive overview of the biological and physiological functions of ARG1 and ARG2, their molecular mechanisms of action, and affected metabolic pathways. We summarize the recent clinical trials' advances in targeting arginases and describe potential future drugs.
Collapse
Affiliation(s)
| | - Damian Jacenik
- Molecure S.A., 101 Żwirki i Wigury St., 02-089 Warsaw, Poland
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | | |
Collapse
|
2
|
Zhang M, Du G, Xie L, Xu Y, Chen W. Circular RNA HMGCS1 sponges MIR4521 to aggravate type 2 diabetes-induced vascular endothelial dysfunction. eLife 2024; 13:RP97267. [PMID: 39235443 PMCID: PMC11377038 DOI: 10.7554/elife.97267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Noncoding RNA plays a pivotal role as novel regulators of endothelial cell function. Type 2 diabetes, acknowledged as a primary contributor to cardiovascular diseases, plays a vital role in vascular endothelial cell dysfunction due to induced abnormalities of glucolipid metabolism and oxidative stress. In this study, aberrant expression levels of circHMGCS1 and MIR4521 were observed in diabetes-induced human umbilical vein endothelial cell dysfunction. Persistent inhibition of MIR4521 accelerated development and exacerbated vascular endothelial dysfunction in diabetic mice. Mechanistically, circHMGCS1 upregulated arginase 1 by sponging MIR4521, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity, and an increase in the expression of adhesion molecules and generation of cellular reactive oxygen species, reduced vasodilation and accelerated the impairment of vascular endothelial function. Collectively, these findings illuminate the physiological role and interacting mechanisms of circHMGCS1 and MIR4521 in diabetes-induced cardiovascular diseases, suggesting that modulating the expression of circHMGCS1 and MIR4521 could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases. Furthermore, our findings provide a novel technical avenue for unraveling ncRNAs regulatory roles of ncRNAs in diabetes and its associated complications.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Human Umbilical Vein Endothelial Cells/metabolism
- Mice, Inbred C57BL
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Hydroxymethylglutaryl-CoA Synthase/genetics
Collapse
Affiliation(s)
- Ming Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Guangyi Du
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| |
Collapse
|
3
|
Li P, Sun S, Zhang W, Ouyang W, Li X, Yang K. The Effects of L-citrulline Supplementation on the Athletic Performance, Physiological and Biochemical Parameters, Antioxidant Capacity, and Blood Amino Acid and Polyamine Levels in Speed-Racing Yili Horses. Animals (Basel) 2024; 14:2438. [PMID: 39199970 PMCID: PMC11350874 DOI: 10.3390/ani14162438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The objective of this study was to evaluate the effects of pre-exercise L-citrulline supplementation on the athletic performance of Yili speed-racing horses during a high-intensity exercise. On the 20th day of the experiment, blood samples were collected at 3 h and 6 h post-supplementation to measure the amino acid and polyamine concentrations. On the 38th day of the experiment, the horses participated in a 2000 m speed race, and three distinct blood samples were gathered for assessing blood gases, hematological parameters, the plasma biochemistry, antioxidant parameters, and NO concentrations. The results indicate that the L-citrulline group showed a significant increase in the plasma citrulline and arginine concentrations. Conversely, the concentrations of alanine, serine, and threonine were significantly decreased. The glycine concentration decreased significantly, while there was a trend towards an increase in the glutamine concentration. Additionally, the levels of putrescine and spermidine in the plasma of the L-citrulline group were significantly increased. In terms of exercise performance, L-citrulline can improve the exercise performance of sport horses, significantly reduce the immediate post-race lactate levels in Yili horses, and accelerate the recovery of blood gas levels after an exercise. Furthermore, in the L-citrulline group of Yili horses, The levels of the total protein of plasma, superoxide dismutase, catalase, and lactate dehydrogenase were significantly increased both 2 h before and 2 h after the race. The total antioxidant capacity showed a highly significant increase, while the malondialdehyde content significantly decreased. In the immediate post-race period, the creatinine content in the L-citrulline group significantly increased. In conclusion, this study demonstrates that L-citrulline supplementation can influence the circulating concentrations of L-citrulline and arginine in Yili horses, enhance the antioxidant capacity, reduce lactate levels, and improve physiological and biochemical blood parameters, thereby having a beneficial effect on the exercise performance of athletic horses.
Collapse
Affiliation(s)
- Peiyao Li
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (P.L.); (S.S.); (W.Z.)
| | - Shuo Sun
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (P.L.); (S.S.); (W.Z.)
| | - Wenjie Zhang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (P.L.); (S.S.); (W.Z.)
| | - Wen Ouyang
- Yili Kazak Autonomous Prefecture of Zhaosu Racecourse, Yining 835000, China;
| | - Xiaobin Li
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (P.L.); (S.S.); (W.Z.)
| | - Kailun Yang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (P.L.); (S.S.); (W.Z.)
| |
Collapse
|
4
|
Tengbom J, Kontidou E, Collado A, Yang J, Alvarsson M, Brinck J, Rössner S, Zhou Z, Pernow J, Mahdi A. Differences in endothelial function between patients with Type 1 and Type 2 diabetes: effects of red blood cells and arginase. Clin Sci (Lond) 2024; 138:975-985. [PMID: 39037711 DOI: 10.1042/cs20240447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
The mechanisms underlying endothelial dysfunction in Type 1 and Type 2 diabetes (T1DM and T2DM) are unresolved. The red blood cells (RBCs) with increased arginase activity induce endothelial dysfunction in T2DM, but the implications of RBCs and the role of arginase inhibition in T1DM are unexplored. We aimed to investigate the differences in endothelial function in patients with T1DM and T2DM, with focus on RBCs and arginase. Thirteen patients with T1DM and twenty-six patients with T2DM, matched for HbA1c and sex were included. In vivo endothelium-dependent and -independent vasodilation (EDV and EIDV) were assessed by venous occlusion plethysmography before and after administration of an arginase inhibitor. RBCs were co-incubated with rat aortic segments for 18h followed by evaluation of endothelium-dependent (EDR) and -independent relaxation (EIDR) in isolated organ chambers. In vivo EDV, but not EIDV, was significantly impaired in patients with T2DM compared with patients with T1DM. Arginase inhibition resulted in improved EDV only in T2DM. RBCs from patients with T2DM induced impaired EDR but not EIDR in isolated aortic segments, whereas RBCs from patients with T1DM did not affect EDR nor EIDR. The present study demonstrates markedly impaired EDV in patients with T2DM in comparison with T1DM. In addition, it highlights the divergent roles of RBCs and arginase in mediating endothelial dysfunction in T1DM and T2DM. While endothelial dysfunction is mediated via RBCs and arginase in T2DM, these phenomena are not prominent in T1DM thereby indicating distinct differences in underlying mechanisms.
Collapse
Affiliation(s)
- John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Alvarsson
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Brinck
- Division of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sophia Rössner
- Division of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Hannemann J, Zink A, Mileva Y, Balfanz P, Dahl E, Volland S, Illig T, Schwedhelm E, Kurth F, Stege A, Aepfelbacher M, Hoffmann A, Böger R. A multicenter study of asymmetric and symmetric dimethylarginine as predictors of mortality risk in hospitalized COVID-19 patients. Sci Rep 2024; 14:15739. [PMID: 38977837 PMCID: PMC11231343 DOI: 10.1038/s41598-024-66288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Mortality of patients hospitalized with COVID-19 has remained high during the consecutive SARS-CoV-2 pandemic waves. Early discrimination of patients at high mortality risk is crucial for optimal patient care. Symmetric (SDMA) and asymmetric dimethylarginine (ADMA) have been proposed as possible biomarkers to improve risk prediction of COVID-19 patients. We measured SDMA, ADMA, and other L-arginine-related metabolites in 180 patients admitted with COVID-19 in four German university hospitals as compared to 127 healthy controls. Patients were treated according to accepted clinical guidelines and followed-up until death or hospital discharge. Classical inflammatory markers (leukocytes, CRP, PCT), renal function (eGFR), and clinical scores (SOFA) were taken from hospital records. In a small subgroup of 23 COVID-19 patients, sequential blood samples were available and analyzed for biomarker trends over time until 14 days after admission. Patients had significantly elevated SDMA, ADMA, and L-ornithine and lower L-citrulline concentrations than controls. Within COVID-19 patients, SDMA and ADMA were significantly higher in non-survivors (n = 41, 22.8%) than in survivors. In ROC analysis, the optimal cut-off to discriminate non-survivors from survivors was 0.579 µmol/L for SDMA and 0.599 µmol/L for ADMA (both p < 0.001). High SDMA and ADMA were associated with odds ratios for death of 11.45 (3.37-38.87) and 5.95 (2.63-13.45), respectively. Analysis of SDMA and ADMA allowed discrimination of a high-risk (mortality, 43.7%), medium-risk (15.1%), and low-risk group (3.6%); risk prediction was significantly improved over classical laboratory markers. We conclude that analysis of ADMA and SDMA after hospital admission significantly improves risk prediction in COVID-19.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Zink
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yoana Mileva
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Balfanz
- Department of Cardiology, Angiology and Intensive Care Medicine, Medical Clinic I, University Hospital Aachen, Aachen, Germany
- Institute of Pathology and Central Biobank, University Hospital Aachen, Aachen, Germany
| | - Edgar Dahl
- Hannover Unified Biobank, Medizinische Hochschule Hannover, Hannover, Germany
| | - Sonja Volland
- Department of Physiology, Henri Mondor Hospital, FHU-SENEC, INSERM U955, Université Paris-Est Créteil (UPEC), AP-HP, Créteil, France
| | - Thomas Illig
- Department of Physiology, Henri Mondor Hospital, FHU-SENEC, INSERM U955, Université Paris-Est Créteil (UPEC), AP-HP, Créteil, France
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Stege
- Central Biobank Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Armin Hoffmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
6
|
Yi B, Zhao Y, Yan H, Li Z, Zhang P, Fang Z, Zhao Y, Yang H, Guo N. Targeted arginine metabolomics combined with metagenomics revealed the potential mechanism of Pueraria lobata extract in treating myocardial infarction. J Chromatogr A 2024; 1719:464732. [PMID: 38387153 DOI: 10.1016/j.chroma.2024.464732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
The extraction methods for traditional Chinese medicine (TCM) may have varying therapeutic effects on diseases. Currently, Pueraria lobata (PL) is mostly extracted with ethanol, but decoction, as a TCM extraction method, is not widely adopted. In this study, we present a strategy that integrates targeted metabolomics, 16 s rDNA sequencing technology and metagenomics for exploring the potential mechanism of the water extract of PL (PLE) in treating myocardial infarction (MI). Using advanced analytical techniques like ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we comprehensively characterized PLE's chemical composition. Further, we tested its efficacy in a rat model of MI induced by ligation of the left anterior descending branch of the coronary artery (LAD). We assessed cardiac enzyme levels and conducted echocardiograms. UPLC-MS/MS was used to compare amino acid differences in serum. Furthermore, we investigated fecal samples using 16S rDNA sequencing and metagenomic sequencing to study intestinal flora diversity and function. This study demonstrated PLE's effectiveness in reducing cardiac injury in LAD-ligated rats. Amino acid metabolomics revealed significant improvements in serum levels of arginine, citrulline, proline, ornithine, creatine, creatinine, and sarcosine in MI rats, which are key compounds in the arginine metabolism pathway. Enzyme-linked immunosorbent assay (ELISA) results showed that PLE significantly improved arginase (Arg), nitric oxide synthase (NOS), and creatine kinase (CK) contents in the liver tissue of MI rats. 16 s rDNA and metagenome sequencing revealed that PLE significantly improved intestinal flora imbalance in MI rats, particularly in taxa such as Tuzzerella, Desulfovibrio, Fournierella, Oscillibater, Harryflintia, and Holdemania. PLE also improved the arginine metabolic pathway in the intestinal microorganisms of MI rats. The findings indicate that PLE effectively modulates MI-induced arginine levels and restores intestinal flora balance. This study, the first to explore the mechanism of action of PLE in MI treatment considering amino acid metabolism and intestinal flora, expands our understanding of the potential of PL in MI treatment. It offers fresh insights into the mechanisms of PL, guiding further research and development of PL-based medicines.
