1
|
Guarnaccia L, Navone SE, Begani L, Barilla E, Garzia E, Campanella R, Miozzo M, Fontana L, Alotta G, Cordiglieri C, Gaudino C, Schisano L, Ampollini A, Riboni L, Locatelli M, Marfia G. Testing calpain inhibition in tumor endothelial cells: novel targetable biomarkers against glioblastoma malignancy. Front Oncol 2024; 14:1355202. [PMID: 39156707 PMCID: PMC11327812 DOI: 10.3389/fonc.2024.1355202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Glioblastoma IDH-wildtype (GBM) is the most malignant brain tumor in adults, with a poor prognosis of approximately 15 months after diagnosis. Most patients suffer from a recurrence in <1 year, and this renders GBM a life-threatening challenge. Among molecular mechanisms driving GBM aggressiveness, angiogenesis mediated by GBM endothelial cells (GECs) deserves consideration as a therapeutic turning point. In this scenario, calpains, a family of ubiquitously expressed calcium-dependent cysteine proteases, emerged as promising targets to be investigated as a novel therapeutic strategy and prognostic tissue biomarkers. Methods To explore this hypothesis, GECs were isolated from n=10 GBM biopsies and characterized phenotypically by immunofluorescence. The expression levels of calpains were evaluated by qRT-PCR and Western blot, and their association with patients' prognosis was estimated by Pearson correlation and Kaplan-Meier survival analysis. Calpain targeting efficacy was assessed by a time- and dose-dependent proliferation curve, MTT assay for viability, caspase-3/7 activity, migration and angiogenesis in vitro, and gene and protein expression level modification. Results Immunofluorescence confirmed the endothelial phenotype of our primary GECs. A significant overexpression was observed for calpain-1/2/3 (CAPN) and calpain-small-subunits-1/2 (CAPNS1), whereas calpastatin gene, the calpain natural inhibitor, was reported to be downregulated. A significant negative correlation was observed between CAPN1/CAPNS1 and patient overall survival. GEC challenging revealed that the inhibition of calpain-1 exerts the strongest proapoptotic efficacy, so GEC mortality reached the 80%, confirmed by the increased activity of caspase-3/7. Functional assays revealed a strong affection of in vitro migration and angiogenesis. Gene and protein expression proved a downregulation of MAPK, VEGF/VEGFRs, and Bcl-2, and an upregulation of caspases and Bax-family mediators. Conclusion Overall, the differential expression of calpains and their correlation with patient survival suggest a novel promising target pathway, whose blockade showed encouraging results toward precision medicine strategies.
Collapse
Affiliation(s)
- Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Begani
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Emanuele Garzia
- Reproductive Medicine Unit, Department of Mother and Child, San Paolo Hospital Medical School, ASST Santi Paolo e Carlo, Milan, Italy
- Aerospace Medicine Institute “A. Mosso”, Italian Air Force, Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Milan, Italy
| | - Laura Fontana
- Medical Genetics, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Milan, Italy
| | | | - Chiara Cordiglieri
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Chiara Gaudino
- Department of Neuroradiology, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Luigi Schisano
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella Ampollini
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Aerospace Medicine Institute “A. Mosso”, Italian Air Force, Milan, Italy
| |
Collapse
|
2
|
Zhang Y, Zou W, Dou W, Luo H, Ouyang X. Pleiotropic physiological functions of Piezo1 in human body and its effect on malignant behavior of tumors. Front Physiol 2024; 15:1377329. [PMID: 38690080 PMCID: PMC11058998 DOI: 10.3389/fphys.2024.1377329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Mechanosensitive ion channel protein 1 (Piezo1) is a large homotrimeric membrane protein. Piezo1 has various effects and plays an important and irreplaceable role in the maintenance of human life activities and homeostasis of the internal environment. In addition, recent studies have shown that Piezo1 plays a vital role in tumorigenesis, progression, malignancy and clinical prognosis. Piezo1 is involved in regulating the malignant behaviors of a variety of tumors, including cellular metabolic reprogramming, unlimited proliferation, inhibition of apoptosis, maintenance of stemness, angiogenesis, invasion and metastasis. Moreover, Piezo1 regulates tumor progression by affecting the recruitment, activation, and differentiation of multiple immune cells. Therefore, Piezo1 has excellent potential as an anti-tumor target. The article reviews the diverse physiological functions of Piezo1 in the human body and its major cellular pathways during disease development, and describes in detail the specific mechanisms by which Piezo1 affects the malignant behavior of tumors and its recent progress as a new target for tumor therapy, providing new perspectives for exploring more potential effects on physiological functions and its application in tumor therapy.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wen Zou
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenlei Dou
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Chen T, Chen H, Fu Y, Liu X, Huang H, Li Z, Li S. The eNOS-induced leonurine's new role in improving the survival of random skin flap. Int Immunopharmacol 2023; 124:111037. [PMID: 37827057 DOI: 10.1016/j.intimp.2023.111037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
In reconstructive and plastic surgery, random skin flaps are commonly utilized to treat skin abnormalities produced by a variety of factors. Flap delay procedure is commonly used to reduce flap necrosis. Due to the limitations of various conditions, the traditional surgical improvement can't effectively alleviate the skin flap necrosis. And leonurine (Leo) has antioxidant and anti-inflammatory effects. In this study, we researched the mechanism underlying the influences of varied Leo concentrations on the survival rate of random skin flaps. Our results showed that after Leo treatment, tissue edema and necrosis of the flap were significantly reduced, while angiogenesis and flap perfusion were significantly increased. Through immunohistochemistry and Western blot, we proved that Leo treatment can upregulate the level of angiogenesis, while Leo treatment significantly reduced the expression levels of oxidative stress, apoptosis and inflammation. As a result, it can significantly improve the overall viability of the random skin flaps through the increase of angiogenesis, restriction of inflammation, attenuation of oxidative stress, and reduction of apoptosis. And this protective function was inhibited by LY294002 (a broad-spectrum inhibitor of PI3K) and L-NAME (NG- nitro-L-arginine methyl ester, a non-selective NOS inhibitor). All in all, Leo is an effective drug that can activate the eNOS via the PI3K/Akt pathway. By encouraging angiogenesis, preventing inflammation, minimizing oxidative stress, and lowering apoptosis, Leo can raise the survival rate of random skin flaps. The recommended concentration of Leo in this study was 30 mg/kg.
Collapse
Affiliation(s)
- Tingxiang Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Hongyu Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yuedong Fu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xuao Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Haosheng Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhijie Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Shi Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Martini D, Marino M, Venturi S, Tucci M, Klimis-Zacas D, Riso P, Porrini M, Del Bo' C. Blueberries and their bioactives in the modulation of oxidative stress, inflammation and cardio/vascular function markers: a systematic review of human intervention studies. J Nutr Biochem 2023; 111:109154. [PMID: 36150681 DOI: 10.1016/j.jnutbio.2022.109154] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Blueberries represent a rich source of (poly)phenols and other bioactive compounds. Numerous in vitro and animal model studies documented the potential health-promoting properties of blueberries and blueberry-bioactives, while little is still known about their effects in humans. The objective of the present systematic review is to provide main evidence and the potential mechanisms of action of blueberry and its (poly)phenols in the regulation of markers related to oxidative stress, inflammation, vascular and cardiometabolic function in health and disease states. A total of 45 human intervention studies were included in this review. Overall, the evidence suggests that blueberries may play a role in the improvement of markers of vascular function. Their effects were observed following both post-prandial and long-term consumption, particularly in subjects with risk factors and/or disease conditions. Conversely, the conflicting results on inflammation, oxidative stress and cardiometabolic risk markers were most likely due to differences among studies in terms of study design, subject characteristics, duration of intervention, dosage, and type of biomarkers analyzed. For these reasons, high-quality, well-designed, human intervention studies are warranted to strengthen the current findings on vascular function and provide more evidence about the impact of blueberries on the different markers considered. In addition, studies focusing on the relationship between the structure and the function of (poly)phenols will be fundamental for a better comprehension of the mechanisms behind the health effects observed.
Collapse
Affiliation(s)
- Daniela Martini
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Mirko Marino
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Samuele Venturi
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Massimiliano Tucci
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | | | - Patrizia Riso
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy.
| | - Marisa Porrini
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Cristian Del Bo'
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| |
Collapse
|
6
|
Thengchaisri N, Kuo L, Hein TW. H 2O 2 Mediates VEGF- and Flow-Induced Dilations of Coronary Arterioles in Early Type 1 Diabetes: Role of Vascular Arginase and PI3K-Linked eNOS Uncoupling. Int J Mol Sci 2022; 24:ijms24010489. [PMID: 36613929 PMCID: PMC9820654 DOI: 10.3390/ijms24010489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
In diabetes, the enzyme arginase is upregulated, which may compete with endothelial nitric oxide (NO) synthase (eNOS) for their common substrate L-arginine and compromise NO-mediated vasodilation. However, this eNOS uncoupling can lead to superoxide production and possibly vasodilator hydrogen peroxide (H2O2) formation to compensate for NO deficiency. This hypothesis was tested in coronary arterioles isolated from pigs with 2-week diabetes after streptozocin injection. The NO-mediated vasodilation induced by flow and VEGF was abolished by NOS inhibitor L-NAME and phosphoinositide 3-kinase (PI3K) inhibitor wortmannin but was not affected by arginase inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA) or H2O2 scavenger catalase in control pigs. With diabetes, this vasodilation was partially blunted, and the remaining vasodilation was abolished by catalase and wortmannin. Administration of L-arginine or nor-NOHA restored flow-induced vasodilation in an L-NAME sensitive manner. Diabetes did not alter vascular superoxide dismutase 1, catalase, and glutathione peroxidase mRNA levels. This study demonstrates that endothelium-dependent NO-mediated coronary arteriolar dilation is partially compromised in early type 1 diabetes by reducing eNOS substrate L-arginine via arginase activation. It appears that upregulated arginase contributes to endothelial NO deficiency in early diabetes, but production of H2O2 during PI3K-linked eNOS uncoupling likely compensates for and masks this disturbance.
Collapse
Affiliation(s)
- Naris Thengchaisri
- Department of Medical Physiology, Cardiovascular Research Institute, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Lih Kuo
- Department of Medical Physiology, Cardiovascular Research Institute, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Correspondence: (L.K.); (T.W.H.)
| | - Travis W. Hein
- Department of Medical Physiology, Cardiovascular Research Institute, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Correspondence: (L.K.); (T.W.H.)
| |
Collapse
|
7
|
Combined Therapy with Simvastatin- and Coenzyme-Q10-Loaded Nanoparticles Upregulates the Akt-eNOS Pathway in Experimental Metabolic Syndrome. Int J Mol Sci 2022; 24:ijms24010276. [PMID: 36613727 PMCID: PMC9820291 DOI: 10.3390/ijms24010276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In addition to their LDL-cholesterol-lowering effect, statins have pleiotropic beneficial effects on the cardiovascular system. However, long-term treatment with statins may be associated with serious side effects. With the aim to make statin therapy more effective, we studied the effects of simvastatin- and coenzyme-Q10-loaded polymeric nanoparticles on the lipid profile and nitric oxide (NO)/reactive oxygen species (ROS) balance in the heart and aorta of adult male obese Zucker rats. The rats were divided into an untreated group, a group treated with empty nanoparticles, and groups treated with simvastatin-, coenzyme Q10 (CoQ10)-, or a combination of simvastatin- and CoQ10-loaded nanoparticles (SIMV+CoQ10). After 6 weeks, the lipid profile in the plasma and the concentration of conjugated dienes in the liver were determined. Nitric oxide synthase (NOS) activity, Akt, endothelial NOS (eNOS), phosphorylated eNOS (p-eNOS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and nuclear factor kappaB (NF-kappaB) protein expressions were measured in the heart and aorta. All simvastatin, CoQ10, and SIMV+CoQ10 treatments decreased plasma LDL levels, but only the combined SIMV+CoQ10 treatment increased NOS activity and the expression of Akt, eNOS, and p-eNOS in both the heart and the aorta. Interestingly, NADPH oxidase in the heart and NF-kappaB protein expression in the aorta were decreased by all treatments, including nanoparticles alone. In conclusion, only combined therapy with SIMV- and CoQ10-loaded nanoparticles increased NOS activity and upregulated the Akt-eNOS pathway in obese Zucker rats, which may represent a promising tool for the treatment of cardiometabolic diseases.