Collapse
Affiliation(s)
- Bojiao Yi
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yurou Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeyu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pin Zhang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhengyu Fang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuping Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Ishinoda Y, Masaki N, Hitomi Y, Taruoka A, Kawai A, Iwashita M, Yumita Y, Kagami K, Yasuda R, Ido Y, Toya T, Ikegami Y, Namba T, Nagatomo Y, Miyazaki K, Takase B, Adachi T. A Low Arginine/Ornithine Ratio is Associated with Long-Term Cardiovascular Mortality. J Atheroscler Thromb 2023; 30:1364-1375. [PMID: 36775332 PMCID: PMC10564648 DOI: 10.5551/jat.63779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/25/2022] [Indexed: 02/13/2023] Open
Abstract
AIMS The long-term prognostic value of the bioavailability of L-arginine, an important source of nitric oxide for the maintenance of vascular endothelial function, has not been investigated fully. We therefore investigated the relationship between amino acid profile and long-term prognosis in patients with a history of standby coronary angiography. METHODS We measured the serum concentrations of L-arginine, L-citrulline, and L-ornithine by high-speed liquid chromatography. We examined the relationship between the L-arginine/L-ornithine ratio and the incidence of all-cause death, cardiovascular death, and major adverse cardiovascular events (MACEs) in 262 patients (202 men and 60 women, age 65±13 years) who underwent coronary angiography over a period of ≤ 10 years. RESULTS During the observation period of 5.5±3.2 years, 31 (12%) patients died, including 20 (8%) of cardiovascular death, while 32 (12%) had MACEs. Cox regression analysis revealed that L-arginine/L-ornithine ratio was associated with an increased risk for all-cause death (unadjusted hazard ratio, 95% confidence interval) (0.940, 0.888-0.995) and cardiovascular death (0.895, 0.821-0.965) (p<0.05 for all). In a model adjusted for age, sex, hypertension, hyperlipidemia, diabetes, current smoking, renal function, and log10-transformed brain natriuretic peptide level, cardiovascular death (0.911, 0.839-0.990, p=0.028) retained an association with a low L-arginine/ L-ornithine ratio. When the patients were grouped according to an L-arginine/L-ornithine ratio of 1.16, the lower L-arginine/L-ornithine ratio group had significantly higher incidence of all-cause death, cardiovascular death, and MACEs. CONCLUSION A low L-arginine/L-ornithine ratio may be associated with increased 10-year cardiac mortality.
Collapse
Affiliation(s)
- Yuki Ishinoda
- Department of Endocrinology, National Defense Medical College, Saitama, Japan
| | - Nobuyuki Masaki
- Department o f Intensive Care Medicine, National Defense Medical College, Saitama, Japan
| | - Yasuhiro Hitomi
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Akira Taruoka
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Akane Kawai
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Midori Iwashita
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Yusuke Yumita
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Kazuki Kagami
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Risako Yasuda
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Yasuo Ido
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Takumi Toya
- Department o f Intensive Care Medicine, National Defense Medical College, Saitama, Japan
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Yukinori Ikegami
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Takayuki Namba
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Yuji Nagatomo
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Koji Miyazaki
- Department of Comprehensive Internal Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Bonpei Takase
- Department o f Intensive Care Medicine, National Defense Medical College, Saitama, Japan
| | - Takeshi Adachi
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| |
Collapse
|
8
|
Chennupati R, Solga I, Wischmann P, Dahlmann P, Celik FG, Pacht D, Şahin A, Yogathasan V, Hosen MR, Gerdes N, Kelm M, Jung C. Chronic anemia is associated with systemic endothelial dysfunction. Front Cardiovasc Med 2023; 10:1099069. [PMID: 37234375 PMCID: PMC10205985 DOI: 10.3389/fcvm.2023.1099069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Background In acute myocardial infarction and heart failure, anemia is associated with adverse clinical outcomes. Endothelial dysfunction (ED) is characterized by attenuated nitric oxide (NO)-mediated relaxation responses which is poorly studied in chronic anemia (CA). We hypothesized that CA is associated with ED due to increased oxidative stress in the endothelium. Methods CA was induced by repeated blood withdrawal in male C57BL/6J mice. Flow-Mediated Dilation (FMD) responses were assessed in CA mice using ultrasound-guided femoral transient ischemia model. Tissue organ bath was used to assess vascular responsiveness of aortic rings from CA mice, and in aortic rings incubated with red blood cells (RBCs) from anemic patients. In the aortic rings from anemic mice, the role of arginases was assessed using either an arginase inhibitor (Nor-NOHA) or genetic ablation of arginase 1 in the endothelium. Inflammatory changes in plasma of CA mice were examined by ELISA. Expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), myeloperoxidase (MPO), 3-Nitrotyrosine levels, and 4-Hydroxynonenal (4-HNE) were assessed either by Western blotting or immunohistochemistry. The role of reactive oxygen species (ROS) in ED was assessed in the anemic mice either supplemented with N-Acetyl cysteine (NAC) or by in vitro pharmacological inhibition of MPO. Results The FMD responses were diminished with a correlation to the duration of anemia. Aortic rings from CA mice showed reduced NO-dependent relaxation compared to non-anemic mice. RBCs from anemic patients attenuated NO-dependent relaxation responses in murine aortic rings compared to non-anemic controls. CA results in increased plasma VCAM-1, ICAM-1 levels, and an increased iNOS expression in aortic vascular smooth muscle cells. Arginases inhibition or arginase1 deletion did not improve ED in anemic mice. Increased expression of MPO and 4-HNE observed in endothelial cells of aortic sections from CA mice. NAC supplementation or inhibition of MPO improved relaxation responses in CA mice. Conclusion Chronic anemia is associated with progressive endothelial dysfunction evidenced by activation of the endothelium mediated by systemic inflammation, increased iNOS activity, and ROS production in the arterial wall. ROS scavenger (NAC) supplementation or MPO inhibition are potential therapeutic options to reverse the devastating endothelial dysfunction in chronic anemia.
Collapse
Affiliation(s)
- Ramesh Chennupati
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Isabella Solga
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Patricia Wischmann
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Paul Dahlmann
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Feyza Gül Celik
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Daniela Pacht
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Aslıhan Şahin
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Vithya Yogathasan
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad Rabiul Hosen
- Department of Internal Medicine II, HeartCenter Bonn, University Hospital Bonn, Bonn, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
9
|
Martiniakova M, Kovacova V, Mondockova V, Svik K, Londzin P, Folwarczna J, Soltesova Prnova M, Stefek M, Omelka R. The Effects of Prolonged Treatment with Cemtirestat on Bone Parameters Reflecting Bone Quality in Non-Diabetic and Streptozotocin-Induced Diabetic Rats. Pharmaceuticals (Basel) 2023; 16:ph16040628. [PMID: 37111385 PMCID: PMC10145951 DOI: 10.3390/ph16040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Cemtirestat, a bifunctional drug acting as an aldose reductase inhibitor with antioxidant ability, is considered a promising candidate for the treatment of diabetic neuropathy. Our study firstly examined the effects of prolonged cemtirestat treatment on bone parameters reflecting bone quality in non-diabetic rats and rats with streptozotocin (STZ)-induced diabetes. Experimental animals were assigned to four groups: non-diabetic rats, non-diabetic rats treated with cemtirestat, diabetic rats, and diabetic rats treated with cemtirestat. Higher levels of plasma glucose, triglycerides, cholesterol, glycated hemoglobin, magnesium, reduced femoral weight and length, bone mineral density and content, parameters characterizing trabecular bone mass and microarchitecture, cortical microarchitecture and geometry, and bone mechanical properties were determined in STZ-induced diabetic versus non-diabetic rats. Treatment with cemtirestat did not affect all aforementioned parameters in non-diabetic animals, suggesting that this drug is safe. In diabetic rats, cemtirestat supplementation reduced plasma triglyceride levels, increased the Haversian canal area and slightly, but insignificantly, improved bone mineral content. Nevertheless, the insufficient effect of cemtirestat treatment on diabetic bone disease does not support its use in the therapy of this complication of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Karol Svik
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Marta Soltesova Prnova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, 842 16 Bratislava, Slovakia
| | - Milan Stefek
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| |
Collapse
|
10
|
Osaki A, Kagami K, Ishinoda Y, Sato A, Kimura T, Horii S, Ito K, Toya T, Ido Y, Namba T, Masaki N, Nagatomo Y, Adachi T. Reactive Oxygen Species in the Aorta and Perivascular Adipose Tissue Precedes Endothelial Dysfunction in the Aorta of Mice with a High-Fat High-Sucrose Diet and Additional Factors. Int J Mol Sci 2023; 24:ijms24076486. [PMID: 37047458 PMCID: PMC10095299 DOI: 10.3390/ijms24076486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Metabolic syndrome (Mets) is the major contributor to the onset of metabolic complications, such as hypertension, type 2 diabetes mellitus (DM), dyslipidemia, and non-alcoholic fatty liver disease, resulting in cardiovascular diseases. C57BL/6 mice on a high-fat and high-sucrose diet (HFHSD) are a well-established model of Mets but have minor endothelial dysfunction in isolated aortas without perivascular adipose tissue (PVAT). The purpose of this study was to evaluate the effects of additional factors such as DM, dyslipidemia, and steatohepatitis on endothelial dysfunction in aortas without PVAT. Here, we employed eight-week-old male C57BL/6 mice fed with a normal diet (ND), HFHSD, steatohepatitis choline-deficient HFHSD (HFHSD-SH), and HFHSD containing 1% cholesterol and 0.1% deoxycholic acid (HFHSD-Chol) for 16 weeks. At week 20, some HFHSD-fed mice were treated with streptozocin to develop diabetes (HFHSD-DM). In PVAT-free aortas, the endothelial-dependent relaxation (EDR) did not differ between ND and HFHSD (p = 0.25), but in aortas with PVAT, the EDR of HFHSD-fed mice was impaired compared with ND-fed mice (p = 0.005). HFHSD-DM, HFHSD-SH, and HFHSD-Chol impaired the EDR in aortas without PVAT (p < 0.001, p = 0.019, and p = 0.009 vs. ND, respectively). Furthermore, tempol rescued the EDR in those models. In the Mets model, the EDR is compromised by PVAT, but with the addition of DM, dyslipidemia, and SH, the vessels themselves may result in impaired EDR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yuji Nagatomo
- Correspondence: (Y.N.); (T.A.); Tel.: +81-4-2995-1597 (T.A.); Fax: +81-4-2996-5200 (T.A.)
| | - Takeshi Adachi
- Correspondence: (Y.N.); (T.A.); Tel.: +81-4-2995-1597 (T.A.); Fax: +81-4-2996-5200 (T.A.)
| |
Collapse
|
11
|
Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 2023; 28:21. [PMID: 36890458 PMCID: PMC9996905 DOI: 10.1186/s11658-023-00423-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/10/2023] Open
Abstract
Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, aging, or smoking increase vascular oxidative stress that strongly affects eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide anion (O2-) instead of NO, thus becoming a source of harmful free radicals exacerbating the oxidative stress further. eNOS uncoupling is thought to be one of the major underlying causes of endothelial dysfunction observed in the pathogenesis of vascular diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxidative depletion of the critical eNOS cofactor BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S-glutathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncoupling by improving cofactor availability, restoration of L-Arg/ADMA ratio, or modulation of eNOS S-glutathionylation are briefly outlined.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Lawrence W Dobrucki
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland. .,BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdansk, Poland.
| |
Collapse
|
12
|
Alzayadneh EM, Shatanawi A, Caldwell RW, Caldwell RB. Methylglyoxal-Modified Albumin Effects on Endothelial Arginase Enzyme and Vascular Function. Cells 2023; 12:795. [PMID: 36899931 PMCID: PMC10001288 DOI: 10.3390/cells12050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Advanced glycation end products (AGEs) contribute significantly to vascular dysfunction (VD) in diabetes. Decreased nitric oxide (NO) is a hallmark in VD. In endothelial cells, NO is produced by endothelial NO synthase (eNOS) from L-arginine. Arginase competes with NOS for L-arginine to produce urea and ornithine, limiting NO production. Arginase upregulation was reported in hyperglycemia; however, AGEs' role in arginase regulation is unknown. Here, we investigated the effects of methylglyoxal-modified albumin (MGA) on arginase activity and protein expression in mouse aortic endothelial cells (MAEC) and on vascular function in mice aortas. Exposure of MAEC to MGA increased arginase activity, which was abrogated by MEK/ERK1/2 inhibitor, p38 MAPK inhibitor, and ABH (arginase inhibitor). Immunodetection of arginase revealed MGA-induced protein expression for arginase I. In aortic rings, MGA pretreatment impaired acetylcholine (ACh)-induced vasorelaxation, which was reversed by ABH. Intracellular NO detection by DAF-2DA revealed blunted ACh-induced NO production with MGA treatment that was reversed by ABH. In conclusion, AGEs increase arginase activity probably through the ERK1/2/p38 MAPK pathway due to increased arginase I expression. Furthermore, AGEs impair vascular function that can be reversed by arginase inhibition. Therefore, AGEs may be pivotal in arginase deleterious effects in diabetic VD, providing a novel therapeutic target.
Collapse
Affiliation(s)
- Ebaa M. Alzayadneh
- Department of Physiology and Biochemistry, School of Medicine, University of Jordan, Amman 11942, Jordan
| | - Alia Shatanawi
- Department of Pharmacology, School of Medicine, University of Jordan, Amman 11942, Jordan
| | - R. William Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
13
|
Nguyen JP, Ramirez-Sanchez I, Garate-Carrillo A, Navarrete-Yañez V, Carballo-Castañeda RA, Ceballos G, Moreno-Ulloa A, Villarreal F. Effects of aging and type 2 diabetes on cardiac structure and function: Underlying mechanisms. Exp Gerontol 2023; 173:112108. [PMID: 36708752 DOI: 10.1016/j.exger.2023.112108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
We characterized long-term changes in cardiac structure and function in a high-fat diet/streptozotocin mouse model of aging and type 2 diabetes mellitus (T2D) and examined how the intersection of both conditions alters plasma metabolomics. We also evaluated the possible roles played by oxidative stress, arginase activity and pro-inflammatory cytokines. C57BL/6 male mice (13-month-old) were used. Control animals (n = 13) were fed regular chow for 10 months (aged group). T2D animals (n = 25) were provided a single injection of streptozotocin and fed a high fat diet for 10 months. In select endpoints, young animals were used for comparison. To monitor changes in left ventricular (LV) structure and function, echocardiography was used. At the terminal study (23 months), blood was collected and hearts processed for biochemical or histological analysis. Echo yielded diminished diastolic function with aging and T2D. LV fractional shortening and ejection fraction decreased with T2D by 16 months peaking at 23 months. Western blots noted increases in fibronectin and type I collagen with aging/T2D and greater levels with T2D in α-smooth muscle actin. Increases in plasma and/or myocardial protein carbonyls, arginase activity and pro-inflammatory cytokines occurred with aging and T2D. Untargeted metabolomics and cheminformatics revealed differences in the plasma metabolome of T2D vs. aged mice while select classes of lipid metabolites linked to insulin resistance, were dysregulated. We thus, document changes in LV structure and function with aging that in select endpoints, are accentuated with T2D and link them to increases in OS, arginase activity and pro-inflammatory cytokines.
Collapse
Affiliation(s)
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | | | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Aldo Moreno-Ulloa
- Laboratorio MS2, Departamento de Innovación Biomédica, CICESE, Mexico
| | - Francisco Villarreal
- Veteran Affairs San Diego Health Care, San Diego, CA, USA; Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Liang Q, Dong B, Li A, Wu L, Zhang Y, Han T, Liu X. scRNA-seq analysis reveals toxicity mechanisms in shrimp hemocytes subjected to nitrite stress. CHEMOSPHERE 2023; 316:137853. [PMID: 36640974 DOI: 10.1016/j.chemosphere.2023.137853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In shrimp, hemocytes play an important role in detoxification and immune defense, and are where nitrite accumulates during exposure to this toxic environmental pollutant. However, the heterogeneity mechanisms of toxicity have not been reported under nitrite expose in shrimp. Here, we used single-cell RNA-seq to resolve 24,000 cells, which the responses of different cell populations of hemocytes under nitrite exposure in Penaeus vannamei. We identified 394 specific nitrite-responsive genes in 9 clusters of hemocytes, and found heterogeneity in the nitrite response of the three subpopulations of hemocytes (hyaline, semi-granular and granular cells). In hyaline, the response appeared modest, whereas nitrite-related dysregulation of metabolic processes in granular and semi-granular was pronounced. Ammonia nitrogen will rapidly accumulate in hemocytes of shrimp under nitrite stress. In semi-granular, excessive ammonia will interfere with oxidative phosphorylation and antioxidant system, thus inducing the production of reactive oxygen species. In granular, the abnormality of urea cycle caused by ammonia accumulation is the main toxic factor, which by inhibits arginase and arginine kinase. Collectively, our data provide a single-cell atlas for the dissection of shrimp hemocyte complexity, and reveal the toxicity mechanisms associated with nitrite exposure.
Collapse
Affiliation(s)
- QingJian Liang
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China; College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| | - BeiBei Dong
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Ang Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - LiTing Wu
- College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yu Zhang
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Tao Han
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xing Liu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, PR China.
| |
Collapse
|
15
|
Mazrouei S, Petry SF, Sharifpanah F, Javanmard SH, Kelishadi R, Schulze PC, Franz M, Jung C. Pathophysiological correlation of arginase-1 in development of type 2 diabetes from obesity in adolescents. Biochim Biophys Acta Gen Subj 2023; 1867:130263. [PMID: 36309295 DOI: 10.1016/j.bbagen.2022.130263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND There is great interest to understand causal pathophysiological correlation between obesity and diabetes mellitus (DM). Vascular endothelial dysfunction is crucially involved in pathogenesis of vascular complications in DM. Recently, increased arginase expression and activity have been described as underlying mechanisms of endothelial dysfunction in DM and vascular inflammation in obesity. By limiting L-arginine bioavailability to endothelial nitric oxide synthase (NOS III), nitric oxide production is potentially impaired. METHODS We investigated the impact of plasma from diabetic and obese adolescents on arginase and NOS III expression in cultured human endothelial cells (ECs). A total of 148 male adolescents participated in this study including 18 obese, 28 type 1-, 28 type 2-DM patients, and 74 age-matched healthy volunteers. RESULTS A concurrent increase in arginase-1 (1.97-fold) and decrease in NOS III expression (1.45-fold) was observed in ECs exposed to type 2 diabetic plasma compared to control subjects. ECs incubated with type 1 DM plasma had a diminished NOS III level without impact on arginase-1 expression. Urea-assay featured an increased arginase activity in treated ECs with type 1- or 2-DM plasma. Despite increased pro-inflammatory cytokines and chemokines in obese plasma, arginase-1 expression/activity did not change in treated ECs. However, NOS III expression was significantly reduced. Pearson analysis revealed positive correlation between arginase-1, but not NOS III, expression with FBS in ECs treated with type 2-DM plasma. CONCLUSIONS Our data demonstrate that increased arginase-1 expression/activity in ECs, as critical pathogenic factor is correlated with development of obesity-related type 2-DM and linked vascular disease.
Collapse
Affiliation(s)
- Safoura Mazrouei
- Department of Internal Medicine I, University Hospital Jena, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| | - Fatemeh Sharifpanah
- Dentistry Department, Faculty of Medicine, Philipps University of Marburg, Germany
| | | | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Germany.
| |
Collapse
|
16
|
Rigamonti AE, Frigerio G, Caroli D, De Col A, Cella SG, Sartorio A, Fustinoni S. A Metabolomics-Based Investigation of the Effects of a Short-Term Body Weight Reduction Program in a Cohort of Adolescents with Obesity: A Prospective Interventional Clinical Study. Nutrients 2023; 15:529. [PMID: 36771236 PMCID: PMC9921209 DOI: 10.3390/nu15030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Metabolomics applied to assess the response to a body weight reduction program (BWRP) may generate valuable information concerning the biochemical mechanisms/pathways underlying the BWRP-induced cardiometabolic benefits. The aim of the present study was to establish the BWRP-induced changes in the metabolomic profile that characterizes the obese condition. In particular, a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) targeted metabolomic approach was used to determine a total of 188 endogenous metabolites in the plasma samples of a cohort of 42 adolescents with obesity (female/male = 32/10; age = 15.94 ± 1.33 year; body mass index standard deviation score (BMI SDS) = 2.96 ± 0.46) who underwent a 3-week BWRP, including hypocaloric diet, physical exercise, nutritional education, and psychological support. The BWRP was capable of significantly improving body composition (e.g., BMI SDS, p < 0.0001), glucometabolic homeostasis (e.g., glucose, p < 0.0001), and cardiovascular function (e.g., diastolic blood pressure, p = 0.016). A total of 64 metabolites were significantly reduced after the intervention (at least p < 0.05), including 53 glycerophospholipids (23 PCs ae, 21 PCs aa, and 9 lysoPCs), 7 amino acids (tyrosine, phenylalanine, arginine, citrulline, tryptophan, glutamic acid, and leucine), the biogenic amine kynurenine, 2 sphingomyelins, and (free) carnitine (C0). On the contrary, three metabolites were significantly increased after the intervention (at least p < 0.05)-in particular, glutamine, trans-4-hydroxyproline, and the octadecenoyl-carnitine (C18:1). In conclusion, when administered to adolescents with obesity, a short-term BWRP is capable of changing the metabolomic profile in the plasma.