Collapse
|
8
|
Youn JY, Wang J, Li Q, Huang K, Cai H. Robust therapeutic effects on COVID-19 of novel small molecules: Alleviation of SARS-CoV-2 S protein induction of ACE2/TMPRSS2, NOX2/ROS, and MCP-1. Front Cardiovasc Med 2022; 9:957340. [PMID: 36187008 PMCID: PMC9520320 DOI: 10.3389/fcvm.2022.957340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
While new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constantly emerge to prolong the pandemic of COVID-19, robust and safe therapeutics are in urgent need. During the previous and ongoing fight against the pandemic in China, Traditional Chinese Medicine (TCM) has proven to be markedly effective in treating COVID-19. Among active ingredients of TCM recipes, small molecules such as quercetin, glabridin, gallic acid, and chrysoeriol have been predicted to target viral receptor angiotensin-converting enzyme 2 (ACE2) via system pharmacology/molecular docking/visualization analyses. Of note, endothelial dysfunction induced by oxidative stress and inflammation represents a critical mediator of acute respiratory distress syndrome (ARDS) and multi-organ injuries in patients with COVID-19. Hence, in the present study, we examined whether quercetin, glabridin, gallic acide and chrysoeriol regulate viral receptors of ACE2 and transmembrane serine protease 2 (TMPRSS2), redox modulator NADPH oxidase isoform 2 (NOX2), and inflammatory protein of monocyte chemoattractant protein-1 (MCP-1) in endothelial cells to mediate therapeutic protection against COVID-19. Indeed, quercetin, glabridin, gallic acide and chrysoeriol completely attenuated SARS-CoV-2 spike protein (S protein)-induced upregulation in ACE2 protein expression in endothelial cells. In addition, these small molecules abolished S protein upregulation of cleaved/active form of TMPRSS2, while native TMPRSS2 was not significantly regulated. Moreover, these small molecules completely abrogated S protein-induced upregulation in NOX2 protein expression, which resulted in alleviated superoxide production, confirming their preventive efficacies against S protein-induced oxidative stress in endothelial cells. In addition, treatment with these small molecules abolished S protein induction of MCP-1 expression. Collectively, our findings for the first time demonstrate that these novel small molecules may be used as novel and robust therapeutic options for the treatment of patients with COVID-19, via effective attenuation of S protein induction of endothelial oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United State
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Jian Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Qian Li
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United State
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Kai Huang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United State
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United State
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Hua Cai,
| |
Collapse
|
9
|
Transarterial chemoembolization (TACE) plus apatinib-combined therapy versus TACE alone in the treatment of intermediate to advanced hepatocellular carcinoma patients: A real-world study. Clin Res Hepatol Gastroenterol 2022; 46:101869. [PMID: 35108656 DOI: 10.1016/j.clinre.2022.101869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Apatinib exhibits the synergistic effect with transarterial chemoembolization (TACE) though inhibiting the neoangiogenetic reaction caused by TACE. In this real-world study, we aimed to evaluate the efficacy and safety of TACE plus apatinib-combined therapy (ACT) in intermediate to advanced hepatocellular carcinoma (HCC) patients. METHODS Data from 168 intermediate to advanced HCC patients who received TACE alone (N = 49) or TACE plus ACT (N = 119) were extracted. Besides, ACT was defined as apatinib with or without other therapy, such as arsenic trioxide, microwave ablation and radioactive seed implantation. RESULTS In TACE plus ACT group, the median overall survival (OS) was 30 months (95% confidence interval (CI): 24-40 months) with 1-year, 3-year and 5-year OS rate of 84.0%, 41.2% and 21.5%, respectively. While in TACE group, the median OS was only 14 months (95%CI: 11-17 months) with 1-year, 3-year and 5-year OS rate of 55.1%, 18.4% and 16.1%, separately. By comparation, the OS was prolonged in TACE plus ACT group compared with TACE group (P<0.001). After adjusted by multivariate Cox's regression analysis, TACE plus ACT (vs. TACE) independently related to the longer OS (hazard ratio: 0.504, P = 0.001). In TACE plus ACT group, the most frequent adverse events included hand-foot syndrome (95.8%), hypertension (95.8%), fatigue (90.8%), albuminuria (85.7%), anorexia (79.0%), diarrhea (66.4%), myelosuppression (58.8%), nausea/vomiting (49.6%) and abdominal pain (39.5%), besides, no grade 4 adverse events and treatment-related death occurred. CONCLUSION TACE plus ACT is a promising treatment choice for the intermediate to advanced HCC patients.
Collapse
|
10
|
Ju S, Wang W, Chen P, Li F, Li H, Wang M, Han X, Ren J, Duan X. Drug-eluting bead transarterial chemoembolization followed by apatinib is effective and safe in treating hepatocellular carcinoma patients with BCLC stage C. Clin Res Hepatol Gastroenterol 2022; 46:101859. [PMID: 34999249 DOI: 10.1016/j.clinre.2022.101859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The present study aimed to evaluate the efficacy and safety of drug-eluting beads transarterial chemoembolization (DEB-TACE) followed by apatinib in treating hepatocellular carcinoma (HCC) patients with Barcelona Clinic Liver Cancer (BCLC) stage C. METHODS Totally, 110 HCC patients with BCLC stage C treated with DEB-TACE followed by apatinib were consecutively enrolled. Treatment response (including complete response rate (CR), objective response rate (ORR) and disease control rate (DCR)), survival data (progression-free survival (PFS), overall survival (OS)), and adverse events were documented during the follow-up. RESULTS CR, ORR and DCR were 25.5%, 77.2% and 79.1% at 3 months, then were 29.1%, 59.1% and 71.0% at 6 months, respectively. Regarding survival, median PFS (95%CI) was 6.3 (5.0-7.7) months, meanwhile 1-year and 2-year PFS were 19.8% and 3.3%, respectively; median OS (95%CI) was 16.9 (10.2-23.7) months, then 1-year, 2-year and 3-year OS were 66.5%, 34.7% and 14.2%, respectively. Further subgroup analysis indicated that nodule size, Child-Pugh stage, Eastern Cooperative Oncology Group performance status score and level of portal vein invasion were negatively correlated with PFS or OS, which were further validated by univariate and multivariate Cox's regression analysis. Most adverse events by DEB-TACE and apatinib treatment were mild and well-tolerable. CONCLUSION DEB-TACE followed by apatinib is effective and safe in treating BCLC stage C HCC patients, indicating its role as an acceptable option in HCC management.
Collapse
Affiliation(s)
- Shuguang Ju
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Wenhui Wang
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Pengfei Chen
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Fangzheng Li
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Hao Li
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Manzhou Wang
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.
| | - Xuhua Duan
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.
| |
Collapse
|
11
|
Kiyooka T, Ohanyan V, Yin L, Pung YF, Chen YR, Chen CL, Kang PT, Hardwick JP, Yun J, Janota D, Peng J, Kolz C, Guarini G, Wilson G, Shokolenko I, Stevens DA, Chilian WM. Mitochondrial DNA integrity and function are critical for endothelium-dependent vasodilation in rats with metabolic syndrome. Basic Res Cardiol 2022; 117:3. [PMID: 35039940 PMCID: PMC9030679 DOI: 10.1007/s00395-021-00908-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/31/2023]
Abstract
Endothelial dysfunction in diabetes is generally attributed to oxidative stress, but this view is challenged by observations showing antioxidants do not eliminate diabetic vasculopathy. As an alternative to oxidative stress-induced dysfunction, we interrogated if impaired mitochondrial function in endothelial cells is central to endothelial dysfunction in the metabolic syndrome. We observed reduced coronary arteriolar vasodilation to the endothelium-dependent dilator, acetylcholine (Ach), in Zucker Obese Fatty rats (ZOF, 34 ± 15% [mean ± standard deviation] 10-3 M) compared to Zucker Lean rats (ZLN, 98 ± 11%). This reduction in dilation occurred concomitantly with mitochondrial DNA (mtDNA) strand lesions and reduced mitochondrial complex activities in the endothelium of ZOF versus ZLN. To demonstrate endothelial dysfunction is linked to impaired mitochondrial function, administration of a cell-permeable, mitochondria-directed endonuclease (mt-tat-EndoIII), to repair oxidatively modified DNA in ZOF, restored mitochondrial function and vasodilation to Ach (94 ± 13%). Conversely, administration of a cell-permeable, mitochondria-directed exonuclease (mt-tat-ExoIII) produced mtDNA strand breaks in ZLN, reduced mitochondrial complex activities and vasodilation to Ach in ZLN (42 ± 16%). To demonstrate that mitochondrial function is central to endothelium-dependent vasodilation, we introduced (via electroporation) liver mitochondria (from ZLN) into the endothelium of a mesenteric vessel from ZOF and restored endothelium-dependent dilation to vasoactive intestinal peptide (VIP at 10-5 M, 4 ± 3% vasodilation before mitochondrial transfer and 48 ± 36% after transfer). Finally, to demonstrate mitochondrial function is key to endothelium-dependent dilation, we administered oligomycin (mitochondrial ATP synthase inhibitor) and observed a reduction in endothelium-dependent dilation. We conclude that mitochondrial function is critical for endothelium-dependent vasodilation.
Collapse
Affiliation(s)
- Takahiko Kiyooka
- Division of Cardiology, Tokai University Oiso Hospital, Oiso, Kanagawa, Japan
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Yuh Fen Pung
- Division of Biomedical Sciences, University of Nottingham, Malaysia Campus, Selangor, Malaysia
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Chwen-Lih Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Patrick T Kang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - June Yun
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Danielle Janota
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Joanna Peng
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Giacinta Guarini
- Cardiovascular Unit, Spedali Riuniti Santa Maria Maddalena, Volterra, Italy
| | - Glenn Wilson
- Department of Biomedical Science, University of South Alabama, Mobile, USA
| | - Inna Shokolenko
- Department of Biomedical Science, University of South Alabama, Mobile, USA
| | - Donte A Stevens
- Division of Biological Sciences, University of California-San Diego, San Diego, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA.
| |
Collapse
|
12
|
PI3K Isoforms in Vascular Biology, A Focus on the Vascular System-Immune Response Connection. Curr Top Microbiol Immunol 2022; 436:289-309. [DOI: 10.1007/978-3-031-06566-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Potz BA, Sabe AA, Sabe SA, Lawandy IJ, Abid MR, Clements RT, Sellke FW. Calpain inhibition decreases myocardial fibrosis in chronically ischemic hypercholesterolemic swine. J Thorac Cardiovasc Surg 2022; 163:e11-e27. [PMID: 32359903 PMCID: PMC7529741 DOI: 10.1016/j.jtcvs.2019.11.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/08/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Calpain activation during ischemia is known to play critical roles in myocardial remodeling. We hypothesize that calpain inhibition (CI) may serve to reverse and/or prevent fibrosis in chronically ischemic myocardium. METHODS Yorkshire swine were fed a high-cholesterol diet for 4 weeks followed by placement of an ameroid constrictor on the left circumflex artery to induce myocardial ischemia. 3 weeks later, animals received either: no drug; high-cholesterol control group (CON; n = 8); low-dose CI (0.12 mg/kg; LCI, n = 9); or high-dose CI (0.25 mg/kg; HCI, n = 8). The high-cholesterol diet and CI were continued for 5 weeks, after which myocardial tissue was harvested. Tissue samples were analyzed by western blot for changes in protein content. RESULTS In the setting of hypercholesterolemia and chronic myocardial ischemia, CI decreased the expression of collagen in ischemic and nonischemic myocardial tissue. This reduced collagen content was associated with a corresponding decrease in Jak/STAT/MCP-1 signaling pathway, suggesting a role for Jak 2 signaling in calpain activity. CI also decreases the expression of focal adhesion proteins (vinculin) and stabilizes the expression of cytoskeletal and structural proteins (N-cadherin, α-fodrin, desmin, vimentin, filamin, troponin-I). CI had no significant effect on metabolic and hemodynamic parameters. CONCLUSIONS Calpain inhibition may be a beneficial medical therapy to decrease collagen formation in patients with coronary artery disease and associated comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank W. Sellke
- Dr. Frank W. Sellke, 2 Dudley Street, MOC 360, Division of Cardiothoracic Surgery, Providence, RI 02905, Phone: (401) 444-2732, Fax: (401) 444-2380,
| |
Collapse
|
14
|
Kunišek L, Matušan Ilijaš K, Medved I, Ferenčić A, Erdeljac D, Arbanas S, Kunišek J. Cardiomyocytes calpain 2 expression: Diagnostic forensic marker for sudden cardiac death caused by early myocardial ischemia and an indicator of the duration of myocardial agonal period? Med Hypotheses 2021; 158:110738. [PMID: 34863067 DOI: 10.1016/j.mehy.2021.110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Sudden cardiac death (SCD) is an unexpected natural death of cardiac etiology and occurs within one hour of the onset of cardiac symptoms in an apparently healthy subject or within 24 h if death is not witnessed. The diagnosis of early myocardial ischemia (EMI) or acute myocardial infarction (AMI) after death is a challenge for forensic pathologists especially when death occurs in a short period of time after the onset of myocardial ischemia. Disorder of cardiomyocytes Ca2+ homeostasis caused by myocardial ischemia during SCD can lead to the activation of calcium-activated non-lysosomal cysteine protease, including calpains. They serve as a proteolytic unit for cell balance and also participate in the processes of apoptosis and necrosis. Agony is a period that precedes somatic death that differs from cellular agony which may evolve for hours after somatic death lasting differently depending on the cell type and mechanism of death. We hypothesize that the expression of calpain 2 in cardiomyocytes could be a specific and sensitive diagnostic forensic marker for SCD caused by EMI and an indicator of the duration of myocardial agonal period. We will conduct a retrospective study that will prove this hypothesis on the respondents who died of SCD by EMI and AMI, instant death by head gunshot and hanging. There is no data on such an analysis in the available literature. The standard hematoxylin-eosin staining will be used to detect cardiac tissue damage. The expression of calpain 2 in cardiomyocytes will be analyzed immunohistochemically. In SCD caused by EMI we expect lower level of calpain 2 expressionin comparison to AMI due to shorter duration of dying. Similar, we predict in the remote region lower calpain 2 expression than in the region of ischemia for both EMI and AMI. In instant death caused by perforating traumatic brain injury we expect mild or no calpain 2 expression throughout the whole myocardium because of very short (immediate) duration of dying. In death caused by hanging calpain 2 expression throughout the whole myocardium should be strong because of longer cellular agonal period. We expect that our results would indicate the immediate activation of calpain 2 in different causes of cardiomyocytes death. From the degree of expression of calpain 2 we could conclude about the duration of cardiomyocytes agony so calpain 2 could be used as a marker for the assessment the duration of somatic and cellular agony.
Collapse
Affiliation(s)
- Leon Kunišek
- University Hospital Center Rijeka, Department of Cardiothoracic Surgery, Division of Cardiac Surgery, Rijeka, Krešimirova 42, Croatia.
| | - Koviljka Matušan Ilijaš
- University Hospital Center Rijeka, Department of Pathology and Cytology, Rijeka, Krešimirova 42, Croatia
| | - Igor Medved
- University Hospital Center Rijeka, Department of Cardiothoracic Surgery, Division of Cardiac Surgery, Rijeka, Krešimirova 42, Croatia
| | - Antun Ferenčić
- University of Rijeka, Faculty of Medicine, Department of Forensic Medicine and Criminalistics, Rijeka, Croatia
| | - Danijela Erdeljac
- University Hospital Center Rijeka, Department of Cardiothoracic Surgery, Division of Cardiac Surgery, Rijeka, Krešimirova 42, Croatia
| | - Silvia Arbanas
- University of Rijeka, Faculty of Medicine, Department of Forensic Medicine and Criminalistics, Rijeka, Croatia
| | - Juraj Kunišek
- Thalassotherapia Crikvenica, Special Hospital for Medical Rehabilitation Crikvenica, Gajevo šetalište 21, Croatia
| |
Collapse
|
15
|
Montisci A, Palmieri V, Liu JE, Vietri MT, Cirri S, Donatelli F, Napoli C. Severe Cardiac Toxicity Induced by Cancer Therapies Requiring Intensive Care Unit Admission. Front Cardiovasc Med 2021; 8:713694. [PMID: 34540917 PMCID: PMC8446380 DOI: 10.3389/fcvm.2021.713694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022] Open
Abstract
A steadying increase of cancer survivors has been observed as a consequence of more effective therapies. However, chemotherapy regimens are often associated with significant toxicity, and cardiac damage emerges as a prominent clinical issue. Many mechanisms sustain chemotherapy-induced cardiac toxicity: direct myocyte damage, arrhythmia induction, coronary vasospasm, and accelerated atherosclerosis. Anthracyclines are the most studied cardiotoxic drugs and represent a clinical model for cardiac damage induced by chemotherapy. In patients suffering from advanced heart failure (HF) because of chemotherapy-related cardiomyopathy, when refractory to optimal medical therapy, mechanical circulatory support or heart transplantation represents an effective treatment. Here, the main mechanisms of cardiac toxicity induced by cancer therapies are analyzed, with a focus on patients requiring intensive care unit (ICU) admission during the course of the disease because of acute cardiac toxicity, takotsubo syndrome, and acute-on-chronic HF in patients suffering from chemotherapy-induced cardiomyopathy. In a subset of patients, cardiac toxicity can be acute and life-threatening, leading to overt cardiogenic shock. The management of critically ill cancer patients poses a unique challenge and requires a multidisciplinary approach. Moreover, no etiologic therapy is available, and only supportive measures can be implemented.
Collapse
Affiliation(s)
- Andrea Montisci
- Division of Cardiothoracic Intensive Care, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Vittorio Palmieri
- Department of Cardiac Surgery and Transplantation, Ospedali dei Colli Monaldi-Cotugno-CTO, Naples, Italy
| | - Jennifer E Liu
- Department of Medicine/Cardiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria T Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvia Cirri
- Department of Anesthesia and Intensive Care, Istituto Clinico Sant'Ambrogio, Milan, Italy
| | | | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, University Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico - Synlab Diagnostica Nucleare (IRCCS SDN), Naples, Italy
| |
Collapse
|
16
|
Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in endothelial cells. Redox Biol 2021; 46:102099. [PMID: 34509916 PMCID: PMC8372492 DOI: 10.1016/j.redox.2021.102099] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of COVID-19 has remained uncontained with urgent need for robust therapeutics. We have previously reported sex difference of COVID-19 for the first time indicating male predisposition. Males are more susceptible than females, and more often to develop into severe cases with higher mortality. This predisposition is potentially linked to higher prevalence of cigarette smoking. Nonetheless, we found for the first time that cigarette smoking extract (CSE) had no effect on angiotensin converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) expression in endothelial cells. The otherwise observed worse outcomes in smokers is likely linked to baseline respiratory diseases associated with chronic smoking. Instead, we hypothesized that estrogen mediated protection might underlie lower morbidity, severity and mortality of COVID-19 in females. Of note, endothelial inflammation and barrier dysfunction are major mediators of disease progression, and development of acute respiratory distress syndrome (ARDS) and multi-organ failure in patients with COVID-19. Therefore, we investigated potential protective effects of estrogen on endothelial cells against oxidative stress induced by interleukin-6 (IL-6) and SARS-CoV-2 spike protein (S protein). Indeed, 17β-estradiol completely reversed S protein-induced selective activation of NADPH oxidase isoform 2 (NOX2) and reactive oxygen species (ROS) production that are ACE2-dependent, as well as ACE2 upregulation and induction of pro-inflammatory gene monocyte chemoattractant protein-1 (MCP-1) in endothelial cells to effectively attenuate endothelial dysfunction. Effects of IL-6 on activating NOX2-dependent ROS production and upregulation of MCP-1 were also completely attenuated by 17β-estradiol. Of note, co-treatment with CSE had no additional effects on S protein stimulated endothelial oxidative stress, confirming that current smoking status is likely unrelated to more severe disease in chronic smokers. These data indicate that estrogen can serve as a novel therapy for patients with COVID-19 via inhibition of initial viral responses and attenuation of cytokine storm induced endothelial dysfunction, to substantially alleviate morbidity, severity and mortality of the disease, especially in men and post-menopause women. Short-term administration of estrogen can therefore be readily applied to the clinical management of COVID-19 as a robust therapeutic option.