Collapse
Affiliation(s)
- Antonello E. Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Gianfranco Frigerio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue Du Swing, L-4367 Belvaux, Luxembourg
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Silvano G. Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 20145 Milan, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
17
|
Kisacam MA, Kocamuftuoglu GO, Ufat H, Ozan ST. The evaluation of early stage oxidative status in streptozotocin induced diabetes in rats. Arch Physiol Biochem 2022; 128:1474-1478. [PMID: 32521173 DOI: 10.1080/13813455.2020.1776736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Early-stage diabetes can be defined as the stages before absolute insulin deficiency in patients. In this study, the early stage oxidative effect of streptozotocin(STZ) induced diabetes mellitus was evaluated. 28 male adult Sprague-Dawley rats were divided into four groups; control group and 7th, 14th, 21st days diabetic groups. Diabetic groups received single 65 mg/kg STZ injection intraperitoneally. Rats were decapitated at 7th, 14th and 21st days, liver tissues were taken. Nitric oxide(NO), malondialdehyde(MDA) levels and catalase, arginase activities were measured. MDA and NO levels were increased (respectively p < .001 and p < .01), mainly 14 and 21 days after STZ administration; moreover, while liver catalase activity was progressively decreased (p < .001), oppositely arginase was increased in the same time period (p < .01). Results show that MDA and nitric oxide together with catalase and arginase switch at an early stage of diabetes and they may contribute to subsequent complications related to diabetes via increased oxidative damage.
Collapse
Affiliation(s)
- Mehmet Ali Kisacam
- Department of Biochemistry, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Gonca Ozan Kocamuftuoglu
- Department of Biochemistry, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Hakan Ufat
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Sema Temizer Ozan
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
18
|
Ren Y, Li Z, Li W, Fan X, Han F, Huang Y, Yu Y, Qian L, Xiong Y. Arginase: Biological and Therapeutic Implications in Diabetes Mellitus and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2419412. [PMID: 36338341 PMCID: PMC9629921 DOI: 10.1155/2022/2419412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2023]
Abstract
Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenqing Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Esposito A, Cotta CK, Lacchini R. Beyond eNOS: Genetic influence in NO pathway affecting drug response. Genet Mol Biol 2022; 45:e20220157. [PMID: 36264109 PMCID: PMC9583294 DOI: 10.1590/1678-4685-gmb-2022-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022] Open
Abstract
Nitric Oxide (NO) has important biological functions, and its production may be
influenced by genetic polymorphisms. Since NO mediates the drug response, the
same genetic polymorphism that alter NO levels may also impact drug therapy. The
vast majority of studies in the literature that assess the genetic influence on
NO-related drug response focus on NOS3 (which encodes
endothelial nitric oxide synthase), however several other proteins are
interconnected in the same pathway and may also impact NO availability and drug
response. The aim of this study was to review the literature regarding genetic
polymorphisms that influence NO in response to pharmacological agents located in
genes other than NOS3. Articles were obtained from Pubmed and
consisted of 17 manuscripts that assessed polymorphisms of the following
targets: Arginases 1 and 2 (ARG1 and ARG2),
dimethylarginine dimethylaminohydrolases 1 and 2 (DDAH1 and
DDAH2), and vascular endothelial growth factor
(VEGF). Here we analyze the main results of these articles,
which show promising evidences that may suggest that the NO-driven
pharmacological response is affected by more than the eNOS gene. The search for
genetic markers may result in better understanding of the variability of drug
response and turn pharmacotherapy involving NO safer and more effective.
Collapse
Affiliation(s)
- Aline Esposito
- Universidade de São Paulo, Departamento de Farmacologia, Ribeirão
Preto, São Paulo, SP, Brazil
| | - Cezar Kayzuka Cotta
- Universidade de São Paulo, Departamento de Farmacologia, Ribeirão
Preto, São Paulo, SP, Brazil
| | - Riccardo Lacchini
- Universidade de São Paulo, Departamento de Enfermagem Psiquiátrica e
Ciências Humanas, Ribeirão Preto, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Momma TY, Ottaviani JI. There is no direct competition between arginase and nitric oxide synthase for the common substrate l-arginine. Nitric Oxide 2022; 129:16-24. [PMID: 36126859 DOI: 10.1016/j.niox.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
AIMS Extrahepatic arginases are postulated to be involved in cardiovascular-related pathologies by competing with nitric oxide synthase (NOS) for the common substrate l-arginine, subsequently decreasing nitric oxide production. However, previous models used to study arginase and NOS competition did not account for steady state level of l-arginine pool, which is dependent on conditions of l-arginine supply and utilization pathways. This work aimed at revisiting the concept of NOS and arginase competition while considering different conditions of l-arginine supply and l-arginine utilization pathways. METHODS AND RESULTS Mouse macrophage-like RAW cells and human vascular endothelial cells co-expressing NOS and arginase were used to reevaluate the concept of substrate competition between arginase and NOS under conditions of l-arginine supply that mimicked either a continuous (similar to in vivo conditions) or a limited supply (similar to previous in vitro models). Enzyme kinetics simulation models were used to gain mechanistic insight and to evaluate the tenability of a substrate competition between the two enzymes. In addition to arginase and NOS, other l-arginine pathways such as transporters and utilization towards protein synthesis were considered to understand the intricacies of l-arginine metabolism. Our results indicate that when there is a continuous supply of l-arginine, as is the case for most cells in vivo, arginase does not affect NOS activity by a substrate competition. Furthermore, we demonstrate that l-arginine pathways such as transporters and protein synthesis are more likely to affect NOS activity than arginase. CONCLUSIONS Arginase does not outcompete NOS for the common substrate l-arginine. Findings from this study should be considered to better understand the role of arginase in certain pathologies and for the interpretation of in vivo studies with arginase inhibitors.
Collapse
Affiliation(s)
- Tony Y Momma
- College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| | - Javier I Ottaviani
- College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA; Mars Inc., McLean, VA, 22101, USA
| |
Collapse
|
21
|
Abdelrahman AA, Bunch KL, Sandow PV, Cheng PNM, Caldwell RB, Caldwell RW. Systemic Administration of Pegylated Arginase-1 Attenuates the Progression of Diabetic Retinopathy. Cells 2022; 11:cells11182890. [PMID: 36139465 PMCID: PMC9497170 DOI: 10.3390/cells11182890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes that results from sustained hyperglycemia, hyperlipidemia, and oxidative stress. Under these conditions, inducible nitric oxide synthase (iNOS) expression is upregulated in the macrophages (MΦ) and microglia, resulting in increased production of reactive oxygen species (ROS) and inflammatory cytokines, which contribute to disease progression. Arginase 1 (Arg1) is a ureohydrolase that competes with iNOS for their common substrate, L-arginine. We hypothesized that the administration of a stable form of Arg1 would deplete L-arginine’s availability for iNOS, thus decreasing inflammation and oxidative stress in the retina. Using an obese Type 2 diabetic (T2DM) db/db mouse, this study characterized DR in this model and determined if systemic treatment with pegylated Arg1 (PEG-Arg1) altered the progression of DR. PEG-Arg1 treatment of db/db mice thrice weekly for two weeks improved visual function compared with untreated db/db controls. Retinal expression of inflammatory factors (iNOS, IL-1β, TNF-α, IL-6) was significantly increased in the untreated db/db mice compared with the lean littermate controls. The increased retinal inflammatory and oxidative stress markers in db/db mice were suppressed with PEG-Arg1 treatment. Additionally, PEG-Arg1 treatment restored the blood–retinal barrier (BRB) function, as evidenced by the decreased tissue albumin extravasation and an improved endothelial ZO-1 tight junction integrity compared with untreated db/db mice.
Collapse
Affiliation(s)
- Ammar A. Abdelrahman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Katharine L. Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Porsche V. Sandow
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Paul N-M Cheng
- Bio-Cancer Treatment International, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong SAR 511513, China
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - R. William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-2345
| |
Collapse
|
22
|
Luo Z, Soläng C, Larsson R, Singh K. Interleukin-35 Prevents the Elevation of the M1/M2 Ratio of Macrophages in Experimental Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23147970. [PMID: 35887317 PMCID: PMC9320761 DOI: 10.3390/ijms23147970] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023] Open
Abstract
Macrophages play an important role in the early development of type 1 diabetes (T1D). Based on the phenotype, macrophages can be classified into pro-inflammatory (M1) and anti-inflammatory (M2) macrophages. Despite intensive research in the field of macrophages and T1D, the kinetic response of M1/M2 ratio has not been studied in T1D. Thus, herein, we studied the M1 and M2 macrophages in the early development of T1D using the multiple low dose streptozotocin (MLDSTZ) mouse model. We determined the proportions of M1 and M2 macrophages in thymic glands, pancreatic lymph nodes and spleens on days 3, 7 and 10 after the first injection of STZ. In addition, we investigated the effect of IL-35 in vivo on the M1/M2 ratio and IL-35+ plasmacytoid dendritic cells in diabetic mice and in vitro on the sorted macrophages. Our results revealed that the M1/M2 ratio is higher in STZ-treated mice but this was lowered upon the treatment with IL-35. Furthermore, IL-35 treated mice had lower blood glucose levels and a higher proportion of IL-35+ cells among pDCs. Macrophages treated with IL-35 in vitro also had a higher proportion of M2 macrophages. Together, our data indicate that, under diabetic conditions, pro-inflammatory macrophages increased, but IL-35 treatment decreased the pro-inflammatory macrophages and increased anti-inflammatory macrophages, further suggesting that IL-35 prevents hyperglycemia by maintaining the anti-inflammatory phenotype of macrophages and other immune cells. Thus, IL-35 should be further investigated for the treatment of T1D and other autoimmune disorders.
Collapse
|
23
|
Untargeted Metabolomics Profiling Reveals Perturbations in Arginine-NO Metabolism in Middle Eastern Patients with Coronary Heart Disease. Metabolites 2022; 12:metabo12060517. [PMID: 35736450 PMCID: PMC9230991 DOI: 10.3390/metabo12060517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 01/10/2023] Open
Abstract
Coronary heart disease (CHD) is a major cause of death in Middle Eastern (ME) populations, with current studies of the metabolic fingerprints of CHD lacking in diversity. Identification of specific biomarkers to uncover potential mechanisms for developing predictive models and targeted therapies for CHD is urgently needed for the least-studied ME populations. A case-control study was carried out in a cohort of 1001 CHD patients and 2999 controls. Untargeted metabolomics was used, generating 1159 metabolites. Univariate and pathway enrichment analyses were performed to understand functional changes in CHD. A metabolite risk score (MRS) was developed to assess the predictive performance of CHD using multivariate analysis and machine learning. A total of 511 metabolites were significantly different between the CHD patients and the controls (FDR p < 0.05). The enriched pathways (FDR p < 10−300) included D-arginine and D-ornithine metabolism, glycolysis, oxidation and degradation of branched chain fatty acids, and sphingolipid metabolism. MRS showed good discriminative power between the CHD cases and the controls (AUC = 0.99). In this first study in the Middle East, known and novel circulating metabolites and metabolic pathways associated with CHD were identified. A small panel of metabolites can efficiently discriminate CHD cases and controls and therefore can be used as a diagnostic/predictive tool.