Collapse
|
17
|
Guo Z, Zhang Y, Liu C, Youn JY, Cai H. Toll-Like Receptor 2 (TLR2) Knockout Abrogates Diabetic and Obese Phenotypes While Restoring Endothelial Function via Inhibition of NOX1. Diabetes 2021; 70:2107-2119. [PMID: 34127487 PMCID: PMC8576422 DOI: 10.2337/db20-0591] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022]
Abstract
We have previously demonstrated a novel role of bone morphogenic protein 4 (BMP4) in inducing NOX1-dependent endothelial nitric oxide synthase (eNOS) uncoupling, endothelial dysfunction, and inflammatory activation in type 2 diabetes mellitus (T2DM). However, how BMP4 activates NOX1 and whether targeting the new mechanistic pathway revealed is effective in preserving endothelial function in T2DM remains unclear. In this study, we observed that BMP4 induced a marked, time-dependent increase in physiological binding between TLR2 and NOX1 in aortic endothelial cells as well as increased binding of TLR2 to NOXO1. In TLR2 knockout (Tlr2 -/-) mice fed high-fat diet, body weight gain was significantly less compared with wild-type (WT) mice both in males and females. The high-fat diet-induced increases in fasting blood glucose levels, as well as in circulating insulin and leptin levels, were absent in Tlr2 -/- mice. High-fat feeding induced increases in overall fat mass, and in fat mass of different pockets were abrogated in Tlr2 -/- mice. Whereas energy intake was similar in high-fat-fed WT and Tlr2 -/- mice, TLR2 deficiency resulted in higher energy expenditure attributable to improved physical activity, which was accompanied by restored skeletal muscle mitochondrial function. In addition, TLR2 deficiency recoupled eNOS, reduced total superoxide production, improved H4B and NO bioavailabilities in aortas, and restored endothelium-dependent vasorelaxation. Collectively, our data strongly indicate that TLR2 plays important roles in the development of metabolic features of T2DM and its related endothelial/vascular dysfunction. Therefore, targeting TLR2 may represent a novel therapeutic strategy for T2DM, obesity, and cardiovascular complications via specific inhibition of NOX1.
Collapse
Affiliation(s)
- Zhen Guo
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Chang Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
18
|
Huang K, Narumi T, Zhang Y, Li Q, Murugesan P, Wu Y, Liu NM, Cai H. Targeting MicroRNA-192-5p, a Downstream Effector of NOXs (NADPH Oxidases), Reverses Endothelial DHFR (Dihydrofolate Reductase) Deficiency to Attenuate Abdominal Aortic Aneurysm Formation. Hypertension 2021; 78:282-293. [PMID: 34176283 DOI: 10.1161/hypertensionaha.120.15070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kai Huang
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Taro Narumi
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Qiang Li
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Priya Murugesan
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Yusi Wu
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Norika Mengchia Liu
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.,Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles
| |
Collapse
|
19
|
Qu K, Cha H, Ru Y, Que H, Xing M. Buxuhuayu decoction accelerates angiogenesis by activating the PI3K-Akt-eNOS signalling pathway in a streptozotocin-induced diabetic ulcer rat model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113824. [PMID: 33581257 DOI: 10.1016/j.jep.2021.113824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/27/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buxuhuayu decoction (BXHYD) has been frequently used to treat patients with diabetic ulcers (DUs), without notable adverse reactions. However, the related molecular mechanism remains unelucidated. AIM OF THE STUDY This study assessed the potential mechanism of BXHYD against DUs by using network pharmacology and animal experiments. MATERIALS AND METHODS First, high-performance liquid chromatography (HPLC) was used for quality control of BXHYD. Further, the hub compounds and targets were screened from the Active Compound-Targets (ACT) network and the protein and protein interaction (PPI) network. Enrichment analysis was performed using DAVID, and molecular docking technology was used to identify active compounds that may play a key role in pub targets. Finally, a DUs animal model was established and used to elucidate the effect of BXHYD on the PI3K/Akt/eNOS signalling pathway. RESULTS (1) Calycosin-7-glucoside, amygdalin, and tanshinone iiA were detected in the freeze-dried powder of BXHYD. (2) Twelve hub compounds and eight hub targets were screened using the ACT and PPI networks. Through molecular docking, it was found that the four hub targets (TP53, IL6, VEGFA, and AKT1) binds luteolin and quercetin more tightly. (3) BXHYD is most likely to promote angiogenesis and wound healing by activating the PI3K/Akt/eNOS signalling pathway. CONCLUSIONS This research revealed that BXHYD might activate the PI3K/Akt/eNOS signalling pathway to promote DUs healing. These findings support the clinical use of BXHYD and provide the foundation for its subsequent studies.
Collapse
Affiliation(s)
- Keshen Qu
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - HuiJung Cha
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Huafa Que
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Meng Xing
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, 710003, China.
| |
Collapse
|
20
|
Dragoni S, Caridi B, Karatsai E, Burgoyne T, Sarker MH, Turowski P. AMP-activated protein kinase is a key regulator of acute neurovascular permeability. J Cell Sci 2021; 134:jcs253179. [PMID: 33712448 PMCID: PMC8077405 DOI: 10.1242/jcs.253179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Many neuronal and retinal disorders are associated with pathological hyperpermeability of the microvasculature. We have used explants of rodent retinae to study acute neurovascular permeability, signal transduction and the role of AMP-activated protein kinase (AMPK). Following stimulation with either vascular endothelial growth factor (VEGF-A) or bradykinin (BK), AMPK was rapidly and strongly phosphorylated and acted as a key mediator of permeability downstream of Ca2+. Accordingly, AMPK agonists potently induced acute retinal vascular leakage. AMPK activation led to phosphorylation of endothelial nitric oxide synthase (eNOS, also known as NOS3), which in turn increased VE-cadherin (CDH5) phosphorylation on Y685. In parallel, AMPK also mediated phosphorylation of p38 MAP kinases (hereafter p38) and HSP27 (HSPB1), indicating that it regulated paracellular junctions and cellular contractility, both previously associated with endothelial permeability. Endothelial AMPK provided a missing link in neurovascular permeability, connecting Ca2+ transients to the activation of eNOS and p38, irrespective of the permeability-inducing factor used. Collectively, we find that, due to its compatibility with small molecule antagonists and agonists, as well as siRNA, the ex vivo retina model constitutes a reliable tool to identify and study regulators and mechanisms of acute neurovascular permeability.
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Bruna Caridi
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Eleni Karatsai
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Thomas Burgoyne
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mosharraf H. Sarker
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- School of Science, Engineering & Design, Teesside University, Stephenson Street, Middlesbrough TS1 3BA, UK
| | - Patric Turowski
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
21
|
Yu Y, Xu LS, Wu Y, Su FF, Zhou XM, Xu C. The antihypertensive effect of MK on spontaneously hypertensive rats through the AMPK/Akt/eNOS/NO and ERK1/2/Cx43 signaling pathways. Hypertens Res 2021; 44:781-790. [PMID: 33707758 DOI: 10.1038/s41440-021-00638-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Abstract
We investigated the antihypertensive effects of maximakinin (MK) on spontaneously hypertensive rats (SHRs). The effects of MK on arterial blood pressure in SHRs were observed, and flow cytometry and 4,5-diaminofluorescein-2 staining were used to examine MK-induced nitric oxide (NO) release in human umbilical vein endothelial cells (HUVECs). Western blotting was used to analyze the effects of MK on the expression of AMP-activated protein kinase (AMPK), Akt, Connexin 43, ERK1/2, p38, and p-eNOS in HUVECs. The results showed that MK induced a more significant antihypertensive effect on SHRs than bradykinin (BK). MK induced significant increases in endothelial nitric oxide synthase (eNOS) phosphorylation and NO release in HUVECs. MK also significantly increased the phosphorylation of Akt and AMPK in HUVECs. The AMPK inhibitor compound C blocked the effect of MK on the generation of NO. MK induced the phosphorylation of ERK1/2, p38, and Connexin 43. The expression of p-Connexin 43 was significantly decreased in the presence of the ERK1/2 inhibitor U0126 but not the p38 inhibitor SB203580. The effects of MK on the phosphorylation of AMPK and ERK1/2 were significantly decreased by the BK B2 receptor inhibitor HOE-140. In summary, MK can significantly reduce blood pressure in SHRs. The antihypertensive effect might be mediated through the activation of the BK B2 receptor, while the downstream AMPK/PI3K/Akt/eNOS/NO and ERK1/2/Connexin 43 signaling pathways play additional roles.
Collapse
Affiliation(s)
- Yang Yu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Li-Shi Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yue Wu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Fan-Fan Su
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xiao-Mian Zhou
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
22
|
Hou Q, Zhang S, Li Y, Wang H, Zhang D, Qi D, Li Y, Jiang H. New insights on association between circadian rhythm and lipid metabolism in spontaneously hypertensive rats. Life Sci 2021; 271:119145. [PMID: 33548288 DOI: 10.1016/j.lfs.2021.119145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
AIMS The aim of this study is to provide new insights on the association of lipid metabolites, circadian genes and lipid metabolism associated genes in spontaneously hypertensive rats. MATERIALS AND METHODS An untargeted lipidomics using ultrahigh performance liquid chromatography-mass spectrometry metabolomics was used to identify the differentially expressed lipid metabolites over 24 h in Spontaneously hypertensive rats (SHR) with reference to Wistar-Kyoto rats (WKY). The expression of circadian clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2) and lipid metabolism related genes (Rev-erbα, Pparα and Sirt1) was analysed RT-qPCR. KEY FINDINGS Ten lipid metabolites with significant differences in their levels in SHR compared to WKY were identified. The levels of MG (25:0), PA (36:3) and PE (38:2) were lower and the levels of LysoPCs (20:0 and 20:3) and TGs (54:5, 59:12, 28:0, 60:10 and 60:13) were found to be higher in SHR. SHR showed obvious disorders in the expression of circadian genes and lipid metabolism associated genes. A strong association between the levels of lipid metabolites and circadian genes and lipid metabolism associated genes was found. SIGNIFICANCE Rhythm genes may further affect the 24-hour lipid metabolism level of spontaneously hypertensive rats by mediating lipid metabolism associated genes. This research provides new insights on the association of lipid metabolites, circadian genes and lipid metabolism associated genes in SHR.
Collapse
Affiliation(s)
- Qingqing Hou
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Shiming Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Huanjun Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Dan Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| | - Haiqiang Jiang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
23
|
Clinically relevant high levels of human C-reactive protein induces endothelial dysfunction and hypertension by inhibiting the AMPK-eNOS axis. Clin Sci (Lond) 2021; 134:1805-1819. [PMID: 32639009 DOI: 10.1042/cs20200137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
Successful treatment of resistant hypertension accompanied by elevated human C-reactive protein (hCRP) remains a key challenge in reducing the burden of cardiovascular diseases. It is still unclear whether clinically relevant high-level hCRP is merely a marker or a key driver of hypertension. Here, we investigated the role and mechanism of clinically relevant high level of hCRP in hypertension. Elevated blood pressure was observed in all three hCRP overexpression models, including adeno-associated virus 9 (AAV9)-transfected mice, AAV9-transfected rats and hCRP transgenic (hCRPtg) rats. hCRPtg rats expressing clinically relevant high-level hCRP developed spontaneous hypertension, cardiac hypertrophy, myocardial fibrosis and impaired endothelium-dependent relaxation. Mechanistically, studies in endothelial nitric oxide (NO) synthase (eNOS) knockout mice transfected with AAV9-hCRP and phosphoproteomics analysis of hCRP-treated endothelial cells revealed that hCRP inhibited AMP-activated protein kinase (AMPK)-eNOS phosphorylation pathway. Further, activation of AMPK by metformin normalized endothelial-dependent vasodilation and decreased the blood pressure of hCRPtg rats. Our results show that clinically relevant high-level hCRP induces hypertension and endothelial dysfunction by inhibiting AMPK-eNOS signaling, and highlight hCRP is not only an inflammatory biomarker but also a driver of hypertension. Treatment with metformin or a synthetic AMPK activator may be a potential strategy for vaso-dysfunction and hypertension in patients with high hCRP levels.