Collapse
|
24
|
Gajecki D, Gawryś J, Szahidewicz-Krupska E, Doroszko A. Role of Erythrocytes in Nitric Oxide Metabolism and Paracrine Regulation of Endothelial Function. Antioxidants (Basel) 2022; 11:antiox11050943. [PMID: 35624807 PMCID: PMC9137828 DOI: 10.3390/antiox11050943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/27/2023] Open
Abstract
Emerging studies provide new data shedding some light on the complex and pivotal role of red blood cells (RBCs) in nitric oxide (NO) metabolism and paracrine regulation of endothelial function. NO is involved in the regulation of vasodilatation, platelet aggregation, inflammation, hypoxic adaptation, and oxidative stress. Even though tremendous knowledge about NO metabolism has been collected, the exact RBCs’ status still requires evaluation. This paper summarizes the actual knowledge regarding the role of erythrocytes as a mobile depot of amino acids necessary for NO biotransformation. Moreover, the complex regulation of RBCs’ translocases is presented with a particular focus on cationic amino acid transporters (CATs) responsible for the NO substrates and derivatives transport. The main part demonstrates the intraerythrocytic metabolism of L-arginine with its regulation by reactive oxygen species and arginase activity. Additionally, the process of nitrite and nitrate turnover was demonstrated to be another stable source of NO, with its reduction by xanthine oxidoreductase or hemoglobin. Additional function of hemoglobin in NO synthesis and its subsequent stabilization in steady intermediates is also discussed. Furthermore, RBCs regulate the vascular tone by releasing ATP, inducing smooth muscle cell relaxation, and decreasing platelet aggregation. Erythrocytes and intraerythrocytic NO metabolism are also responsible for the maintenance of normotension. Hence, RBCs became a promising new therapeutic target in restoring NO homeostasis in cardiovascular disorders.
Collapse
|
25
|
Olabiyi AA, Ajayi K. Diet, herbs and erectile function: A good friendship! Andrologia 2022; 54:e14424. [PMID: 35319120 DOI: 10.1111/and.14424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Plants and plant materials have been used for thousands of years to treat and control erectile dysfunction in men. This practice has spanned many cultures and traditions around the world, with the therapeutic effects of many plants attributed to their phytochemical constituents. This review explains how polyphenols (including phenolic acids, flavonoids, terpenoids, carotenoids, alkaloids and polyunsaturated fatty acids) in plants and plant food products interact with key enzymes (phosphodiesterase-5 [PDE-5], angiotensin-converting enzyme [ACE], acetylcholinesterase [AChE], adenosine deaminase [ADA] and arginase) associated with erectile dysfunction. By modulating or altering the activity of these physiologically important enzymes, various bioactive compounds from plants or plant products can synergistically or additively provide tremendous protection against male erectile problems.
Collapse
Affiliation(s)
- Ayodeji A Olabiyi
- Department of Medical Biochemistry, Afe Babalola University Ado-Ekiti, Ado-Ekiti, Nigeria
| | - Kayode Ajayi
- Department of Nutrition and Dietetics, Afe Babalola University Ado-Ekiti, Ado-Ekiti, Nigeria
| |
Collapse
|
26
|
Li X, Zhao W, Peng L, Li Y, Nie S, Yu H, Qin Y, Zhang H. Elevated serum extracellular vesicle arginase 1 in type 2 diabetes mellitus: a cross-sectional study in middle-aged and elderly population. BMC Endocr Disord 2022; 22:62. [PMID: 35277141 PMCID: PMC8917686 DOI: 10.1186/s12902-022-00982-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Serum extracellular vesicle (EV)-derived arginase 1 (ARG 1) plays a critical role in diabetes-associated endothelial dysfunction. This study was performed to determine the levels of serum EV-derived ARG 1 in T2DM and non-T2DM participants and to examine the association of serum EV-derived ARG 1 with T2DM incidence. METHODS We performed a cross-sectional study in 103 Chinese, including 73 T2DM patients and 30 non-T2DM. Serum EVs were prepared via ultracentrifugation. Serum EV-derived ARG 1 levels were measured by enzyme-linked immunosorbent assay. The correlations between serum EV-derived ARG 1 and clinical variables were analyzed. The association of serum EV-derived ARG 1 levels with T2DM was determined by multivariate logistic regression analysis. Interaction subgroup analysis was used to evaluate the interaction of the relevant baselines on the association between serum EV-derived ARG 1 levels and T2DM. RESULTS Serum EV-derived ARG 1 levels were significantly higher in T2DM patients compared with non-T2DM patients (p < 0.001). Correlation analysis revealed that serum EV-derived ARG 1 levels were positively associated with fasting plasma glucose (FPG) (r = 0.316, p = 0.001) and glycated hemoglobin (HbA1c) (r = 0.322, p = 0.001). Serum EV-derived ARG 1 levels were significantly associated with T2DM, especially in the subgroup of T2DM for more than 10 years (OR 1.651, 95% CI = 1.066-2.557; P value, 0.025), after adjusting for confounding factors. CONCLUSIONS Elevated concentration of serum EV-derived ARG 1 is closely associated with T2DM.
Collapse
Affiliation(s)
- Xinwei Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Wen Zhao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Lu Peng
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Yu Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Shaoping Nie
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Huina Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China.
| |
Collapse
|
27
|
Targeting Arginine in COVID-19-Induced Immunopathology and Vasculopathy. Metabolites 2022; 12:metabo12030240. [PMID: 35323682 PMCID: PMC8953281 DOI: 10.3390/metabo12030240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents a major public health crisis that has caused the death of nearly six million people worldwide. Emerging data have identified a deficiency of circulating arginine in patients with COVID-19. Arginine is a semi-essential amino acid that serves as key regulator of immune and vascular cell function. Arginine is metabolized by nitric oxide (NO) synthase to NO which plays a pivotal role in host defense and vascular health, whereas the catabolism of arginine by arginase to ornithine contributes to immune suppression and vascular disease. Notably, arginase activity is upregulated in COVID-19 patients in a disease-dependent fashion, favoring the production of ornithine and its metabolites from arginine over the synthesis of NO. This rewiring of arginine metabolism in COVID-19 promotes immune and endothelial cell dysfunction, vascular smooth muscle cell proliferation and migration, inflammation, vasoconstriction, thrombosis, and arterial thickening, fibrosis, and stiffening, which can lead to vascular occlusion, muti-organ failure, and death. Strategies that restore the plasma concentration of arginine, inhibit arginase activity, and/or enhance the bioavailability and potency of NO represent promising therapeutic approaches that may preserve immune function and prevent the development of severe vascular disease in patients with COVID-19.
Collapse
|
28
|
Sankrityayan H, Kale A, Gaikwad AB. Inhibition of endoplasmic reticulum stress combined with activation of angiotensin-converting enzyme 2: novel approach for the prevention of endothelial dysfunction in type 1 diabetic rats. Can J Physiol Pharmacol 2022; 100:234-239. [PMID: 34587465 DOI: 10.1139/cjpp-2021-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Persistent hyperglycemia in type 1 diabetes triggers numerous signaling pathways, which may prove deleterious to the endothelium. As hyperglycemia damages the endothelial layer via multiple signaling pathways, including enhanced oxidative stress, downregulation of angiotensin-converting enzyme 2 signaling, and exacerbation of endoplasmic reticulum (ER) stress, it becomes difficult to prevent injury using monotherapy. Thus, the present study was conceived to evaluate the combined effect of ER stress inhibition along with angiotensin-converting enzyme 2 activation, two major contributors to hyperglycemia-induced endothelial dysfunction, in preventing endothelial dysfunction associated with type 1 diabetes. Streptozotocin-induced diabetic animals were treated with either diminazene aceturate (5 mg·kg-1 per day, p.o.) or tauroursodeoxycholic acid, sodium salt (200 mg·kg-1 per day i.p.), or both for 4 weeks. Endothelial dysfunction was evaluated using vasoreactivity assay, where acetylcholine-induced relaxation was assessed in phenylephrine pre-contracted rings. Combination therapy significantly improved vascular relaxation when compared with diabetic control as well as monotherapy. Restoration of nitrite levels along with prevention of collagen led to improved vasodilatation. Moreover, there was an overall reduction in aortic oxidative stress. We conclude that by simultaneously inhibiting ER stress and activating angiotensin-converting enzyme 2 deleterious effects of hyperglycemia on endothelium were significantly alleviated. This could serve as a novel strategy for the prevention of endothelial dysfunction.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
29
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
30
|
Bunch KL, Abdelrahman AA, Caldwell RB, Caldwell RW. Novel Therapeutics for Diabetic Retinopathy and Diabetic Macular Edema: A Pathophysiologic Perspective. Front Physiol 2022; 13:831616. [PMID: 35250632 PMCID: PMC8894892 DOI: 10.3389/fphys.2022.831616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic macular edema (DME) are retinal complications of diabetes that can lead to loss of vision and impaired quality of life. The current gold standard therapies for treatment of DR and DME focus on advanced disease, are invasive, expensive, and can trigger adverse side-effects, necessitating the development of more effective, affordable, and accessible therapies that can target early stage disease. The pathogenesis and pathophysiology of DR is complex and multifactorial, involving the interplay between the effects of hyperglycemia, hyperlipidemia, hypoxia, and production of reactive oxygen species (ROS) in the promotion of neurovascular dysfunction and immune cell polarization to a proinflammatory state. The pathophysiology of DR provides several therapeutic targets that have the potential to attenuate disease progression. Current novel DR and DME therapies under investigation include erythropoietin-derived peptides, inducers of antioxidant gene expression, activators of nitric oxide/cyclic GMP signaling pathways, and manipulation of arginase activity. This review aims to aid understanding of DR and DME pathophysiology and explore novel therapies that capitalize on our knowledge of these diabetic retinal complications.
Collapse
Affiliation(s)
- Katharine L. Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ammar A. Abdelrahman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ruth B. Caldwell
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - R. William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
- *Correspondence: R. William Caldwell,
| |
Collapse
|
31
|
Immunosenescence in Choroidal Neovascularization (CNV)-Transcriptional Profiling of Naïve and CNV-Associated Retinal Myeloid Cells during Aging. Int J Mol Sci 2021; 22:ijms222413318. [PMID: 34948115 PMCID: PMC8707893 DOI: 10.3390/ijms222413318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Immunosenescence is considered a possible factor in the development of age-related macular degeneration and choroidal neovascularization (CNV). However, age-related changes of myeloid cells (MCs), such as microglia and macrophages, in the healthy retina or during CNV formation are ill-defined. In this study, Cx3cr1-positive MCs were isolated by fluorescence-activated cell sorting from six-week (young) and two-year-old (old) Cx3cr1GFP/+ mice, both during physiological aging and laser-induced CNV development. High-throughput RNA-sequencing was performed to define the age-dependent transcriptional differences in MCs during physiological aging and CNV development, complemented by immunohistochemical characterization and the quantification of MCs, as well as CNV size measurements. These analyses revealed that myeloid cells change their transcriptional profile during both aging and CNV development. In the steady state, senescent MCs demonstrated an upregulation of factors contributing to cell proliferation and chemotaxis, such as Cxcl13 and Cxcl14, as well as the downregulation of microglial signature genes. During CNV formation, aged myeloid cells revealed a significant upregulation of angiogenic factors such as Arg1 and Lrg1 concomitant with significantly enlarged CNV and an increased accumulation of MCs in aged mice in comparison to young mice. Future studies need to clarify whether this observation is an epiphenomenon or a causal relationship to determine the role of immunosenescence in CNV formation.
Collapse
|
32
|
Buraczynska M, Zakrocka I. Arginase Gene Polymorphism Increases Risk of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients. J Clin Med 2021; 10:jcm10225407. [PMID: 34830689 PMCID: PMC8620112 DOI: 10.3390/jcm10225407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Studies have demonstrated that polymorphic variants of arginase 1 gene (ARG1) are involved in human diseases, such as coronary heart disease, hypertension, and diabetes. Our study aimed to investigate the association between ARG1 rs2781666 single nucleotide polymorphism (SNP) and diabetic retinopathy (DR) in type 2 diabetes (T2DM) patients. Polymorphism was genotyped in 740 T2DM patients and 400 healthy individuals. A significant difference in the genotype distribution was observed between the patients and the controls. The T allele and TT genotype were associated with an increased risk of T2DM (OR 1.4, 95% CI 1.14–1.72, p = 0.001 and OR 2.16, 95% CI 1.23–3.80, p = 0.007, respectively). When the T2DM subjects were stratified into DR+ and DR− subgroups, the T allele and TT genotype frequencies were significantly higher in the DR+ group compared to the DR− group, demonstrating OR 1.68 (1.33–2.12), p < 0.0001 and OR 2.39 (1.36–4.18), p = 0.002, respectively. Logistic regression analysis was applied to determine the interaction between the ARG1 genotypes and other risk factors. Only ARG1 rs2781666 SNP was a significant risk predictor of DR (p = 0.003). In conclusion, this is the first report discussing the effect of ARG1 polymorphism on the microvascular complications that are associated with diabetes. Our findings demonstrate that ARG1 rs2781666 SNP is significantly associated with an increased susceptibility to DR in T2DM patients.
Collapse
|
33
|
Tengbom J, Cederström S, Verouhis D, Böhm F, Eriksson P, Folkersen L, Gabrielsen A, Jernberg T, Lundman P, Persson J, Saleh N, Settergren M, Sörensson P, Tratsiakovich Y, Tornvall P, Jung C, Pernow J. Arginase 1 is upregulated at admission in patients with ST-elevation myocardial infarction. J Intern Med 2021; 290:1061-1070. [PMID: 34237174 DOI: 10.1111/joim.13358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The mechanisms underlying rupture of a coronary atherosclerotic plaque and development of myocardial ischemia-reperfusion injury in ST-elevation myocardial infarction (STEMI) remain unresolved. Increased arginase 1 activity leads to reduced nitric oxide (NO) production and increased formation of reactive oxygen species due to uncoupling of the NO-producing enzyme endothelial NO synthase (eNOS). This contributes to endothelial dysfunction, plaque instability and increased susceptibility to ischemia-reperfusion injury in acute myocardial infarction. OBJECTIVE The purpose of this study was to test the hypothesis that arginase gene and protein expression are upregulated in patients with STEMI. METHODS Two cohorts of patients with STEMI were included. In the first cohort (n = 51), expression of arginase and NO-synthases as well as arginase 1 protein levels were determined and compared to a healthy control group (n = 45). In a second cohort (n = 68), plasma arginase 1 levels and infarct size were determined using cardiac magnetic resonance imaging. RESULTS Expression of the gene encoding arginase 1 was significantly elevated at admission and 24-48 h after STEMI but not 3 months post STEMI, in comparison with the control group. Expression of the genes encoding arginase 2 and endothelial NO synthase (NOS3) were unaltered. Arginase 1 protein levels were elevated at admission, 24 h post STEMI and remained elevated for up to 6 months. No significant correlation between plasma arginase 1 protein levels and infarct size was observed. CONCLUSION The markedly increased gene and protein expression of arginase 1 already at admission indicates a role of arginase 1 in the development of STEMI.
Collapse
Affiliation(s)
- John Tengbom
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sofia Cederström
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Dinos Verouhis
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Felix Böhm
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Gabrielsen
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Pia Lundman
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Jonas Persson
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Nawzad Saleh
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Settergren
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peder Sörensson
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yahor Tratsiakovich
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Tornvall
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - John Pernow
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
34
|
Contreras-Zentella ML, Hernández-Muñoz R. Possible Gender Influence in the Mechanisms Underlying the Oxidative Stress, Inflammatory Response, and the Metabolic Alterations in Patients with Obesity and/or Type 2 Diabetes. Antioxidants (Basel) 2021; 10:antiox10111729. [PMID: 34829598 PMCID: PMC8615031 DOI: 10.3390/antiox10111729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The number of patients afflicted by type 2 diabetes and its morbidities has increased alarmingly, becoming the cause of many deaths. Normally, during nutrient intake, insulin secretion is increased and glucagon secretion is repressed, but when plasma glucose concentration increases, a state of prediabetes occurs. High concentration of plasma glucose breaks the redox balance, inducing an oxidative stress that promotes chronic inflammation, insulin resistance, and impaired insulin secretion. In the same context, obesity is one of the most crucial factors inducing insulin resistance, inflammation, and contributing to the onset of type 2 diabetes. Measurements of metabolites like glucose, fructose, amino acids, and lipids exhibit significant predictive associations with type 2 diabetes or a prediabetes state and lead to changes in plasma metabolites that could be selectively affected by gender and age. In terms of gender, women and men have biological dissimilarities that might have an important role for the development, diagnosis, therapy, and prevention of type 2 diabetes, obesity, and relevant hazards in both genders, for type 2 diabetes. Therefore, the present review attempts to analyze the influence of gender on the relationships among inflammatory events, oxidative stress, and metabolic alterations in patients undergoing obesity and/or type 2 diabetes.
Collapse
|
35
|
Lee KS, Rim JH, Lee YH, Lee SG, Lim JB, Kim JH. Association of circulating metabolites with incident type 2 diabetes in an obese population from a national cohort. Diabetes Res Clin Pract 2021; 180:109077. [PMID: 34599972 DOI: 10.1016/j.diabres.2021.109077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
AIMS Obesity is the most common risk factor for type 2 diabetes. However, not all obese individuals develop diabetes. In the era of precision medicine, metabolomics may reveal the fundamental metabolic status of an individual. Our aim was to assess the association of metabolites with incident type 2 diabetes in obese individuals using Korean Genome and Epidemiology Cohort Study. METHODS Using 12 years of metabolomic data from 2,580 individuals, we performed a metabolomic study to define metabolically healthy obesity in an obese population (n = 704) with incident type 2 diabetes. Cox proportional hazards regression model and survival analysis were performed adjusted for the traditional risk factors of type 2 diabetes. RESULTS Our study revealed that spermine, acyl-alkyl phosphatidylcholines (C34:3, C36:3, C42:1), hydroxy sphingomyelin (C22:2, C14:1), and sphingomyelin (C16:0) were associated with incident type 2 diabetes in obese individuals after the adjustment for risk factors and correction of multiple comparisons by Bonferroni method. Five metabolites (except hydroxy sphingomyelin C14:1 and sphingomyelin C16:0) were also significantly associated with incident type 2 diabetes in lean individuals. CONCLUSIONS This study highlights the need for defining metabolically healthy obesity based on serum metabolites and elucidates potential biomarkers for type 2 diabetes in an obese population.
Collapse
Affiliation(s)
- Kwang Seob Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong-Baeck Lim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Ho Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Development of a new nano arginase HPLC capillary column for the fast screening of arginase inhibitors and evaluation of their binding affinity. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122751. [PMID: 33991957 DOI: 10.1016/j.jchromb.2021.122751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022]
Abstract
A simple and rapid Nano LC method has been developed for the screening of arginase inhibitors. The method is based on the immobilization of biotinylated arginase on a neutravidin functionalized nano HPLC capillary column. The arginase immobilization step performed by frontal analysis is very fast and only takes a few minutes. The miniaturized capillary column of 170 nL (length 5 cm, internal diameter 75 μm) significantly decreased the required amount of used enzyme (25 pmol). This was of significance importance when working with less available or expensive purified enzyme. Non-selective adsorption of the organic monolith matrix was reduced (<6%) and the arginase efficient yield was high (92%). The resultant affinity capillary columns showed excellent repeatability and long lifetime. The arginase reaction product was achieved within 60 s and the immobilized arginase retained 97% of the initial activity beyond 90 days. This novel approach can thus be used for the fast evaluation of recognition assay induced bya series of inhibitor molecules (caffeic acid phenylamide, chlorogenic acid, piceatannol, nor-NOHA acetate) and plant extracts.