Collapse
|
24
|
Saeedi Saravi SS, Eroglu E, Waldeck-Weiermair M, Sorrentino A, Steinhorn B, Belousov V, Michel T. Differential endothelial signaling responses elicited by chemogenetic H 2O 2 synthesis. Redox Biol 2020; 36:101605. [PMID: 32590330 PMCID: PMC7322171 DOI: 10.1016/j.redox.2020.101605] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
Hydrogen peroxide (H2O2) modulates critical phosphorylation pathways in vascular endothelial cells, many of which affect endothelial nitric oxide synthase (eNOS) signal transduction. Both intracellular and extracellular sources of H2O2 have been implicated in eNOS regulation, yet the specific endothelial pathways remain incompletely understood. Here we exploited chemogenetic approaches and live-cell imaging methods to both generate and detect H2O2 in different subcellular compartments (cytosol, nucleus, and caveolae) of cultured EA.hy926 human endothelial cells. We developed novel recombinant constructs encoding differentially-targeted yeast d-amino acid oxidase (DAAO), which generates H2O2 only when its d-amino acid substrate is provided. DAAO was expressed as a fusion protein with the new H2O2 biosensor HyPer7.2, which allowed us to quantitate intracellular H2O2 levels by ratiometric imaging in living endothelial cells following the activation of DAAO by d-alanine. The addition of extracellular H2O2 to the HyPer-DAAO-transfected cells led to increases in H2O2 throughout different regions of the cell, as measured using the differentially-targeted HyPer biosensor for H2O2. The sensor response to extracellular H2O2 was more rapid than that quantitated following the addition of d-alanine to transfected cells to activate differentially-targeted DAAO. The maximal intracellular levels of H2O2 observed in response to the addition of extracellular H2O2 vs. intracellular (DAAO-generated) H2O2 were quantitatively similar. Despite these similarities in the measured levels of intracellular H2O2, we observed a remarkable quantitative difference in the activation of endothelial phosphorylation pathways between chemogenetically-generated intracellular H2O2 and the phosphorylation responses elicited by the addition of extracellular H2O2 to the cells. Addition of extracellular H2O2 had only a nominal effect on phosphorylation of eNOS, kinase Akt or AMP-activated protein kinase (AMPK). By contrast, intracellular H2O2 generation by DAAO caused striking increases in the phosphorylation of these same key signaling proteins. We also found that the AMPK inhibitor Compound C completely blocked nuclear H2O2-promoted eNOS phosphorylation. However, Compound C had no effect on eNOS phosphorylation following H2O2 generation from cytosol- or caveolae-targeted DAAO. We conclude that H2O2 generated in the cell nucleus activates AMPK, leading to eNOS phosphorylation; in contrast, AMPK activation by cytosol- or caveolae-derived H2O2 does not promote eNOS phosphorylation via AMPK. These findings indicate that H2O2 generated in different subcellular compartments differentially modulates endothelial cell phosphorylation pathways, and suggest that dynamic subcellular localization of oxidants may modulate signaling responses in endothelial cells.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Emrah Eroglu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Markus Waldeck-Weiermair
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA; Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Andrea Sorrentino
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Benjamin Steinhorn
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Vselovod Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Thomas Michel
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Yoshitomi H, Zhou J, Nishigaki T, Li W, Liu T, Wu L, Gao M. Morinda citrifolia (Noni) fruit juice promotes vascular endothelium function in hypertension via glucagon-like peptide-1 receptor-CaMKKβ-AMPK-eNOS pathway. Phytother Res 2020; 34:2341-2350. [PMID: 32298014 DOI: 10.1002/ptr.6685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
Morinda citrifolia (Noni) is extensively used in herbal remedies to prevent and treat various diseases, including hypertension. The purpose of this study was to investigate the vascular effects of noni fruit juice and characterize the upstream signaling pathways. We measured the systolic blood pressure, diastolic blood pressure, 24-hr urinary nitric oxide (NO) metabolite excretion, bodyweight (BW), and urine examination in SHR.Cg-Leprcp/NDmcr (SHR/cp) rats after 6 weeks noni juice (15 ml/kg) treatment. Noni juice significantly decreased blood pressure and 24-hr urinary NO metabolite without change of BW or urine volume. Furthermore, the noni juice extract (NJE) promoted endothelial vasorelaxation in rat aorta rings and NO product through an increase in phosphorylation of endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVECs). NJE might act on a glucagon like peptide-1 receptor (GLP-1R) via Ca2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPK signaling with pretreatment of their inhibitors or antagonist in HUVECs. Deacetylasperulosidic acid (DAA) was an active compound in noni juice to improve NO release through same pathway in HUVECs. These results suggested that noni is a novel dietary plant that probably regulates GLP-1R-induced CaMKKβ-AMPK-eNOS pathway to improve endothelium-dependent relaxation, thus reduce the blood pressure probably via one of its responsible ingredient DAA.
Collapse
Affiliation(s)
- Hisae Yoshitomi
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Jingxin Zhou
- Department of Nephrology and Endocrinology, Dongzhimen Hospital Affilated to Beijing University of Chinese Medicine, Tongzhou, Beijing, People's Republic of China
| | | | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Tonghua Liu
- Beijing University of Chinese Medicine, Chaoyang, Beijing, People's Republic of China
| | - Lili Wu
- Beijing University of Chinese Medicine, Chaoyang, Beijing, People's Republic of China
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.,Department of Cell Life Analytics, Institute for Biosciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
26
|
Li H, Li Q, Zhang Y, Liu W, Gu B, Narumi T, Siu KL, Youn JY, Liu P, Yang X, Cai H. Novel Treatment of Hypertension by Specifically Targeting E2F for Restoration of Endothelial Dihydrofolate Reductase and eNOS Function Under Oxidative Stress. Hypertension 2019; 73:179-189. [PMID: 30571557 DOI: 10.1161/hypertensionaha.118.11643] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have shown that hydrogen peroxide (H2O2) downregulates tetrahydrobiopterin salvage enzyme DHFR (dihydrofolate reductase) to result in eNOS (endothelial NO synthase) uncoupling and elevated blood pressure. Here, we aimed to delineate molecular mechanisms underlying H2O2 downregulation of endothelial DHFR by examining transcriptional pathways hypothesized to modulate DHFR expression and effects on blood pressure regulation of targeting these novel mechanisms. H2O2 dose and time dependently attenuated DHFR mRNA and protein expression and enzymatic activity in endothelial cells. Deletion of E2F-binding sites, but not those of Sp1 (specificity protein 1), abolished H2O2 attenuation of DHFR promoter activity. Overexpression of E2F1/2/3a activated DHFR promoter at baseline and alleviated the inhibitory effect of H2O2 on DHFR promoter activity. H2O2 treatment diminished mRNA and protein expression of E2F1/2/3a, whereas overexpression of E2F isoforms increased DHFR protein levels. Chromatin immunoprecipitation assay indicated direct binding of E2F1/2/3a to the DHFR promoter, which was weakened by H2O2. E2F1 RNA interference attenuated DHFR protein levels, whereas its overexpression elevated tetrahydrobiopterin levels and tetrahydrobiopterin/dihydrobiopterin ratios in vitro and in vivo. In Ang II (angiotensin II)-infused mice, adenovirus-mediated overexpression of E2F1 markedly abrogated blood pressure to control levels, by restoring endothelial DHFR function to improve NO bioavailability and vasorelaxation. Bioinformatic analyses confirmed a positive correlation between E2F1 and DHFR in human endothelial cells and arteries, and downregulation of both by oxidized phospholipids. In summary, endothelial DHFR is downregulated by H2O2 transcriptionally via an E2F-dependent mechanism, and that specifically targeting E2F1/2/3a to restore DHFR and eNOS function may serve as a novel therapeutic option for the treatment of hypertension.
Collapse
Affiliation(s)
- Hong Li
- From the Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles.,Division of Cardiology, Department of Medicine, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles.,Department of Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China (H.L., P.L.)
| | - Qiang Li
- From the Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles.,Division of Cardiology, Department of Medicine, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles
| | - Yixuan Zhang
- From the Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles.,Division of Cardiology, Department of Medicine, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles
| | - Wenting Liu
- Department of Integrative Biology and Physiology (W.L., X.Y.), David Geffen School of Medicine, University of California, Los Angeles
| | - Bo Gu
- From the Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles.,Division of Cardiology, Department of Medicine, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles
| | - Taro Narumi
- From the Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles.,Division of Cardiology, Department of Medicine, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles
| | - Kin Lung Siu
- From the Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles.,Division of Cardiology, Department of Medicine, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles
| | - Ji Youn Youn
- From the Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles.,Division of Cardiology, Department of Medicine, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles
| | - Peiqing Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China (H.L., P.L.)
| | - Xia Yang
- Department of Integrative Biology and Physiology (W.L., X.Y.), David Geffen School of Medicine, University of California, Los Angeles
| | - Hua Cai
- From the Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles.,Division of Cardiology, Department of Medicine, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
27
|
Fenofibrate Reverses Dysfunction of EPCs Caused by Chronic Heart Failure. J Cardiovasc Transl Res 2019; 13:158-170. [PMID: 31701352 DOI: 10.1007/s12265-019-09889-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
Abstract
The enhanced activity of endothelial progenitor cells (EPCs) by AMP-activated protein kinase (AMPK) agonists might explain the reversal of chronic heart failure (CHF)-mediated endothelial dysfunction. We studied baseline circulating EPC numbers in patients with heart failure and clarified the effect of fenofibrate on both circulating angiogenic cell (CAC) and late EPC activity. The numbers of circulating EPCs in CHF patients were quantified by flow cytometry. Blood-derived mononuclear cells were cultured, and CAC and late EPC functions, including fibronectin adhesion, tube formation, and migration, were evaluated. We focused on the effect of fenofibrate, an AMPK agonist, on EPC function and Akt/eNOS cascade activation in vitro. The number of circulating EPCs (CD34+/KDR+) was significantly lower in CHF patients (ischemic cardiomyopathy (ICMP): 0.07%, dilated cardiomyopathy (DCMP): 0.068%; p < 0.05) than in healthy subjects (0.102% of the gating region). In CACs, fibronectin adhesion function was reversed by fenofibrate treatment (p < 0.05). Similar results were also found for tube formation and migration in late EPCs, which were significantly improved by fenofibrate in an AMPK-dependent manner (p < 0.05), suggesting that fenofibrate reversed CACs and late EPC dysfunction in CHF patients. The present findings reveal the potential application of the AMPK agonist fenofibrate to reverse endothelial dysfunction in CHF patients.
Collapse
|
28
|
Yin LM, Duan TT, Ulloa L, Yang YQ. Ezrin Orchestrates Signal Transduction in Airway Cells. Rev Physiol Biochem Pharmacol 2019; 174:1-23. [PMID: 28702704 DOI: 10.1007/112_2017_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ezrin is a critical structural protein that organizes receptor complexes and orchestrates their signal transduction. In this study, we review the ezrin-meditated regulation of critical receptor complexes, including the epidermal growth factor receptor (EGFR), CD44, vascular cell adhesion molecule (VCAM), and the deleted in colorectal cancer (DCC) receptor. We also analyze the ezrin-meditated regulation of critical pathways associated with asthma, such as the RhoA, Rho-associated protein kinase (ROCK), and protein kinase A (cAMP/PKA) pathways. Mounting evidence suggests that ezrin plays a role in controlling airway cell function and potentially contributes to respiratory diseases. Ezrin can participate in asthma pathogenesis by affecting bronchial epithelium repair, T lymphocyte regulation, and the contraction of the airway smooth muscle cells. These studies provide new insights for the design of novel therapeutic strategies for asthma treatment.