Collapse
|
37
|
Liput KP, Lepczyński A, Nawrocka A, Poławska E, Ogłuszka M, Jończy A, Grzybek W, Liput M, Szostak A, Urbański P, Roszczyk A, Pareek CS, Pierzchała M. Effects of Three-Month Administration of High-Saturated Fat Diet and High-Polyunsaturated Fat Diets with Different Linoleic Acid (LA, C18:2n-6) to α-Linolenic Acid (ALA, C18:3n-3) Ratio on the Mouse Liver Proteome. Nutrients 2021; 13:1678. [PMID: 34063343 PMCID: PMC8156955 DOI: 10.3390/nu13051678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to evaluate the effect of different types of high-fat diets (HFDs) on the proteomic profile of mouse liver. The analysis included four dietary groups of mice fed a standard diet (STD group), a high-fat diet rich in SFAs (SFA group), and high-fat diets dominated by PUFAs with linoleic acid (LA, C18:2n-6) to α-linolenic acid (ALA, C18:3n-3) ratios of 14:1 (14:1 group) and 5:1 (5:1 group). After three months of diets, liver proteins were resolved by two-dimensional gel electrophoresis (2DE) using 17 cm non-linear 3-10 pH gradient strips. Protein spots with different expression were identified by MALDI-TOF/TOF. The expression of 13 liver proteins was changed in the SFA group compared to the STD group (↓: ALB, APOA1, IVD, MAT1A, OAT and PHB; ↑: ALDH1L1, UniProtKB-Q91V76, GALK1, GPD1, HMGCS2, KHK and TKFC). Eleven proteins with altered expression were recorded in the 14:1 group compared to the SFA group (↓: ARG1, FTL1, GPD1, HGD, HMGCS2 and MAT1A; ↑: APOA1, CA3, GLO1, HDHD3 and IVD). The expression of 11 proteins was altered in the 5:1 group compared to the SFA group (↓: ATP5F1B, FTL1, GALK1, HGD, HSPA9, HSPD1, PC and TKFC; ↑: ACAT2, CA3 and GSTP1). High-PUFA diets significantly affected the expression of proteins involved in, e.g., carbohydrate metabolism, and had varying effects on plasma total cholesterol and glucose levels. The outcomes of this study revealed crucial liver proteins affected by different high-fat diets.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, K. Janickiego 32 Str., 71-270 Szczecin, Poland;
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Weronika Grzybek
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Michał Liput
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute of the Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Agnieszka Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Paweł Urbański
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Agnieszka Roszczyk
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Chandra S. Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| |
Collapse
|
38
|
Adefegha SA, Oboh G, Dada FA, Oyeleye SI, Okeke BM. Berberine modulates crucial erectogenic biomolecules and alters histological architecture in penile tissues of diabetic rats. Andrologia 2021; 53:e14074. [PMID: 33930193 DOI: 10.1111/and.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
Berberine is an isoquinoline alkaloid, found in several plants. Diabetes induces erectile dysfunction (ED) via reduction in some hormones and enzymes implicated in sexual function. This study aimed to investigate the role of berberine on crucial biomolecules linked to penile function in diabetic rats. Sixty-three (63) adult male rats were used and distributed into nine groups (each = 7). Group I-IV normal rats administered with citrate buffer (pH 4.5), sildenafil citrate (SD, 5.0 mg/kg), 50 and 100 mg/kg of berberine, respectively, via oral gavage. Rats in groups V-IX were diabetic rat with ED treated with buffer, SD, 50 and 100 mg/kg of berberine, and acarbose (25 mg/kg ACA) respectively. The result revealed that histological architecture in penile tissues were altered in diabetic groups treated with berberine, sildenafil citrate and acarbose when compared to the diabetic control group. Treatment with berberine, increased testosterone, luteinizing hormone and follicle-stimulating hormone in diabetic rat with ED. Also, reduced prolactin level and acetylcholinesterase, angiotensin-1 converting enzyme, adenosine deaminase and arginase activities were observed in berberine treated diabetic rat with ED. Molecular docking analysis revealed that berberine had strong binding affinities for these enzymes. Thus, berberine could represent a potential therapeutic agent for diabetes-induced ED.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Felix Abayomi Dada
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Science Laboratory Technology Department (Biochemistry Unit), Federal Polytechnic Ede, Ede, Nigeria
| | - Sunday Idowu Oyeleye
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Bathlomew Maduka Okeke
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
39
|
Mori A, Takei T, Suzuki N, Sakamoto K, Morita M, Nakagawa S, Nakahara T, Ishii K. L-Citrulline ameliorates the attenuation of acetylcholine-induced vasodilation of retinal arterioles in diabetic rats. Heliyon 2021; 7:e06532. [PMID: 33842702 PMCID: PMC8020426 DOI: 10.1016/j.heliyon.2021.e06532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Accepted: 03/12/2021] [Indexed: 02/01/2023] Open
Abstract
In our previous study, we found that the vasodilation of retinal arterioles induced by acetylcholine and BMS-191011, a large-conductance Ca2+-activated K+ (BKCa) channel opener, were diminished in diabetic rats. Currently, few agents ameliorate the impaired vasodilator responses of retinal blood vessels. Our recent finding that the intravenous infusion of L-citrulline dilated retinal arterioles, suggests that L-citrulline could be a potential therapeutic agent for circulatory disorders of the retina. In this study, we determined the effect of an oral L-citrulline treatment on impaired acetylcholine- and BMS-191011-induced vasodilation in the retinal arterioles of diabetic rats. To induce diabetes, rats were administered an intravenous dose of streptozotocin (65 mg/kg) and a 5% D-glucose solution as drinking water. The L-citrulline (2 g/kg/day) and L-arginine (2 g/kg/day) treatments commenced either 15 days before or just after the streptozotocin injection and continued throughout the experimental period. A 29-day treatment with L-citrulline, but not L-arginine, significantly ameliorated the impaired acetylcholine- and BMS-191011-induced retinal vasodilation in diabetic rats without affecting their plasma glucose levels. The 2-week L-citrulline treatment tended to ameliorate the dysfunction of the acetylcholine-induced retinal vasodilation in diabetic rats. In conclusion, these results showed that the retinal blood vessel dysfunction induced by diabetes mellitus could be prevented by the long-term administration of L-citrulline and suggest that the latter could play a potentially prophylactic role in diabetic retinopathy.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Corresponding author.
| | - Toshiaki Takei
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Namiko Suzuki
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masahiko Morita
- Research & Innovation Center, KYOWA HAKKO BIO CO., LTD, 2 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-0841, Japan
| | - Satoshi Nakagawa
- Research & Innovation Center, KYOWA HAKKO BIO CO., LTD, 2 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-0841, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
40
|
L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073293] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
L-Arginine (Arg) has been widely used due to its functional properties as a substrate for nitric oxide (NO) generation. However, L-citrulline (CIT), whose main natural source is watermelon, is a non-essential amino acid but which has important health potential. This review provides a comprehensive approach to different studies of the endogenous synthesis of CIT, metabolism, pharmacokinetics, and pharmacodynamics as well as its ergogenic effect in exercise performance. The novel aspect of this paper focuses on the different effects of CIT, citrulline malate and CIT from natural sources such as watermelon on several topics, including cardiovascular diseases, diabetes, erectile dysfunction, cancer, and exercise performance. CIT from watermelon could be a natural food-sourced substitute for pharmacological products and therefore the consumption of this fruit is promoted.
Collapse
|
41
|
Galluccio E, Spadoni S, Fontana B, Bosi E, Piatti P, Monti LD. Long lasting protective effects of early l-arginine treatment on endothelium in an in vitro study. Clin Nutr 2021; 40:1519-1529. [PMID: 33743287 DOI: 10.1016/j.clnu.2021.02.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/09/2020] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Excess nutrient supply, such as high fat and high glucose intake, promotes oxidative stress and advanced glycation end products accumulation. Oxidative stress and AGE accumulation cause pathological elevation of arginase activity and pro-inflammatory signaling implicated in endothelial dysfunction. Several studies showed positive effects of l-arginine supplementation in endothelial function but little is currently known about the role of l-arginine as prevention of endothelial dysfunction caused by excessive nutrient supply (overfeeding). Our aim was to evaluate a possible protective effect of l-arginine on endothelial dysfunction caused by excessive nutrient supply (overfeeding), using human endothelial cells line in an in vitro study. METHODS Endothelial EA.hy926 cells were pre-treated with 1.72 mM of l-arginine for 24 h and afterwards subjected to nutritional stress (high lipid, high insulin and high glucose concentrations) for further 24 h. After treatment discontinuation, the cells were kept in culture for 48 h, in physiological condition, to evaluate the effects of treatments after normalization. RESULTS Excess nutrient supply in EA.hy926 cell line showed an increase of oxidative and nitrosative stress, a rise of AGEs production, high arginase activity, leading the cells to acidosis and to cell death. l-arginine pretreatment protects the cells by reducing apoptosis, acidosis, oxidative and nitrosative stress, arginase activity and AGE accumulation. l-arginine pretreatment reduces AGEs generation and accumulation by regulating STAB1 and RAGE gene expression levels. STAB1, acting as receptor scavenger of AGEs, interferes with AGE-RAGE binding and thus prevents activation of intracellular signaling pathways leading to cell damage. Moreover the reduction of oxidative stress promotes a decrease of excessive activation of arginase involved in endothelial dysfunction. The effects of pretreatment with l-arginine last even in the absence of stimuli and despite after treatment discontinuation. CONCLUSIONS An early l-arginine treatment is able to prevent oxidative stress and AGEs accumulation caused by overfeeding in human endothelial cell line by regulating STAB1/RAGE gene expression and by reducing excess arginase activity. The positive effects of l-arginine pretreatment continue even after treatment discontinuation in normal conditions.
Collapse
Affiliation(s)
- Elena Galluccio
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Serena Spadoni
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Barbara Fontana
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Emanuele Bosi
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Piermarco Piatti
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Lucilla D Monti
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
42
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
43
|
Bertozzi-Matheus M, Bueno-Pereira TO, Viana-Mattioli S, Carlström M, Cavalli RDC, Sandrim VC. Different profiles of circulating arginase 2 in subtypes of preeclampsia pregnant women. Clin Biochem 2021; 92:25-33. [PMID: 33713637 DOI: 10.1016/j.clinbiochem.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Preeclampsia (PE) is a gestational hypertensive disease responsible for high maternal and fetal morbidity and mortality. The increase in blood pressure is associated with a decrease in the bioavailability of nitric oxide (NO). Arginase interferes with NO production consuming L-arginine, a substrate required by endothelial NO synthase to NO formation. No previous study has quantified the circulating levels of the two arginase isoforms (arginase 1 and arginase 2) in the plasma of pregnant women with PE. Therefore, our objective is to evaluate these plasma levels in healthy pregnant women and PE with or without severe features and who respond or not to antihypertensive therapy. METHODS We compared 29 healthy pregnant women with 56 pregnant women with PE, who were also divided into with severe features (n = 24) or without severe features (n = 32) and into responsive (n = 29) or nonresponsive to antihypertensive therapy (n = 27). We quantified the plasmatic expression of arginase 1 and arginase 2 by ELISA kits. RESULTS While similar levels of arginase 1 were found among groups, lower arginase 2 plasma levels were found in PE without severe features and responsive to antihypertensive drugs when compared to healthy pregnant women. There was no difference between arginase 2 levels in PE with severe features and nonresponsive group when compared to healthy pregnant women. CONCLUSION This shows different circulation profiles of arginase 2 among groups, suggesting the existence of mechanisms of arginase 2 modulation in pregnant women with PE associated with the severity of the disease and responsiveness to antihypertensive treatment.
Collapse
Affiliation(s)
- Mariana Bertozzi-Matheus
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Distrito Rubiao Junior, Botucatu, São Paulo 18680-000, Brazil
| | - Thaina Omia Bueno-Pereira
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Distrito Rubiao Junior, Botucatu, São Paulo 18680-000, Brazil
| | - Sarah Viana-Mattioli
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Distrito Rubiao Junior, Botucatu, São Paulo 18680-000, Brazil
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Ricardo de Carvalho Cavalli
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Distrito Rubiao Junior, Botucatu, São Paulo 18680-000, Brazil.
| |
Collapse
|
44
|
Stucker S, De Angelis J, Kusumbe AP. Heterogeneity and Dynamics of Vasculature in the Endocrine System During Aging and Disease. Front Physiol 2021; 12:624928. [PMID: 33767633 PMCID: PMC7987104 DOI: 10.3389/fphys.2021.624928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The endocrine system consists of several highly vascularized glands that produce and secrete hormones to maintain body homeostasis and regulate a range of bodily functions and processes, including growth, metabolism and development. The dense and highly vascularized capillary network functions as the main transport system for hormones and regulatory factors to enable efficient endocrine function. The specialized capillary types provide the microenvironments to support stem and progenitor cells, by regulating their survival, maintenance and differentiation. Moreover, the vasculature interacts with endocrine cells supporting their endocrine function. However, the structure and niche function of vasculature in endocrine tissues remain poorly understood. Aging and endocrine disorders are associated with vascular perturbations. Understanding the cellular and molecular cues driving the disease, and age-related vascular perturbations hold potential to manage or even treat endocrine disorders and comorbidities associated with aging. This review aims to describe the structure and niche functions of the vasculature in various endocrine glands and define the vascular changes in aging and endocrine disorders.
Collapse
Affiliation(s)
| | | | - Anjali P. Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Deng Y, Huang C, Su J, Pan CW, Ke C. Identification of biomarkers for essential hypertension based on metabolomics. Nutr Metab Cardiovasc Dis 2021; 31:382-395. [PMID: 33495028 DOI: 10.1016/j.numecd.2020.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023]
Abstract
AIM Essential hypertension (EH) is one of the most important public health problems worldwide. However, the pathogenesis of EH is unclear and early diagnostic methods are lacking. Metabolomics demonstrates great potential for biomarker discovery and the mechanistic exploration of metabolic diseases. DATA SYNTHESIS This review included human and animal metabolomics studies related to EH in the PubMed and Web of Science databases between February 1996 and May 2020. The study designs, EH standards, and reported metabolic biomarkers were systematically examined and compared. The pathway analysis was conducted through the online software MetaboAnalyst 4.0. Twenty-two human studies and fifteen animal studies were included in this systematic review. There were many frequently reported biomarkers with consistent trends (e.g., pyruvate, lactic acid, valine, and tryptophan) in human and animal studies, and thus had potential as biomarkers of EH. In addition, several shared metabolic pathways, including alanine, aspartate, and glutamate metabolism, aminoacyl-tRNA biosynthesis, and arginine biosynthesis, were identified in human and animal metabolomics studies. These biomarkers and pathways, closely related to insulin resistance, the inflammatory state, and impaired nitric oxide production, were demonstrated to contribute to EH development. CONCLUSIONS This study summarized valuable metabolic biomarkers and pathways that could offer opportunities for the early diagnosis or prediction of EH and the discovery of the metabolic mechanisms of EH.
Collapse
Affiliation(s)
- Yueting Deng
- Medical College of Soochow University, Suzhou, 215123, PR China
| | - Chen Huang
- Medical College of Soochow University, Suzhou, 215123, PR China
| | - Jingyue Su
- Medical College of Soochow University, Suzhou, 215123, PR China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, PR China.
| | - Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, PR China.
| |
Collapse
|
46
|
Lespagnol E, Tagougui S, Fernandez BO, Zerimech F, Matran R, Maboudou P, Berthoin S, Descat A, Kim I, Pawlak-Chaouch M, Boissière J, Boulanger E, Feelisch M, Fontaine P, Heyman E. Circulating biomarkers of nitric oxide bioactivity and impaired muscle vasoreactivity to exercise in adults with uncomplicated type 1 diabetes. Diabetologia 2021; 64:325-338. [PMID: 33219433 DOI: 10.1007/s00125-020-05329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS Early compromised endothelial function challenges the ability of individuals with type 1 diabetes to perform normal physical exercise. The exact mechanisms underlying this vascular limitation remain unknown, but may involve either formation or metabolism of nitric oxide (NO), a major vasodilator, whose activity is known to be compromised by oxidative stress. METHODS Muscle microvascular reactivity (near-infrared spectroscopy) to an incremental exhaustive bout of exercise was assessed in 22 adults with uncomplicated type 1 diabetes (HbA1c 64.5 ± 15.7 mmol/mol; 8.0 ± 1.4%) and in 21 healthy individuals (18-40 years of age). NO-related substrates/metabolites were also measured in the blood along with other vasoactive compounds and oxidative stress markers; measurements were taken at rest, at peak exercise and after 15 min of recovery. Demographic characteristics, body composition, smoking status and diet were comparable in both groups. RESULTS Maximal oxygen uptake was impaired in individuals with type 1 diabetes compared with in healthy participants (35.6 ± 7.7 vs 39.6 ± 6.8 ml min-1 kg-1, p < 0.01) despite comparable levels of habitual physical activity (moderate to vigorous physical activity by accelerometery, 234.9 ± 160.0 vs 280.1 ± 114.9 min/week). Compared with non-diabetic participants, individuals with type 1 diabetes also displayed a blunted exercise-induced vasoreactivity (muscle blood volume at peak exercise as reflected by ∆ total haemoglobin, 2.03 ± 5.82 vs 5.33 ± 5.54 μmol/l; interaction 'exercise' × 'group', p < 0.05); this was accompanied by lower K+ concentration (p < 0.05), reduced plasma L-arginine (p < 0.05)-in particular when HbA1c was high (mean estimation: -4.0, p < 0.05)-and lower plasma urate levels (p < 0.01). Nonetheless, exhaustive exercise did not worsen lipid peroxidation or other oxidative stress biomarkers, and erythrocytic enzymatic antioxidant resources were mobilised to a comparable extent in both groups. Nitrite and total nitrosation products, which are potential alternative NO sources, were similarly unaltered. Graphical abstract CONCLUSIONS/INTERPRETATION: Participants with uncomplicated type 1 diabetes displayed reduced availability of L-arginine, the essential substrate for enzymatic nitric oxide synthesis, as well as lower levels of the major plasma antioxidant, urate. Lower urate levels may reflect a defect in the activity of xanthine oxidase, an enzyme capable of producing NO from nitrite under hypoxic conditions. Thus, both canonical and non-canonical NO production may be reduced. However, neither of these changes exacerbated exercise-induced oxidative stress. TRIAL REGISTRATION clinicaltrials.gov NCT02051504.
Collapse
Affiliation(s)
- Elodie Lespagnol
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Sémah Tagougui
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Bernadette O Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Farid Zerimech
- CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Université Lille, Lille, France
| | - Régis Matran
- CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Université Lille, Lille, France
| | - Patrice Maboudou
- CHU de Lille, Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie Pathologie Génétique, Lille, France
| | - Serge Berthoin
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Amandine Descat
- CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, Université Lille, Lille, France
| | - Isabelle Kim
- CHU de Lille, Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie Pathologie Génétique, Lille, France
| | - Mehdi Pawlak-Chaouch
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Julien Boissière
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Eric Boulanger
- Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, Université Lille, Lille, France
| | - Martin Feelisch
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Pierre Fontaine
- Department of Diabetology, Lille University Hospital, EA 4489, Lille, France
| | - Elsa Heyman
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France.
| |
Collapse
|
47
|
Akomolafe SF, Olasehinde TA, Adewale OO, Ajayi OB. Curcumin Improves Biomolecules Associated with Renal Function and Attenuates Oxidative Injury and Histopathological Changes in Potassium-Induced Toxicity in Rats' Kidney. Biol Trace Elem Res 2021; 199:197-204. [PMID: 32277397 DOI: 10.1007/s12011-020-02113-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The protective effect of curcumin on potassium bromate (KBrO3)-induced renal damage was investigated in vivo. Treatment with KBrO3 (20 mg/kg bw) caused a significant increase in arginase and adenosine deaminase (ADA) activities in rats' kidney. However, oral administration of curcumin (20 mg/kg bw) caused a significant reduction in ADA and arginase activities in KBrO3 + CUR group. Furthermore, nitric oxide level was significantly low in KBrO3 group compared with the control. After treatment with curcumin in KBrO3 + CUR group, nitric oxide levels increased significantly (P < 0.05). Determination of some kidney biomarkers revealed elevated levels of creatinine, serum urea, and electrolytes (Na+ and Cl-) in KBrO3-treated rats. Curcumin effectively reduced the levels of these renal function parameters in KBrO3 + CUR groups and were not significantly different from the control. Antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities as well as glutathione (GSH) levels were significantly low with concomitant higher levels of malondialdehyde (MDA) after treatment with KBrO3. Curcumin caused a significant increase in SOD, CAT, and GPX activities including GSH levels with lower production of MDA in kidney homogenates of rats in KBrO3 + CUR. Curcumin ameliorated corpuscular degeneration in the kidney tissue and exhibited protection against tubular necrosis. These results revealed the protective effect of curcumin against KBrO3-induced renal toxicity by preventing degradation of ADA and arginine, improving antioxidant status and histopathological changes in rats' kidney.
Collapse
Affiliation(s)
- Seun F Akomolafe
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria.
| | - Tosin A Olasehinde
- Department of Biochemistry, University of Fort Hare Alice, Eastern Cape, 5700, South Africa
- Department of Food Technology, Nutrition and Toxicology Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Omowumi O Adewale
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Olubunmi B Ajayi
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria
| |
Collapse
|
48
|
Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel) 2020; 9:antiox9080761. [PMID: 32824523 PMCID: PMC7465265 DOI: 10.3390/antiox9080761] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cell death. However, there are various compounds with direct or indirect antioxidant activity that have been used to reduce ROS accumulation in animal models and humans. In this review, we report on the physiological and pathophysiological role of ROS in the retina with a special focus on the vascular system. Moreover, we present therapeutic approaches for individual retinal diseases targeting retinal signaling pathways involving ROS.
Collapse
|
49
|
Erythrocytes as markers of oxidative stress related pathologies. Mech Ageing Dev 2020; 191:111333. [PMID: 32814082 DOI: 10.1016/j.mad.2020.111333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Erythrocytes are deeply sensitive cells and important health indicators. During inflammatory response RBC, as a part of haematological system, are exposed to circulating inflammatory mediators and related oxidative stress. They present a highly specialized and organized cell membrane that interacts with inflammatory mediators and oxidative agents, leading to a variety of structural changes that promptly signal an abnormal situation. This review is aimed to provide an overview on erythrocyte involvement in physiological and pathological processes related to oxidative stress, such as aging, Down syndrome, neurodegenerative diseases, for instance Alzheimer Disease, erectile dysfunction and cardiovascular diseases. In particular this review will focus on the effects of oxidative stress on structural changes in the cell membrane and also on in the activity of erythrocyte enzymes such as membrane-bound, cytosolic glycohydrolases and RBC-eNOS. This review also underlines the potential clinical application of erythrocyte specific related parameters, which can be important tools not only for the study but also for the monitoring of several oxidative stress related diseases.
Collapse
|
50
|
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and Endothelial Function. Biomedicines 2020; 8:biomedicines8080277. [PMID: 32781796 PMCID: PMC7460461 DOI: 10.3390/biomedicines8080277] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Arginine (L-arginine), is an amino acid involved in a number of biological processes, including the biosynthesis of proteins, host immune response, urea cycle, and nitric oxide production. In this systematic review, we focus on the functional role of arginine in the regulation of endothelial function and vascular tone. Both clinical and preclinical studies are examined, analyzing the effects of arginine supplementation in hypertension, ischemic heart disease, aging, peripheral artery disease, and diabetes mellitus.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Wafiq Khondkar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
- Correspondence:
| | - Valentina Trimarco
- Department of Neuroscience, “Federico II” University, 80131 Naples, Italy;
| |
Collapse
|