Collapse
Affiliation(s)
- Lei-Miao Yin
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Ting-Ting Duan
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Luis Ulloa
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China. .,Department of Surgery, Center of Immunology and Inflammation, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, 07101, USA.
| | - Yong-Qing Yang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| |
Collapse
|
29
|
Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction. Redox Biol 2019; 24:101185. [PMID: 30954686 PMCID: PMC6451172 DOI: 10.1016/j.redox.2019.101185] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertension and abdominal aortic aneurysm (AAA) are severe cardiovascular diseases with incompletely defined molecular mechanisms. In the current study we generated dihydrofolate reductase (DHFR) knockout mice for the first time to examine its potential contribution to the development of hypertension and AAA, as well as the underlying molecular mechanisms. Whereas the homozygote knockout mice were embryonically lethal, the heterozygote knockout mice had global reduction in DHFR protein expression and activity. Angiotensin II infusion into these animals resulted in substantially exaggerated elevation in blood pressure and development of AAA, which was accompanied by excessive eNOS uncoupling activity (featured by significantly impaired tetrahydrobiopterin and nitric oxide bioavailability), vascular remodeling (MMP2 activation, medial elastin breakdown and adventitial fibrosis) and inflammation (macrophage infiltration). Importantly, scavenging of mitochondrial reactive oxygen species with Mito-Tempo in vivo completely abrogated development of hypertension and AAA in DHFR knockout mice, indicating a novel role of mitochondria in mediating hypertension and AAA downstream of DHFR deficiency-dependent eNOS uncoupling. These data for the first time demonstrate that targeting DHFR-deficiency driven mitochondrial dysfunction may represent an innovative therapeutic option for the treatment of AAA and hypertension.
Collapse
|
30
|
Ezrin promotes breast cancer progression by modulating AKT signals. Br J Cancer 2019; 120:703-713. [PMID: 30804430 PMCID: PMC6461860 DOI: 10.1038/s41416-019-0383-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023] Open
Abstract
Background Ezrin, which is known as a cytoskeleton linker protein, is closely linked with the metastatic progression of cancer and is frequently abnormally expressed in aggressive cancer types. However, the possible involvement of Ezrin in metastasis and angiogenesis in breast cancer remains unclear. Methods Immunohistochemical analysis of Ezrin was performed on both BC samples (n = 117) and normal epithelium samples (n = 47). In vivo and in vitro assays were performed to validate the effect of Ezrin on AKT pathway-mediated BC progression. Results In this study, Ezrin was found to be upregulated in BC tissues, which was linked with aggressive tumour characteristics and poor prognosis. Moreover, we showed that Ezrin promotes BC proliferation, migration, invasion, and angiogenesis in vitro and in vivo. Mechanistic analysis showed that Ezrin interacted with AKT, and promoted its kinase activity, thereby regulating the AKT pathway in BC. Conclusions In all, we propose a model for an Ezrin/AKT oncoprotein axis, which provides novel insight into how Ezrin contributes to BC progression.
Collapse
|
31
|
The role of neurotrophins in psychopathology and cardiovascular diseases: psychosomatic connections. J Neural Transm (Vienna) 2019; 126:265-278. [PMID: 30767081 PMCID: PMC6449302 DOI: 10.1007/s00702-019-01973-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
Cardiovascular (CV) diseases and mood disorders are common public health problems worldwide. Their connections are widely studied, and the role of neurotrophins (NTs) is already supposed in both conditions. However, data in the literature of clinical aspects are sometimes controversial and no reviews are available describing possible associations between CV risk and mood disorders based on NTs. The mostly studied NT is brain-derived neurotrophic factor (BDNF). Decreased level of BDNF is observed in depression and its connection to hypertension has also been demonstrated with affecting the arterial baroreceptors, renin–angiotensin system and endothelial nitric oxide synthase. BDNF was also found to be the predictor of CV outcome in different patient populations. Other types of human NT-s, such as nerve growth factor, neurotrophin 3 and neurotrophin 4 also seem to have both psychopathological and CV connections. Our aim was to overview the present knowledge in this area, demonstrating a new aspect of the associations between mood disorders and CV diseases through the mediation of NTs. These findings might enlighten new psychosomatic connections and suggest new therapeutic targets that are beneficial both in respect of mood disorders and CV pathology.
Collapse
|
32
|
Song J, Huang Y, Zheng W, Yan J, Cheng M, Zhao R, Chen L, Hu C, Jia W. Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR pathway. Front Med 2018; 12:697-706. [PMID: 30421395 DOI: 10.1007/s11684-018-0655-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
Oxidative stress induced by free fatty acid aggravates endothelial injury, which leads to diabetic cardiovascular complications. Reduction of intracellular oxidative stress may attenuate these pathogenic processes. The dietary polyphenol resveratrol reportedly exerts potential protective effects against endothelial injury. This study determined whether resveratrol can reduce the palmitic acid (PA)-induced generation of reactive oxygen species (ROS) and further explored the underlying molecular mechanisms. We found that resveratrol significantly reduced the PA-induced endothelial ROS levels in human aortic endothelial cells. Resveratrol also induced endothelial cell autophagy, which mediated the effect of resveratrol on ROS reduction. Resveratrol stimulated autophagy via the AMP-activated protein kinase (AMPK)-mTOR pathway. Taken together, these data suggest that resveratrol prevents PA-induced intracellular ROS by autophagy regulation via the AMPK-mTOR pathway. Thus, the induction of autophagy by resveratrol may provide a novel therapeutic candidate for cardioprotection in metabolic syndrome.
Collapse
Affiliation(s)
- Jun Song
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yeping Huang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wenjian Zheng
- Department of Geriatrics, Qingdao Haici Medical Treatment Group, Qingdao, 266000, China
| | - Jing Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Min Cheng
- Huangdao Disease Prevention and Control Center, Qingdao, 266555, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
33
|
Wang S, Wu J, You J, Shi H, Xue X, Huang J, Xu L, Jiang G, Yuan L, Gong X, Luo H, Ge J, Cui Z, Zou Y. HSF1 deficiency accelerates the transition from pressure overload-induced cardiac hypertrophy to heart failure through endothelial miR-195a-3p-mediated impairment of cardiac angiogenesis. J Mol Cell Cardiol 2018; 118:193-207. [PMID: 29626503 DOI: 10.1016/j.yjmcc.2018.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 01/30/2023]
|
34
|
Abstract
The role of AMPK in angiogenesis can be studied using in vitro and in vivo assays. The endothelial spheroid assay is a robust three-dimensional in vitro test, which allows investigation of tubular morphogenesis by integrating cell-cell as well as cell-matrix interactions. The Matrigel plug assay validates the process of angiogenesis in vivo and allows studies in genetically modified mice. Here, we give a detailed description of both assays and their application in AMPK research.
Collapse
|
35
|
Miyazaki T, Miyazaki A. Defective Protein Catabolism in Atherosclerotic Vascular Inflammation. Front Cardiovasc Med 2017; 4:79. [PMID: 29270409 PMCID: PMC5725411 DOI: 10.3389/fcvm.2017.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/23/2017] [Indexed: 01/08/2023] Open
Abstract
Vascular inflammation in atheroprone vessels propagates throughout the arterial tree in dyslipidemic patients, thereby accelerating atherosclerotic progression. To elucidate the mechanism of vascular inflammation, most previous studies have focused on inflammation-related signals that are sent in response to vasoactive stimuli. However, it is also important to understand how normal blood vessels become defective and start degenerating. Growing evidence suggests that major protein catabolism pathways, including the ubiquitin-proteasome, autophagy, and calpain systems, are disturbed in atheroprone vessels and contribute to the pathogenesis of atherosclerosis. Indeed, dysregulation of ubiquitin-proteasome pathways results in the accumulation of defective proteins in blood vessels, leading to vascular endothelial dysfunction and apoptosis in affected cells. Impaired autophagy-lysosomal degradation affects smooth muscle cell transformation and proliferation, as well as endothelial integrity and phagocytic clearance of cellular corpses. Dysregulation of the calpain system confers proatherogenic properties to endothelial cells, smooth muscle cells, and macrophages. In this review article, we will discuss the current information available on defective protein catabolism in atheroprone vessels and its potential interrelation with inflammation-related signals.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, School of Medicine, Showa University, Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
36
|
Abstract
Receptor signaling relays on intracellular events amplified by secondary and tertiary messenger molecules. In cardiomyocytes and smooth muscle cells, cyclic AMP (cAMP) and subsequent calcium (Ca2+) fluxes are the best characterized receptor-regulated signaling events. However, most of receptors able to modify contractility and other intracellular responses signal through a variety of other messengers, and whether these signaling events are interconnected has long remained unclear. For example, the PI3K (phosphoinositide 3-kinase) pathway connected to the production of the lipid second messenger PIP3/PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-trisphosphate) is potentially involved in metabolic regulation, activation of hypertrophy, and survival pathways. Recent studies, highlighted in this review, started to interconnect PI3K pathway activation to Ca2+ signaling. This interdependency, by balancing contractility with metabolic control, is crucial for cells of the cardiovascular system and is emerging to play key roles in disease development. Better understanding of the interplay between Ca2+ and PI3K signaling is, thus, expected to provide new ground for therapeutic intervention. This review explores the emerging molecular mechanisms linking Ca2+ and PI3K signaling in health and disease.
Collapse
Affiliation(s)
- Alessandra Ghigo
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue)
| | - Muriel Laffargue
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue)
| | - Mingchuan Li
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue)
| | - Emilio Hirsch
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue).
| |
Collapse
|
37
|
Miyazaki T, Miyazaki A. Dysregulation of Calpain Proteolytic Systems Underlies Degenerative Vascular Disorders. J Atheroscler Thromb 2017; 25:1-15. [PMID: 28819082 PMCID: PMC5770219 DOI: 10.5551/jat.rv17008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic vascular diseases such as atherosclerosis, aneurysms, diabetic angiopathy/retinopathy as well as fibrotic and proliferative vascular diseases are generally complicated by the progression of degenerative insults, which are characterized by endothelial dysfunction, apoptotic/necrotic cell death in vascular/immune cells, remodeling of extracellular matrix or breakdown of elastic lamella. Increasing evidence suggests that dysfunctional calpain proteolytic systems and defective calpain protein metabolism in blood vessels contribute to degenerative disorders. In vascular endothelial cells, the overactivation of conventional calpains consisting of calpain-1 and -2 isozymes can lead to the disorganization of cell-cell junctions, dysfunction of nitric oxide synthase, sensitization of Janus kinase/signal transducer and activator of transcription cascades and depletion of prostaglandin I2, which contributes to degenerative disorders. In addition to endothelial cell dysfunctions, calpain overactivation results in inflammatory insults in macrophages and excessive fibrogenic/proliferative signaling in vascular smooth muscle cells. Moreover, calpain-6, a non-proteolytic unconventional calpain, is involved in the conversion of macrophages to a pro-atherogenic phenotype, leading to the pinocytotic deposition of low-density lipoprotein cholesterol in the cells. Here, we discuss the recent progress that has been made in our understanding of how calpain contributes to degenerative vascular disorders.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine
| |
Collapse
|
38
|
Zhang Y, Liu NM, Wang Y, Youn JY, Cai H. Endothelial cell calpain as a critical modulator of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1326-1335. [PMID: 28366876 DOI: 10.1016/j.bbadis.2017.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/04/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Calpains are a family of calcium-dependent non-lysosomal cysteine proteases. In particular, calpains residing in the endothelial cells play important roles in angiogenesis. It has been shown that calpain activity can be increased in endothelial cells by growth factors, primarily vascular endothelial growth factor (VEGF). VEGF/VEGFR2 induces calpain 2 dependent activation of PI3K/AMPK/Akt/eNOS pathway, and consequent nitric oxide production and physiological angiogenesis. Under pathological conditions such as tumor angiogenesis, endothelial calpains can be activated by hypoxia. This review focuses on the molecular regulatory mechanisms of calpain activation, and the newly identified mechanistic roles and downstream signaling events of calpains in physiological angiogenesis, and in the conditions of pathological tumor angiogenesis and diabetic wound healing, as well as retinopathy and atherosclerosis that are also associated with an increase in calpain activity. Further discussed include the differential strategies of modulating angiogenesis through manipulating calpain expression/activity in different pathological settings. Targeted limitation of angiogenesis in cancer and targeted promotion of angiogenesis in diabetic wound healing via modulations of calpains and calpain-dependent signaling mechanisms are of significant translational potential. Emerging strategies of tissue-specific targeting, environment-dependent targeting, and genome-targeted editing may turn out to be effective regimens for targeted manipulation of angiogenesis through calpain pathways, for differential treatments including both attenuation of tumor angiogenesis and potentiation of diabetic angiogenesis.
Collapse
Affiliation(s)
- Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Norika Mengchia Liu
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Yongchen Wang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA.
| |
Collapse
|
39
|
Zhang Y, Li Q, Youn JY, Cai H. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING. J Biol Chem 2016; 292:407-416. [PMID: 27872190 DOI: 10.1074/jbc.m116.766832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 01/13/2023] Open
Abstract
The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes.
Collapse
Affiliation(s)
- Yixuan Zhang
- From the Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), California 90095
| | - Qiang Li
- From the Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), California 90095
| | - Ji Youn Youn
- From the Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), California 90095
| | - Hua Cai
- From the Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), California 90095
| |
Collapse
|
40
|
Rao SS, Mu Q, Zeng Y, Cai PC, Liu F, Yang J, Xia Y, Zhang Q, Song LJ, Zhou LL, Li FZ, Lin YX, Fang J, Greer PA, Shi HZ, Ma WL, Su Y, Ye H. Calpain-activated mTORC2/Akt pathway mediates airway smooth muscle remodelling in asthma. Clin Exp Allergy 2016; 47:176-189. [PMID: 27649066 DOI: 10.1111/cea.12805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Allergic asthma is characterized by inflammation and airway remodelling. Airway remodelling with excessive deposition of extracellular matrix (ECM) and larger smooth muscle mass are correlated with increased airway responsiveness and asthma severity. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodelling. However, the role of calpain in airway smooth muscle remodelling remains unknown. OBJECTIVE To investigate the role of calpain in asthmatic airway remodelling as well as the underlying mechanism. METHODS The mouse asthma model was made by ovalbumin sensitization and challenge. Calpain conditional knockout mice were studied in the model. Airway smooth muscle cells (ASMCs) were isolated from smooth muscle bundles in airway of rats. Cytokines IL-4, IL-5, TNF-α, and TGF-β1, and serum from patients with asthma were selected to treated ASMCs. Collagen-I synthesis, cell proliferation, and phosphorylation of Akt in ASMCs were analysed. RESULTS Inhibition of calpain using calpain knockout mice attenuated airway smooth muscle remodelling in mouse asthma models. Cytokines IL-4, IL-5, TNF-α, and TGF-β1, and serum from patients with asthma increased collagen-I synthesis, cell proliferation, and phosphorylation of Akt in ASMCs, which were blocked by the calpain inhibitor MDL28170. Moreover, MDL28170 reduced cytokine-induced increases in Rictor protein, which is the most important component of mammalian target of rapamycin complex 2 (mTORC2). Blockage of the mTORC2 signal pathway prevented cytokine-induced phosphorylation of Akt, collagen-I synthesis, and cell proliferation of ASMCs and attenuated airway smooth muscle remodelling in mouse asthma models. CONCLUSIONS AND CLINICAL RELEVANCE Our results indicate that calpain mediates cytokine-induced collagen-I synthesis and proliferation of ASMCs via the mTORC2/Akt signalling pathway, thereby regulating airway smooth muscle remodelling in asthma.
Collapse
Affiliation(s)
- S-S Rao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Q Mu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Zeng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - P-C Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - F Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Xia
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Q Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L-J Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L-L Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - F-Z Li
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y-X Lin
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Fang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - P A Greer
- Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - H-Z Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - W-L Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| | - Y Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - H Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| |
Collapse
|
41
|
Ou ZJ, Chen J, Dai WP, Liu X, Yang YK, Li Y, Lin ZB, Wang TT, Wu YY, Su DH, Cheng TP, Wang ZP, Tao J, Ou JS. 25-Hydroxycholesterol impairs endothelial function and vasodilation by uncoupling and inhibiting endothelial nitric oxide synthase. Am J Physiol Endocrinol Metab 2016; 311:E781-E790. [PMID: 27600825 DOI: 10.1152/ajpendo.00218.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/02/2016] [Indexed: 12/24/2022]
Abstract
Endothelial dysfunction is a key early step in atherosclerosis. 25-Hydroxycholesterol (25-OHC) is found in atherosclerotic lesions. However, whether 25-OHC promotes atherosclerosis is unclear. Here, we hypothesized that 25-OHC, a proinflammatory lipid, can impair endothelial function, which may play an important role in atherosclerosis. Bovine aortic endothelial cells were incubated with 25-OHC. Endothelial cell proliferation, migration, and tube formation were measured. Nitric oxide (NO) production and superoxide anion generation were determined. The expression and phosphorylation of endothelial NO synthase (eNOS) and Akt as well as the association of eNOS and heat shock protein (HSP)90 were detected by immunoblot analysis and immunoprecipitation. Endothelial cell apoptosis was monitored by TUNEL staining and caspase-3 activity, and expression of Bcl-2, Bax, cleaved caspase-9, and cleaved caspase-3 were detected by immunoblot analysis. Finally, aortic rings from Sprague-Dawley rats were isolated and treated with 25-OHC, and endothelium-dependent vasodilation was evaluated. 25-OHC significantly inhibited endothelial cell proliferation, migration, and tube formation. 25-OHC markedly decreased NO production and increased superoxide anion generation. 25-OHC reduced the phosphorylation of Akt and eNOS and the association of eNOS and HSP90. 25-OHC also enhanced endothelial cell apoptosis by decreasing Bcl-2 expression and increasing cleaved caspase-9 and cleaved caspase-3 expressions as well as caspase-3 activity. 25-OHC impaired endothelium-dependent vasodilation. These data demonstrated that 25-OHC could impair endothelial function by uncoupling and inhibiting eNOS activity as well as by inducing endothelial cell apoptosis. Our findings indicate that 25-OHC may play an important role in regulating atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Jing Chen
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Wei-Ping Dai
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Xiang Liu
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Yin-Ke Yang
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Yan Li
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Ze-Bang Lin
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Tian-Tian Wang
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Ying-Ying Wu
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Dan-Hong Su
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Tian-Pu Cheng
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Zhi-Ping Wang
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Jun Tao
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
42
|
Gao D, Zuo Z, Tian J, Ali Q, Lin Y, Lei H, Sun Z. Activation of SIRT1 Attenuates Klotho Deficiency-Induced Arterial Stiffness and Hypertension by Enhancing AMP-Activated Protein Kinase Activity. Hypertension 2016; 68:1191-1199. [PMID: 27620389 DOI: 10.1161/hypertensionaha.116.07709] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
Abstract
Arterial stiffness is an independent risk factor for stroke and myocardial infarction. This study was designed to investigate the role of SIRT1, an important deacetylase, and its relationship with Klotho, a kidney-derived aging-suppressor protein, in the pathogenesis of arterial stiffness and hypertension. We found that the serum level of Klotho was decreased by ≈45% in patients with arterial stiffness and hypertension. Interestingly, Klotho haplodeficiency caused arterial stiffening and hypertension, as evidenced by significant increases in pulse wave velocity and blood pressure in Klotho-haplodeficient (KL+/-) mice. Notably, the expression and activity of SIRT1 were decreased significantly in aortic endothelial and smooth muscle cells in KL+/- mice, suggesting that Klotho deficiency downregulates SIRT1. Treatment with SRT1720 (15 mg/kg/d, IP), a specific SIRT1 activator, abolished Klotho deficiency-induced arterial stiffness and hypertension in KL+/- mice. Klotho deficiency was associated with significant decreases in activities of AMP-activated protein kinase α (AMPKα) and endothelial NO synthase (eNOS) in aortas, which were abolished by SRT1720. Furthermore, Klotho deficiency upregulated NADPH oxidase activity and superoxide production, increased collagen expression, and enhanced elastin fragmentation in the media of aortas. These Klotho deficiency-associated changes were blocked by SRT1720. In conclusion, this study provides the first evidence that Klotho deficiency downregulates SIRT1 activity in arterial endothelial and smooth muscle cells. Pharmacological activation of SIRT1 may be an effective therapeutic strategy for arterial stiffness and hypertension.
Collapse
Affiliation(s)
- Diansa Gao
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Zhong Zuo
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Jing Tian
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Quaisar Ali
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Yi Lin
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Han Lei
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Zhongjie Sun
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.).
| |
Collapse
|
43
|
Brinda BJ, Viganego F, Vo T, Dolan D, Fradley MG. Anti-VEGF-Induced Hypertension: a Review of Pathophysiology and Treatment Options. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2016; 18:33. [DOI: 10.1007/s11936-016-0452-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Li P, Liu H, Sun P, Wang X, Wang C, Wang L, Wang T. Chronic vagus nerve stimulation attenuates vascular endothelial impairments and reduces the inflammatory profile via inhibition of the NF-κB signaling pathway in ovariectomized rats. Exp Gerontol 2016; 74:43-55. [DOI: 10.1016/j.exger.2015.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
|
45
|
Lemos JR, Alves CR, de Souza SBC, Marsiglia JDC, Silva MSM, Pereira AC, Teixeira AL, Vieira ELM, Krieger JE, Negrão CE, Alves GB, de Oliveira EM, Bolani W, Dias RG, Trombetta IC. Peripheral vascular reactivity and serum BDNF responses to aerobic training are impaired by the BDNF Val66Met polymorphism. Physiol Genomics 2015; 48:116-23. [PMID: 26603150 DOI: 10.1152/physiolgenomics.00086.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/13/2015] [Indexed: 11/22/2022] Open
Abstract
Besides neuronal plasticity, the neurotrophin brain-derived neurotrophic factor (BDNF) is also important in vascular function. The BDNF has been associated with angiogenesis through its specific receptor tropomyosin-related kinase B (TrkB). Additionally, Val66Met polymorphism decreases activity-induced BDNF. Since BDNF and TrkB are expressed in vascular endothelial cells and aerobic exercise training can increase serum BDNF, this study aimed to test the hypotheses: 1) Serum BDNF levels modulate peripheral blood flow; 2) The Val66Met BDNF polymorphism impairs exercise training-induced vasodilation. We genotyped 304 healthy male volunteers (Val66Val, n = 221; Val66Met, n = 83) who underwent intense aerobic exercise training on a running track three times/wk for 4 mo. We evaluated pre- and post-exercise training serum BDNF and proBDNF concentration, heart rate (HR), mean blood pressure (MBP), forearm blood flow (FBF), and forearm vascular resistance (FVR). In the pre-exercise training, BDNF, proBDNF, BDNF/proBDNF ratio, FBF, and FVR were similar between genotypes. After exercise training, functional capacity (V̇o2 peak) increased and HR decreased similarly in both groups. Val66Val, but not Val66Met, increased BDNF (interaction, P = 0.04) and BDNF/proBDNF ratio (interaction, P < 0.001). Interestingly, FBF (interaction, P = 0.04) and the FVR (interaction, P = 0.01) responses during handgrip exercise (HG) improved in Val66Val compared with Val66Met, even with similar responses of HR and MBP. There were association between BDNF/proBDNF ratio and FBF (r = 0.64, P < 0.001) and FVR (r = -0.58, P < 0.001) during HG exercise. These results show that peripheral vascular reactivity and serum BDNF responses to exercise training are impaired by the BDNF Val66Met polymorphism and such responsiveness is associated with serum BDNF concentrations in healthy subjects.
Collapse
Affiliation(s)
- José R Lemos
- School of Physical Education, Military Police of São Paulo State, São Paulo, Brazil; Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Cleber R Alves
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Sílvia B C de Souza
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Julia D C Marsiglia
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Michelle S M Silva
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre C Pereira
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - José E Krieger
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Carlos E Negrão
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Guilherme B Alves
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Wladimir Bolani
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Rodrigo G Dias
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Ivani C Trombetta
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil; Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| |
Collapse
|
46
|
Hein TW, Rosa RH, Ren Y, Xu W, Kuo L. VEGF Receptor-2-Linked PI3K/Calpain/SIRT1 Activation Mediates Retinal Arteriolar Dilations to VEGF and Shear Stress. Invest Ophthalmol Vis Sci 2015; 56:5381-9. [PMID: 26284543 DOI: 10.1167/iovs15-16950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Vasomotor responses of retinal arterioles to luminal flow/shear stress and VEGF have a critical role in governing retinal blood flow possibly via nitric oxide synthase (NOS) activation. However, the cellular mechanism for flow-sensitive vasomotor activity in relation to VEGF signaling in retinal arterioles has not been characterized. We used an isolated vessel approach to specifically address this issue. METHODS Porcine retinal arterioles were isolated, cannulated, and pressurized to 55 cm H2O luminal pressure by two independent reservoir systems. Luminal flow was increased stepwise by creating hydrostatic pressure gradients across two reservoirs. Diameter changes and associated signaling mechanisms corresponding to increased flow and VEGF receptor 2 (VEGFR2) activation were assessed using videomicroscopic, pharmacological, and molecular tools. RESULTS Retinal arterioles developed basal tone under zero-flow condition and dilated concentration-dependently to VEGF165. Stepwise increases in flow produced graded vasodilation. Vasodilations to VEGF165 and increased flow were abolished by endothelial removal, and inhibited by pharmacological blockade of VEGFR2, NOS, phosphoinositide 3-kinase (PI3K), calpains, or sirtuin-1 (SIRT1) deacetylase. A VEGF165 antibody blocked vasodilation to VEGF165 but not flow. Immunostaining indicated that VEGFR2 was expressed in the endothelial and smooth muscle layers of retinal arterioles. CONCLUSIONS Ligand-dependent and ligand-independent activation of VEGFR2 in the endothelium mediates NO-dependent dilations of porcine retinal arterioles in response to VEGF165 and luminal flow/shear stress, respectively. It appears that NOS stimulation via PI3K, calpain proteases, and SIRT1-dependent deacetylation downstream from VEGFR2 activation contributes to these vasodilator responses.
Collapse
Affiliation(s)
- Travis W Hein
- Department of Surgery Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple, Texas, United States 2Department of Ophthalmology, Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple
| | - Robert H Rosa
- Department of Surgery Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple, Texas, United States 2Department of Ophthalmology, Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple
| | - Yi Ren
- Department of Surgery Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple, Texas, United States
| | - Wenjuan Xu
- Department of Surgery Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple, Texas, United States
| | - Lih Kuo
- Department of Surgery Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple, Texas, United States 2Department of Ophthalmology, Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple
| |
Collapse
|
47
|
Abstract
Despite many advances in percutaneous and surgical interventions in the treatment of coronary artery disease (CAD), up to one-third of patients are still either not candidates or receive suboptimal revascularization. Calpains are a class of calcium-activated non-lysosomal cysteine proteases that serve as a proteolytic unit for cellular homeostasis. Uncontrolled activation of calpain has been found to be involved in the pathogenesis of myocardial reperfusion injury, cardiac hypertrophy, myocardial stunning and cardiac ischemia. Inhibition of calpains has been shown to significantly attenuate myocardial stunning and reduced infarct size after ischemia-reperfusion. Calpain inhibition therefore serves as a potential medical therapy for patients suffering from a number of diseases, including CAD.
Collapse
Affiliation(s)
- Brittany A Potz
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert Medical School Brown University
| | | | | | | |
Collapse
|
48
|
Hoskin V, Szeto A, Ghaffari A, Greer PA, Côté GP, Elliott BE. Ezrin regulates focal adhesion and invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion. Mol Biol Cell 2015; 26:3464-79. [PMID: 26246600 PMCID: PMC4591691 DOI: 10.1091/mbc.e14-12-1584] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/31/2015] [Indexed: 01/09/2023] Open
Abstract
Ezrin regulates proper focal adhesion and invadopodia turnover by regulating calpain-1, in part by directing its proteolytic activity toward key substrates talin, FAK, and cortactin. Ezrin-deficient tumor cells show reduced lung seeding and colonization in vivo but not primary tumor growth, thus implicating ezrin as a metastasis-associated protein. Up-regulation of the cytoskeleton linker protein ezrin frequently occurs in aggressive cancer types and is closely linked with metastatic progression. However, the underlying molecular mechanisms detailing how ezrin is involved in the invasive and metastatic phenotype remain unclear. Here we report a novel function of ezrin in regulating focal adhesion (FA) and invadopodia dynamics, two key processes required for efficient invasion to occur. We show that depletion of ezrin expression in invasive breast cancer cells impairs both FA and invadopodia turnover. We also demonstrate that ezrin-depleted cells display reduced calpain-mediated cleavage of the FA and invadopodia-associated proteins talin, focal adhesion kinase (FAK), and cortactin and reduced calpain-1–specific membrane localization, suggesting a requirement for ezrin in maintaining proper localization and activity of calpain-1. Furthermore, we show that ezrin is required for cell directionality, early lung seeding, and distant organ colonization but not primary tumor growth. Collectively our results unveil a novel mechanism by which ezrin regulates breast cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Victoria Hoskin
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alvin Szeto
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Abdi Ghaffari
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Graham P Côté
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bruce E Elliott
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
49
|
Xing SS, Yang XY, Zheng T, Li WJ, Wu D, Chi JY, Bian F, Bai XL, Wu GJ, Zhang YZ, Zhang CT, Zhang YH, Li YS, Jin S. Salidroside improves endothelial function and alleviates atherosclerosis by activating a mitochondria-related AMPK/PI3K/Akt/eNOS pathway. Vascul Pharmacol 2015; 72:141-52. [PMID: 26187353 DOI: 10.1016/j.vph.2015.07.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/17/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
Salidroside (SAL) is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea. A recent study has reported that SAL can efficiently decrease atherosclerotic plaque formation in low-density lipoprotein receptor-deficient mice. This study was to investigate the molecular mechanism of antiatherogenic effects of SAL. Given the importance of endothelial nitric oxide synthase (eNOS) in atherosclerosis, we sought to elucidate whether SAL could stimulate eNOS activation and also to explore its upstream signaling pathway. Six-week old apoE(-/-) male mice were fed a high-fat diet for 8weeks and then were administered with SAL for another 8weeks. SAL significantly improved endothelial function associated with increasing eNOS activation, thus reduced the atherosclerotic lesion area. SAL increased eNOS-Ser1177 phosphorylation and decreased eNOS-Thr495 phosphorylation, indicative of eNOS activation in endothelium. The aortic sinus lesions in SAL treated mice displayed reduced inflammation. SAL significantly activated AMP-activated protein kinase (AMPK). Both AMPK inhibitor and AMPK small interfering RNA (siRNA) abolished SAL-induced Akt-Ser473 and eNOS-Ser1177 phosphorylation. In contrast, LY294002, the PI3k/Akt pathway inhibitor, abolished SAL-induced phosphorylation and expression of eNOS. High performance liquid chromatography (HPLC) analysis revealed that SAL decreased cellular ATP content and increased the cellular AMP/ATP ratio, which was associated with the activation of AMPK. SAL was found to decrease the mitochondrial membrane potential (ΔΨm), which is a likely consequence of reduced ATP production. The action of SAL to reduce atherosclerotic lesion formation may at least be attributed to its effect on improving endothelial function by promoting nitric oxide (NO) production, which was associated with mitochondrial depolarization and subsequent activation of the AMPK/PI3K/Akt/eNOS pathway. Taken together, our data described the effects of SAL on mitochondria, which played critical roles in improving endothelial function in atherosclerosis.
Collapse
Affiliation(s)
- Sha-Sha Xing
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Xiao-Yan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Tao Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Wen-Jing Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Dan Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Jiang-Yang Chi
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Fang Bian
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Xiang-Li Bai
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Guang-Jie Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - You-Zhi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Cun-Tai Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Yong-Hui Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Yong-Sheng Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Si Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| |
Collapse
|
50
|
Li Q, Youn JY, Cai H. Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension. J Hypertens 2015; 33:1128-36. [PMID: 25882860 PMCID: PMC4816601 DOI: 10.1097/hjh.0000000000000587] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reduced nitric oxide bioavailability contributes to endothelial dysfunction and hypertension. The endothelial isoform of nitric oxide synthase (eNOS) is responsible for the production of nitric oxide within the endothelium. Loss of eNOS cofactor tetrahydrobiopterin to initial increase in oxidative stress leads to uncoupling of eNOS, in which the enzyme produces superoxide anion rather than nitric oxide, further substantiating oxidative stress to induce vascular pathogenesis. The current review focuses on recent advances on the molecular mechanisms and consequences of eNOS dysfunction in hypertension, and potential novel therapeutic strategies restoring eNOS function to treat hypertension.
Collapse
Affiliation(s)
- Qiang Li
- Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|